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ERGODIC PROPERTIES OF LINEAR DYNAMICAL SYSTEMS*

RUSSELL A. JOHNSON,’, KENNETH J. PALMER* AND GEORGE R. SELL

Abstract. The Multiplicative Ergodic theorem, which gives information about the dynamical structure
of a cocycle , or a linear skew product flow r, over a suitable base space M, asserts that for every invariant
probability measure/ on M there is a measurable decomposition of the vector bundle over M into invadant
measurable subbundles, and that every solution with initial conditions in any of these subbundles has strong
Lyapunov exponents. These exponents depend on the measure , and when/ is ergodic, they are constant
(almost everywhere) on M and form a finite set meas X(/). The dynamical spectrum dyn X consists of those
values A e R for which the shifted flow r fails to have an exponential dichotomy over m. The Spectral
theorem for linear skew product flows states that when M is compact and dynamically connected then dyn X
is the finite union of k disjoint compact intervals and the vector bundle over m is the sum of k continuous
invariant subbundles. We show that

Boundary dyn X
_
U meas X(/)

_
dyn :

where the union above is over all ergodic measures on M. Also we show that the measurable invariant
subbundles which arise in the Multiplicative Ergodic theorem form a refinement of the continuous invariant
subbundles described in the Spectral theorem. A new proofofthe Multiplicative Ergodic theorem is presented
here. This proof is a substantial simplification over other arguments. Applications of the theory of Lyapunov
exponents to "spiral" systems, products of "random" matrices, stochastic differential equations, and the
almost periodic Schr6dinger operator are included.
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1. Introduction. Nearly two decades ago Oseledec (1968) published his proof of
the Multiplicative Ergodic theorem. This theorem, which is one of the milestones in
the study of ergodic properties of dynamical systems, has had far-reaching applications,
including its role in the work of Margulis (1975) on arithmeticity in Lie groups, in the
theory of Pesin (1977) on Bernoullian substructures for diffeomorphisms, in the theory
of Katok (1980) on entropy and periodic points, in the study of Kotani (1982) on
spectral measures for Schr/Sdinger operators, in the work of Constantin and Foias
(1983) on attractors in the Navier-Stokes equations, and in the study of Novikov
(1975) and Millionscikov (1978) on almost reducible systems with almost periodic
coefficients. As a testimony to the importance of this theorem one finds several
alternative proofs including the contemporaneous paper of Millionscikov (1968), and
those of Raghunathan (1979), Ruelle (1979) and Crauel (1981), as well as the anticipa-
tory paper of Liao (1966).

The Multiplicative Ergodic theorem gives information about the dynamical struc-
ture of a cocycle , or a linear skew product flow w, over a suitable base space M. In
typical applications the base space M is either an attractor, a compact invariant set,
or the space of coefficients for a diffeomorphism, a differential equation, or a vector
field. This theorem asserts that for every invariant probability measure/ on M there
is a measurable decomposition of the vector bundle over M into invariant measurable

* Received by the editors September 4, 1985, and in revised form January 10, 1986. This research was
supported in part by a grant from the National Science Foundation.

f Department of Mathematics, University of Southern California, Los Angeles, California 90089.

* Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124.
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota

55455.



2 R. A. JOHNSON, K. J. PALMER AND G. R. SELL

subbundles, and that every solution with initial conditions in any of these subbundles
has strong Lyapunov exponents. These exponents, or growth rates, depend on the
measure/, and when/ is ergodic, they are constant (almost everywhere) on M and
form a finite set meas E(/.), the measurable (Millionscikov-Oseledec) spectrum.

The main objective in this paper is to study the connection between the measurable
spectrum meas E(/) and the dynamical spectrum dyn E introduced by Sacker and Sell
(1975), (1978), (1980). (Also see Daletskii and Krein (1974), as well as Selgrade (1975).)
The dynamical spectrum dyn E consists of those values A R for which the shifted
flow r fails to have an exponential dichotomy over M. It follows from the Spectral
theorem for linear skew-product flows, Sacker and Sell (1978), that the dynamical
spectrum is the finite union of disjoint compact intervals when M is compact and
dynamically connected.

The dynamical spectrum and the theory of exponential dichotomies are central
concepts in wide-ranging branches of analysis including the perturbation theories for
invariant manifolds (see Sacker (1969), Fenichel (1971) and Hirsch, Pugh and Shub
(1977), the bifurcation theories of Chenciner and Iooss (1979) and Sell (1979), the
characterization of the spectrum of Schrfdinger operators in Johnson (1982), lineariz-
ation theories near invariant manifolds in Sell (1984), the study of transversal homo-
clinic orbits in Palmer (1984), as well as the study of inertial manifolds for dissipative
systems in Foias, Sell and Temam (1985).

It is important therefore to understand the connection between these two spectral
concepts. We will show, in 8, that

(1.1) boundary dyn E
_
U meas E(/)

_
dyn E,

where the union above is over all ergodic measures/ on M. We actually derive much
more than (1.1). We show that the measurable invariant subbundles which arise in the
Multiplicative Ergodic theorem form a refinement of the continuous invariant sub-
bundles described in the Spectral theorem. The relationship (1.1) also leads to good
methods for computing the Lyapunov exponents and the continuous spectral bundles
(see Perry (1986) ).

Another objective is to show that the cocycle , itself, has a strong Lyapunov
exponent (almost everywhere) and that this agrees with max meas (/). Although
simple, this fact is very important because it forms the foundation for deriving an
approximation theory which leads to the numerical evaluation of the measurable and
dynamical spectra. The approximation theory and the related numerical coding is
described in the University of Minnesota Ph.D. thesis of David Perry (1986).

While doing this investigation we discovered a new proof of the Multiplicative
Ergodic theorem. Since our proof is a substantial simplification over other arguments,
we present it here. In addition to this simplification, our proof has some interesting
geometrical features which may be useful elsewhere. While our proof of the Multi-
plicative Ergodic theorem is restricted to cocycles over a compact base space M, we
will see that this includes practically every application. Among other things, our theory
applies to linear stochastic differential equations with bounded measurable coefficients,
as well as to the linearized flow near an attractor in a nonlinear dynamical system.

A final objective of this paper is the presentation of several applications of these
spectral theories. One of these theories, the theory of Lyapunov exponents for "spiral"
systems, is central to any numerical investigation of Lyapunov exponents. Other
applications include products of "random" matrices, stochastic differential equations,
and the almost periodic Schrfdinger operator.
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This paper is organized as follows: In 2 we present the statements of the main
theorems in this paper. Section 3 is concerned with a number of technical details which
shall be used in the proofs of our theorems. One may wish to skip this on the first
reading. In 4 we present the basic triangularization method as it applies to linear
skew product flows. Section 5 is concerned with a brief review of some basic facts
about invariant measures, and in 6 we present our proof of the Multiplicative Ergodic
theorem. The ergodic properties of the induced flow on the projective bundle are
presented in 7. In 8 we derive (1.1) which describes the connection between the
measurable and the dynamical spectra. In 9 we study the theory of wedge-product
flows and show how this can be used to compute the measurable spectrum, and in
10 we present the applications discussed above. The paper concludes with an Appen-

dix which contains some comments on related geometric properties of linear skew
product flows.

2. Statement of main theorems. Let M be a compact Hausdorff space and let T
denote either the integers Z or the reals R. Assume that 0. is a flow on M, i.e. the
mapping (0, t)-> 0. of M xT into M is continuous and satisfies 0.0= 0, and
0. (t + s)= (0. t).s. The Krylov-Bogoliubov theorem (see Nemytskii and Stepanov
(1960)) assures us that there is an invariant probability measure/ on M. This means
that tz(A" t)=lz(A) for all Borel sets AM and all tT, where A. t={O. t: OA}.
The invariant measure/z is ergodic if/z (AA A. t) 0 for all T implies that/x (A) 0
or/z(A) 1. Recall that AAB (A\B)[.J (B\A) is the symmetric difference. For an
integer m >= 1 let (m) denote the group of all isomorphisms on Rm, i.e., the group
of nonsingular (m x m) matrices with entries in R. A cocycle on M is a continuous
mapping M x T--> (g(m) that satisfies

(2.1) alP(O, + s) dP( O t, s)dP( O, t)

for all 0 M and s, s T. We note that is a cocycle on M if and only if

(2.2) or(x, 0, t):= ((0, t)x, O. t)

is a linear skew product flow on R"x M.
If T R we shall say that the flow 7r is smooth provided the mapping

d
A" 0 --(0, t)lt=o

exists and is continuous. In this case the cocycle (0, t) is simply the fundamental
matrix solution of

(2.3) x’= A(O. t)x (x Rm)

that satisfies (0, 0)= I. This is the prototypical example of a cocycle.
Let and be two cocycles on M with range in qd(m). We shall say that q)

and are cohomologous if there is a continuous mapping F:M -> cg(m) that satisfies

(2.4) (0, t)= F(O. t)(O, t)F(O)-1

for all 0 M, T, where (-1) denotes the matrix inverse.
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Let P be a cocycle on M. Let x ER (xO) and 0M and define the four
Lyapunov exponents A +/-(x, 0), A = (x, 0) by

1
A (x, 0) lim sup log I(0, t)xl, A=(x, 0):= lim inf

I
log I(0, t)x I.

If it happens that the following two limits exist and are equal

(2.5) lim
I
log I(0, t)xl lim

1
log I(0, t)xl,

t-,+ t-,--oo

then we shall denote the common value as A (x, 0). In the future when we write the
symbol A (x, O) this should be interpreted as an assertion that both limits in (2.5) exist
and A (x, O) is the common value. In this case one says’that (x, 0) has a strong Lyapunov
exponent.

Let and V be two cohomologous cocycles on M that satisfy (2.4), and let
x- F(O)y. Then one has

1 1
lim sup log I(0, t)xl lim sup log IV(0, t)y

and

lim
I
log II)(0, t)xl lim

I
log IV(0, t)yl.

Itl-" Itl-’

In other words, cohomologous cocycles have the same Lyapunov exponents.
For 0-< k-< m let (m, k) denote the Grassman manifold of k-planes in Rm, and

let (g(m)- [.J kin=0 d(m, k) denote the disjoint union of these compact manifolds. For
k {1,..., m} we shall let N(k) denote those vectors rfi- (ml,"" ", mk) with 1 <_-mi
and m +" + mk m.

The first two theorems are statements of the Multiplicative Ergodic theorem.
THEOREM 2.1. Let M be a compact Hausdorff space with a flow 0. and let tx be

an invariant probability measure on M. Let dp denote a cocycle on M. Then there exist"
(i) an invariant set M,

_
M with/z(M,) 1;

(ii) a measurable decomposition M, [.J M,(p) where each M,(p) is invariant
and the union is taken over allpairsp k, rfi where 1 <- k <-_ m, and rfi N k

(iii) measurable mappings A1," , Ak’M,(p) -> R, where

,1(0) < X2(0 <’’" < ,k(O)

for 0 M,(p); and
(iv) measurable mappings /i" M,,(p)--> (m, m), 1 <= <= k, where

n =(m,,... ,mk),

such that for 0 M,(p) one has:
(v) { /4/1(0),. ., /k(0)} is linearly independent;
(vi) R= /4/’1(0)+...+ /k(0);
(vii) ifxe (0), x#O, then A(x, O)=A,(O) for l <-i<-k.

If, in addition, tx is an ergodic measure, then precisely one M,, (p) has positive measure,
and the mappings A" M, --> R are constant, 1 <= <-k.

The results in the last theorem extend readily to linear skew product flows on
arbitrary vector bundles, Sacker and Sell (1978).
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THEOREM 2.2. Let g be a vector bundle over a compact Hausdorffspace M and let
r be a linear skew product flow on . Let tz be an invariant probability measure on M.
Then the conclusions of Theorem 2.1 remain valid where 14i, 1 <- <- k, now assume values
in the appropriate Grassman bundles over M.

The measurable spectrum meas E(/x) is defined to be the collection {A1,’’ ", ’k}
when/x is ergodic. The numbers ml, ", mk are the multiplicities of the spectral values
A1,’" ",Ak. When /z is not ergodic, then the spectrum is measE(/z, 0)=
{AI(0),’’ ",Ak(0)} and the multiplicities {ml," ",mk} depend on 0M, and 0
M(p). For an ergodic measure/z, the measurable bundle associated with a spectral
value Ai, 1 <_- <_- k is

//, {(x, 0): x /r,(0), 0 M,}.

If/ is not ergodic, then the measurable bundles are defined similarly on each of the
invariant sets M,(p).

The next theorem compares the measurable spectrum and the measurable bundles
with the dynamical (or continuous) spectrum and associated continuous spectral
subbundles arising in the theory of exponential dichotomies in linear skew product
flows; see Sacker and Sell (1978), (1980).

Let r(x, 0, t) be a linear skew product flow on Rm M, where M is a compact,
connected space, and for A R let

(2.6) rx (x, 0, t):= (x (0, t)x, O" t)

be the shifted flow, where qx(0, t):= e-a’q(0, t). Recall that r has an exponential
dichotomy over M if there is a (continuous) projector P(x, O)=(P(O)x, O) on R and
constants K => 1, a > 0 such that

[qx (0, t)P(O)dp-l(o, s)l<-_ K e-’-s), s<= t,

Iq(0, t)[I-P(O)]c-(O,s)l<=Ke--’, t<-_s

for all 0 M and s, T. The set A R for which era fails to have an exponential
dichotomy overM is defined to be dyn E, the dynamical spectrum. The Spectral theorem
(Sacker and Sell (1978)) assures us that dyn E uk__l [a, b] is the union of k-nonover-
lapping compact intervals, where 1 =< k-< m. Also corresponding to each spectral interval
[a, b] there is an invariant spectral subbundle Fi ofR x M with dim ri(0) => 1, where
l/’(O)={xRm:(x,O)V}, l<-i<=k, the spaces {l(O),’’’,k(O) are linearly
independent and RmxM //’1 +... + Fk (as a Whitney sum). The boundary of dyn g
is the finite collection of end points {al, , ak, bl, , bk}. The next theorem, which
describes the connection between the measurable and dynamical spectra, is proved in
7.

THEOREM 2.3. Let r be a linear skew productflow on R x M where M is compact
and connected, and let dyn denote the dynamical spectrum of r. Then one has

(2.7) boundary dyn
_
U meas g(/x) dyn E

where the union is either over all invariant probability measures I on M or over all ergodic
measures on M. Let tz be a given invariant probability measure on M and let
meas (/, 0) {A 1(0)," ., Ak(0)} be the measurable spectrum for 0 M,, (p). Then for
each Aj there isprecisely one spectral interval [a, b] with Aj( O) [a, b] for all 0 M,,(p).
Also the associated measurable bundle l’j(O) satisfies lCj(O) l/’i(O) for all 0 M,(p).
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Finally one has i(0)= .W(0)for all 0 M,(p) where the summation is over allj with
Aj(0) [a,, b,].

If T-Z, then the last theorem is valid when M is compact and "dynamically
connected," where the latter means that M cannot be written as the union of two
disjoint nonempty closed invariant sets. Also, as in the spirit of Theorem 2.2, we note
that Theorem 2.3 extends to linear skew product flows on general vector bundles.

Our next theorem is concerned directly with the problem of computing the
measurable spectrum meas X(/z, 0). The point is that one is able to do this without
computing the basis elements el," ", era. The key idea here is the notion of a wedge
product, cf. Matshushima (1972). For 1 <-k<_-m let AkR denote the vector space
generated by all k-fold wedge products Xl ^" "^ Xk where xi Rm, 1 _-<i_-< k. Recall
that the wedge product xl ^...^ xk is linear in each factor and antisymmetric, i.e.
x ^ y -y ^ x. If L: R -> R is linear, then this induces a linear mapping AkL on AkR
by the formula

AkL(x ^" ^ Xk) := LXl ^" ^ LXk.

Since one has Ak(LM)= (AkL)(AkM), we see that if (0, t) is a cocycle on M then
Ak(I)(0, t) is also cocycle, for 1 _--< k-<_ m.

In the statement of the next theorem reference will be made to the notation of
Theorem 2.1. In particular for 0 M,(p) the growth rates

x(0) < x(0) <... <

with multiplicities m,. ., mk will be rewritten in the form

(2.8) v(0) -< (0) <-... _-< v(0)

where A(0) is repeated m-times in (2.8), 1 _-<i<_-k.

THEOREM 2.4. Let M be a compact Hausdorff space with a flow O. and let ix be
an invariant probability measure on M. Let dp denote a cocycle on M and adopt the
conclusions and notation of Theorem 2.1. Let y,..., Ym satisfy (2.8) for 0M,(p).
Then for all 0 M, (p) one has:

(i) limt_+o (l/t) log I(0, t)l= ym(O),
(ii) lim,_+oo(1/t)loglak(0, t)l= Y,,,+l-k(O)+" "+y,,,(O), for 2<-k<-rn,
(iii) lim,__oo (l/t)log](0, t)l= yl(O),
(iv) lim,__oo (1/t) log lake(0, t)] y( O) +... + yk( O), for 2 <--_ k <= rn.
The last theorem extends to linear skew product flows on a vector bundle g over

a compact Hausdorff space M. In this case the wedge product of vectors xl,’", Xk
g(0) forms a new bundle Akg’, 1 =< k _<- rn over M. Also the flow r on g induces a flow
Akr on Akg. This extension is a direct consequence of the proof of the last theorem
together with Lemma 3.4 below. We will omit the details.

Remark 2.1. For simplicity of exposition we have formulated these theorems for
cocycles with values in 3(rn, R). The theorems are valid for cocycles with values in
q3W(rn, C), and the proofs we give below extend with only trivial modifications.

3. Some technicalities. Before we turn our attention to the proofs of the main
theorems, we need to dispense with some technical details which will enable us to
simplify our arguments. We begin with a proof of the following facts:

1. One can assume, without loss of generality, that the base space M is a compact
metric space instead of a compact Hausdorff space. (This fact simplifies substantially
some of the measure theoretic considerations.)
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2. If T R one can assume that the cocycle is the fundamental solution matrix
of an ordinary differential equation on M with continuous coefficients. We call such
a cocycle smooth.

3. A linear skew product flow on an arbitrary vector bundle over a compact
Hausdortt space M can be imbedded into a linear skew product flow on R"xM for
some m >-_ 1.

The argument in each of these three cases is based on the same principle, viz. one
can show that the given flow is cohomologous to the desired flow. The resulting
cohomology preserves all the desired properties of our main theorems. In particular
if 1 and (I)2 are two cohomologous cocycles on a compact Hausdortt space M that
satisfy

F(O. t)l(0, t)- (I)2(0, t)F(O)
where F’M c(m) is continuous, then as noted above ’1 and (I)2 have the same
collection of Lyapunov exponents. Furthermore (x, 0) has a strong Lyapunov exponent
for ’I’1 if and only if (F(O)x, O) has a strong Lyapunov exponent for 2. Thus F
preserves the measurable spectrum meas E(/x, 0) and it maps the measurable bundles
of 1 onto those of 2. In addition F preserves the dynamical spectrum, and it sets
up a one-to-one correspondence between the continuous spectral subbundles.

The situation is, in fact, more general. Let M1 and ME be two compact Hausdorff
spaces and let f’M1 M2 be a flow epimorphism. Next let ’I’i be a cocycle on Mi
(i- 1,2) and let F’M1--> d(m) satisfy

F(01" t)’l(01, t)=cI’2(f(O1), t)F(O1).
Then 1 and (I)2 have the same measurable and dynamical spectra and F sets up a
one-to-one correspondence between the associated spectral bundles.

Our first step is to show that we can replace a compact Hausdorff base space M1
with a compact metric space ME. We use an argument of Ellis (1969).

LEMMA 3.1. Let 1 be a cocycle over a compact Hausdorff space M1 with a flow
01 t. Then there is (i) a compact metric space ME with aflow 02" t, (ii) aflow epimorphism
f" M1 ME and (iii) a cocycle di,2 over ME such that ’1(01, t)--’I’2(f(01), t).

Proof. Let { tn} be a countable dense subset of T. Let M be the closed subalgebra
of C(M1, R) generated by all functions of the form {01 bij(01, tn)} where bij are the
components of . Then M is a separable subalgebra of C(M1, R). Since M is closed
it contains all mappings {01- th0(01, z)} where re T; in fact :d is also the closed
subalgebra generated by all such mappings for r T. Because of the cocycle identity
(2.1) we see that M is invariant, in the sense that if g M then g :d, where g(01)-
g(Ol" ’). The Stone theorem, cf. Hewitt and Ross (1963, pp. 483-484), says that
M (M2, R), where M is the maximal ideal space of M. Since M is separable, ME
is a compact metric space. Recall that ME can be realized~ as the space of equivalence
classes [01] where 01---01 p.rovided (ij(O1, tn)= b,j(01, t,) for all i,j and all t,. Note
that if 01- 01 then 01"z’ 01" " for all z T. Consequently a flow on ME is given by
[01]" r-[01" z]. Also the mapping f(01):= [01] from M1 to ME is an epimorphism
because M is invariant. Finally we see that for each T the cocycle I’1(01, t) depends
only on the equivalence class [01]. So we conclude the proof by defining (I)2 by
2([01], t):= 1(01, t). Q.E.D.

The following lemma appears in Ellis and Johnson (1982), but we include a proof
for completeness of exposition.

LEMMA 3.2. Let dp be a cocycle over a compact Hausdorff space M with T R.
Then di, is cohomologous to a smooth cocycle over M, i.e. (0, t) is a fundamental
matrix solution to x’= A( O. ’)x where A is given by (3.1) below.
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Proof Let V d(m) be a compact convex neighborhood of the identity I and
choose r>0 so that .,(0, t)V for all 0M and 0=<t<_-r. Define F(0):=
(1/r) o (0, s) ds. Then F(0) is invertible, and it is easily verified that the cocycle

(0, t):=F(0 t)dP(O,t)F(O)-1
1 [- t+r

di,( O, s) ds F(0)-1,

which is cohomologous to ,I, is the fundamental matrix solution to x’= A(O. t)x where
1

(3.1) A(0) := -[(0, r) I]F(O)-1. Q.E.D.

The next lemma will allow us to conclude that the Multiplicative Ergodic theorem
2.2 is valid for linear skew product flows on a vector bundle ’ over a compact Hausdortt
space M. The same lemma shows that Theorems 2.3 and 2.4 extend to vector bundles
as well. Before stating this we need to derive the following general fact concerning
smooth approximations to continuous mappings on a compact invariant set.

LEMMA 3.3. Let M be a compact Hausdorffspace with a flow O. and letf:M-> N
be a continuous mapping where N is a smooth compact Riemannian manifold. Then for
every > 0 there is a continuous function g :M -> N with the following properties:

(i) sup {dist (f(0), g(0)): 0 M} -< i5,
(ii) for every 0 M, the mapping O (d/ dt)g O t)],__o ofM into the tangent bundle

TN is a continuous mapping in O.
Proof. Let 5 > 0 be given. The Tubular Neighborhood theorem, see Guillemin and

Pollack (1974), assures us that for a sufficiently large m -> 1 there is a smooth imbedding
h :N--> R", an open set W_ h(N) and a smooth retract R:W--> h(N). Now choose
r/>0 so that if bl, b2 h(N) and < then dist (h-l(tl), h-1(,#2))-< t. Next
choose z > 0 so that

V(O):=Co{h(f(O t)):0_-< t_<-r} W
for every 0 s M, where Co refers to the closed convex hull, and [h(f(O))-R(y)l=< r/
for every 0 M and y V(0). We now define g M--> N by

g:= h -l R h f( O. s) ds

Since 1/z o hf(O. s) ds V(O) we see that If(0) g(0)l <- for all 0 M. Further-
more it is easy to conclude that g is C along trajectories and the mapping
O-->(d/dt)g(O. t)l,__o is continuous. Q.E.D.

LEMMA 3.4. Let be a finite dimensional vector bundle over a compact Hausdorff
base space M and let ,r(x, O, t)= (di,( O, t)x, O. t) be a linear skew product flow on .
Then for any A R there exists an integer m >- 1, a monomorphism H 7g --> R" x M, a
smooth cocycle :M d(m) and an orthogonal invariant resolution of the identity
Q (Q1, Q2) such that H()= Range QI and

Q(O. t)(O, t)= V(0, t)Ql(O), H(O. t)cb(O, t)= (0, t)H(O),
Q2(O" t)(O, t) (0, t)Q2(O) eXtQ2(O).

Proof. Since dim g’(0) is constant on the components of M, there is no loss in
generality in assuming that dim ’(0)= k for all 0 M. The first step is to apply a
standard result in the theory of vector bundles, Atiyah (1967, p. 25), which states that
there is an integer m > 0 and a projector PI" R xM R xM such that the vector
bundle Range P1 is isomorphic to ?. Let H: - Range P

_
R xM be the isomorph-

ism. Without any loss ofgenerality we can assume that P1 (0) is an orthogonal projection
on R for all 0 M. Let P2 :- I P1.
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The mapping I’" 0 Range P(0) defines a continuous mapping of M into the
smooth manifold qd(m, k) of k-planes in Rm. By Lemma 3.3, there is a smooth mapping
WI:M qd(m, k) that is close to W1. Define QI(0) to be the orthogonal projection
with W(0) Range Q(0). Since W is smooth this means that O(d/dt)Ql(O. t)l,_-o
is continuous. Also Q2(0)= I- Q(0) is smooth. Since Q1 is close to P it follows that
H Q is an isomorphism of g’ onto Range Q1.

Next we define a flow on RmM under which Q and Q2 are invariant. Let
S(0) Q(0)Q(0) + Q(O)Q2(O) and let 1(0, t) be the fundamental matrix solution
of x’= $(0. t)x satisfying (0, 0)=/. Then as shown by Daletskii and Krein (1974)
one has

Q,(O. t)XIl(O, t) 1(0, t)Q,(O)

for all 0 M, R, and 1, 2. Define a cocycle on M by

(0, t)Q(O) H(O. t)(O, t)H-(O),

V(0, t)Q2(0) ext*l( 0, t)Q2(0).

It is now straightforward to check the remaining details. Lemma 3.2 assures us that
can be chosen to be smooth. Q.E.D.

4. Triangularization of eoeyeles. We turn next to the theory of the Gram-Schmidt
factorization of isomorphisms on R", where R has the Euclidean inner product ).
Let c(m) denote the grOup of all isomorphisms of Rm. Each element L (m) is
identified with the (m m) matrix whose column vectors satisfy coli L Lei, 1 <- <- m,
where {el,’", era} is a fixed orthonormal basis in Rm. Let = (m) denote the
subgroup of (m) consisting of all orthogonal linear transformations, and let T+(m)
denote the subcollection of all upper triangular matrices L d(m) with positive
entries on the main diagonal. Then -+(m) is also a subgroup of c(m) and one has

(4.1) ?(m) fl +(m) {I}.

The Gram-Schmidt orthogonalization process assures us that for every A (m)
there are unique matrices G(A) 7(m) and T(A) ff+(m) such that

(4.2) G(A)=AT(A).

Since the entries in T(A) are algebraic functions of (col A, colj A) we see that both
T(A) and G(A) are smooth functions of A.

Next we note that one has

(4.3) G(AB) G(AG(B)), T(AB) T(B) T(ABT(B)).

In order to prove (4.3), we define U, V (m) by

U := G(AB) ABT(AB), V := G(AG(B)) ABT(B) T(ABT(B)),

where (4.2) is used above. One then has

(4.4) U-1V= T(AB)-’ T(B) T(ABT(B)) e C(m) f-) +(m).

Hence by (4.1) U-IV I, which proves (4.3).
Let :M(m) be a cocycle on M. Then (4.2) admits the factorization

(4.5) O(( O, t) U) cb( O, t) UT(c( O, t) U)
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for every U (m). This permits us to define a new flow on H := M x (m) as follows"
Let b := (0, U) M x (7(m) and define

(4.6) b. t:= (0. t, G(,I,(0, t) U)).

LEMMA 4.1. Equation (4.6) defines a flow on H M x (m).
Proof. It suffices to verify the group property

G[,(0. t, s)G((O, t) U)] G((0, + s) U).

However, this is an immediate consequence of (2.1) and (4.3). Q.E.D.
We noted in {} 2 that the cocycle ,I,(0, t) on M defines a linear skew product flow

on R"xM by 7r(x, 0, t)= ((0, t)x, O. t). By using (4.6) we see that 7r can be lifted
to a new flow , on RmH by

(x, 6, t):= (@(0, t)x, " t)

where b (0, U). Let q-Mx d(m). (g(m) and r-Mx d&e(m)M, (or r’H-M)
be the natural projections. Define (b, t) by

(4.7) (b, t):= q(6" t)-l’}( O, t)q(6) G(,I(O, t)U)-Io(O, t)U

where the (-1) denotes the matrix inverse and b (0, U). Since b. is a flow on H,
it follows that is a cocycle on H, and

(4.8) (x, b, t):= ((,, t)x, dp. t)

is a linear skew product flow on RmH which is cohomologous to -. The following
lemma is now an immediate consequence of (4.2) and (4.7).

LEMMA 4.2. Let ’I’ be a cocycle on M and define b. and (,, t) by (4.6) and
(4.7). Then one has

(4.9) (b, t)= T(dP(O, t) U)-I ff+(m)

for all b (0, U)H and tT.
Remark 4.1. The triangularization method described above is directly related to

the familiar technique developed by Lyapunov (1892), Perron (1930) and Diliberto
(1950). Let T R and let ,(0, t) be a smooth cocycle and (therefore) the fundamental
solution matrix of a differential equation

(4.10) x’ A( O t)x, x Rm, 0 M,
where A is a continuous (m x m) matrix valued function defined on M. Then V(b, t)
is the fundamental solution matrix of

(4.11) y’= B(. t)y, y R", ck H,

where tk =(0, U),B G-I(AG-G’), G= G(cYp(O, t)U) and G’ =(d/dt)G. The change
of variables which maps solutions of (4.11) onto those of (4.10) is

x P(t)y G(dP(O, t) U)y.

Also since the fundamental matrix solution of (4.11) is xIt, an upper triangular matrix,
we see that B is also upper triangular.

Remark 4.2. For T Z this is basically the triangularization method described in
Oseledec (1968).

5. Invariant measures. In this section we record for reference a number of known
results concerning invariant measures associated with the flows on M and H. Let r be
the natural projection of H onto M. By (4.6) we see that r is a flow epimorphism, i.e.
r(b), t= r(. t).
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Because of Lemma 3.1 we see that there is no loss in generality in assuming M
(and therefore H) to be compact metric spaces. The Riesz Representation theorem
says that for any compact metric space M there is an isomorphism between bounded
positive linear functionals on CO(M, R) satisfying 1(1)- 1 with the (regular, positive,
Borel, probability) measures/x on M, and this isomorphism is given by the formula

l(f)= If(O)l(dO).
Hereafter we will interchange freely such functionals and the associated measures and
write/(f) in place of l(f).

The measure / is invariant for the flow O. if and only if/(f) =/x(f) for all
f C(M, R) and all ’T where f,(O)=f(O. -). Also / is ergodic if and only if for
f I(M, R) one has

/ (f,) -/(f) for all T:f-= constant.

The Krylov-Bogoliubov method, cf. Nemytskii and Stepanov (1960), is a method
for constructing invariant measures. Let us review this for the case T R. Let/ be a
given measure on M and define

1for5.1 /-(f) := - /. (f,) d"

for T> 0. Let T, +o, and suppose (by choosing a subsequence if necessary) that
/xr. converges weakly to a measure/2. Then/2 is easily seen to be invariant.

If the original measure / is a g-measure, i.e. i(f)=,$o(f)=f(O), then (5.1)
becomes

llor(5.2) /r(f) := - f(0" ’) d’.

Notice that if the original measure/ has support in a closed invariant set Mo, then
the induced invariant measure/2 has support in Mo as well.

Let/ be a given invariant measure on M. Let I(/) denote the collection of all
invariant measures v on H that cover/, i.e. , I(/) if it is invariant and r(u)-/. If
/ is an ergodic measure on M we let E(/) denote the ergodic measures , I(/x). By
using the Krylov-Bogoliubov method we see that I(/) is nonempty. Indeed if is any
measure on (m), then/ x is a measure on H. Now form

llor(/x x/)-(g) =- (/ x/)(g,) d’,

and let , be a resulting invariant measure. In order to show that v covers/x we need
to show that ,(f)=/(f) whenever f=f(O) depends only on the coordinate 0 M.
However in this case one has

(Iz x l)(f,) It(f,) Ix(f) (I.t x l)T(f)

since /x is invariant. Hence the limit , satisfies ,(f)= g(f). Since I(/x) is nonempty,
compact and convex it has extreme points. The extreme points in I(/x) are ergodic
measures t, when/z is ergodic.

6. Proof of the nultiplieative Ergotlie theorem. Throughout this section we will
adopt without any loss of generality the following Standing Hypotheses which will
lead to a proof of Theorems 2.1 and 2.2" Let 7r(x, 0, t)= (q(0, t)x, O" t) be a given
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linear skew-product flow on the trivial (Lemma 3.4) vector bundle RmM, where M
is a compact metric space (Lemma 3.1). If T R we assume that q(0, t) is smooth and
is the fundamental solution matrix (Lemma 3.2) of

(6.1) x’ A( O t)x, x Rm, 0 M.

Let (x, b, t)=(V(b, t)x, ok" t) be the cohomologous triangular flow induced on
RmH ( 4). If T= R then (, t) is also smooth and is the fundamental solution
matrix of

(6.2) y’= B(. t)y, y am, H

where B is a continuous upper triangular matrix. Let g be a given invariant measure
on M and let v I() be any invariant measure on H that covers . If is ergodic
we assume that v is ergodic ( 5). Also r’H M is the natural projection.

We shall say that a point 0 M (or H) is a Lyapunov point for (or ) if
there are real numbers yl," ", Ym and a basis e,. ., em of R such that

(6.3) h(e,, 0):= lim log 1(0, t)e,[

(6.4) (or
Itl

for lim.
Roughly speaking, the Multiplicative Ergodic theorem asses that there are many

Lyapunov points (i.e. (M,)= 1) and that they fit together in a measurable manner.
As we now show this follows from the triangularization technique described in 4.

LEMMA 6.1. Let O, U) H be a Lyapunovpointfor . en 0 M is a Lyapunov
point for

Proo Choose yl,’", Y in R and a basis e,..., em in R so that (6.4) is
satisfied. Define fl, ",fm by Ue, 1 m. Equation (4.7) yields

(6.5) O((0, t) U)(, t) (0, t) U.

Since G((0, t)U) is an ohogonal matrix one has

[(0, t)ZI I(, t)e,I, 1 m.

It follows that (6.3) is satisfied with the same
lim. Q.E.D.

The next lemma is the key step in our proof.
LEMMA 6.2. Let (0, U) H be fixed. Assume that the diagonal entries (, t)

satisfy

(6.6) lim
I1

for some constants %, 1 m. en is a Lyapunov pointfor where the growth rates

1, m are given by (6.6), and the associated matrix V ofbasis vectors {e, era}
is an upper triangular matrix given by (6.7) with v, 1, 1 m.

IfT= R, then ,(, t) =exp (o b,(. s) ds) where b,, 1 m, are the diagonal
entries of the triangular matrix B in (6.2). In this case (6.6) becomes

lira
1
log I,,(, )1 I b,(" s) ds %, 1 m.

Itl
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Also if T Z, then the diagonal elements of satisfy
t-1

,i (tk, t) I] t,, (tk. s, 1),
s=0

with a similar expression valid for < O. For > 0 one has

lt1
log ]t.(b, t){ - log

We see then that for both T-R and T Z, the limits in (6.6) are time-averages of
continuous real-valued functions defined on H. This fact will be used later when we
apply the Birkhott Ergodic theorem.

Proof. The argument we now give applies to any triangular cocycle over any
compact metric space H. We will not use the special form of the flow on H.

Let satisfy 1 _-< =< m. For any upper triangular (m x m) matrix T we let T denote
the lower-right (kx k)-dimensional block where k-(m-i+ 1). Thus T1-T and
T,,- (tm,). For the matrix B given by (6.2) we let fli denote the (m-/)-dimensional
row vector that satisfies

0 Bi+
for l <--i<--m-1.

The upper triangular matrix V of basis vectors is obtained by constructing the V
inductively starting with Vm- (1). Suppose 1 <_-i<_-m- 1 and that V+I has been con-
structed with the properties that its diagonal elements are 1 and

/ (colj (E+I), ()-- ’j

for + 1 <--j <-m. To construct V with the corresponding properties we first define
v.=l. Forl_-<i<_-m-1 and i+l-<j<-mwedefine

(6.7) vi: v,j(b):= [o @/l(th, s)i(dp" s)Xlti+l(th, s) colj (V/+,(b)) ds

where

COlj (E) :’--
COIj (E+I)

c if y > T,

z=z0:= 0 if ’)li--j- ify<y.

Equations (6.4) and (6.6) and the induction hypothesis imply that for every e > 0 there
are constants K and K2 such that for t->_ 0 one has

],i(O, t)[<=g2exp[(T+e)t], 1(0, t)l<=K=exp[(-T,+e)t],
K, exp [(T e)t] <--I,+,(b, t) col (V+,) _-< K2 exp [(yj + e)t]

for i+ 1 =<j-<_ m. Since I/3i[ is uniformly bounded on H, it follows that the infinite
integral in (6.7) is well defined.

We assume for the moment that T R. The modification of our argument needed for the case T Z
is described in the last paragraph of the proof.
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The variation of constants formula for the block-triangular system u’= Bi(ck" t)u
yields

(6.8) i(b, t) COIj ,I,,+(, t)cob
for i+l<-_j<-m and W,(b, t)col (V)=col (,(0, t),0,... ,0). Let vii(t) denote the
first entry in (6.8). One then has A(coli (V), b)= %. While it is known that

(6.9) )t (colj (V), b) A (col (V+I), b)

for + 1-<j-< m, cf. Millionscikov (1968), we shall include a proof for completeness.
Indeed it follows from (6.8) and the inequalities after (6.7) that there is a constant K
such that

Iv,(t)l<-g exp [(T +3e)t]
for i+ 1 _--<j _--< rn and => 0. Since e is arbitrary one has

1
(6.10) lim sup log Iv,(t)l < _-j<

t-+oo
y’ i+l < =m,

and therefore by (6.8) we have

Tj lim llog Ixlt,+l(b t)col (E+)l_-<lim infllog Iq,(4,, t)col (V)I
t-,+oo t-,+

1 1
-<_lim sup- log Iq(4,, t)cob (V)l <_-lim sup- log I,(t)l -< ,,

t-+oo t-+oo

A similar argument applies as t-->-oo. Also (6.10) is valid as t-->-oo.
This completes the argument for T= R. If T= Z the integrals in (6.7)-(6.8) are

replaced by sums. For example by the variation of constants formula in Sacker and
Sell (1976b), v(t) takes the form

t--1

v0(t)= ii(b t) ’. /l(b, s+l)fl,(b" s)W,+l(b, s) colj (V/+I)

where fl =/3(b) is the (m-/)-dimensional row vector that satisfies

.,(b, 1)=(,(b, 1 fl,(b) )0 qi+l(6, 1)

for all $ H. We will omit the details, which are easily verified. Q.E.D.
LEMMA 6.3. Let k (0, U) satisfy the hypotheses of Lemma 6.2 and let V be the

matrix ofbasis vectors constructed above. Then there are upper triangular m x m) matrices

S($, t) and D($, t) that satisfy
(i) xlt(ck, t)V= S(c, t)D(dp, t),
(ii) D(b, t)=diag ($11(b, t),..., ’mm(b, t)),
(iii) limsupl,l_o (1/[tl)log Is(, t)l-<-0,
(iv) lim supl,l_.o (1/Itl) log Is-(, t)l<-0.
Proof. S and D are uniquely determined by (i) and (ii) and

1 ,2(ck, t)v12(t) I]lmm (c, t)Vlm(t)
bmm(6, t)V2m(t

S( dp, t)
0 1 -1

0 0 1
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It follows from (6.10) that

1
lim sup log I’(b, t)vij(t)l < 0

for 1 m 1 and + 1 j m. Paas (iii) and (iv) then follow from the last inequality
and the fact that the entries in S-1 are polynomials in the entries of S. Q.E.D.

Next we apply the Birkhoff Ergodic theorem which assures us that there are a
good supply of Lyapunov points in H.

LEMMA 6.4. ere is a Borel measurable invariant set H H with v(H)= 1 and
such that eve point H is a Lyapunov point.

oof As noted above the limits

lim log I(, t)[, 1 i m,

are time-averages of continuous functions defined on H. The Birkhoff Ergodic theorem,
see Nemytskii and Stepanov (1960), asses that there is a Borel set H,H with
v(H,) 1, and there exist bounded Borel measurable invariant functions
Pl, Pro"H R with the propey that

lim log I@(, t)] p,( ), 1 m,(6.11)
Itl-

for all H. It then follows from Lemma 6.2 that each H is a Lyapunov
point. Q.E.D.

Let p,..., Pm satisfy (6.11). For each integer k, 1 k m, let N(k) denote the
collection of vectors (ml, , m) with integer entries that satisfy 1 m, 1 j k,
and m +. +m m. We will now construct a measurable decomposition of H. Fix
s H. We then note that there is an integer k, 1 k m, and an N(k) such that

the following two propeies hold:
(i) There are exactly k distinct values in the collection {p(), ., Pm()}, which

we rewrite as {AI()," ", A()} where

(6.12) x(6) < x(6) <... < x(6).

(ii) The cardinality of the set {i: 1im and p()= A()} is m for each j,
ljk.

We denote the ordered pair (k, ) briefly by p and define H(p) to be the set of
all H to which k and correspond as above. The set H(p) is Borel measurable
since it is the pullback of the closed Set

{(Xl, , Xm): X X Xm, < Xs,+, Xm <’’" < Xm_+ X}
by the Borel measurable function that is the composition of the Borel measurable
function (Pl()," ", Pm()) with the continuous function that maps
(Xl, x:,. , Xm) onto its permutation (x, x," ", x) where x x. x.

It is easy to see that H U H(p), where the union is taken over all such points
p (k, ), is a measurable decomposition of H. Since each p is invariant we see that
the sets H(p) are invariant. If v is an ergodic measure, then all but one H(p) has
v-measure 0. The following result is a consequence of the measurability and invariance
of p , Pro.

LEMMA 6.5. e functions A,...,A:H(p)R are Borel measurable and
invariant.
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Let b H(p) and let pl, ",p,, and A1, , ,k be given as above. Let el, , em
be the basis in R" constructed in Lemma 6.2. Thus one has A (e,, b) p,(b), 1 _<- <- m.
For 1 <_-j _-< k define

/(b) := Span {e," h(e,, b) h(b)}.
One then has dim l(b mj and Rm= #r( qb + + t4/’k( dp ).

The next lemma shows that every y o/(b), y # 0, has Aj(b) as a strong Lyapunov
exponent.

LEMMA 6.6. Let dp H satisfy the hypothesis ofLemma 6.2. Then for all y W(p ),
y # O, one has

lim
I
log IW(b, t)y A(b), 1 <=j _--< k.(6.13)

Itl-/oo

Moreover the limit in (6.13) is uniform for lyl- 1.

Proof. We will use Lemma 6.3. Fix j and let y o/(b), x # 0. Then

y Span {col, V): A,(b) A(b)}.
If {el," ", em} is the natural basis in R then z V-y satisfies

zSpan{e," Ill-oolim
-1 log [,(tk, t)[ A()}.t

Consequently one has

lim
1
log ID(d,, t)zl

Itl-/

and the last limit is uniform for lYl 1. Since one has

[s-l(, t)l-l[D(, t)z[-< N’(, t)vzl-N’(4,, t)yl<=[S(4, t)[ [D(,, t)z[
and

1
S_lim inf

1
log [S-(b, t)1-1 -lim sup - log (b, t)[-> 0

(by Lemma 6.3), we get

h(b) _-<lim inf
I
log Is-l(b, t)l- +lim inf

1
log [D(b, t)zl

t-,+oo t-+oo

1=< lim inf 1_ log t)yl <= lim sup - log I(b, t)y
t-,+oo t.-, +oo

1 1
_--< lim sup - log IS(b, t)l + lim sup - log ID(b, t)yl

t-*Woo

A similar argument applies as t-->-oo. Q.E.D.
LEMMA 6.7. Let b H(p) and let yRm, yO. Assume that A(y, )= y. Then

there is a j, 1 <-_j <- k such that A (y, qb Aj qb and y l’j ).
Proof. Since el," ", em is a basis one has

(6.14) y ale1 +" + otmem
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where a1,’" ", c" are scalars. It is an easy exercise to see that one has

lim
I
log IV(4), t)y max {/9,(4)): 1 _-< -< m and a, 0},

lim
1
log IV(tk, t)y[ min {p,(tk)" 1 <_-- _--< m and a, # 0}.

t-

Therefore if the two-sided limit A(y, b)= 5’ exists, the only nonzero a’s in (6.14) are
coefficients of basis vectors used to define a single f(tk). Hence A (y, ok)= Aj(b) and
y o/((])). Q.E.D.

Let (b (0, U), b2 (0, U2) be two points in H with the same 0-coordinate. From
(6.5) one has

(6.15) G(dP(O, t)U1)(4)l, t)u-(l=(I)(O, t)= G((O, t)UE)(th2, t)U1.

Therefore if y R then I((])1, t)yl II’(, t)Vyl where V= U U. We see that

(6.16) A (y, 4)1) 5’ <:> A Vy, 2) 5’.

Now assume further that 4)1 H. Then 4)1 is a Lyapunov point by Lemma 6.2 and
(6.4). Let y,. ., 5’., be the strong Lyapunov exponents and let el," ", em be a basis
with A(ei, (])1) 5’i, l<-i<-_m. It follows from (6.16) that Vel,"’, Veto is a basis for
which A Ve, 4)2) Y, 1 -< _-< m. We have just proved the following result"

LEMMA 6.8. Let dp (0, U) H, and let 5"1, 5"., be^the set ofstrong Lyapunov
exponents given by Lemma 6.2 and (6.4). Then every point b (0, U) in the fiber over
0 is a Lyapunov point with precisely the same set of strong Lyapunov exponents.

By combining Lemmas 6.7 and 6.8 and (6.15) we immediately have the following:
LEMMA 6.9. Let dpl- (0, U) and 4)2 (0, U2) be two points in H with the same

O-coordinate. Then and (2 lie in the same set H(p), andfor 1 <-j <-k one has

(6.17) Aj(l Aj((])2) U j(()l)-- U2j((])2).

Hence Aj((])I) and U1 /j(&l) depend only on the O-coordinate.
By using (6.16) together with Lemma 6.6 we see that if 4)1- (0, U1)EH then for

any 4)2 (0, U2), with the same 0-coordinate, we have

(y, 6) vy, 6) ;tj(6,)

for all y (bl), y # 0, where V U
We now use r" H--> M to project H and H(p) to M. Define M and M,(p) by

r(H) := M., r(H(p)) := M. (p).

Note that since M and H are compact metric spaces, and H and H(p) are Borel
measurable sets in H, the images M, and M,(p) are /z-measurable sets in M, see
Federer (1969, Chap. 2). Furthermore one has/z(M)- 1. (Strictly speaking, M, and
M,(p) depend on the choice of , I(/z). Since/z(r(H)) v(H) 1 we see that any
two such sets M agree except on a set of/z-measure 0.)

Let 4) (0, U) E H(p). Then 0 M(p). Next define

Aj(0):=Aj(b), /(0):= U/((])), l<-j<-k.

From Lemma 6.9 we see that A(0) and U(W(4))) depend only on the 0-coordinate.
Also from Lemmas 6.5 and 6.9 we see that A,..., Ak :M,(p)-> R are/z-measurable
and invariant. For 0M(p) we see that the spaces /’1(0), , l/Yk(O) satisfy con-
clusions (v)-(vii) of Theorem 2.1.
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The only point that remains to be proven is that the mappings //’i :M,(p)-
d(m, mi), 1 -< <- k, are/z-measurable. Because of Lemma 6.9 it suffices to show that
each /4/’i is Borel measurable on H(p), 1 <= =< k. We will do this by noting that the
basis matrix V= {el," ", e,,} constructed in (6.7) is Borel measurable in b since the
coefficients in the integral depend continuously in b, and therefore the integral is
measurable2 in b, cf. Federer (1969). This completes the proof of Theorem 2.1.

Theorem 2.2, the Multiplicative Ergodic theorem on a vector bundle , follows
directly from Lemma 3.4 and Theorem 2.1. In Lemma 3.4 one can choose the A R
arbitrarily. A good choice for h is h dyn X(’), where dyn X() is the dynamical
spectrum of the linear skew product flow on . With this choice one knows that the
measurable subbundle associated with h is Range (Q2) and is disjoint from Range (Q).
(See Theorem 8.1 below.)

Remark 6.1. The uniformity described in Lemma 6.6 can be strengthened.
Let k=(O,U)H(p), let A1,’’’,Ak:H(p)->R be the growth rates with
h(b)<-." < hk(th), andlet

R= G()+"" "+ r()
be the decomposition of R" into the measurable bundles. Then every y R can be
written uniquely as y y +. + Yk where yi o/(th), 1 <_- _<-- k. Furthermore for y # 0
one has

lim
1
log IW(b, t)y] Ab(b),(6.18)

lim
1
log IW(b, t)y(6.19)

where a min {i: y # 0} and b max {i: y # 0}. (See Lemma 6.7.) By using the argu-
ment of Lemma 6.6, it is easily seen that the limits in (6.18) and (6.19) are uniform
on compact sets of the form

{y R"*: 0 < a _-< lyl, lyl --< }, {y : 0< _-< lyo I, lyl --< }-
These considerations extend immediately to the cocycle (0, t) over M, where //’(b)
is replaced by U/Jr(b), 1-<_i=< k. (See Lemma 6.9.)

Remark 6.2. As noted by Oseledec (1968) the uniformity condition in Lemma 6.6
implies that the limits

(6.20) lim
1

1,1-,+o
log ,(0, t), 1 <= --< m,

exist almost everywhere, where/31 >=/32 >="" >= fin are the eigenvalues of the positive
self-adjoint matrix *(0, t)O(0, t).

Remark 6.3. The basis el,’", era, which we construct in Lemma 6.2, is very
closely related to Lyapunov’s concept of "regularity" or "biregularity", see Lyapunov
(1892) and Bylov et al. (1966). Note that if 0M, then there are real numbers
71 < 72 <" < ’)/k and a splitting

R= Wl+. .+ w
such that if x V, x 0, then h (x, 0) %, 1 <_- <- k, and

k 1
(6.21) m,y,= lim -log [det ((I,(0, t))l,

i= [t[+

Discontinuities in $ can arise from the definition of z in Lemma 6.2.
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where mi =dim W, 1 <_-i <-k. If is a smooth cocycle, i.e. if is a fundamental
solution matrix of (6.1), then (6.21) becomes

m,3’, lim
1 fo tr A(O. s) ds.

i= Itl-’/

Also see Vinograd (1956).
Remark 6.4. Other proofs of the Multiplicative Ergodic theorem. The proof of

Oseledec (1968) uses many features of our argument, including the triangularization
method described in 4 and the theory of regularity described above. Some complica-
tion in Oseledec’s argument seems to be due to the fact that he used neither (6.7) nor
the factorization technique described in Lemmas 6.3 and 6.6. Also, Oseledec did not
assume the base space M to be a compact metric space, and consequently his proof
of the measurability (with respect to 0) of the bundles o/(0) leaves some unanswered
questions.

A portion of the Multiplicative Ergodic theorem was derived by Millionscikov
(1968) for the case where /x is an ergodic measure. He constructed the measurable
spectrum meas g(/x) and showed that it was constant almost everywhere. Equation
(6.7) was used by Millionscikov; however, he did not derive Lemma 6.6, nor did he
address the question of the measurability of the bundles /’(0).

Raghunathan (1979), Ruelle (1979), Crauel (1981), and Kifer (1985) give alterna-
tive proofs of the Multiplicative Ergodic theorem. Their approach is based on either
a theorem of Furstenberg and Kesten (1960) (see 10) or the Subadditive Ergodic
theorem, which was proved by Kingman (1968). Ruelle, for example, first shows that
the limits in (6.20) exist almost everywhere. By using the eigenspaces of the associated
self-adjoint operator q)*(0, t)q)(0, t), he constructs the measurable subbundles o/(0).

The proofby Ruelle is more general than ours in that it applies to certain linearized
semiflows generated by evolutionary equations on an infinite dimensional Hilbert
space. Ruelle does not assume the base space M to be compact; instead he uses a
logarithmic-boundedness condition on the cocycle q). This boundedness condition is
automatically satisfied when the base space is compact. As we shall see in 10, the
assumption that M be compact is not a serious restriction, since this can be satisfied
in practically every application.

7. Flow on the projective bundle. In this section we shall study the ergodic proper-
ties of the induced flow on the projective bundle, see Johnson (1978), (1980b) and
Crauel (1981).

As in 6, we let c=(0, U)H(p) and let h(b)<.. "<hk(tk) be the growth
rates with multiplicity rfi =(ml, ", mk), where m +. .+ mk m. By Lemma 6.9 we
recall that Ai(b) depends only on 0, 1-< _-< k. Next define

U:(tk) Span y R"’y # 0 and lim,_+/-sup ] log Igt(b, t)y[ <= h,(tk)

Then dim Uf(dp)=m+...+m and dim UT(qb)=m+...+mk. Also one has
/4/’(b) U(b)fq U-(b), dim /’(b) m, and R 1()""" "-]- k(). By Lemma
6.9 we see that //’(0):= U/C’(b) depends only on 0.

Let pm-I(R) denote the projective space of lines in R containing the origin, with
the usual topology. We define the induced flow , on the projective bundle N=
Pm-(R)M by (l, 0). ((0, t)l, 0. t). (Since is linear it maps lines onto lines.)

IfT R, we define f: N-> R by f(l, O) (A(O)x, x), where A is the matrix function
(6.1), is the Euclidean inner product on Rm, and x s satisfies Ix[ 1. Then for
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Ix[ 1 one has

(7.1)

If T Z, we
A(0) (0, 1) and Ixl 1. Then one has

(7.2)

and

Llog 1(0, t)x]= f((l, 0)" s) as.

define f’N- R by f(0, l) 1/2 log (A*(0)A(0)x, x),

t-1

log ](0, t)x Y. f((l, 0). s), >-- 1,
s=O

log [(0, t)x[= Y f((l, 0).-s),

Next define the time-averages

t<O.

1 Lf+(l, O) =lim sup- f((l, 0). s) ds,

where

f-(l, 0) lim inf
1 Iot--o -1 f((l, 0). s)ds

when T R. (For T Z, f+/- are defined similarly by using (7.2).) Then by (7.1) and
(7.2) f+(l, O) and f-(l, O) are the Lyapunov exponents h+(x, 0) and AT(x, 0), respec-
tively, where x e l, x 0. Also the functions f+/-:N- R are Borel measurable.

For 0 e M,(p) r(H,(p)) and 1 _-< <_- k we define

u(O)={lpm-l(R)lf+(l, O) hi(O)},

us,(O)={laP’n-l(R)[f-(l, 0) =< -A,(0)}.
For 0 fixed, u(O) are closed subsets of P"-I(R), and in fact are the "traces" in
P"-I(R) of the vector subspaces U:(O) ofR defined above. This leadsus to introduce
the space Y" of closed subsets of P"-I(R), with the Hausdorff topology. Thus F, - Fin Y :> to each x F, there corresponds a sequence x, Fn so that x, x in P"-I(R).
Observe that the "trace" of /i(0) in P"-(R) is u(0) fq uT(0).

Fix the pair p (k, rfi) and restrict attention to M(p). The following proposition
is a direct consequence of the measurability of the exponents A,..., Ak.

LEMMA 7.1. For every r>0, there is a compact set Z_M,(p) such that
/x(M(p)\Z) < r and the restriction hi[z is continuous, 1 <-_ <- k.

We will now show that the functions u: are tz-measurable. (The measurability of
kVi is also a consequence of this fact.) Consider u and T-R. (The arguments for uT
and T= Z are similar and we will omit them.) Define gt(l, O):= (1/t) Jtof((l, 0). s) ds.
Then gt is continuous on N, and limsupt_+gt(l, Oo)=f+(l,O) for all (l,O)e
P"-(R)xM(p). Let r>0 be given, and let Z_M(p) be a compact set with
/.(M(p)\Z) < r, where hi is continuous on Z, 1-< i_-< k. Choose 8 so that

(7.3) O< 38 < [hi(O)- hi(O)]
for all # j and 0 Z. Finally define

vT( O) :- {l e P"-l(R) g,( l, O) (-, Ai(O) + 8]}.

Then v,+(O) ’ for 0 e Z. It is not difficult to verify that v+" Z --> ’ is a Borel measurable
function. (In general it is not continuous.)
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We claim that v+(O)-> u(O) in as t->+, for each 0sZ. Assume on the
contrary that there is a monotone subsequence tk--> q-O and an element Q such

4-that Q u-(O) and vt(O)-> Q. Then u-(O)_ Q, since le u-(o)::: l v+t (o) for large t.
4-On the other hand, let l Q\u(O). Since vt(o)-> Q in the Hausdorff topology, there

is a sequence Ik v t(O) with Ik-> I. Therefore lk is eventually in every neighborhood
of in Pm-I(R). By Lemma 7.2 (below) we conclude that gt(lk, O)>--hi(0)+ 28, which
contradicts the definition of v t+ (0).

LEMMA 7.2. Let Pm-I(R) with : u-( O) where 0 Z. Then given any > 0 there
is a neighborhood N(I) ofl and a z T such thatfor all >- z one has gt( l, 0) ->_ hi(0)+ 28
for all N( h.

Proofi We will use the notation of Remark 6.1. Let x e l, x 0. Since : u(O)
one has < b where

lim
1
log [(0, t)Xbl Ab(0)

and Ix l-2 > 0. Let N(l) be those lines ]’ in P"-I(R) with the property that
1, satisfies > . The uniformity asseion in Remark 6.1 implies that for every

fl > 0 there is a r T such that

1
g,(l, 0)=7log IO(0,

for all r and all 5 N(l) with lsI 1. Now set 8, then the lemma follows
from (7.3). Q.E.D.

We see then that u is the point-wise limit of a sequence of Borel measurable
functions on Z. By the Lusin theorem, it follows that u is measurable on M,(p).

8. Comparison with the continuous spectrum. Let be a cocycle on a compact,
connected Hausdorff space M. Let dyn E =1 [a, b] be the dynamical spectrum
with the corresponding Whitney decomposition of RxM into continuous spectral
subbundles R M Y +. + Yk. Let Y(0) denote the fiber of Y in R, 1 k.
The following result is proved in Sacker and Sell (1978):

THEOREM 8.1. e spectral subbundles are characterized by

(O)=Span{xRm" xO and h(x, 0), h(x, 0) [a,, b,]}

for 1 k, where

1
A(x, O) lim sup log ( O, t)x, A (x, O) lim inf log (O, t)xl.

We will next give a proof of eorem 2.3. The essence of the argument is to verify
(2.7), i.e.

boundary dyn E U meas E() dyn E,

and to show that the measurable subbundle decomposition implied by the Multiplica-
tion Ergodic theorem leads to a refinement of the continuous decomposition given by
the Spectral theorem.

It follows immediately from Theorem 8.1 that for any invariant probability measure
g on M one has meas E(, 0) dyn E for all 0 M. In paicular one has meas E()
dyn E for every ergodic measure on M. Fuhermore the measurable bundles (0)
are contained in the associated continuous spectral bundle (0) when A(0) [a, b],
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and 0 M,. Since the sum of both the /(0)’s and the Y’i(0)’s span R for 0 s M,,
it follows that for all 0 M one has //’i(0)= /(0), where the summation is over
all j with Aj(O)[a,bi], l<-i<=k. (is also follows from applying Theorem 2.2 to
the spectral subbundle .)

It remains to show that if fl s boundary dyn E then fl meas E() for some ergodic
measure . Let fl be an endpoint of one of the spectral inteals [a, b] in dyn E. Let

be the continuous spectral subbundle associated with [a, b]. As noted in Lemma
3.1 there is no loss in generality in assuming M to be a compact metric space. Let X
be the trace of in the projective bundle N pm-I(R)x M, i.e.

X {(1, O):l is a line in (0)}.

Since is invariant under the flow (x, 0, t)= ((0, t)x, O. t), X is invariant under
the induced flow on N. Also X is compact. Let f(l, O) be given as in 7. Recall
that the time-average of f(l, 0) along orbits in N determines the Lyapunov exponents
of the solution (0, t)x where x is on the line l, x # 0.

Let J be the set of all invariant measures on X. We claim that

(8.1) a, N fd b
Xi

for all Z If, on the contrary, (8.1) is false for some J, then for -almost all
l, O) Xi one has

lim log I(0, t)xl =f(l, O)

where f is an invariant function defined on N with x, fd x,fd, x is on l, x 0,
and x,fd [a, b]. is implies that f(l, O) [a, b] on some invariant set of positive
-measure, which contradicts eorem 8.1.

Next we claim that there is a measure J such that Jx, fd ft. To see this,
assume for definiteness that fl b is the right endpoint of [a, b]. Recall that J is
compact, and that the mapping x fd is continuous. Therefore if there is no J
with x,fd fl, then it follows from (8.1) that there is an e > 0 such thatxfd fl e
for all Z It follows from the ylov-Bogoliubov method described in 5 that for
every (x, 0) with x 0 one has

1 1o’lira suplog (0, t)xl =lira sup f((l, O,s)) dsN-e.

It then follows from Sacker and Sell (1978, Lemma 4) that dyn , a contradiction.
A similar argument works for a.

We want to show next that can be chosen to be an ergodic measure on X. Now
fix eJ with Ixfdn =. Since is a metric space, we can use the Choquet
Representation theorem, Phelps (1966), to find a probability measure An on the set
of ergodic measures in J such that

kgd=I(kgd)dAn()

for each g (X, R). In paaicular for f g one has

fl=fxfd=f,(fxfd)dan(’"
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From (8.1) we see that one cannot have xjfdcr<fl=bi for all treE. It follows
then that there is an ergodic measure r E with xjfdtr

Finally let/z be the projection of tr to M. Then/Z is an ergodic measure on M,
and from 6 we see that fl meas E(/Z). This completes the proof of Theorem
2.3. Q.E.D.

Remark 8.1. In general, one cannot find a single ergodic measure /z such that
ai, bi meas E(/z) for all endpoints ai, b, even if M is minimal. Here is a simple
example. According to Furstenberg (1961), there is a discrete flow on the 2-torus M T2

with more than one (in fact uncountably many) ergodic measures. Moreover, there is
a continuous function g on M so that M g d/z1 # M g d/z2 for distinct ergodic measures
/zl, /z2. Define M x Z R by (y, 1) exp g(y). The dynamical spectrum of the
cocycle is [a, b], where a inf g d/z, b- sup g d/z, and the inf and sup are
taken over all ergodic measures on M. However, the measurable spectrum contains
just the point { g d/z} for each ergodic measure

Remark 8.2. If there is only one ergodic measure/z on M, for example if the flow
0. on M is almost periodic, then meas E(/z) is a subset of the dyn X and all endpoints
a, b of dyne are in measE(/z). For m=2 we conclude that measE(/z)=
boundary dyn. An example in Johnson (1986) shows that for m- 3, even if M is
almost periodic, the measurable spectrum need not consist entirely of endpoints a, bi.

9. Computation of the measurable spectrum. Wedge product flows. Let 0 M be a
Lyapunov point and let y(0)-<_...-<_ ym(0) denote the growth rates with associated
basis e,. ., e,. Thus one-has A(e, 0)= y(0), 1 -< i=< m. By a standard argument, see
Naylor and Sell (1982, p. 268) for example, there is a constant K such that for any
vector x R" one has x ael+" + amem and

(9.1) ](0, t)x <- K max {[(0, t)e,]: a # O}]x}
for all T. It follows from (9.1) that

On the other hand one has

1
lim sup 7 log I(0, t)l<= ym(0).

I( O, t)e,, < I( O, t)l levi,

which implies that

Ym(O)"-lim
l
log ldP(O, t)e,,l<--liminf

l
log ldP(O, t)],

t+ t-o

and hence one has

(9.2) lim
I
log [(0, t)[ y,(0).

A similar argument yields

lim
1
log o, t)l- ’)tl(O).(9.3)

,--.-

An early version of (9.2) for stationary stochastic process of (m x m) matrices appears
in Furstenberg and Kesten (1960).
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The same considerations extend to the induced wedge product cocycles Akt:I)(0, t)
on AkR", where 2 _-< k-< m. If (b, t) satisfies (4.7), then one has

Ak(b, t)=(Akq(d t))-l(Akd(O, t))(Akq(qb)).
Hence the cocycles AkxI and Ak are cohomologous. Therefore AkxIt and Ak have
the same Lyapunov exponents.

For I k m let Ord (k, m) denote the collection ofall strictly monotone mappings
: {1,. ., k} {1,. ., m}. We will use the lexicographic ordering on Ord (k, m); thus
< z, where , zOrd (k, m), provided there is a j, ljk such that (i)= z(i) for
1 j 1 and (j) < z(j). If { el," ", e} is any basis for R, then {e: Ord (k, m)}
is a basis for AkR where

(9.4) e e A. A ek.

Fuhermore if T is an upper-triangular (m x m) matrix (with respect to the basis
{e,..., e}), then AkT is an upper-triangular matrix with respect to the basis e,

Ord (k, m). Also the diagonal entry t (in the th position on the diagonal) is
given by the product

t t(1)(1) (k)(k)"

If, in addition, one has t, > 0 for 1 m, then t> 0 for all Ord (k, m).
Let us return to the triangular cocycle (, t). It follows from the last paragraph

that if (0, U) is fixed and if the diagonal entries of (, t) satisfy (6.6), then the
diagonal entry of Ak satisfies

lim log I(, t)[ T(1)+’’" + T(k),(9.5)
1,1

where Ord (k, m) and 2km. The collection of numbers given by (9.5), where
varies over Ord (k, m), represents the Lyapunov exponents of Ak. This analysis

applies for every H, where H is given by Lemma 6.4. For H(p) we shall
rewrite the growth rates in the form (2.8) where

(9.6)

It then follows from (9.5) that the largest growth rate forA is

v=+,-() +’’’ + Vm()
and the smallest is

Vl()+’’’ + ().
The argument in the first paragraph in this section now applies to A, which completes
the proof of Theorem 2.4.

Remark 9.1. One can give a precise description ofthe measurable bundles W)()
corresponding to A. Fix e H(p), where the growth rates of satisfy (9.6), and
let e,(O),..., em() be a basis in R that satisfies a(e,(O), )= ,(), lim. For
r e Ord (< m) we define

>()= 1)()+’’" + v)(O).
Then one has

(9.7) W)() span {e.:
where e is defined by (9.4) for e Ord (k, m). We will omit the proof of (9.7), which
is a simple application of the techniques developed in } 6.
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10. Applications and illustrations. In this section we collect several illustrative
examples of the theory described above. Included here is a discussion of spiral systems,
products of "random" matrices, conservative second-order Schr/Sdinger equations with
almost periodic potentials, and linear stochastic differential equations with bounded
measurable coefficients.

(A) Spiral systems. The theory above applies to every compact invariant set N in
M. In this case the dynamical spectrum dyn X(N) depends on N. Next we want to
study the case where N is a single orbit together with its to-limit set, i.e. a spiral system.
More precisely let M be a compact Hausdorff space with a flow 0. t. Let 00 be a given
point in M and define

N H/(0o) closure ( 0o" t: -> 0}.

Then N is positively invariant and the to-limit set 1)= fq_>-o H+(Oo" r) is a compact
invariant set. We are interested in the case where 0o f. Thus the positive trajectory
00" forms a spiral. See Fig. 1.

0o

FIG. 1. N: A spiral system.

Let (0, t) be a cocycle defined on M. Then the theory described above applied
directly to the restriction of to the to-limit set f/. The problem we wish to study here
is the limiting behavior (as s, -- +oo) of the cocycles Ak(0o. s, t), 1--< k-< m, along
the spiral trajectory 0o. In particular we want to show that this limiting behavior can
be used to evaluate the measurable spectrum of the to-limit set

Before doing the analysis it should be noted that this study addresses a basic
question which arises naturally when one is doing a numerical evaluation of the
measurable (or dynamical) spectrum. The initial point 0o in M is determined by the
code or program. If by good fortune it happens to lie in the set M, (Theorem 2.1),
then Theorem 2.4 explains how to compute the spectrum. With our present understand-
ing, one does not know whether or not we have had good fortune. However, what is
always true is that 00 does determine a spiral system.

For k= 1,. ., m we define

1
b k := lim sup- log IAkI)(Oo" S,

s,,r-- +oo

Also let X denote the dynamical spectrum of the linear skew-product flow
(A(O, t), O. t) over , and define

ak :__ max k.

We will now prove the following result:
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THEOREM 10.1. The following statements are valid:
(A) For k 1,..., m one has ak- b k.
(B) If the flow on f is uniquely ergodic (e.g. almost periodic) then meas E=

{ /1," ’/m} where y,,, b and

m-k--’bk+l--(m /" / ’m-k+l), l<-k<-m-1.

Proof. We will give the proof of (A) for k 1. The argument for k _-> 2 is the same.
Statement (B) is an immediate corollary of part (A) and Theorems 2.1, 2.3 and 2.4.

Let a and b denote a and b 1. For S_-> 0 and T->_ 0 we define

/3 (S, T) sup .1 log ](I)(Oo. s, z)l.
S<_s 7"
T<_,r

Then b=lims,T_+o3fl(S, T). Fix e>0 and choose S>_-0, T>_-0 so that fl(S, T)<-b+e.
For s / 7" one then has

I(0o" s, 7")1 I(0o, t)-’( Oo, s)l <= K eb+’-, 0 <= s <=
where K max {l(0o. s, r)l" 0_-< s _-< s, 0_-< z-<_ T}. It then follows directly, see Sacker
and Sell (1974, Thms. 2 and 5) and (1976a, Lemma 4) for example, that a-< b+ e for
every e > 0. Hence a <_- b.

If one has a < b, then we can replace (0, t) by the shifted flow eX’dP(O, t) where
3A 2a + b. This has the effect of shifting a and b to a- A and b-A, respectively.
Without any loss of generality, therefore, we can assume then that a < 0 < b and set
b 3a. Since a < 0, the linear skew-product flow ((0, t)x, O. t) has an exponential
dichotomy over fl with Ae Rm. This means that there is a constant K such that

I(0, t)-l(0, s)l _-< K e-<’-)

for all 0 ll, and s _-< t, s, T. In particular it follows from Sacker and Sell (1974,
p. 452) that {0} x II, R"x II and a//= {0} x II, where 3, 6e and are defined
to be those (x, 0) R"x fl that satisfy

sup[(0, t)x[<, lim [(0, t)xI=O and lim I(0, t)xI=O,
tT t+o3 t--o3

respectively.
Since b > 0 there are sequences s, --> +o, 7", --> +o such that

I <0o. -> e

Let e, be a vector with levi 1 and

I(0o s., z.)el >_- e-.
Fix tr, so that 0 <= tr, <= 7", and

I( Oo s., t)e.l <-I(Oo" s., r)e.I, 0 _-< _-<

Set :, (0o s,, o-,)e,. Then >- e-, and

., t)e.I <- 1, 0 <- <= r.
Since one has tr,-->+o. Also one has e,=(0,,-tr,):, where 0,=
0o" (s, + tr,). By choosing subsequences (if necessary) we can assume that 0, --> 0 fl
and I1-- e where lel- 1. it follows from Sacker and Sell (1976a, Lemma 4) that
(e, 0) o//, which contradicts the fact that q/= {0} x fl. We conclude that a b.
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Remark 10.1. The conclusions of Theorem 10.1 can be reformulated in another
manner. The numbers a k represent the "largest possible" Lyapunov exponents for the
cocycle Akt(0, t), where 0 f/and 1 _-< k_-< n. By the inequality (2.7) and Theorem 2.4
we see that there are ergodic measures/-/k on ’ with the property that a k is the largest
value in the measurable spectrum generated by Akt, 1-< k_<-n. Consequently if/z is
any invariant measure on f/ and Yl(O)<-... <-_ ym(O) are the growth rates satisfying
(9.6) for 0 f/,, then one has

m(0) +’’" - ’)/m-k+l(0) O
k

for all 0 e f,.
Remark 10.2. The ergodic measures tx referred to in the last paragraph need not

be the same. Let f be a minimal set in the flow 0. t, and assume that this flow is not
uniquely ergodic. Then there are ergodic measures/z and/z on 1 and a continuous
real-valued function g that satisfies g d/z g d/x:. Since g can be replaced by g + c

and/or ag, where c and a are constants with a 0, we can assume that/z,/z: and g
are chosen to satisfy

-1=/gdlz2<-fgdtz<-fgdlz,=3
for every ergodic measure/z. Now set h =-2g and consider the linear skew-product
flow on RE ’ generated by

x’- diag (g(O. t), h(O. t))x.

In the notation introduced above one then has a 3, a2= 2, and a max meas E(/zi),
i- 1,2.

Remark 10.3. It may happen that all the limits

lim
1
log IAk(00, t)l c k, 1 <- k <- m,

exist. If so, then one has ck<--_ a k, 1 <-k<-_ m. By using the associated triangular flow
and the Krylov-Bogoliubov method described in 5, one can show that there is an
invariant measure /z on f/ with the property that meas E(/z)= {yl," "’, %,} where
2’1 <--" <-- T,, and

)’,.-k+l +" + Tm ck, 1 <-- k <-- m.

Remark 10.4. The conclusions of Theorem 10.1 and the above remarks are related
to results of Pelikan (1983) who has analyzed the structure of Bowen-Ruelle invariant
measures on certain attractors.

(B) Products of random matrices. In this example we show that the theory of
products of matrices considered in Furstenberg and Kesten (1960) is often im-
beddable in our theory. Let K denote a fixed compact subset of (m) and let
{X1, X2," "} be a given sequence of (m x m) matrices with values in K. For n 1, 2,.
form the product

Y. XnXn_ Xl.

We wish to study the limiting behavior of

1-loglY l
n
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as n oo. This will be done by imbedding this problem into a spiral system, where
Y, =(0o, n) for an appropriate cocycle , and using Theorem 10.1.

Let M := Kz denote the collection of all two-sided sequences

(10.1) 0 (..., A-E, A-I; Ao; al, A2,’" ")

with entries Ai s K, Z. (We will use semi-colons to designate the zeroth position of
0.) Then M is a compact metric space with the shift flow 0. n where

O" n (" An_E, An_l; An; An+l, An+E, ")

for n Z. Define F :M -> K by F(0) := Ao where 0 is given by (10.1). Then one constructs
a cocycle over M by defining (0, 0)= I

(0, n)= F(O. (n- 1)) F(O), n >- 1,

alp(O, n)-[F(O. (-1))... F(O. n)] -1, n_-<-l.

It is not difficult to see that the cocycle identity (2.1) is valid for t, s Z.
The distinguished sequence {X1, X2," "} is imbedded into this flow as a spiral,

i.e. let A be a fixed element in K and set

0o (..., A, A; Xl; X2, X3," "),

where every negative entry in 00 is A. Then 0o M and Yn (0o, n) for n >-1. By
Theorem 10.1 we see that

1 1
(10.2) lim sup log I( 0. n, rn)l lim sup log Ym+nY-I

m,n+oo m m,n+oo m

exists and this is the maximum value of the dynamical spectrum over f, the to-limit
set of 00.

When the distinguished sequence {X, X_,. .} is a stationary stochastic process,
then the expectation satisfies E(log/ Ix,I)< since X1 assumes values in the compact
set K. If, in addition, this stochastic process is metrically transitive (i.e. ergodic) then
Theorem 2.4 is applicable, and one concludes that

(10.3) lim
1

log Yol

exists with probability 1. Also the limits in (10.2) and (10.3) agree. We refer the reader
to Furstenberg and Kesten (1960) for more details.

Remark 10.5. Some interesting applications of products of random matrices to
problems in demographics can be found in Cohen (1979).

(C) Schridinger equation. In the study of the Schr/Sdinger equation

Ly --5+ q(t) y Ay,

where q(t) is real and Bohr almost periodic, it is of interest to compute the "Lyapunov
number" fl(A) as a function of A e R. fl(A) is defined as follows: First introduce the
hull M of q by

M closure { q, " R},

where q,(t) q(t + -), and the closure is in the uniform topology. Then M is a compact
metric space with translation flow 0. r 0,. In fact M is a compact topological group,
and the normalized Haar measure /x is the unique invariant measure on M. Define
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Q(0)= 0(0), and consider the operators Lo=-(d2/dtZ)+Q(O. t) and the associated
equations

-A+Q(0. t)
x, x= y,

Since the trace ofthe coefficient matrix is zero, one obtains from Liouville’s formula that

meas E(tz)= {-/3 (A),/3(h)}

where /3(h)->0. This defines fl(h). Also, as noted in Remark 8.2, one has
boundary dyn E meas E(/x).

Spectral properties of the self-adjoint linear operators Lo on L2(-, c) are
reflected in the dynamics of (10.4). For example, h is in the resolvent set for Lo if and
only if (10.4) admits an exponential dichotomy, Johnson (1982). Also if/3(h) >0 for
all h in an interval/, then for/x-almost all 0, the (functional analytic) spectrum of Lo
has no absolutely continuous component in /, Pastur (1980), Ishii (1973). Moreover
if/3(h) 0 for all h in/, then I is in the purely absolutely continuous spectrum of Lo
for/x-almost all 0, Kotani (1982).

The numerical computation of/3(h) when q(t)= cos + cos rt, for example, is a
challenging problem. An investigation of this problem is described in Perry (1986).
The basic idea is to use Theorem 2.4 to estimate/3 (h). Also special properties of second
order linear equations, as described in Johnson (1980a) and Johnson and Moser (1982),
can be exploited to help determine whether or not (10.4) admits an exponential
dichotomy for h 0. This, in turn, leads to a resolution of the question of whether or
not one has dyn E meas E(tz).

Another method for computing/3(h), which was suggested by R. Helleman, is to
use the theory of Johnson and Moser (1982). In this setting one extends h to the
complex plane so that for Im > 0,/3() is the real part of a holomorphic function
w(h), called the Floquet exponent of (10.4). When Im h > 0, (10.4) has an exponential
dichotomy. One can compute/3(h) for real by a limiting formula:

/3(,X) lim_,o+/3()t + it/).

(D) Linear stochastic differential equations. An interesting variation of the
Schr6dinger equation occurs when the potential q(t) is a stochastic variable. More
generally consider the m-dimensional case x’= A(t)x, x Rm, where the entries aij(t)
are stochastic variables in t. We will show how this can be imbedded in a linear
skew-product flow on Rmx M, where M is a compact space, under the assumption
that the coefficients aij(t) are bounded and measurable in t, i.e. a L(R). (See
Kurzweil (1957), Miller and Sell (1970) and Sacker and Sell (1974) for more infor-
mation.)

The set M is the hull of A and is defined by

M closure {A: z R},

where A(t)= A(’+ t) and the closure is taken in the "weak L-local topology. That
is, a generalized sequence {A,} converges to a limit B if for every z R and every
b L[ ’, " + 1 one has

v+l I.rr+lA,( t)c( t) dt -> B( t)dp( t) dt.
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Since A(t) is bounded and measurable, the hull of A is a compact Hausdortt space.
If BM we let d(B,t) be the fundamental solution matrix for x’-B(t)x. Then
"M x R (m) is continuous and the associated linear skew-product flow is

7r(B, x, 7")= ((B, 7")x, B,).

When the coefficients a0 are stationary stochastic variables, it is not difficult to
show (by using the ideas of 5) that a given underlying invariant probability measure
/z lifts to an invariant measure , on M. If the coefficients are metrically transitive, i.e.
if/z is ergodic, then the lifted measure , can be chosen to be ergodic.

Appendix. Further geometric properties of cocycles. A projector is a continuous
mapping P(x, O)-(P(O)x, O) on R"xM where M is a compact Hausdorit space and
P(0) is a linear projection on R". A resolution of the identity on RmxM is a k-tuple
P-(P1,"" ",Pk), k>-l, satisfying: (i) each Pi is a projector, (ii) PP= when i#j
and (iii) I P /. + Pk. (Here we define (x, 0):- (0, 0).) Let P (P,. ., Pk) be
a k-tuple of projectors on RmxM and define

,:= Range (Pi) := {(x, 0)e R" xM: Pi(O)x=x},

Then P is a resolution of the identity if and only if Rmx M-1/’’" /k (as a
Whitney sum). A resolution ofthe identity P is said to be orthogonal if i+/-j whenever
# j, i.e. the Euclidean inner product (.,.) satisfies (x, y) 0 for all (x, 0) e , (y, 0) e )

when j. The latter is equivalent to saying that each Pi(0) is an orthogonal projection
on Rm.

Now let be a cocycle on R x M and assume R" x M= V+...+ Vk as a
Whitney sum. Let P (P1,"" ", Pk) be the induced resolution of the identity where
Range (P) V, 1 <_- <_- k. Then the subbundles V are invariant under the linear skew
product flow induced by if and only if one has

(A.1) Pi(O" t)p(O, t)=(0, t)Pi(O), l<-_i<-k

for all 0 e M and T. We shall say that a resolution of the identity P (P1, , Pk)
is invariant if (A.1) is satisfied. It is not always the case that an invariant resolution
of the identity is orthogonal; however, the next lemma shows that one can replace
with a cohomologous flow in which the new invariant resolution of the identity is
orthogonal.

LEMMA A. Let d be a cocycle over a compact Hausdorff space M and let P-
(P1,’", Pk) be an invariant resolution of the identity. Then there is a continuous
self-adjoint mapping R’M- q(m) with the property that Q=(Q1,’", Qk) is an
orthogonal resolution of the identity, where

(A.2) Q,(0) R(O)P( 0)R-l(0), 1 _--< _--< k.

Furthermore Q is invariant under the cocycle

(A.3) (0, t)= R(O. t)d(O, t)R-l(O).

Proof. Define S(O) by
k

S(0):= Y’. P*(O)Pi(O)
i=1

where P* denotes the adjoint operation. Then S(0) is positive definite and self-adjoint,
so it has a unique positive definite, self-adjoint square root R(0), i.e. RE(0)"- S(0). If
Q(O) is defined by (A.2) and is given by (A.3) it is easy to verify that Q*(0) Q(O)
and (0, t)Q,(0) Q,(0. t)(0, t), 1 -<_ -< k. Q.E.D.
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Lemma 3.4 also gives information about the case where one has a linear skew-
product flow on a vector bundle ’ over a compact Hausdortt space M where
//’1 +"" + k is a Whitney sum of invariant subbundles. Each of these subbundles i
can be separately imbedded in a trivial bundle Rm’ M where m ml +"" + mk. The
construction of Lemma 3.4 shows that one can construct a cocycle on RmM so that
the given flow on is cohomologous to a flow on a subbundle of R"x M.

If 7r is a discrete flow on a vector bundle ’, i.e. if T Z, then Lemma 3.4 can be
extended to this case by first suspending the discrete flow to get an equivalent con-
tinuous-time flow on a new vector bundle. See Ellis and Johnson (1982) for the
suspension construction. One should note that even if the original bundle is trivial,
the suspended bundle may be nontrivial.

The triangularization technique can be used to put some cocycles into a block-
diagonal, upper-triangular form. Let be a cocycle on M and let P (P1,’", Pk)
be an invariant partition of unity of R"x M. Because of Lemma A we can assume P
to be orthogonal. For any point b- (0, U) H we define the P-partition of U to be
the partitioning of U into block matrices U U1, , Uk)p where the number mi of
column vectors in U is dim Range P(O), 1 <-i<-k. Let Hp denote the set of all
b (0, U) H with the property that the P-partition U U1," , Uk)p satisfies

(A.4) Pi O Uj tij Ui l <--_ i, j <- k.

By using Lemma A one can easily verify the following:
LEMMA B. Hp is a compact invariant set in H in the flow b. t. Furthermore if

b O, U) Hp then the column vectors in ( O, t) Ui are orthogonal to those in ( O, t) U
when j.

For b-(0, U)Hp let T(d(O, t)U) be given by (4.5). The P-partition of U
prescribes an induced block partition of T((0, t)U) where the diagonal blocks are
square matrices of size (m x m), 1 <- _-< k. Since the off-diagonal blocks of T((0, t) U)
depend on the inner products of column vectors of (0, t)Ui and (0, t)U for i#j,
it follows from Lemma B that these off-diagonal blocks are zero. Hence (b, t)-
T((0, t)U)-1 is a block-diagonal, upper-triangular matrix.

The block-diagonalization of involves an "untwisting" ofthe spectral subbundles
of. A similar untwisting with additional useful structures appears in Ellis and Johnson
(1982). Also compare with Coppel (1967), Palmer (1980) and Vinograd et al. (1977).
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SIMPLE CRITERIA FOR STABLE BIFURCATING
PERIODIC SOLUTIONS OF O.D.E.’s*

G. CICOGNAf

Abstract. We propose a very simple criterion (generalizing classical Hopftheory) ensuring the existence
of bifurcating periodic solutions for systems of O.D.E. of order larger than one. We show also that these
solutions can be evaluated by means of a practical recursive procedure, and give a direct rule for finding
the critical Floquet exponent. Some further generalizations are also considered, mainly based on symmetry
properties and stability theory.

Key words, nonlinear systems of O.D.E.’s, Hopf bifurcation, recursive methods, Floquet exponent,
equivariant bifurcation problems
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1. Introduction. We will deal in this paper with systems of nonlinear differential
equations, for a n-component real variable x x(t), of order higher than one: our aim
is mainly to provide simple and readily applicable criteria concerning the existence of
bifurcating periodic solutions ( 2), and their stability ( 6). It can be observed, actually,
that any system of differential equations of order higher than one could be trans-
formed-in principleminto a system containing only first-order derivatives; however,
the price that must be paid is the introduction of a very high number of equations and
variables, which are in generat not easily handled. In addition, it may happen that the
initial system cannot be explicitly transformed into a first-order system, so that the
classical Hopf bifurcation theory cannot be applied. Our criteria do not require these
transformations; rather they involve only linear algebra in the vector space C n.

The interest in this type of problem is increasing" we can refer to the books and
reviews [2], [4], [8], [9], [11], [12], and to the Proceedings of recent courses [1], [10],
[17].

Another relevant point is that our scheme enables us to apply a general recursion
procedure (again in an n-dimensional space) for explicitly calculating the periodic
solution (cf. 11]): this will be illustrated also by means of an example ( 4). Another
example will be examined in some detail ( 7), in order to discuss the stability of the
bifurcating periodic solution, in terms of Floquet exponents [11]. In 3, we will
compare our results with the classical Hopf bifurcation theory.

In 5 we discuss some symmetry properties of the problem. It is known that
symmetries play an interesting role in bifurcation theory; what concerns us especially
is the case of bifurcating periodic solutions (see the paper by Golubitsky and Stewart
[7]) where one can find a detailed analysis of this point of view. Symmetries are also
treated in 8, where some generalizations of the method are briefly considered"
precisely, the case of multiple critical eigenvectors (Theorem 3), and finally the case
when the classical conditions of the Hopf method are not verified, and one has to
resort to different arguments based on stability theory (Theorem 4).

2. Existence of bifurcating periodic solutions. Let x x(t) be a real n-dimensional
vector, depending on time t; we shall consider a family, depending on a real parameter

* Received by the editors July 3, 1985, and in revised form September 20, 1985.
f Dipartimento di Fisica, Universit di Pisa, 1-56100 Pisa, Italy.
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A, of systems of nonlinear ordinary differential equations of the following type

(la) F(h,x)=L(Z)x+H(,X,x),

where L is the linear differential operator

k

(lb) L(A)= E Ar(A)
r=0

A ER, xER

and At=At(h) (r=0,..-,k) are given nxn real matrices, H:RxR"R" is the
remaining nonlinear higher order part, with H(A, 0)=0; we will assume also for
simplicity that Ar At(A) and H H(A, x) are analytical functions.

Theorem 1 below provides a condition for the existence of a bifurcating nonzero
periodic solution of (1): this will be readily obtained introducing first the n x n auxiliary
matrix T defined by

k

(2) T= T(A, )= E (ito)A(A)
r=O

where to is a new real parameter.
THEOREM 1. Suppose that when h ho and to tOo> 0 the matrix To T(ho, tOo)

defined in (2) is singular, and that its kernel in C is one-dimensional. Assume also that
the usual "no-resonance" condition is fulfilled, i.e. that, in the case there is some other
tO’# tOo such that det T(ho, tO’)=0, thentO’/tOo is not an integernumber. Finally, denoting
by and ’ unit vectors in C" such that

(3) To" 0

assume that the two complex numbers

(4) Tx) -- ’, "

and T-" 0

and (To) ’, "
(where is the scalar product in C" and derivatives are evaluated at h ho and
tO tOo) are not aligned with the origin of the complex plane. Then, the problem (1)
possesses a periodic nonzero solution, branching at h ho, with period 2zr/tO, which can
be parameterized in this form

x x(s, t)= s Re (" eit)+ w(s, t),

(5) x (s),

=(s),

where s is a real parameter, defined in a neighbourhood of zero, and such that

lim h(s) ho, lim to(s) tOo, lim S--Iw(s, t) O.
s-0 s-0 s-0

Proof. Having rescaled the time variable

(6) r= tOt

(so one has to look for 27r-periodic solutions in r), let us put

k d
(7) L(A, tO) . tOrAr(A)

r=O d’r

The choice of phase factors of r and " is irrelevant here and in the following.
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and introduce the L2((0, 27r), R") scalar product

llo(8) (x(’), y(’))L2 (x(’r), y(’r))R" d’r

(easily extended, whenever necessary, to L2((0, 2"rr), Cn)). Our assumptions imply that
the operator Lo L(Ao, Wo) is a Fredholm operator of index zero, with two-dimensional
(in the real sense) kernel V, spanned by

(9a) Re (" e’") and

Let V’ be the kernel, spanned by

(9b) Re (" e’’) and

of the formal adjoint

Im (r e").

Im (if’ e"),

k dL= Y (-too)rAr(Ao)
r=o d"r

and W, W’ the orthogonal cOmplementary subspaces in L2((0,27r), R") of V, V’
respectively. According to the usual Lyapunov-Schmidt technique (see e.g. [4], [8]),
introduce the projectors P, P’ on V, V’, and Q, Q’ on w, w’; then, writing w Qx
and v Px, the projection of (1) on W’ uniquely fixes w as a function of A, to and v;
next, the projection on V’ gives the bifurcation equation"

(10) P’F(A, to, vq- w(A, to, v))-= (A, to, v)-= (A, to, v)v=0

where ,: R2x V V’, and (A, to, v) is a 2x2 real matrix with the property

(Xo, Oo, 0)= 0.

Let now 3 be any unit vector in V (the choice of 3 is arbitrary, as we shall see more
clearly in 5), and s a real parameter; then (10), written in the one-dimensional
subspace {s3}, becomes

(X, o, s) 0

(s 0 corresponds to the trivial solution v w x 0). An application of the implicit
function theorem gives that this equation has nonzero solution if

O(ho, too, 0) and 0(11)
0X 0to

(Ao’ to’ 0)

are two linearly independent vectors (in the real sense: see [4] and also [6, 6]). If
this condition is satisfied, the solution can be put precisely in the explicit form (5).
On the other hand, one has

0
(Ao, too, 0)=

0
P’F,(Ao, too, 0) p,OL(Ao, too)

0h 0h 0h

and similarly for (0/0to)3, having taken into account that wo(Ao, too, 0) -0, as known
from usual bifurcation theory. The projection P’ on V’ is obtained by evaluating the
two scalar products with vectors (9b); using now definition (8), one can observe that,
for any real function y(-) L2,

(12)
(y(z), Re (" "ei))L Re (T]I ’)cn,

(y(z), Im (sr’ e"))L2 Im (r/i, ")c"
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where r/1 C" is the vector of the first components of the Fourier series

1 p u.).y(r)= E (npe +lpe-
p=0

Choosing now t3 Re (" ei), it is immediately seen that the condition given above on
the two vectors (11) is equivalent to the assumption on the scalar products (4) as given
in the theorem. The other assertions follow from standard results of the Lyapunov-
Schmidt procedure.

3. A particular case: the Hopf bifurcation problem. In the particular case of
first-order differential systems (k 1), the two quantities (4) become now

(13) (Tx)=((i(0oAlx +Aox), ’) and (To,) i(Al, ’)

where Ala OAI/OA evaluated at A Ao, etc. If, in addition, the matrix AI(A is assumed
to be invertible, at least near Ao (Theorem 1 actually works also without this assumption),
the problem is the classical Hopf bifurcation problem:

Observing that

d
.-:.x u(x)x + c(x, x)
ta

with B(A) -A-I(A)Ao(A).

B(ho)"= i(0osr,
B+(ho)sr’= -i(0osr" if ’"= A-(ho)sr’,

one obtains in this case from (13) (all quantities are evaluated at h ho)

(T) -r (, ") and (To,) i(’, ")

where o-= o-(h) is the critical branch of eigenvalues of B(A), with r(ho)= i(0o. Our
condition on (4) becomes then

(’, ’") # 0 and Re rx (ho) # 0

which is precisely the usual "transversality" assumption [11], [4], together with the
condition that the critical eigenvalue i(0o of B is semisimple (i.e. algebraically simple).
For what concerns this last assertion, note in fact that (sr, sr’) 0 would imply, using
also (8) and (12), that Re (" e i,) and Im (" e i,) are orthogonal to the kernel of the
formal adjoint

dL -(0o- B+(Ao),

which in turn implies that there exists some vector : e C such that (B(Ao) i(0o): ’,
thus showing the nonsemisimplicity of the eigenvalue i(0o, and vice versa.

4. The reeursive method. First example. We want to show here a very general
recursive method (cf. 11]) which, if the hypotheses of Theorem 1 are verified, can be
applied for explicitly evaluating solution (5), and which appears to be more con-
venientmfor practical uses--than the Lyapunov-Schmidt procedure.

Let us insert into (1) the following expansion of (5) in powers of the parameter s

x(s, )= sx(,()+ sx(()+sx()+
(14) X(s) Xo+ sX .+ s)X+

(.O(S) (00 -" S(01 -F" ,$’2(02 "-"
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At the first order one gets

L(Ao, Wo)X,)(r) 0

which is solved just by all vectors in V. Choose now (the normalization of " fixes the
scale of s)

x(1) Re (" e’).

At the order s2, one has the linear differential problem

(15)
OL OL)Loxz)(r) /1--" 0)1- X(1)(7)+ H2(r)

where H2(r) is the second order term in the expansion of H(A,x) in powers of s.
Classical alternative theorems say that this equation can be solved (in x2(r)) if its r.h.s.
is orthogonal to V’; imposing this condition by means of (8) and (12) gives an equation
for A1, 0)1. This equation, in turn, can be satisfied just if assumptions of Theorem 1
(in particular the one concerning quantities (4)) are verified.

The method can be illustrated by means of the following example. This is one of
the simplest examples which could have some interest, because of the occurrence of
the highest derivatives in just one of the equations. To my knowledge, such cases which
are not (or cannot be) transformed into a first order system rarely appear to be
considered in the literature. However, there are several problems (e.g. in nonlinear
field theories, nonlinear quantum-mechanical systems, etc.: see 1 ], [2], [9]) which are
ofthis form: our method may then be useful, even ifthis possibility cannot be considered
in this paper. Consider then the system, with k 2, n 2, writing here the two-
component vector x in the form x (x(t), y(t))

-t- AX X 0 (2 dx/ dt, etc.).

It is easily seen that the auxiliary matrix

--(.02+ 1 )0)
2

T(A, 0))=
A

is singular for ho 0 and 0)o 1, and that all conditions of Theorem 1 are satisfied
with (Ta)/(T,) i. The spaces V and V’ are spanned by

(co r), (sin0 and
1 (cos -sin r)\sin ;)’ 22( cos "r /

respectively. An alternative theorem from (15) requires

Y. 1( TA -{- 0) 1(T 0

which gives

/1 0)1 0

and then (neglecting for simplicity an independent solution with y const.)

X(2)(7.) =(3-cos0 2r).
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At the third step, the solvability condition can be satisfied, as before, by fixing A2 and
to2; we thus obtain, summarizing:

$2 $3
s cos z+(3-cos 2z) ---(2 cos 3z+9 sin 3z)+.

x(s, )= s
1- sin 3 " +.

h=-s2+..., to=l+2s2+..., z=tot.

It can be easily seen that the equation for x,,(’r) obtained at the nth step is not
very different from (15). Then one can be easily convinced that our assumptions
guarantee that each step can be completed, and that this method works for any other
example as well.

5. Symmetry lrolerties. All systems as (1), being "autonomous," exhibit in a
natural way a "covariance" with respect to the group SO2 (isomorphic to the circle
group S1) of the "time translations" z r+ z’(mod 27r) [7], [20], [22]. Let us recall
that a map F" R x X- X’, where X, X’ are topological vector spaces, is said to be
covariant with respect to a topological group G [20]-[22], if there exist two continuous
representations D and D’ of G, acting on X and X’ respectively, such that, for any
AR,xX and gG,

(16) F(A, D(g)x)= D’(g)F(A, x).

It can be shown [20]-[22], [5] that covariance is inherited by the bifurcation equation
(10), and that the kernel V of the linearized map Fx(A, 0) is an invariant subspace
under the group action. In our cases, this implies that the two-dimensional space V is
the basis space of a real irreducible representation of S02; therefore, all unit vectors
in V are equivalent, in the sense that they belong to the same orbit under S02 (changing
the choice of corresponds to choose another origin for the time z).

Another consequence is that, exactly as in Hopf bifurcation [11], A and to are
even functions of s"

(s) =(-s), ,o(s) =,o(-s).

In fact, after a time z r, one has s3 e - -s3 e, and then, from covariance of (10)

which proves the assertion. The same result is confirmed by the iterative method used
in the previous section: it suffices to observe that the odd-order coefficients ’2m-1,
to2,_ in the expansion (15) are determined, via solvability condition, by the projection
on V’ of the terms of order 2m in the s-power expansion of the nonlinear part H(A, x),
and take into account the computation rule (12).

As a final remark, let us consider the case in which the system (1) contains only
even-order derivatives: in this case, both quantities (T) and (To) are real, and the
condition stated in Theorem 1 cannot be satisfied. However, in this case, the covariance
of the problem is larger: it is described in fact by the whole group 02 (i.e., it includes
time inversion --z). In this case, by restricting e.g. the problem to the subspace of
even functions (with respect to time inversion), one can easily reduce the bifurcation
equation, as a consequence of symmetry, to a standard one-dimensional case [4], [7],
[20]-[22], [5], and then apply classical arguments [4].
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6. Stability of the bifurcating periodic solution. We will give now a readily appli-
cable criterion for finding the "critical" Floquet exponent [11], [19] governing the
linearized stability of the periodic bifurcated solution (5). Assuming here that Ak(A)
is invertible in a neighbourhood of A0, and introducing the vector variables

(17)

dXl dXk-
Xl X, x2- dt

"’’, Xk-- dt

u=-(xl," ,xk)Rkn,
system (1) becomes equivalent to

du
(18) d--=M(A)u+K(A, u)

with

B1
where I is the unit n x n matrix, and

BI=BI(A)=-A-I(A)AI(A) (j=O,..., k-l),

K= K(A, u)=
)

-A-I(A iH(A, x)
For the problem (18), the Floquet exponent 11 ], at the lowest order of the parameter
s, is given by

d;t dp dp
(19) ), -S-s Re -2s2A2 Re dA
where p p(A is the critical branch ofthe eigenvalues ofthe matrix M, with p(Ao) =/tOo,
and derivatives are evaluated at Z ;to.

We can now state the following:
THEOREM 2. The sign of the Floquet exponent governing stability of the bifurcating

periodic solution (5) of the system (1) is equal to the sign of the quantity

(20) 15 Im ((Ha)( To)),

(T,) being defined in (4) and

(H3)
1 Io’ (H3)(r), ’) e-’* dr,

where H3(z) is the third-order term in the s-power expansion ofthe nonlinearpart H(A, x),
and all other assumptions are as in Theorem 1. Therefore, <0 (>0) corresponds to
linearized stability (instability).

Proof. Let us denote by r/, r/’ Ckn the critical eigenvectors of the matrix M(Ao)"

M(Ao)r/= itOor/, M+(Ao)r/’= -itOo/’.
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One can see that (apart from normalization factors) / and /’ are given, in terms of
vectors ’, " (3), by

(i’) 1
/__ (ito!)2 /

and

_iio A-’
-,,o)2[A- + (-itoo)A-]"

-1
[A- + (-imo)A +’" + (--imo)k-2A-2]

--i0)k-1

A’
and verify, after some calculations, that

n, n’ =-lr.),

then

dO (r)
(21) Re Im T.,---"
Now using methods of 4, from the solvability condition

one gets

;_(r)+ o:(ro) + (H) 0,

Im ((H3) (T,o))
(22) A2

im ((T)(T,o)),
and finally

aM ) dp
--n, n’

252
-i(ro)l"

7. Second example. We will consider here in some detail this second example,
writing x =- (x(t), y(t))"

5 + ) + 2x + Ay (x + y)(x2 + y2) 0,
(23)

j) + 2y AX + (X y)(x2+ y2) 0

(which, of course, has the special property of being covariant also with respect to an
additional rotation group SO2 (see 5; cf. also [7], [14], [15]) acting, for each fixed
t, on the vectors (x(t), y(t)) through its basic representation). One has now Ao=0,
too=2, and (T,o)/(Ta)=-3i; the periodic solution is given (exactly) by

s2 11 (costot A =--, to=E+(/9-2s2-3)(24) x(t) \sin tot
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In view of Theorem 2, one gets

1 (-cosz-sinr 1 (-1+i)H(3)(z)=- cosz-sinz/=’Re l+i
e

and then, using (12) and Theorem 2,

3 s2

6=--, Y= 3

corresponding to stability of this solution for small variations of s.
It can be interesting to check these conclusions by directly inspecting the equations

governing the small "peurbations" of solution (24)" precisely, by writing

sin t (t 2

and introducing for convenience the two functions

f(t) (t) cos t+ n(t) sin

g(t) n(t) cos t- (t) sin t,

one can see that f and g obey the equations

’+ 3(3 sff+ s(2 1g= 0,

=(1-2w)f-sf
This is sufficient to show that (t) and (t) behave typically according to

(t),n(t)e’
where y can be directly evaluated for small s to be2

s2 s2=- and 7.=3i+,
so, 7 confirms the above calculation, whereas the two others correspond to displace-
ments toward nonclosed orbits in the R-plane "oscillating" around the periodic
solution (24). Alternatively, the various aspects of this discussion can be viewed writing
(23) in polar coordinates r, 0. In this way one can obtain e.g. that

(25a) r-r2 C const,

9 C
(25b) h’= 4r+r r,
then the "equilibrium solution" r=ro of (25b) requires through (25a)

=const=+ -r

which is just (24) with 0 and ro slY.. Ne generalizations. One of the hypotheses of Theorem 1 was that the kernel
of To T(1o, o) is one-dimensional (in C). If the system (1) is covariant under some
’external" symmetry group G (i.e. a group acting on the veors x e R for each fixed

Apart from the value Yo 0, always present in these cases, as is well known 11 ].
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t, not only through the time translations considered in 5), this hypothesis is usually
not verified; but it can happen that some group-theoretical consideration allows us to
restrict the problem to some subspace where the initial hypothesis is recovered. The
situation is completely similar to the one considered in full detail in [7] for the case
of Hopf bifurcation. Referring for a more complete description of the group-theoretical
situation to [7], we briefly state the assumption in this form:

(G) Let system (1) be covariant under a symmetry group .G, as in (16), with
D D’. Suppose that there is an isotropy subgroup G in G and a two-
dimensional (in the real sense) subspace U c R" such that

D(,)u=u forallG, uU

and that no other vector in R" is left fixed by D(G).

The following result needs then no further comment:
THEOREM 3. Let system (1) satisfy assumption (G); then the restriction Tolu maps

U in itself, and if all other assumptions in Theorem 1 are verified by this restriction, the
same conclusions are true.

Another crucial point is the classical Hopf"transversality condition"" in particular,
it was proved in 3 that our hypothesis concerning the two scalar products (4) is
equivalent--in the case of first-order systems--to this condition. However, even if
transversality is not satisfied, it is known 1 ], [3], 13], 16], 18] that suitable assump-
tions concerning a well defined change in the stability property of the solution x 0
can ensure the existence of a nontrivial bifurcation. Combining these ideas with
symmetry properties, we get the following result, which we state for first-order normal
systems.

THEOREM 4. Let system (1) be of order 1, with

d
L(A) --+ Ao(A),

and satisfy assumption (G). Denoting by F F(A, u) the restriction ofF to R x U, suppose
now that a positively definite continuously differentiable,for simplicity) Lyapunovfunction
V" U- R can be defined in a neighbourhood ofu 0 in such a way that its time derivative

dV

is negatively definite for A Ao, but when A > Ao it becomes positively definite. Suppose
finally that (A, u) # 0 for all u # 0 in a neighbourhood of u 0 and A > Ao" then for
A > Ao there exists a bifurcating invariant set. This set is in general an annular region
(possibly reduced to a single periodic cycle) around the origin u- O, and stable under
perturbations belonging to U.

Proof. By assumption (G), we can restrict the problem to the subspace U. Assump-
tions on the Lyapunov function V imply that the trivial solution u 0 is asymptotically
stable for A Ao and becomes completely unstable for A > Ao; then (see [1], [3], [13],
16], 18]) there exists a stable bifurcating set in U. For classical Bendixson theorems,

being U a two-dimensional real space and having locally F no critical points other
than u 0, this bifurcating set has all the mentioned properties.

Just for illustrating the idea, consider the following example. Let x R", y R",
with m 9, be 4 x 4 real symmetric traceless matrices; let G--SO4 act irreducibly on
the space R9 according to the rule (in matrix notation)

(26) x --> gxg t, g G
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and on the space R90) R9 according to the "diagonal" direct sum of the transformation
rule (26). Consider the system, covariant with respect to this representation of G

=h3x-hy+O(detx),

) ,ix + A 3x + 0y(det y).

The two-dimensional subspace U is generated by the two vectors , 37 lying along the
direction of the diagonal matrix (cf. [5])

1

1

Even if restricted to this subspace, standard Hopf theory cannot be applied (nor
Theorem 1, being now To 0); in fact for A Ao 0 transversality is not verified and,
in addition, tOo Im tr(0)= 0. However, denoting now by , )7 (instead of the vectors)
their projections along the direction 7, and choosing the Lyapunov function

which gives

v=

dV
3(:2 1

d- Z + 2) (4 -I- 4),

all hypotheses of Theorem 4 are verified, and in fact one can see that a periodic solution
bifurcates from ;to 0. Clearly, under the action of the group G, this solution generates
orbits of equivalent solutions.

Note of course that, in this example, it is impossible to extend the function V to
the whole space in such a way that the required properties of dV/dt are preserved;
also in this case, therefore, symmetry plays an important role.
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AN EXPLICIT SOLUTION OF THE INVERSE PERIODIC PROBLEM
FOR HILL’S EQUATION*

ALLAN FINKEL, ELI ISAACSON AND EUGENE TRUBOWITZ

Abstract. Let the periodic spectrum of the Hill’s operator -d2/dx +p(x) have n nonzero gaps. We
give explicit formulas for the isospectral manifold of operators -d2/dx2+ q(x) having the same spectrum.
This allows us to realize the isospectral manifold explicitly as a torus. What makes this possible is an explicit
solution of the flow

-q=dx Oq(x) =ln(q)

introduced by McKean and Trubowitz, where A is the discriminant and/,,(q) is the nth Dirichlet eigen-
value. The general case (in which there are an infinite number of nonzero gaps) is handled by a limiting
process.

Key words, inverse eigenvalue problem, Hill’s equation, isospectral manifold, flow on manifold

AMS(MOS) subject classifications. Primary 34B30, 34B25, 34K10

1. Introduction. Let -d2/dx2+q(x) be the Hill’s operator with qLa(S1). We
give a simple explicit formula for the isospectral manifold of all potentials having the
same periodic spectrum as. q. The formula, which involves only the Floquet solutions
and Dirichlet eigenfunctions of q, represents the isospectral manifold explicitly as a
torus.

Its and Matveev [4] and Dubrovin, Matveev, and Novikov [3] have given another
formula which involves the directional derivative of the theta function for the Jacobi
variety associated with q. Our formula involves no algebraic geometry but cannot be
used to solve the KdV flow explicitly.

Before stating our results we fix our notation. Let Yl(X, X, q), y2(x, X, q) be the
solutions of

with2

-y"+q(x)y=Xy

yl(0) =y(0) 1,

y(0) =y2(0) 0.
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The discriminant is given by

A( X, q) =yt (1,,, q) +yz (1,,, q).
The zeros

h0(q)<hl(q)=<,2(q)<"’,

of A-(,)-4 are the eigenvalues of -d2/dx2+q(x) with eigenfunctions of period 2;
equality means that A2n-t tEn is equivalently a double zero or a double eigenvalue.
Moreover, A(h0) + 2 and the corresponding eigenfunction is periodic, while
A(hEn_)= A(hEn)= 2(- 1) (n >__ 1) and the corresponding eigenfunctions are periodic
when n is even and antiperiodic when n is odd.

The Floquet multipliers and corresponding Floquet solutions are

and

m+(h,q) A(X)+I=---_ (A2(X)- 4)/

m -yl(1 A)f+/-(x,X q)=-y(x,X q)+ +/-

y2(1,X)

=y(x,,,q)+ [ y(1,X)
m +-y(1,X)

yg_(x,X,q)

x,,,q),

respectively. We note that

f+(x+l,h)=m+(X)f+(x,h)

so that fe(x,h) is an eigenfunction when it is well defined. Also,4

OA(,) (1 X)f+ (x,Oq(x) =Y2 X)f_(x,

The zeros

#(q)<#2(q)<

of y2(1,X, q) are the Dirichlet eigenvalues of q; i.e., there is a nontrivial solution of

-y"+q(x)y=,,y

with y(0)=y(1)= 0. The normalized Dirichlet eigenfunction corresponding to/,(q) is5

gn(x,q)
Y2(X’#n(q)’q) (n>= 1).

( J;2 (1,/xn)Y (1,/-t,)) t/2

The function f is periodic if f(x + 1)=f(x) and antiperiodic if f(x + 1)= -f(x).
4 The gradient OA(A, q)/Oq(x) is defined to be the kernel of the directional derivative of A(X, q); i.e.,

dA(X q+ev)l =fo iA(,h’q) v(x)dxde -o Oq(x)
for M1 oL(S1).

a/ax.
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The Dirichlet eigenvalues interlace the periodic eigenvalues: 2n_ll.tnk2n (FI 1).
Details can be found in [1], [6].

Fix p L2a (S1) and define the isospectral manifold

L(p) { qL2a(S1) ,n(q)=,n(p), n_>_0).
Then qL(p) if and only if A(X,q)=A(,,p) for all ,. Furthermore, McKean and
Trubowitz [7] have shown that L(p) is a (generically infinite dimensional) toms.

The isospectral manifold is realized as a product of circles as follows (see [7]). The
map qL2a[O,1]---,(ln(q),y(1,tt(q),q);n_l) is one-to-one by a theorem of Borg.6
However, y(1,ttn, q)=A(tt)/2+1/2(A2(t)--4)l/2 for an appropriate choice of the
sign. Since h(X) is the same for each q L(p), it follows that the map

is one-to-one where

qL(p)---)(p,,(q),n>__l)

p(q)=(l(q),an(q)) (n=>l)

and a(q) (+ } is the sign of the radical in y(1,1(q),q). Thus, L(p) is mapped
into the product of circles in Fig. 1.

o

Pn(q)=(txn(q), +)if Alf-4 >O

pn(q) ,- -4<0

FIG. 1

McKean and Tmbowitz show in addition that the map is onto and therefore a
homeomorphism. Our main result is a concrete realization of this map. In fact in
Theorems 1 and 2 we give a simple explicit construction of L(p) in terms of p and
yi(x,h,p) (i= 1,2). Theorem 1 covers the case of finitely many gaps, and Theorem 2
covers the general case.

THEOREM 1. Let pL2a(sX), i=(tOi,Si).[2i_l,2i]X ( "[-} be a point in the ith
circle (1 <= <= n ), and set

d 2

(la) q(x,,... ,,) =p(x)- 2 d--log W(f,gl,f2,g2,... f,g)

where fi=fs,(x, toi,p), gi=gi(x,p), and W denotes the Wronskian. Then q is the unique
point in L(p) with , l <i <n,
(lb) Pi(q)= Pi(P), i> n.

In particular, L(p) is homeomorphic to an n-dimensional torus when p has n nonzero
gaps.

6 Levinson [5] has shown that the map q(L[O,1]--),(p.n(q),yfz(1,p.,,(q),q); n_>_ 1) is one-to-one, and the
equality y1(1,/#) 1/y(1,/#) follows from the Wronskian identity.
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Remark. The Wronskian is defined by

W(f,g,...,f,g,,)--

det

The standard definition is not used because p is only in L2n(S1). The definition above
can be obtained from the standard definition when p is sufficiently smooth by using
the differential equations for f, g to eliminate the higher order derivatives.

The final conclusion of Theorem 1 follows from (1). In fact, pi(q)=pi(p) whenever
qL(p) and X2i_l =,2i. Therefore, the map qL(p)(p(q),i>= 1), which is one-to-
one by Borg’s theorem, is onto by formula (1). Consequently, formula (1) gives an
explicit construction of all points on L(p).

The remainder of the proof of Theorem 1 is given in 3. The proof depends on the
solution of certain flows on L(p) described in 2. Theorem 2 will also be proven in 3.

THEOREM 2. Let pLEn(S), and let i--(Oi,Si)[2i_l,2i]X ( dr- } (i>__ 1) be a
point on the ith circle. Then the sequence

(2a) d 2

qn(x)--P(X)-2xE lg W( f,gl," ", fn,gn)

conoerges strongly in L2a(S) to the uniquepointqL(p) with

(2b) p,(q) =[, (i>__ 1).

This result exhibits every point in L(p) as the (strong) limit of an appropriate
sequence constructed explicitly from y(x,,,p)(i=l,2) and the parameters on the
toms. This gives another proof that the continuous, one-to-one map qL(p)o
(pi(q),i>= 1) is also onto. That is, L(p) is homeomorphic to a toms.

2. Some flows on L(p). In order to obtain formula (1), we find an exact solution
of the differential equation

d d 0(3) -q,x,t)= dx Oq(x)
A (h, q(’, t))Ih___n(q(.,

t))

which was studied in [7]. Theorem 3 shows that this differential equation generates a
flow on L(p). In Theorem 4 we solve (3) explicitly, and in Theorem 5 we eliminate the
time parameter to obtain a formula for certain points on L(p).

THEOREM 3. Letp L2a (s ). Then

d A(), q)
Zn(q)=dx Oq(x) h.__ln(q
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is a vectorfield on L(p). That is, a solution of the differential equation
d (x,t)= d
-q dx Oq(x) ’---P’n(q(’,’))

with initial data in L(p) stays in L(p) for all time.
This flow was described first in [7] where the following geometric picture is given.

Under the flow Z, the point pi(q(.,t)) (i n) remains fixed on its circle, while the
point p,(q(.,t)) moves clockwise around its circle without pausing. It moves in such a
way that

d/x 1
dt = (A2(/x’)- 4)1/2’

the radical having the sign of p,(q(., t)).
Proof of Theorem 3. Let q(x, t) solve the differential equation

d dq(x,t)= dx Oq(x) p..p.n(q(.,t))

with q(x,O)L(p). We show that A(X,q(.,t))=0 so that A(h,q(.,t))=A(h,q(.,O))
for all h C. Indeed,

2-/d a(X q(. t))= f0 O dq
Oq(x-----A(X,q(.,t))- dx

dx,
aq(x) dx aq(x) .__.(q(..,

and we need only show that

f. aA(X,q) d aA(X’,q)
a-q-( dx-O

for all ,,X’ C and all qL2a(S). Now, for ,,’ /i(q) (i>= 1) and , ’ we have

2P aa(x) d oa(x’) dx
0 aq(x) dx aq()

(.x/(x.XlL(x.X((1.x’/(x.X’l_(x.X’l)ex
=(,x)(,x’l i.(x,Xl_(x,Xl(.(x,X’l_(,x’)

-Z.(x,X’Z_(x,X’(.(x,Xl_(x,X) ex

(,xl(,x’l e
x-x’ ((.(,xl,(x,X’l)(_(x,X,_(x,X’l))ex

0.
The extension to X, X’= (i 1) and X X’ follows from continuity.
ToN 4. Let qo L(p), and let (t) denote the unique solution of

d 1,= g((,-4)/
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for which the point Pn( ) (l ( ), en( )) starts at Pn(qo) and moves clockwise around its
circle withoutpausing. Then

q(x,t)=qo(X)-2logW Ln(t)(X (t) qo) gn(x qo)
dx 2 n

is the integral curve of Z, passing through qo.
The sign of the radical in the differential equation is taken to be on(t ) The

requirements on pn(t) actually determine on(t) in addition to specifying a unique
solution.

Proof of Theorem 4. We show first that X(x,/) W(f/(x,/), g,(x)) does not
vanish for ,

2n-1 -</ -< , 2n- The proof for f_ is similar. It can be shown that X(x, In),
X(0, ), X(1,) are all positive. Therefore, if X(x,/) 0, then there is a/ closest to/
for which X vanishes, say X(x,/)=0. It follows that (d/dx)x(x,l) also vanishes.
These two conditions imply that f+(x,/)=0 and gn(x)=0. But this is impossible
because both f/(x + x,l) and gn(x + x) would be Dirichlet eigenfunctions for the
translated potential q(x + x) with corresponding eigenvalues/,/ lying in the same
gap [X2n_l,2n ].

TO complete the proof we show that

dq (x,t)= d 0- dx Oq(x- A(#,q(" ,t))

It can be shown that

d d g.(x) [ gn(x) W(fo.,fo.)]dln(t)-q(x,t)=-2-d-x W(fo.,gn) fo.+(#n(t)-#n) W(fo.,gn) dt

Y2(X,ln(t),q(’,t))= g.(x)

and

X) W(fon,Ln ) [q, o).fo.(X’lZn(t)’q(’’t))=f.(x’lzn(t))+(lzn(t)-Itn) ",

Therefore

d d
dt

q ( x, t)=- 2xxy2 (x Izn ( ))f"(X tzn ( ) )
dlzn (

q(’,t)

dx Oq(x- A(lx’q(’’t))
t,=t,,(t

since

diSh(t)
dt

.g.(1 (1 (t))-y: (1 (t)))=z_Y ,/Zn ,/*n
q(.,t)

so that in the limit # --,/ (t)

_y2(x tzn(t) ) dl.(t)7t7 =y2 (1,n(t))f_o.(X,ln(t)).
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THEOREM 5. Let n=(tdn,Sn)G[2n_l,2n]X ( -]- ) be apoint in the nth circle. Then

d 2

q(x ,)=p(x)-2--1og W[ f,.(x t%,p) g,(x,p)]dx2

is the unique point in L(p) with

(Pi(,P), i4:n,
Pi(q("")) , i=n.

This result is a straightforward corollary of Theorem 4. It removes the dependence
on allowing us to construct points in L(p) using only the parameters in Borg’s
theorem and information obtained from p.

3. Proofs of Theorems I and 2.
Proof of Theorem 1. We use induction and Theorem 5. Suppose the result holds for

some n >_ 1, and let qk denote the potential satisfying

pi(qk)={,, l<=i<=k,

Pi(P), i>k.

Then by Theorem 5,

d 2

q’+l q"- 2x2log W(f’+ x, g;+ x)

where f,’+ 1, g,’+ are the Floquet solution and Dirichlet eigenfunction of q". Thus,

d 2 d 2

(4) qn+=p-E-x21OgW(fl,gl,...,fn,gn)-ElogW(f+l,g+l).dx 2

Direct calculation shows that

(5) fnn+l
W(fl,gl,’" ",f.,g.,f.+x)

W(fl,gl,"

(6) y’(x,,+x) W( f,g,. ", fn,g,,y(x,l,+l))
W(f,g," ",

(7) W(f+l,y) _(y2)2 d fnn+l
dx y’

and (see Deift-Trubowitz [2])

(8)
d W(h_.;"_hn_x,hn+ 1)

h h )W(h hW2(hl"’"hn)-x w(
= W(hl, n, n+l ,’"

Consequently, substituting (5) and (6) into (7) and using (8) gives

W(f,g,..", f,,g,,f,+,g,+x)
W(f+’Y)= W(fl,g,. fn,gn)IIy=x(6Oj-tOn+x)(txj-tXn+)

Combining this with (4) yields the result.
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Proof of Theorem 2. First, f q2dx is constant on L(p) (see [7]), and A(h,q) is
weakly sequentially continuous. Therefore, every subsequence of (qn } has a weakly
convergent subsequence which must converge to the point q with pi(q)=i (i>1).
Consequently, the original sequence converges weakly to q. The convergence is actually
strong since all points in L(p) have the same norm.
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OSCILLATORY SECOND ORDER LINEAR DIFFERENCE
EQUATIONS AND RICCATI EQUATIONS*
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Abstract. Oscillation criteria are established for the equation cnxn+ + cn_ x._ b.xn, c. > 0, involving

asymptotic behavior of the quantity an, 4 IIn=0 (4 qn +j)- 1, where qn c/(b b + )" We also show that the
given equation is oscillatory if Yn+ +Yn-1 =(q-1 1)y is oscillatory. This result is then employed to obtain
several new oscillation criteria. Riccati difference equations are used to prove the basic results.

Key words, oscillation, nonoscillation, linear difference equation, Riccati transformation
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1. Introduction and main results. In this paper we continue our investigation
begun in [4] and [5] of oscillation criteria for solutions of the second-order linear
difference equation

(1.1) c,x,+ +Cn_lXn_ =bnXn, n 1,2, 3,. ,
with c, > 0 and b, > 0 for all n >= 0, using Riccati transformation methods.

This equation models, for example, the amplitude of oscillation of the weights on a
discretely weighted vibrating string [1, pp. 15-17]. It is equivalent to the self-adjoint
equation

-A(Cn_lAXn_l)+anxn=O,

where a. b. c.- c._ and A is the forward difference operator Au. u.+ Un" A
nontrivial solution of (1.1) is called oscillatory if for every N> 0 there exists an n >__ N
such that x.x. + =< 0.

Either all nontrivial solutions of (1.1) are oscillatqry or none are (see [2, p. 153]), so
(1.1) may be classified as oscillatory or nonoscillatory. The assumption b. > 0 is made
because if b. __< 0 for some subsequence n,---, oo, then (1.1) clearly must be oscillatory
[6, Lemma 3].

Suppose that (1.1) is nonoscillatory, and let { x. }, n >_ 0, be a solution of (1.1) such
that x. > 0, n >= N, for some N. The substitutions r. x.+ x/x., z. c.x.+ x/x. and

s. b.+ ix.+ x/(c.x.), n >_ N, lead, respectively, to the difference equations

(1.2) Cnrn + Cn_ l/rn bn n > N,

(1.3) Zn + C2._ x/z._ b. n > N,

and

(1.4) q.s. + l/S l, n > N,

*Received by the editors April 22, 1985; accepted for publication (in revised form) September 3, 1985.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.
*Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115.
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where

2

n>__l.(1.5) q,
bnbn+l

Equations (1.2), (1.3), and (1.4) we call equations of Riccati type, since the substitutions
which lead to them are discrete analogues of the Riccati transformation for ordinary
differential equations. The above remarks lead immediately to the following theorem.

THEOREM 1.1 [4, Thm. 2]. The following conditions are equivalent.
(i) Equation (1.1) is nonoscillatory.
(ii) Equation (1.2) has a positive solution ( r, }, n >= N, for some N> O.
(iii) Equation (1.3) has a positive solution ( z ), n >= N, for some N> O.
(iv) Equation (1.4) has a positive solution ( s, ), n >= N, for some N> O.
For convenient reference, and because the quantity qn=C2n/(bnbn+l) defined by

(1.5) will play a central role in the results below, we restate here in terms of q, three
more theorems proved in [4].

THEOREM 1.2 [4, Thm. 5]. If q>= 1/(4- e) for some e>0, for all sufficiently large
n, then (1.1) is oscillatory.

THEOREM 1.3 [4, Thm. 6]. If q,<= 1/4 for all sufficiently large n, then (1.1) is
nonoscillatory.

THEOREM 1.4 [4, Thm. 7]. If q,k >= 1 for a sequence n c, then (1.1) is oscillatory.
In [5], the following necessary condition for nonoscillation of (1.1) is presented.
THEOREM 1.5 [5, Thm. 2.3]. Suppose (1.1) is nonoscillatory. Then there exists N> 0

such that for any n >_ N and any m >__ O,

qnqn + qn + < 4- m.

We can rewrite condition (1.6) as

(1.7)
where a,,,, is defined as

an,m " 1,

m

(1.8) a.,,. 4j__o (4q.+j)- n_>_l, m>O.

The contrapositive of Theorem 1.5 says that (1.1) is oscillatory if for every K> 0
there exists n >_ K such that a,, =< 1 for some m >= 0. Since this statement involves two
variables m and n, one can state corollaries in various forms. For example, we have:

COROLLARY 1.1. Iffor some M>= 0 there exists a sequence n k - such that

ank,M<=l,

then (1.1) is oscillatory.
In particular, for M=0, we have a,,0= 1/q,. Thus Corollary 1.1 implies that if

1/q, =< 1 for some sequence n - , then (1.1) is oscillatory. This is precisely Theorem
1.4, so Corollary 1.1 generalizes that theorem.

The following theorem is also an immediate corollary of Theorem 1.5.
THEOREM 1.6. Iffor every K> 0 there exists N >= K such that

(1.9) lim inf aN, < 1,

then (1.1) is oscillatory.
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On the other hand, if condition (1.9) is not satisfied for arbitrarily large N, then
(1.1) may or may not be oscillatory, as the following examples show.

Example 1. Consider the equation

Xn+I A-Xn_I--2Xn

which has linearly independent solutions un= 1, vn= n, n =0,1, 2, . This nonoscilla-
tory example has q,=c/(b,b,+l) 1/4, and a,,"= 4.

Example 2. Consider (1.1)with Cn=--l, b2"= 2-142-n, b2n+1=4n-, n=1,2,3, .
Then q2n- 1/2, q2, -, and it follows that aN,m=4 if m is odd, aN,,.= 2 if N is odd
and m is even, while aN,,.= 8 if N and m are both even. Thus liminf,._ OtN, equals
2 if N is odd and 4 if N is even, so (1.9) fails to hold. It was shown in [5, Ex. 2.1] that
(1.1) is oscillatory in this example. Indeed, this follows immediately from our next
theorem.

These two examples lead us to ask what additional conditions are sufficient for
(1.1) to be oscillatory if condition (1.9) is not satisfied. Theorems 1.7-1.9 address this
question.

THEOREM 1.7. Iffor some N> O,

(1.10) lim infaN, lim sup aN,m,
m-- o m--- o

then (1.1) is oscillatory.
(Note. If (1.10) holds for some N> 0, then it holds for all N> 0 by definition of

Oln,m.)
Proof. Suppose that (1.1) is nonoscillatory. Then by Theorem 1.1 there is a positive

sequence sn which satisfies the Riccati equation (1.4) qs+s_ 1 for all sufficiently
large j, say j >__ N. By the note following the statement of the theorem, we may take this
to be the same value N as in the hypotheses of the theorem. Multiplying (1.4) by q-
yields

(1.11) qf1=sj+(qjsj_) -1
j>N,=

so

(1.12) q;lq+l (Sj + ( qjsj_I)-I)(sj+I d-(Qj+ISj)-I).
From (1.12), we obtain

qf X= qj+ISjSj+x(1 q_ (qjsjSj_x)-I)(1 -t-(qj+XSj+xSj)-I),
SO

(1.13)

where we define

q= (1 + (qjsjSj_l)-l)(q+SyS+ + 1)

(1 + fl)(1 + fl+l), jaN,

Note that flj>0, j>=N.
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From (1.8) and (1.13) we have

aN,m=4 II 4-’(1 + fl;+s.)(1 q’JN+j+l),
j=O

=4(1 + fl)(1 + fiN+m+ 1)/1-I1.=
4-1(1 + fll+i)(1 + fiN+i),

from which some elementary algebra leads us to

m

/1-[1 ( ’(fl -1))aN,m=4(l+fl)(1 + flN++) 1 +4 fl+i +.__

for m > O. We rewrite this as

m

(1.14) aN,m= 4(1 + flr)(1 + fiN+re+l) H (1 -t--Ai)
i=1

where

(1.15) 1(fiN+-1)Ai=4-1fl+i ’0, i>=1.
Now from the hypotheses we must have liminfm_, OlN,m’ 00. Hence there exists a

finite bound B such that

(1.16) OtN,m, B

for some sequence of subscripts mk--, oo. Since flj > 0 for all j, (1.14) and (1.16) imply
that

m

II (1 +Ai) is bounded.
i=1

Since mk -- t:K) and A >= O, it follows that

(1.17) II (1 + Ai)is bounded,
i=1

which implies that

(1.18) . h is finite.
i=1

Therefore A 0 as i m. Thus, by (1.15) we have

(1.19) flj-o 1 as j-o oo.

That is,

(1.20) qssls2_ 1 as j

Since Ai>0, (1.14), (1.17), and (1.19) imply that limm__,oo OtN,m exists, a contradiction
which proves the theorem.

In the next theorem we refer to l 2, the space of square summable sequences. We
remark, as in the note following the statement of Theorem 1.7, that if the hypotheses of
Theorems 1.8 and 1.9 hold for some N> 0, they hold for all N> 0.
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THEOREM 1.8. If liminfn_ OlN, < O0 for some N> 0 and if the sequence ( qf
4) 1 -, then (1.1) is oscillatory.

Proof. Assume (1.1) is nonoscillatory. Because of the assumption liminfaN,m<
we can proceed as in the proof of Theorem 1.7 to arrive at (1.18) and (1.19), and thus
by (1.15) we have

(1.21) E (fl- 1)2/(4fl) < c.
j=l

Since fl 1 as j o, it follows from (1.21) that

(1.22) (.- 1)
Expanding the fight side of (1.13) leads to

so

(1.23)

qf l + f- + j+ + f- lj+ l,

q;1- 4 2flf1- 2 + flj+1-1 q-/lj+ 71
2flj-1(1-flj) + (flj+l 1)+flf-l(flj+l 1).

By (1.19) and (1.22), each term on the right in (1.23) is in 2, so {qfl-4}e12.
Therefore, if { qf 4} 2, (1.1) must be oscillatory, as claimed.

CogotthR 1.2. If liminf=_+o a,=< oo and lim2_+oo qjT =4, then (1.1) is oscilla-
tory.

Proof. The condition limj qf 14:4 implies that ( qf 4} q 12.
In connection with Theorern 1.8 and Corollary 1.2, we again call attention to

Example I above, a nonoscillatory example with lim aS, 4 and qn- 4-

THEOREM 1.9. Iffor some N the sequence (as, } is eventually monotone increasing
in m, then (1.1) is nonoscillatory.

Proof. If as, is eventually monotone increasing in m, there exists M> 0 such that
for all re>M, aS,m>__aS,m_l. From (1.8), this implies that qs+m < 1/4 for all m>__M.
Thus (1.1) is nonoscillatory by Theorem 1.3.

The following example shows that the monotonicity hypothesis of Theorem 1.9
cannot be replaced by the condition that aS,

Example 3. For (1.1), let b, 1, C3n (4(V/-)- 1, (/-)- and C3n + 2C3n+1
((2v/-)-t. Then q3. (16v-) -t, q3+1 1/2 and q3+2 (2v-) -1, so

b3m+ 3b3m+4 b3m+ 2b3m+(1.24) 2,3m + 4Cm+ 4C32m+ 2

4 4 "’-a2,3m-2=2a2 3m 2"

Thus ct2,j cx as j-+ oo. Also,

b3m+463m+5(1.25) 02,3m + 2 4C32m+ 4

1
2 0/2’3m +1"

Thus (1.24) and (1.25) imply that

b3m+ lb3m+ 2

4Cm+
O2,3m- 2

O2,3m +

but not monotonically.
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and

Next, define a, b, c, c,_ 1- Then

a,,= 1 -(4/) -1- (V/2)-1,
a3n+l 1 (V/-)- (4V) -1

a3,+ 2 1 (2f-) -’ (-) -1"
So, for all n,

a3n + a3,+ + a3n+ 2 3 3.0238 .0238.

Therefore E=a,=-. Since the sequence { b, } is bounded, equation (1.1) must be
oscillatory by [5, Thm. 3.7] or [3, Thm. 4].

2. An extension theorem for the case q. < 1. In this section we introduce a tech-
nique for extending known oscillation criteria for equation (1.1) by making use of the
following theorem, where q,=cE,/(b,b,+l), as before. We assume throughout that

> 1 for a sequenceq, < 1 for all sufficiently large n since (1.1) must be oscillatory if q,k-
n k -- oe, by Theorem 1.4.

TI-IEOIM 2.1. Given (1.1), let B,=q 1 > O, n >__ N. If the equation

(2.1) y.+l+y,,_l=B.y.

is oscillatory, then (1.1) is oscillatory also.
To prove this theorem we will make use of the following simple comparison

lemma.
LEMMA 2.1. If ( U, }, n >= N, is a positive solution of

(2.2) u, + ,,
Un-1

and if B, >= , > 0 for all n > N, then

1o.+
On-

has a solution, with v, >_ u, for n >= N.
Proof. Given such a sequence u,, let ON--UN and define

1 1
ON+ BN+ ’N+I-- --UN+I-ON UN

Thus v, satisfies (2.3) for n N+ 1, and VN+ UN+ > 0. Proceeding inductively, we
construct the required solution v,.

Proof of Theorem 2.1. Assume (1.1) is nonoscillatory, and let x, be a solution with
x,> 0, n >= N. Then by Theorem 1.1, z,=c,x,+ i/x, is a positive solution of (1.3) for
n > N. If we take (1.3) for n and for n + 1, multiply corresponding sides, and divide the
result by c,, we obtain

We write this as

ZnZn+ Zn-IZ
nt"

Zn_lZ 1ZnZn+ ..[_ 1 +
2 2 2 2 qnCn Cn Cn Cn

(2.4) G+I+ G + 1 1
n>N,

rn-1 rn-1 q.
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where rn z,z+ 1/c2 > 0. Thus r, is a positive solution of

(2.5) r,+ 1 1
1 r =B,-e, forn>N,

r,-1 q, r,-1

where en= r,/rn_ 1>0. By applying Lemma 2.1, with B,=B,-e,, we see that there
exists a sequence v, >= r, > 0, n > N, satisfying

1
V + B

vn-1

This equation is of the form (1.3) with c 1 and with b, replaced by B,. Since v
is a positive solution, we may apply Theorem 1.1 to conclude that (2.1) is nonoscilla-
tory, which completes the proof.

We now apply some known oscillation criteria to (2.1) to obtain new criteria for
(1.1).

For example, by [5, Cot. 3.3], if

(2.6) liminf (B- 2)= o
n---,c k=l

then (2.1) is oscillatory. Since B q-X_ 1, we have the following oscillation result for
(1.1).

THEOREM 2.2. Equation (1.1) is oscillatory iffor some N,

(2.7) liminf (q-1-3)=-c.
n--* o k=N

For another result, we apply Theorem 1.4 to (2.1), which tells us that (2.1) is
> 1 for a sequence n o whereoscillatory if Qk

C. 1 (q_ lX-1/ _1 _1X-1qn+l(2.8) Q. BnBn+ BnBn+
Thus, by Theorem 2.1, (1.1) is oscillatory if qn < 1 and

(2.9) (q,-l 1)( -1 1)<1qnk+l

for some sequence n--> c. But since 0 < qo< 1 for all n >= N, some simple algebra
shows that condition (2.9) is equivalent to

(2.10) q,+ q,+l> 1.

Thus we have the following refinement of Theorem 1.4.
THEOREM 2.3. If q, + q,+ >= 1 for some sequence n , then (1.1) is oscillatory.
Similarly, Theorem 1.2 leads to the following result.
THEOREM 2.4. If q, < 1 and q, + q,+ + (3 e)q,q,+ >- 1 for all n N, for some

e > O, then (1.1) is oscillatory.
Any other known oscillation criteria could be applied to (2.1) in this same way to

obtain further results like Theorems 2.2-2.4. We leave the details to the interested
reader.

3. Extensions of 2. In this section, we will assume that q,+ qn+ < 1 for all
n _>_ N, for some N> 0. If this were not the case, (1.1) would be oscillatory by Theorem
2.3.
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The method of 2 can be extended in two ways. First, since (2.1) is of the form
(1.1) with C 1, we can apply Theorem 2.1 to equation (2.1) to obtain the following
result.

THEOREM 3.1. Given (2.1), let n=QI_ 1, n>=N, where On---(BnBn+l) -1. If the
equation

(3.1) Un++Un_=Bnun

is oscillatory, then (2.1) is oscillatory also.
(Note. Since =Q1-1 and B=q-l, our assumption qn+q+ <1 implies

that BB+ > 1, which in turn implies that B> 0.)
As in 2, we can now apply known oscillation criteria to equation (3.1) to obtain

new criteria for (2.1) and hence for (1.1). For example, by Theorem 1.4, (3.1) is
oscillatory if Bn > 0 for n >_ N and

(3.2) Q,k B,kB,+ _>_ 1 for some sequence

Since , Q- 1 B,B,+ 1 and B, q- 1, we have

(3.3) "n=(nn+l)-x=(nnnn+l-1)-X(nn+xnn+2-]) -1

[(qX-1)(q+-l)-l]-X[(q+x-1)(q+2-1)-l]-i.
Hence, condition (3.2) becomes

(3.4) (1-qn-qn+l)( 1-qn+l-qnk+2 ) <_1.
qqk+ qn+qn+

Thus, by applying Theorems 2.1 and 3.1, the following criterion is readily verified.
TrIEOREM 3.2. If qn + q,+ < 1 for n >= N and (3.4) holds for a sequence n k

, then
(1.1) is oscillatory.

In general, since C 1 in (3.1), any oscillation criterion in terms of the coefficients
of (3.1) becomes an oscillation criterion for (1.1) given in terms of the expression

(3.5) n=BnBn+l-1 1--qn--qn+l.
qnqn +

A second way of extending the results of 2 is again to assume that (1.1) is
nonoscillatory and proceed as in the proof of Theorem 2.1 to obtain (2.4). However,
(2.4) may be written in the form

(1 q-rn)[l+ 1 1(3.6) , n>N.
rn-1 q,

From (3.6) we obtain

(3.7) (1 +G)[1+ 1---} (1 + rn+x)[I+G- L]=rn qnqnl +
By the inequality (1 + a)(1 + a- 1) > 4 for a > 0, (3.7) implies

1
<=, n>N.(3.8) 4(1 +r,+l) 1 +

G-1 q,q,+
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Then

l,d7][’1"13 ?’n+l - 1 1
r,_ 4q,q,+x r,-1

Thus, G is a positive solution of an equation of the form

1 1
(3.10) ?’n+ 1- 1-8,, n>N,

rn- 4q,q,+x

where , >__ r, + x/r,_ > 0. We write this second-order nonlinear equation as

1(3.11) r,+ + E,- 6,, n > N,
rn-1

where E,= (4qnqn + 1)-1__ 1, and consider the related first-order equation

1(3.12) u,+ --E2n-2n.
Un-1

Then the sequence Un=rzn+X is a positive solution of (3.12) for n>(N-1)/2. By
Lemma 2.1, the equation

1
(3.13)

On-

also has a positive solution. We then apply Theorem 1.1 to conclude that

(3.14) Y,+I +Yn-l=E2nYn
is nonoscillatory. Thus if (3.14) is oscillatory, (1.1) must be oscillatory also.

Similarly, u, r2, is a positive solution of

1
(3.15) u,+ --E2n_l-2n_ 1.

Un--1

By Lemma 2.1, the equation

1
Vn + E2n-1

On-1

must also have a positive solution v,. Again, an application of Theorem 2.1 implies that
the following equation is nonoscillatory.

(3.16) Zn+l+Zn_l=E2n_lZn

Thus if (3.16) is oscillatory, so is (1.1).
As in the first part of this section, one can now apply various known oscillation

criteria to (3.14) or (3.16) to obtain new criteria for (1.1).
As an example, by [5, Cor. 3.3], if

n

(3.17) liminf E (E2k-- 2)= oe,
no k=N

then (3.14) is oscillatory. Similarly, if

liminf (E2k_l- 2)= o,
no k=N
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then (3.16) is oscillatory. However, if (3.14) or (3.16) is oscillatory, so is (1.1). At least
one of (3.17) or (3.18) will be true if

(3.19) liminf (Ek- 2)= o.
noo k=N

Thus we have the following theorem.
THEOREM 3.3. If condition (3.19) holds then (1.1) is oscillatory, where Ek=

(4qkqk+l)-l--1.
From (1.8), (4qkqk+l)- ak,, which means Theorem 3.3 can be restated as

follows.
THEOREM 3.4. If

lim inf ( a,l 3)
n--* oo k=N

then (1.1) is oscillatory.
Using the Otn, notation, observe that Theorem 3.4 is the same as Theorem 2.2,

except that Theorem 2.2 has ak,0 instead of ak,. We conjecture that Theorem 3.4 is
true for ak, for any m => 0.

A more ambitious question is as follows. In essence, Theorem 2.1 says that any
known result on the oscillation of (2.1) involving B can be rephrased with Bn replaced
by (1/q-1)= (a,0-1) and then applied to (1.1) to yield sufficient conditions for the
oscillation of that equation. Our conjecture is that B can be replaced by (On, 1), for
any m>=0.
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ON OSCILLATIONS OF SOME RETARDED DIFFERENTIAL
EQUATIONS*
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Abstract. Consider the delay differential equation

(,) y’(t)+py( t-z)-qy(t-o)=O
where p, q, ’, and o are positive constants.

TIJEOREM. Assume that o <__z, q<p, and q(t-o)<=l. Then every nonoscillatory solution of (,) tends to

zero as . Furthermore, assume that (p-q)ze> 1. Then every solution of (,) oscillates.
The above result was extended to equations with several delays.
Finally we obtained sufficient conditions for the oscillation of delay differential equations with oscillat-

ing coefficients.

Key words, oscillation, retarded differential equation, delay differential equation

AMS(MOS) subject classifications. Primary 34K15; secondary 34C10

1. Introduction. Recently, there has been a lot of interest in establishing computa-
ble sufficient conditions for the oscillation of all solutions of linear delay differential
equations. See, for example [2], [4], [8], [9] and the references cited in [9].

For the most part the literature is devoted to equations of the form

x’(t)= Pi(t)x(t-’ri(t))
i=1

where all the coefficients Pi are positive. The case where both positive and negative
coefficients may be present was recently considered by Ladas and Sficas [5].

The aim of the present paper is to provide a significant extension of the results in
[5] and to develop some methods for studying equations with positive and negative
coefficients. In particular, we combine the methods used separately in [2] and [5] and
utilize more cleverly the integral form introduced in [5, formula 10].

2. Differential inequalities. In this section we study the properties of solutions of
certain differential inequalities and obtain some useful results which can be used as
tools in the study of oscillation theory.

LEMM 1. Let z be a nonnegative solution of the delay differential inequality

(1) z’(t)+az(t-) <=0, t>= o

where a and are positive constants. Then the following statements hoM:
(i) z Ll(to, oo);
(ii) z(t) decreases to zero as oo;
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That is, z(t)>O and continuous for to-Z <=t <__to and satisfies (1) for t>=to.

64
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(iii) ifZ(to)> 0 then there exist positive constants a andA such that

(2) z(t)>=Ae -"t, t>=to

Proof. As z’(t)<=-az(t-r)<_O for t>to, it follows that z is a decreasing func-
tion. Integrating (1) from to 2 with to_< tl _-< t2, we find that

(3) a z(s-’)ds<__Z(tl)-z(tz)<=Z(to)

which implies that zL(to, o). And since z(t) is also decreasing, it follows that
limt-oo z(t) exists and is equal to zero. Next, we turn to the proof of (iii). Replacing t
by and letting 2 o .in (3), we find

(4) z(t)>=a z(s-z)ds.

Using the decreasing nature of z(t) we obtain,

ft ftt+ ’/2z(t)>=a z(s-’)ds>=a

that is,

z( ) >= Cz t--i
where C= a’r/2 > O. Then Z(to +’r/2) Cz(to)> O. Set

I,= to+n-,to+(n+l)- n=0,1,2,.--.

Let >_ o be given. Then I for some n. Using the estimate (5) we find by iteration

z(t)>=cn+z(to).
Assume C> 1. Thus, using the fact that 2( to)/Z <= n + 1, we have

z(t)>=e(n+)nCz(to)>_exp 2(t-to)ln C Z(to).

On the other hand, if C=< 1, using the fact that n __<2(t- t0)/r, we obtain

z(t) >exp[= 2(t- to)lnC]Cz(to)"
In either case, inequality (2) is valid and the proof of Lemma I is complete.

The proof of the following result makes use of the notion of nonautonomous
exponents [1], [2].

PROPOSITION ]. Let z be a nonnegative solution of the delay differential inequality
(1). Assume that

1(6) at>-.
e

Then z(t)= 0 for t >= to.
Proof. If z(t0)=0 then, as z is nonnegative and decreasing, it follows that z(t)=0

for t>=to. Next, assume, for the sake of contradiction, that z(t0)>0. Then, from
Lemma 1 (iii), z(t)> 0 for t_> 0. Set

(7) z(t)=exp[- fot X(s)ds], t> o.



66 o. ARINO, G. LADAS AND Y. G. SFICAS

Substituting (7) into (1) we find that

(8) )(t) >=aexp[ ftt-- (s)ds], t>to.

Also from (7), and in view of (2), there is a positive constant/3 such that

(9) fot X ( s ) ds <= flt, >__ o.

In view of (8), it follows by induction that for n 1, 2,...

(10) )(t)>=b, t>=to+(n-1)z
where b0= 0 and b a exp(b_ r). We now claim that the sequence (b } is increasing
and lim__, oo b + o. In fact, using (6) and the fact that exp(x)>_ ex for all x we find

b=aexp(bb_) >= aeb_ >= b_
that is, (b, } is increasing. If, contrary to the claim, (b } were bounded, then bo
lim oo b > 0 and

boo a exp(bo’) >= aebo- > b
Thus our claim about { b } is true and consequently, from (10), limt__, X(t)= . This
contradicts (9) and the proof of the proposition is complete.

Remark 1. The main tools behind the proof of Proposition 1 are the integral form
(4) of inequality (1), the exponential representation (7) of z, and the integral estimates
(8) and (9). As we will see in the next result, the same tools can be used in the case of
delay differential inequalities with several delays. Note also that in the following result
the condition (6) of Proposition 1 has been replaced by the general assumption that all
solutions of the corresponding equation oscillate. As it is known, in the case of
equations with one delay the two statements are equivalent.

PROPOSITION 2. Let z be a nonnegatioe solution of the delay differential inequality
n

(11) z’(t)+ E az(t-j.) <=O, t> o
j=l

where aj and . are positioe constants for j 1, 2,..., n. Assume that all solutions of the
DDE

n

(12) z’(t)+ E ajz(t-zj)=O, t>=to
j=l

oscillate. Then, z(t) 0 for >= o.
Proof. Inequality (11) implies that for each j= 1, 2,..., n,

z’(t)+ajz(t-j) <_0, t>= o

and therefore the results (i), (ii), and (iii) of Lemma 1 are also true here. In particular, if
z(t0)> 0 then z(t)> 0 for t>= 0. As in Proposition 1, the change of variables (7) yields

(8)’ )t(t)a 2 a.exp X(s)ds
j--1 --5
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which inductively leads to a sequence of estimates,

h(t)>=bk, t>=to+(n-1)z
where b0 0, bk 2.=" laexp(bk_ 1) for k= 1,2,- -, n, and = maxlzj__<,). We now
claim that the sequence { b, } is increasing. Indeed, the characteristic equation

F(X)=X+ aje-X’J=0
j=l

of (12) has no real roots. As F(O)=Ejoo=laj>O, it follows that F()t)> 0 for all ;kR. In
particular

Hence,

F(-bk-1) --bk-1 + i ajebk-lrj>O"
j=l

n

bk= Y’. ajebk-l> bk_
j=l

which proves our claim. Next, we will show that

(13) lim bk=
k--,

Otherwise, bo lim b is a finite number and so

boo i ajexp(.boo)
j=l

which implies that (12) has the nonoscillatory solution z(t)=exp(-boot). This con-
tradiction establishes (13). Finally, as in the proof of Proposition 1, (13) implies that

limt )k(t)= o which contradicts (9). The proof of Proposition 2 is complete.

3. Positive and negative coefficients--autonomous equations. In [5], Ladas and
Sficas studied the asymptotic behavior of the nonoscillatory solutions and the oscil-
lation of all solutions of the DDE

(14) x’(t)+px(t-r)-qx(t-o)=O
where the delays r and o and the coefficients p and q satisfy the hypothesis that

(H1) p, q, , and o are positive constants.
The aim in this section is to sharpen the conditions which were assumed in [5] and

to extend the results to equations with more than two delays. It was shown in [5] that
the hypothesis

(H2) q <p and o =< , is a necessary condition for all solutions of (14) to oscillate.
The following statement improves [5, Thm. 2]"
THEOREM 1. In addition to the hypotheses (HI) and (H2) assume that
(H3) q(-o)<= 1.

Then every nonoscillatory solution of (14) tends to zero as o.

Proof. It suffices to prove the theorem for the eventually positive solutions of (14).
To this end, let x(t) be a solution of (14) which is positive for t>to. As in [5] we
introduce the function

t-a
(15) z(t)=x(t)-q x(s)ds, t> to+.



68 o. ARINO, G. LADAS AND Y. G. SFICAS

Then

(16) z’(t)=-(p-q)x(t-)<O, t>=to+
and so z(t) is decreasing. We claim that z(t) is bounded below. Otherwise, limtz(t)- which implies that x, itself, is unbounded. But then, there must exist a point
tl>=to+ such that z(tl)<0 and x(tl)=maxsztxx(s)>O. From (15) and (H3) we
obtain the contradiction that

0 > 2(tl) X(tl)- qftix_--, x(s) ds >= x(/1)- qx(t)(- o)

=X(tl)[1--q(--o)] >=0.

Thus z(t) is bounded below and limt__,oz(t)=l exists and is finite. Now integrating
(16) from t o + 2 to and letting oo we obtain

Z(tl)-l= -(p-q) x(s-)ds
t

which proves that xLl(tl, C). From (14), it follows that x’Ll(tl, C). Hence
limt-.oo x(t) exists and it has to be zero because x Ll(t, o). The proof is complete.

Remark 2. (a) In place of (H3) it was assumed in [5] that the more restrictive
condition

1 1
-q p

holds.
(b) The hypothesis (H) is the "best" one when the coefficients p and q are equal.

Indeed, when p=q all constants are solutions and conversely all solutions of (14) are
asymptotically constant. In the latter case limt_ox(t) is given in terms of the initial
data, using the "first integral" x(t) +Pf/--o* x(s ) ds =- C, namely,

C
lim x(t)=
t’-*oo 1 -p(-o)

The following is an improved version of [5, Thm. 3]. Its proof makes use of
Theorem 1; otherwise it is identical to the proof given in [5] and will be omitted.

THEOREM 2. Assume (H1) (H2) (H3) and (H4) (p-q)e> 1. Then every solution

of (14) oscillates.
Example 1. The DDE

x’(t)+e4x(t-n)--2e2x(t 2)=0
satisfies the hypotheses (H), (H2) and (H4) but not (H3). Therefore it is not surpris-
ing that x(t)=e is a nonoscillatory solution which does not tend to zero as .

Next, we extend Theorems I and 2 to equations with several delays.
THEOREM 3. Consider the delay differential equation

(17) x’(t)+ px(t-o,)- E qx(t-’)=O
i--1 j=l

where the coefficients Pi, q and the delays o, ) are positive constants for 1, 2,..., n
andj 1, 2,..., m. Assume that the following hypotheses are satisfied.
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(Hs) There exist a positive number p <= n and a partition of (1, 2,..., rn ) into p
disjoint subsets J1, J2," ", J1, such thatj Ji implies "9<= o and kJ,qk <Pi.

(H6) Y’iP=lk jiqk(Oi--’gk)< 1.
Then every nonoscillatory solution of (17) tends to zero as t oz. Furthermore, if in
addition to the above hypotheses we assume that the equation

(8) z’(t)+ Pi- q, z(t-i)=O
i=1 kJ/

has only oscillatory solutions then the same is true with (17).
Proof. As the negative of a solution of (17) is also a solution, we first prove that

every eventually positive solution x(t) of (17) tends to zero as oz. The key idea is,
once more, the introduction of the function

p
ft_(19) z(t)=x(t)- E qJt-, x(s)ds.

i= kJ

We have

(20) z’(t)= E E q-Pi x(t-i)- PiX(t-i)
i=1 kJ/ i=p+l

and so eventually, z’(t)< 0 and z(t) is decreasing. Now, as in the proof of Theorem 1,
we can deduce from (H6) that z is bounded below and integrating (20) we conclude
that xL(to, oz). Then from (17), it follows that x’ L(to, oz), and therefore x tends
to a limit as oz. And this limit is necessarily zero because xL(to,

Next, in addition to (Hs) and (H6) we assume that every solution of (18) is
oscillatory. We should prove that every solution of (17) oscillates. Otherwise, (17) has
an eventually positive solution x(t). And, as we have already proved, limt_oo x(t)=0.
From (19) and (20), we see that z(t) is decreasing to zero which implies that z(t) is
eventually positive. In view of (19), we have, 0 < z(t)<=x(t). Thus, (20) yields

I2
i1 kJ

On the basis of our assumptions, Proposition 2 applied to (21) implies that eventually
z(t)-0. This contradiction completes the proof of Theorem 3.

4. 1Nmoseqfims. Consider the DDE

(22) x’(t)+p(t)x(t-r)=O
where p(t) is continuous on [0, m) and z > 0 is a constant. Set

p(t)=p+(t)-p-(t)
where p + and p- are the positive and negative parts of p respectively.

LEMM 2. Assume that

(H7) p-LI[0, oz).
Then every nonoscillatory solution of (22) tends to a (finite) limit as oz.

Proof. Choose a o > such that

f p-(s) ds=a < l.
to
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Now, we will prove that if x is an eventually positive solution of (22), then x is
bounded above. Assuming the contrary, we could find a sequence ( ) such that >_ o

lim to= + o, lim x(to) + c, x(to) maxx(t).
n oo n--* o <_t

Let t >= o be so large that x(t-)> 0 for t>= 1. Then from (22) we have

and by integration

If we replace by we find

x’(t)<=p-(t)x(t-z),

X( t)--X( tl) =< amaxx(s ).
s_t

which contradicts the asumption that limo_. o x(to)= + c. Thus x is bounded and so
in view of (HT), p-(t)x(t-z)Ll[tl, o0). Integrating (22) from to t2, with tl <t2,

we get

p (s-)_< -(s )+2supx(,).
to >=

Therefore, p+(t)x(t-,) L[t, c) and so x’ L[tl, c) which implies that x tends to
a finite limit as o.

Example 2. The DDE
cost (r)y’(t)-2_cos--------y t- =0

has the nonoscillatory solution y(t)= 2 + sin which does not have a limit as - o. As
expected, the hypothesis (HT) is not satisfied in this example.

LEMMA 3. Assume (H7) and that

(H8) p + ( s ) ds c

Then every solution of (22) either oscillates or tends to zero as t--.

Proof. Assume, for the sake of contradiction, that (22) has a positive solution x(t)
which does not tend to zero as t o. In view of Lemma 2, lJmtoox(t)=x(o) exists
and since it is not zero it follows that

(23) x() >0.

Then, for t sufficiently large, say >= t, we have

1 3
_<

In view of (22) this leads to

1 +x’(t)+-x(o)p (t)-x(o)p-(t)<=O
for t >= t + z. Integrating from + "r to we obtain

1 St+ 3 f.t_(24) x(t)-X(tl+)+-x(c) p (s)ds--x(o) p (s)ds<=O.
+ +
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Taking limits in (24) as oo and using the hypotheses (H7) and (H8), we find that
y(oo)= oo which contradicts (23) and completes the proof.

The following result gives sufficient conditions for all solutions of (22) to oscillate.
A similar result was established in [6] under the (strong) assumption that
lim. (v 0.) c.

THEOREM 4. Assume that the following conditions hold:
(i) (H7) and

(H9) lirn ft + 1
p

t--* oo
e

and

(ii) There exist two sequences ( O, }n=l and ( V )oo such that for n 1 2,...

3"r ’r
On<VnOn+ On--OnT On+l--Vn<-

>=0 for t [,3 (O,,vn),
p(t) is

n=l

<0 for t J (On,On+X).
n=l

(iii) There exists a positive constant k such that

+ 1 o

n p (s)ds> for t U (Vn,On+l)
oo t-r/2 - n=l

and

(25) p+(t)>=kp- t--
Then every solution of (22) oscillates.

for sufficiently large.

Proof. Otherwise, (22) has a solution x(t)>0 for t>=to where o is sufficiently
large. And by Lemma 3 [which holds because condition (H9) implies (H8)],
(26) lim x(t) =0.

too

Let tUn__l[vn, On+x]. Thus from (22) and the fact that x(t) decrease in the interval
[t 3r/2, t r/2] we find

(27) x t-- >x t- -X(Vn)= _,/2P(X)X(S-)ds
ft + )x(s-r X S p (s)ds.
-/2 t-/2

Now for sufficiently large, say >= t and for tJ___[vn, 0n+ 1] we find, from (27) and
(iii),

( ,t 1
x

And for all >__ t the following inequality holds"
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In fact (29) reduces to (22) for tU.=i(O,v) and for U.__(c., 0+) it follows from
(22) using (28) and (Hg). Set

p (s)x s- ds
r/2

Thus from (29) we have for t
(30)
and

x( -,lso.

From (30) and because of (26) and (H), m,z(t)= 0. Hence z(t)> 0 and (30), (31),
and (i) yield the inequaty

(
Since

"i" +(s]d,q>--lira p+(s)-kp s- 7 ds=,__ p
t--*oo t-$ e

it follows from [7] that (32) cannot have an eventually positive solution. But z(t) is
positive and this contradiction completes the proof.

Example 3. This is an example of a DDE which satisfies the hypotheses of
Theorem 4 and therefore every solution of the equation oscillates. Consider the DDE

x’(t)+p(t)x(t-4r)=O, t>_ O

where

/ sin2

p(t)= sin2t
for t [lOner, 10nr + 9r),

for t [lOnrr + 9r, lO(n+ 1)or),
n=0,1,2,.

and g is a positive constant satisfying the condition

3r 1(33) g-->-.
In this example, - 4rr, 0. 10nr, v.= 10nr + 9r, v. 0 9c > 3’/2 6r and 0n+
vn=rr < z/2= 2r and so condition (ii) of Theorem 4 is satisfied. Condition (HT) is
clearly satisfied and condition (H9) is true because of (33). Indeed, examining the value
of the integral in (H9) for the different possible locations of and t-z in the intervals
(O,vn] and (Vn,0n+] we find that the integral takes its smallest value when t=O,+ and
in this case, in view of (33),

/10n,+ 9= 3r 1p+(s)ds= g sin2ds g-->
"10nr+ 6r e

Inequality (25) is true as can be seen by examining it for the different locations of and
t-r/2 in the intervals (O.,v.] and (v.,0.+l]. For example, when t(On, v.] and t-z/2
in (on, 0.+ 1],

(’r) sinZ(t-2rr) [ k ]p+(t)-kp- t-- =sinZt-k =sin=t 1-
)

>0
(t-Zr)2 (t-2r
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for sufficiently large and k > 0. Finally, the first inequality in (iii) of Theorem 4 is
satisfied with k any constant greater than 1//,r. Indeed, the smallest value of the
integral

p
-r/2

is obtained when 10(n + 1)rr and in this case

t-r/2
p+(s)ds flO(n+l) 1

isin2sds=lr>--
"10nr+ 8Pr k
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AN ABSTRACT DELAY-DIFFERENTIAL EQUATION MODELLING
SIZE DEPENDENT CELL GROWTH AND DIVISION*

M. GYLLENBERG" AND H. J. A. M. HEIJMANS:

Abstract. A two-phase model for the growth of a single cell population structured by size is formulated
and analysed. The model takes the form of a delay-differential equation in a Banach space. Using positivity
arguments, we describe the spectrum of the infinitesimal generator of the semigroup associated with solu-
tions. Under a certain condition on the growth rate of individual cells the semigroup is compact after finite
time. This enables us to determine the ultimate behavior of solutions and prove the existence of a stable size
distribution.

Key words, structured populations, cell cycle, first order partial differential equation with delay and
transformed argument, delay-differential equation in a Banach space, strongly continuous semigroup, genera-
tion expansion, positive operator, Riesz operator, spectral theory, stable size distribution

AMS(MOS) subject classifications. Primary 34K30, 92A15, 35R10

1. Introduction. In this paper we study a mathematical model for the dynamics of
a population of single cells which can be distinguished from each other according to
their size and the particular cell cycle phase they are in. Models for populations of
dividing organisms incorporating size or age-size structure have been formulated, among
others, by Bell and Anderson (1967) and Sinko and Streifer (1971) and have recently
been investigated by Diekrnann, Heijmans and Thieme (1984) and Heijmans (to appear
a, b). We refer to the book of Metz and Diekmann (to appear) for a general exposition
of the dynamics of physiologically structured populations. There exists a vast literature
on models for progress through the cell cycle and its various phases, see for instance the
book of Eisen (1979). Tyson and Hannsgen (1984) and Hannsgen and Tyson (1984)
have studied cell cycle models which also take the cell size distribution into account.

We consider a model in which we assume that the cell cycle consists of two distinct
phases. The first phase is of variable length. The cells in this phase cannot divide--they
increase in size and, provided they do not die, they will eventually enter the second
phase. This second phase, which is assumed to have constant duration, can be consid-
ered as an idealization of the mitotic period. At the conclusion of this phase cells split
into two equal parts and the newborn daughter cells start the cycle in the first phase. It
is assumed that the cells in the first phase are fully characterized by their size. By this
we mean that for instance the growth, death and transition rates are functions of size,
and of size only. Moreover, we assume that in the second phase the growth and death
rates are functions of size, but the fission rate is a (delta-) function of the time elapsed
since entering the second phase.

Our model could be considered as a generalization of the one-phase model studied
by Diekmann et al. (1984) since if one formally puts the duration of the second phase
equal to zero our fundamental equation (2.1) reduces to the corresponding equation in
the above-mentioned paper.
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The model could easily be modified (without essentially affecting the results) to
allow for more complicated cell cycles and asymmetric division, see Gyllenberg (to
appear).

Diekmann et al. (1984) showed that under reasonable hypotheses the population
will ultimately grow or decay exponentially and they gave conditions on the individual
growth rate under which the size distribution converges towards a so-called stable size
distribution. In this paper we shall prove that the two-phase model exhibits a similar
asymptotic behavior, if we adapt the condition on the growth rate.

It turns out to be mathematically convenient to write the model as a delay-dif-
ferential equation in a Banach space. Our main tools will be the theory of strongly
continuous semigroups and spectral theory, in particular of positive operators.

The organization of the paper is as follows. In 2 we write down the balance
equation for the size distribution of the population of the first phase. This equation,
which is a first-order hyperbolic PDE with time delay, transformed argument and
singular coefficients, is then reformulated as an abstract linear delay-differential equa-
tion in a Banach space. In 3 we prove well-posedness of the abstract problem and
associate a strongly continuous semigroup of bounded linear operators with the solu-
tion. In 4 we represent the solution as a generation expansion and give conditions
under which the semigroup is compact after finite time. In 5 we study the related
eigenvalue problem and characterize the spectrum of the infinitesimal generator of the
semigroup. In 6 we use the results of the preceding sections to state and prove the
main result on the asymptotic behavior of solutions.

2. The model. The starting point of our investigation is the balance equation for
the size distribution of cells in the first phase

0 +a__(2.1) -n(t x) 8x (g(x)n(t’x))

2p(y-l(x))b(Y-l(X)) n(t r,y (x))-tx(x)n(t,x)-b(x)n(t,x)+ y’(y-X(x))
Here t denotes time and x denotes size. The unknown n is the size distribution of cells
in the first phase, i.e. the integral f2 n (t, x) dx represents the number of cells in the
first phase with size between xx and x2 at time t. The functions g,/ and b (which are
assumed to be known) are the rates at which cells of size x grow, die and transit to the
second phase, respectively, r > 0 is the constant duration of the second phase, y(x) is
the size of a newborn cell whose mother entered the second phase (exactly r time units
before) with size x and p(x) is the fraction of cells who survive the second phase given
that they entered it with size x.

The left-hand side of (2.1) is the derivative along characteristic curves and de-
scribes an individual’s motion in the time-size continuum due to growth. The first term
on the right-hand side describes the loss due to deaths and the second the loss due to
transition to the second phase. The last term describes the birth of cells from mother
cells completing their second phase: of those cells that entered the second phase r time
units ago with size y-X(x) a fraction p(y-(x)) will successfully complete the phase
and give rise to two new cells of size x. The factor 1/y’(y-(x)) may seem strange. It is
due to the fact that cells giving birth to daughters in the size interval (x, x + dx) left the
first phase with size in the interval

Y-l(x)’y-l(X)+y’( y-(x))
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If one formally puts r--0, one should take y(x)-- 1/2x and the last term in (2.1) reduces
to the corresponding term in the model of Diekmann et al. (1984), namely
4b(2x)n(t,2x).

We assume that cells cannot enter the second phase before they have reached a
minimal size x0 and that y(xo)<=xo. It follows that cells with size less than a := y(xo)
cannot exist. This fact is expressed by the boundary condition

which supplements (2.1).
We assume further that each cell in the first phase must either die or transit to the

second phase before it reaches a maximal size (normalized to x= 1) of the first phase.
This requires that the integral ff [b(s)/g(s)]ds diverges as x ? 1 and that the source
term in (2.1) is interpreted as zero for x>fl := y(1) where fl is assumed to be smaller
than 1. We once and for all make the convention that all functions containing y-l(x)
as an argument are given the value zero for x > ft. The possible sizes a cell in the first
phase can have thus lie in the interval (a, 1), which should be chosen as the domain of x
in (2.1). In order to obtain a well-posed problem, an initial function , should be
prescribed on [- r, 0] [a, 1]:

(2.3) n(t,x)=v(t,x), -r<t<_O, a=<x<l.

Concerning the growth, death and transition rates and the other given functions,
we assume (compare Diekmann et al. (1984))"

(Hy) yC[xo,1], y’>0, a:= y(xo)<=xo and fl’= y(1)<l.
(Hp) pC[xo,1], 0 <p(x)=< 1, x [x0,1].
(Hg) g C[a, 1], g(x)>0, x[a, 1].
(H)/ C[a, 1], /(x)>_ 0, x[a,l].
(Hb) bC[a, 1], b(x)=0, x[a, Xo], b(x)>0, x(x0,1),

limfb()d=o and b(X)E(x)<M<o x[,a].

In the last condition we have used the notation

E(x)/E(y) is the probability that a cell of size y remains in the first phase at least
until it reaches size x and f2 (b(s)/g(s))E(s)ds is the probability that a cell with size
x0 enters the second phase when its size is between x and x2. By our assumptions the
(possibly defective) probability density bE/g is not only an Ll-function but also
bounded and continuous.

We point out that some of the assumptions could be weakened at the cost of some
minor technical difficulties. For instance, if y(x0)> x0 we could redefine x0 in the
following way. Let x,=y(x,_l), n= 1,2,..-. Since y(1)< 1, x,->xo as n-o o where

is the smallest fixed point of y. x could then be taken as the new x0. A similarXo
procedure has been carried out in Heijmans (to appear, b). Guided by Diekmann et al.
(1984) we substitute

(2.5) n(t,x) =E(x)g(x) u(t,x)
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into (2.1) and obtain

(2.6)

where

(2.7)

Ou )u
O--7(t,x)+g(x)-x (t,x)=k(x)u(t-r,y-l(x)),

g(x)p(y-I(x))b(y-I(x)) -(x))
k (x )

2
E (x-f;y---U;i3-i-j---{( i E ( y

0, x(fl,1).

The boundary condition (2.2) becomes

(2.8) u(t,a)=O
and the initial condition (2.3) changes into

(2.9) u(t,x)=q(t,x), t [-r,0], x [a,1],
where

(t,x) [g(x)/e(x)](t,x).
We shall look for solutions which are continuous functions of with values in the

Banach space X= Ll[a, 1]. Therefore we rewrite the problem (2.6), (2.8), (2.9) as the
following abstract delay equation:

(2.10) du( t_____) Bu( ) + Lu( t- r) > O,
dt

(2.11) u(t) q(,), t I-r,0].
Here B is the unbounded closed linear operator defined by B+= -g+’ for all q in the
domain (B)={pX[ is absolutely continuous on [a, 1], p(a)=0} and L is the
operator defined for all p in X by (L)(x)=k(x)p(y-l(x)). It follows from (H6)
that L is a bounded linear operator on X. q is a given initial function in

C=C([-r,O];X).
The rest of the paper is devoted to the investigation of so-called mild solutions of

the abstract problem (2.10)-(2.11).

3. Existence and uniqueness and the corresponding semigroup. It is obvious that
the operator B defined at the end of {}2 generates a strongly continuous semigroup
{ S(t)) => 0 of linear operators on X. In fact, let

d(3.1) G(x)=fa
and define

(3.2) X(t,x)=G-I(G(x)-I-t), O<=G(x)+t<=G(1).

(Note that G-x is well defined on [0, G(1)] because g>0.) Then S(t) is given for every
q X, every >__ 0 and almost every x a, 1] by

(3.3) (S(t))(x)= { +(X(-t,x)) if G(x)-t>O,
0 if G(x)-t<=O.
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Note that S(t)=0 for t>= G(1). Observe that X(t,x) is the solution of the initial value
problem

(3.4) dX x(o,x)=x

and hence X(t,x) represents the size of a cell at time which had size x at time zero.
If there exists a continuously differentiable function u satisfying (2.10), (2.11), it

satisfies the following integral equation (variation of constants formula)

(3.5) u(t)=S(tld(o)+fot S(t-slLu(s-rlds
for > 0. Any continuous function u which satisfies (3.5), (2.11) is called a mild solution
of the initial value problem.

Travis and Webb (1974) have investigated existence, uniqueness and semigroup
properties of a class of functional differential equations in Banach spaces. Some of their
basic results can be applied to the present problem. As a special case of Proposition 2.1
of Travis and Webb (1974) we have

PROPOSITION 3.1. For each qC there exits a unique mild solution u(4):
[-r,)Xof the initial oalueproblem (2.10), (2.11).

If u is a continuous function [-r,)X we denote by u (s >= 0) the element of
C defined by

us(O)=u(s+O), 0[-r,0].

For each >= 0 we define T(t)" C--* C by T(t)q u(q,),, q C, where u(O) is the
unique mild solution of (2.10), (2.11) given by Proposition 3.1. The results of Travis
and Webb (1974, Prop. 3.1.) give us the following:

PIO’OSlTION 3.2. { T( ) } >_ o is a strongly continuous semigroup of linear operators
on C. The infinitesimal generator A of { T( )} >__ o is given by

(a)= (qClqC,b(O)(B),q’(O-)=Bq(O)+tq(-r)},
(A)(O)=di,’(O), 0[-r,0].

One of our main objectives is to describe the large time behavior of mild solutions.
Such information can be obtained from spectral properties of T(t). If the semigroup is
compact after finite time, then by a well-known spectral mapping theorem (cf. Pazy
(1983, Chap. 2)) the spectrum of T(t) is completely determined by the spectrum of its
infinitesimal generator A. In the next section we give conditions under which T(t) is
indeed compact for large enough and in [}5 we use positivity arguments to give a
rather precise characterization of the spectrum of A. It turns out that the same
condition which ensures compactness of T(t) guarantees the existence of a strictly
dominant real eigenvalue of A. A combination of these results enables us to determine
the asymptotic behavior of solutions.

4. Generation expansion and compactness of the semigroup. In the theory of linear
autonomous differential-delay equations in finite-dimensional Euclidean spaces R the
semigroup associated with the solution acts on the space C([-r,0]; R n) and it is a
relatively easy consequence of Ascoli’s theorem that the semigroup is compact for >= r
(cf. Hale (1977, Chap. 7)). In our case " is replaced by the infinite-dimensional
Banach space X and the proof of Lemma 1.1 of Hale (1977, Chap. 7) does not carry
over to this case, simply because the Heine-Borel theorem fails in infinite-dimensional
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spaces. Neither can we use the compactness results of Travis and Webb (1974) since
their results depend heavily on the assumption that the operator B generates a semi-
group which which is compact for all > 0 and this condition is not satisfied in the
problem under consideration.

In order to prove compactness of the semigroup corresponding to a related prob-
lem (without delay), Diekmann et al. (1984) wrote down a generation expansion for the
solution. Here we shall use similar methods. The larger dimensionality of our state
space makes the compactness proof a bit more involved than in the above-mentioned
paper.

In the problem under consideration where we have to take account of individuals
present at negative time, it makes sense to define also the -1st generation. We write

(4.1) u(t; t) E ui(t; ),
i=-1

where

((t), -r<_t<_O,(4.2) u l(t;q)=
0, t>0,

((4.3) u(t;)=S(t)q(0)+ S(t-,r)Lu ,r-r;)d,r t>O
J0

and the higher generations are obtained by iteration of the integral operator.

(4.4) ui+l(t;)=fotS(t-,r)Lui(,r-r;q)d,r, t>=O, i>=O.

Let for i>=0 and t[r, ) the operator family Ti(t) C C be defined by

(4.5) Zi(t)*-ui(*) t.

Now let i>=O, t>=r and 0[-r,0], then

( Z + x(t)qb)( 19 ) u i+ l(t + 19; dp) fot +0 S(t + t9 "r) Lui( "r r; ) d,r

f_ s(t-s)Lui(s+O-r; )ds
0

f S(t-s)L(Ti(s-r)q )(O) ds
0

=i S( t- s)L(Ti(s r)q)( O) ds.

For a bounded operator F: X-X we define the bounded operator /: C C by
(/q)(0) F(q(0)) for all q C. Thus we can write

(4.6) T’+(t)= frt (t-s)LT(s-r)ds, t>_r, i_>O.

We note that T(t)=_,i=oTi(t), t>__r. If we can prove that T(t) is compact for t>=r
then it follows from (4.6) that T+(t) is compact for t>=r and i=> 1 and this finally
yields that T(t)is compact, t>=r+G(1), since T(t)=0 if t>__r+G(1). Therefore the
rest of this section is concerned with a proof of the compactness of T(t), __> r.

The following version of Ascoli’s theorem can be found in Martin (1976, Thm. II,
3.2.).
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LMMA 4.1. A set V in C is precompact if the following conditions are satisfied:
i) V is bounded.
ii) The family V is equicontinuous.
iii) For each 0 r, 0] the subset (q(O) q V ) ofX is precompact.
An easy calculation shows that

(4.7) u(t,x;q)=,(O,X(-t,x))+ k(X(-z,x))q(t-,-r,y-i(x(-z,x)))d,,

r
+

(t-o--2r,y-(X(-o,y-(X(-,x)))))do} d.
In twing to prove compactness of T(t) it becomes clear that we need some relation
between g and y. We shall make the following assumption"

Assumption 4.2.

Below we shall give an interetation of tNs inequality.
ToN 4.3. IfAssumption 4.2 is satisfied, then the semigroup T(t) is compact for

tr+ G(1).
Proof. We have already explained that it suffices to show that T(t) is compact for

r. Instead of (4.8) we can write

where

+

where in ts second expression we have substituted

s=t-o-,-2r.

Let .(t): CC for tr, j=l,2 be given by

Here we shall prove that T(t) is compact for r. The easier proof of compactness of
T(t), r is otted.

Let r be fixed and let for R > 0 the subset C of C be given by C= (
C IIllc R). We will show that V= (T(t)]C ) obeys the conditions of Lemma
4.1. Obously V is bounded. Now we replace, by the variable

z=y-( X(s- +, + 2r,y-(X(-,,x)))).
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Then

X(-s+ t-r- 2r,y(z))=y-( X(-z,x))=t.
Differentiation with respect to z yields:

,( dz
Y

Therefore, if Assumption 4.2 is satisfied, dz/d" never becomes zero and replacing by
z in the expression of u one obtains

u ( t,x; )
af(tf, x) Q(s,z; t,x )(s,z ) ds dz,

where ffft(t,x)dsdz is uniformly continuous in and x in bounded subsets of the
(t, x)-plane and Q(s, z; t, x) is uniformly continuous in s, z, and x in bounded subsets
of the (s,z, t,x)-plane. At this point the reader will have no difficulty in seeing that V
indeed obeys conditions (ii) and (iii) of Lemma 4.1. [3

In the case where there is no delay, which has been studied by Diekmann et al.
(1984), the function y is given by y(x)= 1/2x and Assumption 4.2 reduces to 1/2g(x)<
g(1/2x), Xo<X =<1, and this is indeed the condition imposed in that paper in order to
establish compactness of the semigroup.

To see the biological meaning of Assumption 4.2, consider two identical cells in
the first phase with size X> x0. Assume that one of the cells immediately enters the
second phase. It will divide after r time units. Assume further that the two daughter
cells will remain in the first phase for time units, + r time units after our initial
moment each daughter cell will have size X(t,y(x)). The other cell is assumed to
behave differently. It first grows for t time units reaching size X(t,x), then enters the
second phase and finally at time + r divides into two daughter cells of size y(X(t,x))
each. Assumption 4.2 guarantees that

(4.9) y( X(t,x)) < X(t,y(x)).
This can be seen as follows. Differentiation of G(x)-G(y(x)) shows that this expres-
sion is increasing in x if Assumption 4.2 is satisfied. Now for > 0 and x, a =< x =<
X(- t, 1) we have that x < X(t, x) and therefore

G(x)-G(y(x)) < G(X(t,x))-G( y( X(t,x))) t+ G(x)-G(y( X( t, x)));
hence

G( y( X(t,x))) < t+ G(y(x))
which implies (4.9). This thought experiment shows that the combination of growth and
division provides a dispersion mechanism for cell size, which is essential for proving
compactness and also, as we shall see in the following section, for proving some sort of
strong positivity.

If/3 < x0, then every cell has to pass size x0 in each cycle. If Assumption 4.2 fails
for all x[xo, 1] (which corresponds to the case where individual cells grow exponen-
tially throughout the cell cycle), then r:= G(x)-G(xo)+r+G(xo)-G(y(x)) is con-
stant. But z is the time elapsed between the event when the mother cell passes size x0
and the event when the two daughter cells pass size x0. Thus z can be considered as the
effective cycle time. In the case of exponential individual growth the cycle time - is the
same for all cells; it does not depend on size; there is no dispersion.
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Finally we point out that Assumption 4.2 implies

(4.10) y(x)<x for all x(x0,1)

which is a strengthening of (Hy). To see this, let x (x0,1) and take > 0 such that
X(t, x0) x. Then (4.9) implies

(4.11) y(x) =y(X(t,Xo)) < X(t,y(xo)) <= X(t,Xo)= x.

5. The spectrum of A. In this section we combine ideas similar to those of Travis
and Webb (1974), Hale (1977, Chap. 7) and Heijmans (to appear, a) to describe the
spectrum of the generator A and, in particular, to prove the existence of a strictly
dominant, algebraically simple real eigenvalue. Assumption 4.2 is not presupposed
unless this is explicitly stated.

Let us first introduce some notation. The norm of a Banach space Z is denoted by
I1" II z- Z* stands for the dual space of Z. We let (,q)z be the duality pairing of q Z,
eZ*. For an operator T defined on a domain N(T)cZ with values in Z we let
o(T), Po(T) and p(T) denote the spectrum, point spectrum and resolvent set of T
respectively, r(T) is the spectral radius, ,’(T) the kernel and (T) the range of T.

By definition, X e p(A) if and only if the equation

(5.1)

has a unique solution qN(A) for all k in C and q depends continuously on k- By
Proposition 3.2 each in N(A) is continuously differentiable on [-r,0] and A=’.
Hence (5.1) can be rewritten as

(5.2) M(0)-ff’(0)=(0), 0 I-r,0]

and it follows that every solution of (5.2) is given by

(5.3) eX(o(0) eX(0) + -)(s)ds, 0 [-r,0].

In particular,

(5.4) e_X(r+k(--r)=e-Xr,(o)+ s)(s)ds.

On the other hand, Proposition 3.2 also tells us that

k’(O) Bck (O) + Lck ( r)

for all N(A). Combining (5.2), (5.4) and (5.5), one obtains

(5.6) a(x)+(o) + (o) +z(x) +,

where for each XC the operator A(X) with domain N(A(X))=(B) and values in X
is defined by

A(X)=XI-B-e-XrL
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and H(X) is defined on all of C by

(5.8) H(?)k=L(f e-X(r+)q(s)ds), /C.

We can now prove the following.
PgO’OSITION 5.1. (a) , o(A) if and only if 0 o((X)).
(b) Po(A) if and only if OPo(()). Moreover, dim(I-A)=

dim((X)).
Proof. (a) Above we have shown that if (A) is a solution of (5.1), then (0)

satisfies (5.6). Conversely, if (0)X satisfies (5.6) then the function given by (5.3)
belongs to (A) and is a solution of (5.1). To complete the proof of (a), it suffices to
show that the right-hand side of (5.6) covers X as + ranges over C. In order to see ts,
consider + C ven by +(s)=f(s)w where wX and the scalar function f defined on

r, 0] satisfies (i) f(0) 1, (fi) fr e-xf(s) ds 0. It is obvious that + (0) +H(X)+ w.
b) Suppose XPo(A) and let C, 0 satisfy A=. Then (0)=(0)ex

and (X)(0)=0. From ff0 it follows that (0)0 and therefore OPo((X)).
Silarly, 0Po((X) Po(A). The second relation follows immediately.

Proposition 5.1 characterizes the spectrum and the point spectrum of A acting in
the space C C([-r, 0], X) in terms of the operator (X) acting in the simpler space X.
Below we shall investigate the spectral properties of (X) with the aid of yet another
operator and eventually obtain a rather precise description of o(A).

Consider the equation

(5.9) A(X)w=/,
that is,

(5.10) hw(x)+g(x)w’(x)-e-Xk(x)w( y-X(x))=f(x)
where f X. We are loong for solution w(A())=(B). Following Heijmans (to
appear, a), we transform (5.10) into an integral equation by means of the following
substitution"

(5.11) w(x ) e-Xa()v(x ).
Then (5.10) takes the form

(5.12) v’(x)-kx(x)v(y-l(x))=e
where by definition

k(x X[G(y-X(x))_G(x)+r]

(5.13) kx(x)= g(x e- x[a,fl),

0, x [B,1).

Since w as a member of N(B) should be continuous and vanish at x a the same must
be true for v. We therefore look for solutions v Y of (5.12) where Y is the Banach
space

(5.14)
Integration of (5.12) yields

(5.15)

Y= { vC[a,l] o(a)=0).

v-K(X)v-U(2t)f
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where for hC the operators K(k): Y--* Y and U(k): XX are defined by

(5.16) [K(,)v](x)=fix’B)- kx(t)v(y-X(l))dl, o Y, x[a,X],

(5.17) [U(X)fl(x)=f f() xa()d fX.g() e

The advantage of the formulation using the operators K(X) and U(X) is that these are
compact (the proof of this fact is standard) and that K(X) has useful positivity
properties. Observe that the range of U(X) lies in Y.

We can now prove the following theorem concerning some relations between the
spectra of A, A(X) and K(X).

THEOREM 5.2. Thefollowing conditions are equivalent.
(a) Xo(A).
(b))t Po(A).
(c) 0 o(zx(x)).
(d) OPo(A(X)).
(e) 1 o(K(X)).
(f) 1 Po(K(X)).
Moreover, if K(X)v=v for some XC and v Y, then w given by (5.11) belongs to

(B ) and satisfies A(X)w O. If 0 o (A(X)), then A ( X ) is compact.
Proof. In Proposition 5.1 we have already proved (a)** (c) and (b)* (d).
Putting f=0 one observes by comparing (5.9) and (5.15) that (d)* (f) and that the

eigenvector v belonging to the eigenvalue 1 of K(X) corresponds to the eigenvector w
belonging to the eigenvalue 0 of A(X).

(e)* (f) follows directly from the compactness of K(X).
Since trivially (b) (a) it remains to show that (c) (e). To this end, suppose that

Io(K(X)) which means that I-K(X) is invertible. For each fX there exists
therefore a unique solution v Y of (5.15). But then w defined by (5.11) satisfies (5.9).
Hence 0 o(A(X)).

To prove compactness of A(X)- for 0 O(A()) observe that since U() is
compact and (I-K())-1 is bounded, the mapping f o defined by (5.15) is compact.
The transformation vw defined by (5.11) is obviously bounded, hence A(h)-l: fw
is compact.

One important consequence of Theorem 5.2 is that the spectrum of A consists
solely of eigenvalues ((a)* (b)). We emphasize that in order to establish this result we
have not used compactness of T(t), which would also imply the equivalence of (a) and
(b).

Theorem 5.2 gives two entirely different characterizations of o(A)--one in terms
of A(X), the other in terms of K(). These characterizations will also be used for
different purposes in the analysis to follow. A(X) will prove to be of great importance
in determining the algebraic and analytic properties of the eigenvalues and the re-
solvent operator of A. K(h) turns out to play a fundamental role in the investigation of
the location of the eigenvalues in the complex plane.

We start by writing down an explicit expression for the resolvent operator R(,A):
C C of A. It follows from (5.3) and (5.6) that for X p(A)( 4: , since by a standard
result for semigroups X p(A) for all X with ReX large enough)

(5.18) { f0x +H()k) + e
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Hence R(,,A)=RI())+R2() ), where for ) p(A), the bounded operators Rl()k ) and
R g_() are given by

(R(,)b )( O ) eX. A ( , )-l( b (O) +H(, ) b ),
x(-s)4,(R2(,) q)(0) e (s)ds, qC.

From the boundedness of H(): CX and the compactness of A()- if p(A)it
follows that R1(): C C is compact if , p(A). Furthermore R () is quasinilpo-
tent, i.e. r(R2())= 0 if , C. This can be shown as follows. Define the norm [l’llv on
C as follows: Ilqllv=sup_r_<Ozolle-v%(O)llx. (This norm is equivalent to the original
norm 11.11 c-) Now let 3’ R be such that 3’ + Re, > 0. A straightforward calculation
shows that [[Rz())@llv=<(1/(T+ReX))llkllv. Therefore r(R2()))<=l/(,+Re) ) for
all /> -ReX and this yields the result. As a sum of a compact and a quasinilpotent
operator R()t,A) is a Riesz operator (cf. Dowson (1978)). The following result was
proved by Lay (1970, Thm. 4.6).

THEOREM 5.3. Let Z be an infinite-dimensional Banach space and let T be a closed
operator on Z with nonempty resolvent set. Suppose that there exists an a o(T) such
that R(a,T) is a Riesz operator. Then o(T) is a countable set of poles of R(,T) of
finite rank with o the only possible point of accumulation.

As a consequence we have the following result.
COROLLARY 5.4. If X0o(A) then o is a pole of R(X,A) with residue of finite

rank.
Remark 5.5. (a) For all )oo(A) we have that ’0 is a pole of order p of (A())) -1

iff )0 is a pole of order p of R(),A). This follows easily from (5.18) and the fact that
e x0, the operator H()) and the operator from C to X given by f e-Xsq (s) ds
define entire functions.

(b) If Assumption 4.2 is satisfied, then the semigroup T(t) is compact after finite
time, and therefore the Browder essential spectrum (see e.g. Webb (1985) for a defini-
tion) Oess(T(t))= {0}, > 0, and now Corollary 5.4 follows immediately from Proposi-
tion 4.13 of Webb (1985) which says among other things

(eX’l)Oss(A)) COess(T(t)), t>0.

The operator K()t) is very similar to an operator studied by Heijmans (to appear,
a). Using essentially the same methods, based on the positivity of K()) for ), R, one
can prove the following result. For readers consulting the above mentioned reference
we mention that K()) corresponds to Tx and that Xo>a and Xo=a respectively
correspond to the cases a > 0 and a 0 of that paper.

LEMMA 5.6. There exists a d
g such that

i) 1 is an algebraically simple eigenvalue ofg(d).
ii) The associated eigenvector vd Y is strictly positive on (a, 1].
iii) All elements o(A) satisfy Re__< d.

Let X+ be the subset of X consisting of all functions which are nonnegative a.e.;
then X.+ defines a cone in X and with the induced ordering X is a Banach lattice (see
e.g. Schaefer (1974)). Define C+ as

C+-- (qflq(o) g+,o[-r,O]).

With the ordering induced by the cone C/ the space C becomes a Banach lattice as
well.
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Now we can prove the following important result.
TrIEOREM 5.7. The eigenvalue )d of A is algebraically simple. The eigenvector

satisfies qd( O, x)= eXOWd(X) where Wd Y and Wd(X) > O, x(a, 1]. The dual eigenvec-
tor td, determined by A*tbd= dtd is strictly positive, i.e. C+, 0 implies that

Proof. As in Theorem 5.4 of Heijmans (to appear, a) we can show that X d is a
simple pole of A(X)- and that the eigenvalue 0 of A(Xd) has geometric multiplicity
one. Combined with Proposition 5.1(b) and Remark 5.5(a) this yields the algebraic
simplicity of the eigenvalue X d of A. Let vd be given by Lemma 5.6 and wd by (5.11);
then A(kd)Wd--O. Now 4d C+ given by d(O)---eXdOwd satisfies indeed the conditions
stated in the theorem.

An easy calculation shows that R(,A) defines a positive operator with respect to
the cone C+ if >Xd-Now let 0> Xd be fixed. Then r(R(ho,A))= 1/(0- hd) and a
standard result from positive operator theory says that R(o,A)*dPd= (1/(k0- kd))d
for some positive functional d4:0. Since R(Xo,A)*=R(Xo,A*) (cf. Taylor and Lay
(1980)) we obtain that A*d=dd NOW suppose that (I)

d is not strictly positive, i.e.,
there is a p C+, p=/= 0 such that (d,p)=0. Then tp..()dI--A* ) +/- --()dl-A);
hence d’ A, for some C, hence

+ x+\{0).

A calculation very similar to the one performed in the proof of Theorem 5.4 of
Heijmans (to appear, a) shows that

{0)

and this is a contradiction. Therefore Cu is strictly positive.
An important question is whether or not the eigenvalue 7 u is strictly dominant, i.e.

Re)t <2 if ;k o(A), 4: )d. If Assumption 4.2 is satisfied, this would immediately
imply that there exists a positive e such that Re<u-e if Xo(A), 4:, because
if this were not true then there would exist a sequence X,o(A) such that Re, is
strictly increasing and Re,,d, n o. But if > 0 is such that T(t) is compact,
then eX.to(T(t)) and [eX.tl=e Rex.’t----e xdt, n o which implies that o(T(t)) has an
accumulation point different from zero contradicting the compactness of T(t).

The answer to the question concerning the strict dominance depends strongly on
the dependence of the kernel kx(x) of the operator K(X) on . As in Heijmans (to
appear, a) we can prove the following result.

THEOREM 5.8. If Assumption 4.2 is satisfied, then there is an e>0 such that
Re?t <)kd-- e/f

If Assumption 4.2 is false for every x[xo, 1], then

where c is a constant, and we find that

where the operator K(O) does not depend on .
It follows immediately that in this case

2ri)o(A)=.+ k. r+c o(A), k7l,
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and Theorem 5.8 is certainly not true in this case. If Assumption 4.2 is fulfilled on a
nonempty subset of [x0,1] then the situation is more complicated but one can prove
that Theorem 5.8 is still true (see Diekmann, Heijmans and Thieme (1985)).

As in Heijmans (to appear, a) it is possible to compute the so-called characteristic
equation from which all eigenvalues of ,4 can be calculated in principle. Here we shall
only do this for the special case fl < x0.

Let fl < x0 and let v be a solution of

r(;k)v=v.
Then v(x) is constant for fl _< x _< 1 and we may take v(x) 1, _< x =< 1. Then

Since v has to be continuous in x fl, we obtain

(5.19) l=f kx(ld

and this equation determines the elements of o(A) if fl < x0.

6. The stable size distribution. Throughout this section we assume that Assump-
tion 4.2 is satisfied. Let ,

d be the strictly dominant eigenvalue of A, and let ’#d, d be
given by Theorem 5.7. Since d is a simple pole of R(X,A), we have the following
decomposition of the state space C (cf. Taylor and Lay (1980)):

(6.1)
where ,/ff’(XdI-A) is the one-dimensional space spanned by the positive eigenvector
hd. Let P be the orthogonal projection on V’(XdI--A) according to this decomposi-
tion; then P is given by

(6.2)
where we have normalized a., a such that (a,q,a)c 1. Let 2P(t) be the restriction of
T(t) to (aI-A); then r(T(t))<=ex-t, t>=O, where we have used Theorem 5.8. A
standard result from semigroup theory says that for all 0 < ,/< e there exits an M(,/) >_ 1
such that II(t)+ll<_m(,1)e(Xa-n)tll/I l, for all b(dI-A). Let chiC; then =P
+ (I P)h {d, h)" q’d+ ( I P )h and therefore

t>=o
and the following result is obtained.

THEOREM 6.1. For all 0 <

For obvious reasons we call q’d the stable size distribution.
Finally we mention that there is an alternative way to reach the main results

exploiting the positivity of the semigroup. Using known results from positive semigroup
theory (cf. Greiner (1981)), Theorem 5.8 follows immediately. The main problem is now
to establish the algebraic simplicity of d- This can be done by showing that the
semigroup is not only positive but also irreducible (cf. Schaefer (1974), Greiner (1981)).
However, the technical difficulties arising in this approach seem to be greater than in
the one we have adopted.
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WEAK SOLUTIONS OF AN INITIAL
BOUNDARY VALUE PROBLEM FOR AN INCOMPRESSIBLE

VISCOUS FLUID WITH NONNEGATIVE DENSITY*

JONG UHN KIM

Abstract. The initial boundary value problem associated with the motion of an incompressible viscous
fluid with variable density is studied. The lower bound of density is allowed to be zero and the local existence
of a weak solution is established.

Key words, local existence, weak solutions, semi-Galerkin method, compactness property
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Introduction. In this paper we establish the local existence of weak solutions to the
initial boundary value problem associated with the motion of a fluid with nonnegative
density. We assume that the fluid is contained in a region f of space and that the fluid
is nonhomogeneous, incompressible and viscous. Let u(t,x), la(t,x) and p(t,x) denote
the unknown velocity vector, the density and the pressure of the fluid at point x at time
t. Then the governing equations are

Ou(0.1) O-+ ( pu V ) u Au pf+

v .u=0,

(0.3) O--P-P + (u. V )p 0
)t

where f(t, x) is the known external force. The boundary condition is given by

(0.4) u(t,x)=O for/>0,

and the initial conditions are expressed by

(0.) u (0,) u0() (0, x) 0()

where Uo(X ) and po(X) are given functions. Here f is an open bounded subset of R
with a smooth boundary. We assume that the coefficient of viscosity is uniformly a
constant; it is taken to be 1 for convenience.

Kaztfikhov [4] established the existence of weak solutions of (0.1) to (0.5) under the
assumption that 0 < a <= po(X)<=M< , a.e. in 2; for the definition of weak solution,
see 1. His work was reviewed by Lions [6], who raised the question of existence of
solutions in the case O<__Oo(X)<=M. In fact, Lions [6] proved the existence of weak
solutions to a variant of the above system of equations for a penalized model when
OSOo(X)<=M< , a.e. in 2. In this paper we show that (0.1) to (0.5) admit a local
weak solution if we assume some more regularity on Uo(X) and f(t,x). For the precise
statement, see Theorem 2.1 below. Our basic approach to this problem is parallel with
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that of Kazhikhov [4]: we employ the so-called "semi-Galerkin method". We use,
however, different energy estimates which are derived capitalizing on the regularity of
Uo(X ). These estimates are independent of lower bounds of p0(x) and are strong
enough to use standard compactness properties of a sequence of approximating solu-
tions. In Kaztfikhov [4], energy estimates were obtained under the essential assumption
that O<a<=Oo(X)<=M, a.e. in and a delicate compactness property was necessary;
see Lions [6] for detailed exposition. In 1, we explain our notations and present some
mathematical preliminaries. Detailed proof of our result is given in [}2.

1. Notation and preliminaries, x=(x,x_,x3) is the space variable in R3. For
x,yR3, x.y=E=xgy. V is the gradient and A is the Laplacian. When f(x)=
(fx(x),f2(x),f3(x)) is an R3-valued function,

v "f Ivf
i= Xi’ i,j=l i=1

For s R, HS(2) denotes the usual Sobolev space as defined in Lions and Magenes [7].
Let W= {C(f)3: V .q,=0}. Then Ho(2) is defined to be the completion of W
with respect to the norm of HS()3. When E is a Banach space, LP(0, T; E) stands for
the space of functions g, strongly measurable on [0, T] with range in E such that

<o, forl=<p<o

and

def
Ilgll,=(0,;e)-- esssup IIg(t)lie< oo, for p=

t[0, T]

C([0, T]; E) is the space of functions which are k-times continuously differentiable on
[0, T] with range in E and when k= 0, we omit the superscript. The norm is defined in
the obvious way. If E= R, we denote it by C([0, T]).

Now we give the definition of weak solution (0.1) to (0.5).
DEFINITION 1.1. A weak solution of (0.1) to (0.5) is a pair of functions u(t,x),

p(t,x) such that u(t,x)=(u(t,x),uv_(t,x),ua(t,x)) L2(O,T;H(f])), p(t,x)
L([0, T]f) and

pU - dx dt E T O T .,O U .,Od
j=l

pUjU" Xj dx dt + J----E1 X Xj
dx dt

po(X)Uo(X). (O,x)

(1.2) pu-x dxdt= po(x)/(O,x)dx
j=l

hold for all d#CI([O, TI;H(2)) and hbcl([O, Tl;Hl()) satisfying (T,x)=
0,q(T,x)= 0, a.e. in f, where po(X) L(f) and Uo(X) H,,(f) are given functions.
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Next we list some basic facts for later use. Let the operator P be the projection of
Lg-()3 onto H(fl) and consider the eigenvalue problem:

(1.3) PArkk+)tkrkk=O in f, k=0 on Off.

LEMMA 1.2. pA is a self-adjoint operator in H,() and its inverse is compact. There
are countably many eigenvalues (-)t)= and corresponding eigenfunctions (
such that 0 < )t )k 2 )k

k (Z) as k c and

(1.4) fa rkj.kedx=Sj.

For detailed discussion on the convergence of eigenfunction expansions and the
regularity of eigenfunctions, see Ladyzhenskaya [5]. The following lemma is a special
case of the result in Aubin [1].

LEMMA 1.3. Let Eo, E, El be Banach spaces such that Eo c Ec El, Eo and E are
reflexive, and the injection Eo E is compact. Define = (vLpo(O, T; Eo): dv/dt
Lpl (0, T; E)}, where 0 < T< oe and 1 < Po, P < . The norm of is defined by

doIIo11  o 0, +
; El)

Then the injection Leo(O, T; E) is compact.
For the following lemmas, see Lions and Magenes [7].
LEMMA 1.4. For any sR and any e>0, the injection HS(f) HS-(f) is compact.
LEMMA 1.5. LetfH2()CH01(f). Then it holds that

1-o o
0 < 1(1.5) collx7fll,  (. llAf for =0<

where Co depends only on O and f.
LEMMA 1.6. For any 3> , H(f)c C() and (f,g)fg is a continuous mapping

from n(f)Xno(f) into H(f) andfrom into H-I().
For fH(), gn-(), fg is defined by (fg, q)=(g,f/) for all H(2),

where ( ) is the duality pairing between H0(fl) and H-(f). This multiplication
coincides with the pointwise multiplication for g L2(2).

2. Local existence. In this section we state and prove the main result:
THEOREM 2.1. Suppose f(t,x) L(O, T*; L2()3), Uo(X) H(f]), po(x)

and 0 <__ po (x ) <= M< oe a. e. in . Then there is a number T (0, T * and a weak
solution u(t,x), p(t,x) of (0.1) to (0.5) such that p(t,x)L(O,Tf), u(t,x)
L2(0, T; H2()3)f3L(0, T; n2()).

The proof of this result is divided into several steps. First we consider the initial
value problem"

(2 1) p(O,x)=oo(X).

LEMMA 2.2. Suppose v(t,x)C([O,r]; C1()3), 7 .u=0 for all (t,x)[o,r]x,
v=0 for all (t,x)[O,T]Of and po(x)C(), a<=po(x)<=fl for all x, where
a, flR. Then (2.1) has a unique solution p(t,x) in CI([0, T]). Furthermore, aN
p(t,x)<=fl holds for all (t,x)[O,T].

LEMMA 2.3. For each n=1,2,..., let vn(t,x)C([O,T]; C()3), V .vn=0 for all
(t,x)[O,T]f and v,=0 for all (t,x)[O,T]Of. Suppose that v converges to v in
C([0, T]; C1()3), and denote by p(t,x), p(t,x) the unique solution of

(2.1n) ot o (O,x)=oo(X)
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and the unique solution of (2.1), respectively, where po(X) is the same as in Lemma 2.2.
Then &(t,x) converges to p(t,x) in C([0, T]).

Proof of Lemma 2.2. We use the classical method of characteristics to construct a
solution. Let E be an open ball in R such that cE. We extend v to
C([0, T]; C1()3) so that v=-w for all (t,x)[O,T]. Consider the system:

(2.2) dx
-aT=w(t,x),

Then there is 0 < iP__< T such that (2.2) has a unique solution x(t,y) in C1([0, IP]; Ca()).
If yf, then x(t,y)=y for all t[0, ] since w(t,x)=v(t,x)=O for all (t,x)[O,T]
f. If yf, then x(t,y)ft for all t[0, iP] by the uniqueness of solution. Hence,
we may take ]’=_ T and replace w by v in (2.2). Furthermore, det{ ax/ay } 1 for each
(t,y)[O,T]f since v(t,x) is a divergence-free vector field. It is apparent that for
each t[0, T], the mapping S defined by St: y-x(t,y) is Cl-diffeomorphism of
onto itself and that y= S[-x=y(t,x) C1([0, T]). Now define p(t,x)= po(y(t,x)).
Then p(t,x) is the unique solution in C1([0, T]), which can be easily shown by the
classical argument.

Proof ofLemma 2.3. Let x,(t,y) C1([0, T]; C1()) be the solution of

(2.2n) dt =v,(t,x,), x,(O,y)=y.

Then x,(t,y) converges to.x(t,y), the solution of (2.2), uniformly in [0, T]fa; see Hale
[3]. For each t[0, T], define y,(t, .) to be the inverse of the mapping y--+x,(t,y).
Then it is easy to see that all the first order derivatives of y,(t,x) are uniformly
bounded with respect to n and (t,x) [0, T]f. By Ascoli’s theorem, we derive that
y,(t,x) converges to y(t,x) uniformly in [0, T]2, from which it follows that p,(t,x)
converges to p(t,x) uniformly in [0, T]X, from which it follows that p,(t,x) con-
verges to p (t, x) uniformly in [0, r x

Next we choose sequences of functions {Po,,(x)}.=, { fm(t,x)} .,=1 such that
Pom(X)C=C(), 1/m<__Pom(X)<=M+(1/m ) for all x, POm(X)--+Po(X) in
and f,,(t,x)C([O,T*];L2(fa)3), [[fm(t,x)ll=(m<=]]f(t,x)ll(o,r..,_(a)
[0, r*l, fm(t,x)f(t,x) in L2(0, T*; L2()3) where Oo(X) and f(t,x) are given func-
tions in Theorem 2.1. Recalling Lemma 1.2, we set

m

(2.3) V(t,x)= E Ak(t)k(x)
k=l

and consider the system of equations:

(2.4) Pm

(2.5) - bj(t)-Amk(t)+ E Cjt(t)Amk(t)Aml(t)+XjAmj(t)
k=l k,l=l

=dT’(t ), j=l,...,m,

with initial conditions

(2.6) Pm(O,x)=POm(X),

(2.7) A,,k(0) =f Uo(X).q  (x)dx, k=l,...,m,
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where Uo(X) is given in Theorem 2.1 and

(2.8)

(2.9)

(2.10)

.(t) =f, On(t,)*()’*(),
CjT/(t) fa Pm ( x ) ( ( ckk g ) ck ) ( x ) ckj ( x ) dx

df(t)= fa p.(t,x)f.,(t,x)’ckj(x)dx.

Now we find solutions of (2.4) to (2.7).
PROPOSITION 2.4. There is a number T (0, T *] independent ofm such that there are

solutions p,,(t,x) C1([0, T]), Amk(t) C1([0, T]), k-- 1,’", m of (2.4) to (2.7)
satisfying

(2.12)
(2.13)

<K,
L2(O,T;L2()3)

(214) iOm---- L(O,T;H-I(a))
<=K,

(2.15)
1 1
--N Pm( t,x) < M-F-- forall (t,x)[0,rlxa,

where K is a positive constant independent of m.
Proof. First we shall derive a priori estimates. Suppose Om(t,x)C([O,T])

and 1/m<=o,,(t,x)<=M+ 1/m for all (t,x)[O,T]f, where T is a positive number
which will be determined later on. Using this 0 (t,x) we define bj", Cj."t, d by (2.8)
to (2.10). Suppose Am(t) Cx([0, T]), k= 1,’" "m,m, to be the solution of (2.5). Borrow-
ing a technique from Beirao da Veiga [2], we multiply (2.5) by (d/dt)Amj(t) and
eXAmj(t), e>0 and sum over j=l,...,m"

(2.16) fa Om dx+ pm{(Um.V)Um)..------dx+-- IVUml x

OmPmfm.----Dx,

(2.17) - Om-gi-’eSdx- O((S’V)S)’eSdx/ IeSml2dx

--e Pmfm.pAgmdx.

We observe that

(2.18)
2
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(2.19)

f o{(e,v )e } .meax

(2.20)

Umf ’,, { ( U,," v ) U,, } "-7 ’x

(2.21)

- IeASl dx+(M+l)2 IU,,,12lVUml dx,

where Ca denotes positive constants depending only on and 0 < 8 < 1/2. Here we have
used Theorem 2 of Ladyzhenskaya [5, p. 67] and Lemmas 1.5, 1.6. Combining (2.16) to
(2.21), we obtain

(2.22)

ldfa 1, lfa lOUl’2 dt ]7U dx+ }m --- dxZ Omlfm 2dx

3-281 1+28
+ Ca(M+ 1)llVUml[=<alPaUm[l=<a,

1 3m
2

(2.23) I,Sm l2dxEL o:l fm l2dxWe(M+ l)L Om dx

113-28 1+28
+(M+ 1)GII Um =<11 eSm =<,

where C depends only on and 0<8< . Now we fix e(0, 1/(4(M+ 1))1 and take
8 . Then, (2.22) together with (2.23) implies

1d 1 Um 2

1(a.4) 7 Isl dx+ o dx+g leSml dx

10s c fm =dx + CII Sm

where C denotes positive constants depending only on M and a. From (2.24), it
follows that

(2.25) Igm dxC+C Igmldx

where C denotes positive constants depending only on M, a and Ilfll (0, r.; =(a> By
maNng use of the well-known differential inequality, we conclude that there is a
number T (0, T* and L > 0 such that

(2.26) IIgmll==<L for all te[0,rl,
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where T and L depend only on M,f, IlfllLoo(O,T,;L2()3), Ilu0(x)ll() and are inde-
pendent of m. From now on, we fix this T and L. Next we need the following fact.

LEMMA 2.5. Suppose Pm(t,x)Cx([O,T]) and 1/m<=p,,(t,x)<=M+l/m, for
all (t,x)[O,T]f. Then, the matrix {b.k(t)} defined by (2.8)is nonsingular and each
component of its inverse belongs to C1([0, T]).

Proof. Suppose {bj(t0)} is singular for some t0[0, T]. Then, without loss of
generality, we assume that the first row is a linear combination of other rows: b’k(to)=
C2b2m(to)+ +Cmb,k(to) holds for each k=l,-..,m, i.e., faPm(to, X)l(X)"
qk(X)dx=O holds for each k=l,-.., m, where r/=l- C22 Cmm. Therefore,
fa pm(to, X)[rl(x)[2dx=O holds, which implies /(x)=0 for all x since Pm(to,X)>=
1/m for all xf]. But this is impossible in view of (1.4). It is obvious that each
component of the inverse of { bj"(t)} is continuously differentiable with respect to the
time.

Now we proceed to prove the proposition. Let BR be a closed ball in C([0, T])"
with radius R>=(L/I)1/2, where T and L were fixed above and --1 is the first
eigenvalue of the operator ph; see Lemma 1.2. Let (Am(t),’", Amm(t))BR and set
Um(t,x) =Z’mk=Am(t)qk(X)" By Lemma 2.2, we find a solution Pm(t,x) of (2.4), (2.6)
in C([0, T]). Using this p,(t,x), we find a solution (ml(t),’’ ", mm(t)) of (2.5),
(2.7) in C([0, T])mR with the aid of (2.26) and Lemma 2.5. By means of (2.24),
(2.26) and Lemma 2.3, we infer that the mapping (A,l(t),..., Amm(t))(m(t),...
Amm(t)) is completely continuous from BR into itself; see Hale [3]. Hence, it has a
fixed point which, together with p,(t,x), is a solution of (2.4) to (2.7). (2.15) was
shown in the proof of Lemma 2.2 and (2.13) follows from (2.26), which, combined
with (2.24), also implies (2.11) and (2.12). Since U, is divergence-free, (2.14) follows
from (2.4).

Proof of Theorem 2.1. Thanks to the estimates (2.11) to (2.15), we can extract
subsequences ( U }m= and ( Pm }= such that U u weakly in L2(0, T; H2(2) 3),
U u weak* in L(0, T; Hl(f)), pm -’) p weak* in L([0, T]X2) and Opm/Ot -- Op/Otweak* in L(O,T;H-I(f])). By virtue of Lemmas 1.3, 1.4, pm"-)p strongly in
L2(O, T; H-1/2( f] )). Therefore, PmUmPU in *((0, T)><) and thus, PmUmPU
weak* in L(O,T;L2(f)3). In the meantime, (Um)=x is bounded in
Lq(0, T; H3/2+t()3), q=4/(1 + 26), 0 < 6 < -}, by interpolation. Hence, by Lemma
1.6, (Um(OPm/t))m__l is bounded in L2(O,T;H-(2)3). On the other hand,
( pm(3Um/3t))m=a is bounded in L2(0, T; L2()3), which is obvious from (2.11). Conse-
quently, ((PmUm)/Ot)m=l is bounded in L2(O,T;H-I()3). Again by Lemmas 1.3,
1.4, pmUm pU strongly in L2(O,T;H-1/2(f])3). Since U u weakly in
L2(O,T;H2()3), PmUmUmk---pUOk in *((0, T)><) for each k=1,2,3 where Urn=
(U,,,1, Um, Urn3 ) and u=(v,v2, v3). Thus it follows that PmUmUmkpUV weakly in
Lz(0, T; Lz(f) 3), for each k 1, 2, 3. It is easy to see that (U V )Pm -’-) ( U" 7 )p weakly
in L2(O,T;H-(f)). Now let us choose arbitrary Ij(t)CI([O,T]), j(T)=0, j=
1,---, ,,. Then, by (2.4) and (2.5), it holds that for each m >= ,,

fo jfj dxdt- E z
PmUmUmk" JfJ dxdt(2.27)

T

PmUm’"
j=l k=l j=l

nt-EfoTUm’ jfl)jdxdl
k=l 3Xk 3Xk j=l-- PomSom" j(O)jdx-b foT Pmfm" ljjdxdt

j=l j=l
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where Um=(Uml, Urn2 Urn3 ) and Uom=_,__lAmk(O)dPk(X); see (2.6) and (2.7). By pass-
ing m to oe, we obtain

j=l k=l j=l

1 Oxe Ox

j=l j=l

where we used the convergence properties of { U }=1 and { Om }=l which were
derived above; also recall the way we chose { 00m}=l and (fm }=- Noting that
oL([o,r]xa), uL(O,T;H())L2(O,T;H2()) and that every (t,x)
cl(to, rl;u2(a)), a.e. in a, and be appromated by a sequence
{;=1,: (,(t)cl([O, TI), ,(r)=0}L in c([0, rl;U2(a)), we conclude that
u and 0 satisfy (1.1). By a silar argument, 0 satisfies (1.2). This completes the proof
of Theorem 2.1.
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ETUDE DES ETATS STATIONNAIRES
POUR UNE EQUATION DE SCHRÜDINGER

NON LINEAIRE COMPORTANT UN TERME NON AUTONOME*

ALAIN BAMBERGERt AND LAURENCE HALPERNt

Abstract. This paper deals with the steady problem for a nonlinear one-dimensional Schrôdinger
equation of the following type :

i au - 3 2u +xu-p I u l 2u=f(x),ut ax
arising in plasma physics .

We proue the existence of many steady states for large values of the nonlinearity parameter p .

Résumé. Nous étudions le problème stationnaire associé à une équation de Schrôdinger non linéaire
monodimensionnelle du type suivant :

2
i au - a

2

	

2+xu-p~ u~u=f (x),

	

xER,
at ax

intervenant en physique des plasmas .
Nous montrons l'existence d'un grand nombre d'états stationnaires lorsque le paramètre p de non

linéarité est grand .

Key words. nonlinear Schrôdinger equation

AMS(MOS) subject classif icâtion . Primary 3 5

Introduction. L'étude de l'absorption d'une onde électromagnétique par un plasma
inhomogène conduit, avec nombre d'hypothèses simplificatrices, à une équation de
Schrôdinger monodimensionnelle non linéaire du type suivant :

(1)

	

âu _ a 2u
iat

	

2 +xu-pI uI
2
u=f(x) ;

	

xEQ
ax

où u est une "onde sortante" en - oo, u tend vers 0 en + oc . La fonction f représente
l'amplitude de l'onde magnétique incidente . Son support est "petit", concentré autour
de 0 (voir J . C. Adam, A. Gourdin-Servenière et G . Laval [2], G. J. Morales et Y . C .
Lee [8]) .

Les auteurs de [2] ont testé numériquement la validité de ce modèle . Ils se sont
intéressés aux solutions stationnaires, et ont notamment mis en évidence le fait que
celles-ci n'étaient pas stables pour de grandes valeurs du paramètre p de non linéarité .

D'autres équations de Schrôdinger non linéaires, du type

(2)

	

i
au
+Du+F(u)-=0 dans R XW

at

ont été étudiées par les mathématiciens, en particulier pour une non linéarité de la
forme F(u)= I uI"-lu .

Ainsi J. Ginibre et G. Velo [6] ont démontré l'existence et l'unicité d'une solution
locale pour 1 < k <(n + 2)/(n -2) (n >_ 3) . Ils ont montré de plus que, pour k <1+ 4/n,

* Received by the editors September 24, 1984 ; accepted for publication August 18, 1985 .
t Ecole Polytechnique, Centre de Mathématiques Appliquées, 91128 Palaiseau Cedex, France .
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toute solution locale est globale, et pour k < 1 + 4/n, R . T . Glassey [7] a prouvé qu'il
existe des solutions qui explosent en un temps fini . D'autre part V . E. Zakharov et A . B .
Shabat [9] ont mis en évidence l'existence de solitons en dimension 1 .

Une étude globale de l'existence et du nombre de solitons pour l'équation (2) a été
menée par H . Berestycki et P. L. Lions [4] . Ils ont établi l'existence d'une infinité de
solutions radiales pour le problème

(3)

ALAIN BAMBERGER ET LAURENCE HALPERN

-0u=g(u~

où g vérifie certaines hypothèses en 0 et + oo .
En particulier en dimension 1, ils ont prouvé l'existence d'une "solution fonda-

mentale" indéfiniment dérivable, paire, positive, décroissante pour x > 0, tendant vers
zéro à l'infini . Toutes les autres solutions sont obtenues par translation et symétrie par
rapport à l'origine . T. Cazenave [5] a étudié la stabilité de ces solitons .

Pour notre part, nous nous intéressons aux solutions stationnaires de l'équation
(1). Elle comporte un second membre et un terme "non autonome" xu . Aussi, les
études précédentes qui utilisent de façon essentielle l'existence d'une intégrale première,
ne semblent pas pouvoir s'appliquer dans cette étude .

Pour connaître l'influence du paramètre p de nonlinéarité sur le nombre de
solutions de (1), nous avons introduit un problème simplifié :

Puisque le support de f est petit, nous l'avons concentré autour de 0, et nous avons
donc remplacé le second membre par une discontinuité de la partie réelle de la dérivée
en 0 .

La condition d'onde sortante en - oo nous a conduits à supposer que le terme non
linéaire est petit devant le terme xu pour x négatif. Nous avons donc fait intervenir la
non-linéarité uniquement pour x > 0. Pour ce problème nous avons montré qu'il y a
toujours une solution stationnaire, et que le nombre de solutions stationnaires est
croissant en fonction de p .

Il ne nous semble pas que ces simplifications changent fondamentalement les
résultats .

Les problèmes envisagés et la démarche suivie . Les simplifications énoncées plus
haut nous mènent aux deux problèmes suivants, que nous notons ~ «,p et «,p

Problème .«,p : Trouver une fonction u qui est, pour x < 0, solution du problème
~~ , et, pour x > 0, solution du problème ~~

_ (1 .1) u"+u=0 ; x<0,

	

+ (1 .2) u"-u+pIuI 2u=0 ; x>0,
(1 .3) u + iu -~ 0 ; x --> - oo ,

	

(1 .4) u -* 0 ; x -~ + oo ,

et qui vérifie les conditions de transmission à l'origine :

(1 .5)

	

u(0+)-u(0_)=0,
(1 .6)

	

u'(0+)-u'(0_)=a,

	

«>0 .

Nous avons indexé par C les problèmes .

	

et c pour signifier que nous
cherchons des solutions à valeurs dans C .

Problème ~«,p : Trouver une fonction u qui est, pour x < 0, solution du problème
, et, pour x > 0, solution du problème

(2.1) u"-xu=0 ; x<0,

	

+ (2 .2) u"-xu+pIuI2u=0 ; x>0,
c

	

1~2

	

~ c
(2.3) u'+i(-x) u-~0 ; x-~ - oc,

	

(2 .4) xu~0 ; x-~ + oc,



et qui vérifie les conditions de transmission à l'origine :

(2 .5)

	

u(O)-u(O_)=O,

(2 .6)

	

u'(o+)-u'(o-)=«,

	

«>o.

Rappelons que u(O)+ (resp. u(0_)) désigne la limite à droite (resp . à gauche) de u
en 0 .

Pour ces deux problèmes, nous avons imposé les mêmes conditions en zéro
continuité de la fonction et discontinuité de la partie réelle de sa dérivée . Les conditions
(1.3) et (2.3) correspondent à une condition d'onde sortante en - oo, les conditions
(1.4) et (2.4) correspondent à une décroissance vers 0 de la fonction lorsque x tend vers
+0O

Le problème est plus simple que le problème le terme xu dans « ,p a
été remplacé par signe(x)u dans Il nous a permis de mettre en évidence l'in-
fluence de la nonlinéarité, qui se traduit par l'existence de plusieurs solutions . Les
résultats obtenus pour

	

nous ont servi de guide pour l'étude de
Nous avons adopté la démarche suivante : nous découplons les problèmes posés sur

R _ et sur R +, et nous déterminons une relation entre u(O)_ et u'(0 _) (resp . u(O)+ et
u'(0+)), condition nécessaire et suffisante pour qu'une solution u de l'équation différen-
tielle posée sur R _ (resp . R +) vérifie les conditions à l'infini imposées . La première
relation est linéaire : elle est obtenue par la résolution explicite d'une équation différen-
tielle linéaire . La deuxième relation est non linéaire ; elle provient d'un calcul explicite
pour 'a, p , et sera calculée numériquement pour fi a, p .

Ces deux relations, jointes aux conditions de transmission, constituent un système
non linéaire complexe de quatre équations à quatre inconnues u (O _ ), u'(0 _ ), u (O + ),
u'(0 +). La forme du problème permet de découpler les parties réelles et imaginaires de
u pour x positif, et de ramener en fait la discussion sur le nombre de solutions de
(resp. ~« ,p ) à la résolution d'un système non linéaire réel de deux équations à deux
inconnues : la partie réelle de u et sa dérivée en 0 + . L'une des deux équations dépend
du paramètre a2p .

Nous représentons dans le plan (u (0 + ), u'(0 + )) les deux équations, pour chacun
des deux problèmes .

Pour le problème l'une des équations est représentée par une famille de
cercles dont de rayon est croissant en fonction de p. Il apparaît un seuil : si p est
inférieur à ce seuil, a,p admet deux solutions, et audelà n'a plus de solution .
Ce phénomène de seuil est du à la simplification apportée en remplaçant xu par
signe(x) u dans fia,n .

Pour le problème l'une des relations est obtenue à partir du problème posé
sur R +, et est représentée par une ellipse . L'autre relation est obtenue numériquement à
partir d'un paramètre x 0, et est représentée par une spirale.

Lorsque le paramètre a2p varie, la première relation entre u(0 +) et u'(0 +) est
représentée par une famille d'ellipses, dont les axes croissent en fonction de a2p: il y a
toujours une solution, et plus la non-linéairité est importante, plus «,p admet de
solutions .

La première partie de cette étude est consacrée au problème fia, p . Des méthodes
d'équations différentielles ordinaires permettent de décrire explicitement les solutions .

Ces méthodes ne sont plus applicables pour le problème et nous serons
amenés, dans la deuxième partie, à utiliser à la fois des méthodes mathématiques et des
méthodes numériques .

ÉTATS STATIONNAIRES POUR UNE ÉQUATION DE SCHRÔDINGER

	

99



100

FIG. 1 . Nombre de solutions de .9, a et p fixés .

ALAIN BAMBERGER ET LAURENCE HALPERN

0

FIG . 3 . Nombre de solutions de

	

a et p fixés .

FIG. 2 . Nombre de solutions de .9 lorsque a 2 p varie.

u ' (0 +)

FIG . 4 . Nombre de solutions de .9

	

lorsque a2p varie .

croissants
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1. Étude du problème

	

Nous pouvons pour le problème

	

décrire
complètement et explicitement l'ensemble des solutions :

PROPOSITION 1 .1 . Le problème

	

admet, suivant les valeurs de p et a, zéro, une
ou deux solutions :

.p = 0

	

une solution,
.0<p <p* = 2/a2 deux solutions,
.p =p*

	

une solution,
.p >p*

	

pas de solution .

De plus, ces solutions sont C°° sauf en x = 0 .
Le cas p = 0 correspond à une équation linéaire . Le problème a,o admet une

seule solution, u *(0, x), donnée par

« (1+i)e_x,

	

~x<0,
2
«

	

X,

	

x>-0.
2

Nous nous intéressons d'abord à ., dont nous exprimerons les solutions à partir
de celles d'un problème réel ~R . Nous étudierons les orbites de l'équation différentielle
associée dans le plan des phases. Nous montrerons en particulier qu'il existe une seule
orbite non périodique, qui représente l'ensemble des solutions de ~R , et nous ex-
pliciterons ces solutions .

1 .1. Le problème

	

Introduisons le problème réel

+ -v"+v-v3=0,

	

x>0,
(1 .7 )

	

~R v (x) --~ 0,

	

x -~ + oo .

Pour passer de . à ., nous aurons besoin d'estimations à priori . Pour l'équa-
tion (1.2) on obtient de façon classique la conservation du moment et de l'énergie. On a
plus précisément ici le

LEMME 1 .1 . Estimations à priori . Toute solution u de .

	

appartenant à Ç 1(O +, R)
possède un moment nul :

(1 .8)

	

u'ïc-û'u=0,

ainsi qu'une énergie nulle :

(1 .9)

	

iu'l
2
-lui

2

Elle vérifie de plus

(1 .10)

	

u'(x) -*0 ;

+2lu 0

x - + oc .

Démonstration . Nous multiplions (1 .2) par i ' et nous prenons la partie réelle

dx - i u l ) =0 d'où

(1 .11)

	

lu'l2- lui 2 +iui4 =cte2

	

surll8 + .
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D'autre part, nous multiplions (1.2) par û et nous prenons la partie imaginaire

d
dx (u'û - û'u) = 0, d'où

(1 .12)

	

u'û - û'u = cte sur R + .

Par hypothèse u tend vers 0 à l'infini, et on déduit de (1 .11) que u' est bornée. La
constante dans (1 .12) est donc nulle. Montrons maintenant que u' tend vers 0 à l'infini .

D'après (1 .8) la partie réelle et la partie imaginaire de u sont proportionnelles,
nous pouvons donc raisonner sur v = Re u .

La fonction réelle v est s1, tend vers 0 à l'infini, et d'après (1 .11) v' 2 a une limite à
l'infini. La fonction v' a donc une limite l quand x tend vers l'infini . Cette limite doit
être nulle .

Nous en déduisons le
LEMME 1.2 . Équivalence entre .

		

et ~R . La fonction u est solution de .~ si et
seulement si il existe un nombre complexe z o et une fonction réelle v tels que

z
°u=

	

V,

	

~zo ` --1,
(1 .13)

V solution de ~R .

Démonstration . Soit u une solution de ~~ . D'après la démonstration précédente,
la partie imaginaire de u est proportionnelle à sa partie réelle

u=(1+Xi)u l

et u l est solution de l'équation réelle

u'-ul +p(1+A2 )ui=0 .

La fonction u s'écrit donc sous la forme

(1 .14)

	

u	
1 + Xi

Jp(1 + X2 )

OÙ V est solution de ~R .
Réciproquement, si v est solution de .9k, la fonction u définie par (1 .14) est

solution de ~~ .
Nous définissons sur R le système différentiel

(1 .15)

	

-V"+V-V3=0,

	

xER .

Introduisons la fonction U (assimilable à une énergie potentielle), définie par

v2 a4
(1 .16)

	

U(v)= - 2 + 4

ainsi que la fonction E définie sur l'ensemble des fonctions C l par

(1 .17)

	

E(v)=2 +U(v) ;

E est "l'énergie totale ."
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Nous avons pour ce système l'équivalent du lemme 1.1, c'est-à-dire que le système
(1.15) est conservatif:

(1 .18)

	

dx (E(v))=0 .

Pour tracer les orbites du système, c'est-à-dire «y, y') ; E (v) = E }, il est commode
de tracer la courbe représentant les variations du potentiel U (voir figure 5) .

FIG . 5 . Orbites du système (1 .15) .

Il y a deux sortes d'orbites périodiques : de type pour une énergie totale négative et
de type pour une énergie totale positive. Il y a une orbite non périodique (à une
symétrie par rapport à l'origine près), de type, correspondant à une énergie nulle . Un
point représentatif situé sur cette orbite atteindra le point zéro sur une distance infinie .
L'analyse de ces orbites est résumée dans le lemme 1.3 .

LE IMI 1.3. Description des solutions du système différentiel . Le système (1 .15)
admet une infinité de solutions d 'énergie E donnée . Elles sont toutes égales, à une
translation et une symétrie près, à une fonction V E , paire, telle que

E
(1 .19)

	

dd (o)=o, U(VE(o))=E, vE(o)>i .

Les solutions de (1 .15) d'énergie nulle sont celles qui tendent vers 0 en + oc et - oc .
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De plus V ° est donnée explicitement par

(1 .20)

	

V° (

Remarque. H . Berestycki et P . L. Lions ont montré, dans [3], le même type de
résultat pour l'équation

- u"_g(u) .
Leur approche est différente, mais les hypothèses faites sur g permettent d'utiliser

la théorie des systèmes conservatifs, et d'assurer l'existence d'une orbite de type (1).
Démonstration du Lemme 1 .3 . Il ne nous reste qu'à établir l'expression (1.20) :
V ° est solution sur R + du problème de Cauchy :

-U"+U-U3=0,

	

JC> 0 ,

(1 .21)

	

v(0) _ ~,
v'(0) =0.

D'après (1 .17) nous avons sur R +

U4
- 0 .2

U'
w=- .

U

(1 .24)

(1 .26)

ALAIN BAMBERGER ET LAURENCE HALPERN

2/ e
x

2x
,

	

x_O,
1+e

V°(-x),

	

x__<0 .

La fonction w est solution sur R + du problème de Cauchy

W '=W2 -Z,
w(0) =0 .

Cette équation de Riccati se résout explicitement sous la forme

1 -e 2x
(1 .25)

	

w =

	

2x .1+e

Il suffit maintenant d'intégrer (1 .23) pour obtenir l'expression de V ° sur [0, + oo [ .
V ° est obtenue alors par symétrisation sur ] - oo, 0] .

	

D
Nous pouvons maintenant énoncer le théorème d'existence pour ~R .
THEOREME 1 .1 . Condition nécessaire et suffisante d'existence pour L . Une fonc-

tion u solution de l'équation différentielle (1 .15) sur Ifs + est solution du problème ~R si et
seulement si ses valeurs de Cauchy en 0 : U ° = v(0) et vo = v'(0) sont liées par la relation

4
U'2- U2 + U° =O0

	

0 2

Elle est alors donnée explicitement par

(1.27)

	

V(vo ,vô ; x)=V°(x+xo)
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où xo est donné par

(1 .28)

	

eXO= U°

	

O
2(1 + vo/vo

A un couple (vo, v') de solutions de (1 .26) sont associées quatre solutions de
YR : V(vo, v' ; X), V(vo , - v' ; x), - V(vo, v' ; x), et - V(vo , - v', x) .

Les deux premières sont obtenues à partir de V° par translation respectivement de
xo et -xo. Les deux autres sont ensuite obtenues par symétrie par rapport à l'axe des
x. La figure 6 représente les variations de la solution fondamentale V° en fonction de x.
La figure 7 représente les quatre solutions associées à un couple (vo, v') de nombres
positifs solution de (1 .26).

FIG. 6 . Représentation de V° sur R .

FIG . 7 . Solutions de eR associées à (vo , v'

	

(1,1/~2 ) .
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Le théorème 1.1 nous donne une relation entre vo et v', condition nécessaire et
suffisante pour que v soit solution de -9R . Pour compléter notre étude, nous devons
revenir au problème complexe .«,p.

1.2. Le problème &,- . L'étude de .9, nous conduira à une relation linéaire entre
u(0-) et u"(0-).Les conditions de transmission la transformeront en une relation
linéaire entre u(0,) et u'(0,).Le lemme 1.2 nous permettra d'en déduire une relation
entre vo et v', valeurs de Cauchy de la solution de l'équation différentielle réelle
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associée à ~~ . Nous aboutirons ainsi à un système de deux équations réelles à deux
inconnues vo et vô .

En effet, d'après (1 .1), u s'écrit

u=A + expix+A - exp--ix,

et la condition d'onde sortante élimine la composante exp ix .
Nous sommes maintenant en mesure d'écrire une caractérisation des solutions de

1.2.2. Détermination du système non linéaire reliant va et vo . Notons (S) le système
non linéaire liant v 0 et v :

i2

	

2v0 +v0 =a2
p,

4
(s)

U'2 - U2 +
v0
= 00

	

0

-ov >0
2

Nous avons alors le :
THÉORÈME 1.2. Condition nécessaire et suffisante d'existence pour le problème
Le problème I?1 «, p admet une solution u si et seulement si le système (S) admet une

solution (v0 , vs) . Elle est alors donnée par :

(1 .32)

(1 .33)

où u0 et vô sont liés par

1 v vô ; x),

	

x >_ 0,

-ioa) voexp-ix ;

	

x<0.

Démonstration . Soit u une solution de

	

D'après le lemme 1 .4, u'(0 _) et u(0_)
sont liés par :

u'(o_)+ iu(o_)=o .

Nous transformons cette relation à l'aide des conditions de transmission :

u'(o+)+iu(o+)=« .

D'autre part, d'après le lemme 1 .2, u s'écrit pour x >_ O :
z 0

u= v

4
U'2- U2 + UO =00

	

0 2

1.2.1. Le problème ~T. Il peut être résolu explicitement :
LEMME 1.4 . Toutes les solutions u de ~~ vérifient

(1 .29) u'+iu=0 tlx<_0,
(1 .30) u=uo exp-ix `dx50.
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L'équation (1 .33) se traduit alors par une relation entre z 0 , vo et vô :

Z
0
(v+~ iv0 = a .

Si nous exprimons que zo est un nombre complexe de module 1, il vient

(1 .34)

(1 .35)

Pour x positif, u s'écrit alors

u(x )= 1 ( vo-ivo )V(uo , UÔ ; x)ap

vô +vô=a2p

z o 1

où V est la solution du problème réel associé à (vo , vs), et, pour x négatif

u(x) =
1 (vô-ivo )vo exp(-ix) .
ap

Les considérations de parité sur v développées après le théorème 1 .1 permettent
enfin de supposer que vo est positif .

Réciproquement, si (v o , vô) est une solution de (S), la fonction u définie par (1 .32)
est solution de

Pour achever la démonstration de la proposition 1, il nous faut dénombrer les
solutions du système (S) de deux équations à deux inconnues . La figure 8 représente les
variations des fonctions

Y2 + x2= a2p,
X4y2-X2+0

FIG. 8. Solutions du système (S) pour différentes valeurs du paramètre q= Va 2p .
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Les points d'intersection des deux courbes représentatives donnent les solutions du
système (S) .

Nous pouvons calculer explicitement les solutions du système (S) en fonction du
paramètre p a 2 .

Notons

(1 .36)

(1 .37)

si pa 2 __<2 .

l
Vo(p~=~ll-I

I 1-p2	 ) 1/2 )1/2

a2 lia
yô~P~ - (1-P2 ) V0(p)

a=1
p1 = 0.06
P2' 9°

P

Reu~(a,p)

x

a=1
p 1 =0.06
P2 19°

Reu + (a,p)

Xw,P,

FIG . 9 . Représentation des parties réelles de u + et u - .
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FIG . 10 . Représentation de la partie réelle de u*, solution du problème linéaire .

Nous avons alors le :
LEMME 1 .5 . Le système (S) admet, suivant les valeurs de pa 2 , zéro, une ou deux

solutions :

0 < pa2 < 2,

	

2 solutions : (V0 (p), V0 (p)) et (V0 (p), - V0(p)),

pa2 =2,

	

1 solution : (V 0),
p a 2 > 2,

	

0 solution .

L'expression des solutions de

	

donnée au théorème 1 .2 permet de différencier
les deux solutions associées au même paramètre a2p par le signe de leurs parties réelles .

Nous notons u + (a, p) la solution de partie réelle positive et u -(a, p) la solution de
partie réelle négative, et nous représentons leurs parties réelles pour a =1 et différentes
valeurs de p (voir figures 9 et 10) .

Remarquons d'abord que la valeur de 1a fonction pour x négatif varie peu lorsque
p est proche de zéro ou de deux.

De même, pour x positif, la partie réelle de u - dépend peu de p, et lorsque p tend
vers 0, u - ( a, p) tend vers la solution u * du problème linéaire. Par contre, lorsque p
devient petit, u + (a, p) admet un maximum pour x positif qui croit en 1/ %/ . La
fonction u - semble donc être la "bonne" solution, et u + la solution "parasite."

L'étude de fait ainsi apparaître qu'une non-linéarité, même faible, peut modi-
fier totalement la nature de l'équation stationnaire . Nous allons maintenent examiner le
problème dérivant directement de (1), en réintroduisant le terme non autonome xu .
Nous verrons que l'effet de seuil disparais, mais qu'en revanche le nombre de solutions
est croissant avec p .

2. Étude du problème 2 a, p . Comme pour le problème a, p , nous allons écrire un
système de deux relations à deux inconnues, reliant les valeurs en zéro d'une fonction v
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et de sa dérivée, où v est solution de l'équation réelle associée à

(2.7)

	

-v"+xv-v3=0 .

La première relation sera obtenue comme précédemment par l'intégration explicite
de et les conditions de transmission . Par contre la caractérisation des solutions de
(2.7) est beaucoup plus complexe, car il nous semble impossible de résoudre explicite-
ment cette équation . Nous ferons intervenir un paramètre x 0 , et pour chaque valeur de
xo nous définissons une fonctionnelle sur [x 0 , + oo [ . Nous caractérisons ainsi les
solutions de (2.7) qui tendent vers zéro à l'infini comme les solutions coincidant sur
[x0 , + oo [ avec le minimum de cette fonctionnelle pour un certain x 0 . Nous ob-
tiendrons ainsi la deuxième relation entre v o et vô, par l'intermédiaire du paramètre x 0 .

2 .1. Etude mathématique. Nous commençons par caractériser les solutions du
problème linéaire

	

.

2.1.1. Etude du problème .92~ . Nous pouvons exprimer la solution u de ~~ à partir
de la fonction d'Airy Ai définie dans [1] par :

z"-xz=0, xER,
Z(o)=3-2/3/r(2/3),
z'(0 ) _ - 3 -1/3/F(1/3) .

LEMME 2.1 . Toutes les solutions de ~~ vérifient

(2.9)

	

dv<0, u(x)=AAi(xe2""3),

	

XE C .

En x =0, u et u' sont liés par la relation

(2 .10)

	

u'(0_)+Ke2i'"3u(0_)=0

où K= - Ai'(0)/Ai(0) .
Ce lemme est une conséquence immédiate des propriétés de la fonction d'Airy

données dans [1] .
Nous introduisons maintenant le problème réel :

+ -v'+xv-v3=0,

	

xER,
QR xv -* 0,

	

x-~ + oo ,

et nous cherchons à décrire l'ensemble de ses solutions . Pour celà nous notons que,
pour x fixé, l'application :

v-~xv-v3
est le gradient d'une fonction convexe sur

(2 .12)

Pour tout xo positif, nous introduisons un problème aux limites sur ]x 0, + oo [ tel
que, pour tout x, la solution v (x) appartienne à Ix . Nous montrerons que toute
solution de ~R est solution d'un unique problème de ce type, et nous en caractériserons
les solutions comme minima d'une fonctionnelle convexe .

Nous la prolongerons ensuite sur [0, x 0] et nous aurons toutes les solutions de R ,
paramétrisées par x0 .



2.1.2. Comportement asymptotique des solutions de IR. Pour tout x o positif,
nous introduisons le problème

(2.13)

Avant de décrire ses solutions, nous montrons qu'elles sont les restrictions à
[xo , + oo[ des solutions de 24 (voir figure 11) .

(2.1s)

Soit
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2

	

2
lvii =ivii+iiVii .

FIG . 11 . Illustration du lemme 2 .2 .

LEwu 2.2. Soit v une solution de 24 . Alors il existe un x o positif tel que la
restriction de v à [x 0 , + oo[ soit solution de

Démonstration . Comme dans 1, si v est solution de 24,R , un(x) tend vers 0 pour
tout n lorsque x tend vers + oo . Puisque v est '°°, il existe alors un x o positif tel que
v2(x o ) = x0/3 et, pour tout x supérieur à x0 , u 2(x)<_ x/3 . Alors v est solution de xo.

Le lien entre 24 et ~xo ainsi établi, nous étudions le problème

	

et nous
introduisons un problème de minimisation.

Notons :

(2.14)

	

V(xo)={vEHI(]xo ,+oo[), I vEL2 (]xo ,+oo[)} .

V(x 0 ) est un espace de Hilbert pour la norme définie par

1 + 0O v'2 x x + 1 +00
xv2(2.16)

	

/ 0(u)=f

	

x 2

	

( ) d 2

	

(x) -
xo

	

xo

une fonctionnelle définie sur V(x o ) .
Nous définissons un convexe fermé de V(x0 ) par

(2.17) K(xo)={vEV(xo ) ; v(xo )=~3 ; u(x)El,
l

	

- Ï

et un problème de minimisation avec contraintes par :

(2.18)

	

.fil xo : inf / 0(v) .
UE V(x0 )
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L'introduction de ce problème est justifiée par le
LEMME 2.3. Existence et unicité pour le problème axa. Le problème f2 admet une

solution unique C'est une fonction positive, décroissante, convexe . De plus c'est la
solution du problème de minimisation JI xo.

Démonstration . La fonctionnelle ~xo est strictement convexe, différentiable, coer-
cive, sur la convexe fermé K(xo) . Un théorème usuel d'optimisation prouve qu'elle
admet un minimum unique sur K(xo), caractérisé par

`dwEK(xo ), /xo(o)(w-v)>_0,

soit ici
+

(2.19)

	

`dwEK(xo),
f

xp

D'autre part, l v j est dans K(x0) et /0(v)=/0(lvl) . L'unicité assure alors la
positivité de v .

Posons maintenant

(2 .20)

	

Sao= xE[xo,+oo[ ; v(x)=,/ x
v3

(2 .21)

	

SZ += xE]xo ,+oo[ ; v(x)< 3
Si p appartient à 9+( ]x 0 , + oo[), et si e est un nombre positif assez petit :

w=v-&pEK(xo ) .

Appliquons (2.19) à w

bxESZ + , -v"+xv-v3=0,
dxESl0 , - v"+xv-v3<_0 .

Nous en déduisons que v" est positive, et donc que v' est croissante, sur [x0 , + oo [ .
Or v' tend vers 0 à l'infini. Donc v' est négative, et v est décroissante sur }x0 , + oo [ .
Par suite o se réduit à x 0 , et

(2.22)

	

VxE]x0 , +00 [, -v"+xv-v3=0 .

Ainsi v est dans H 2 (]xo , + oo [), et donc dans 1(]x 0 , + oo [) ; v est °° sur
]x0 , + oo [ et par continuité (2 .22) est valable aussi en x 0. La caractérisation (2.19)
montre enfin que toute solution de~ xo est solution de

Notons maintenant, pour tout x0 :

(2 .23)

	

v(xo ,y ; x) une solution 9°° du problème de Cauchy,

-v"+xv-v 3 =0 sur ]x0 , + oo[,

U(x ° ~= V
I 3 '

(2 .24)

	

v*(xo ; x) la solution du problème de minimisation .~XO ,

(2 .25)

	

y*(xo) sa dérivée en x o .

(-U
"+

XU-U3)(W-U)>_O
_
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Nous pouvons énoncer le
THÉORÈ1 il 2.1. Condition nécessaire d'existence pour le problème ~R . Soit v une

solution du problème ~R . Il existe un x ° positif tel que

v=v*(x o ; •) ou v= -v*(x o ; •) sur ]x o , + oo[ .

Ce théorème est une conséquence des deux lemmes précédents .
Remarquons que y * (x o) n'est pas donné explicitement en fonction de xo . Par la

suite, nous calculerons u * (x o ; •) numériquement, et nous aurons besoin de certaines
propriétés de y * (x o) que nous établissons maintenant.

2.1 .3. Propriétés de y * (x o )-Comportement asymptotique lorsque x tend vers
+ œ. Toutes les démonstrations seront basées sur une estimation à priori .

LEMME 2.4 . Égalité d'énergie . Si une fonction v est solution sur ] y, z [ de l 'équation
différentielle (2.7), on a sur ] y, z[ la relation :

4
2 .26

	

d
vi 2 -xv 2 + v =-v 2 .)

	

dx

	

2

La démonstration est analogue à celle du lemme 1 .1 .
Nous établissons maintenant deux propriétés de v * (x o ; • ) .
LEMME 2.5 .
i) Encadrement de la solution v*(x o ; •) du problème aux limites par des solutions

v (x o , y ; • ) de problèmes de Cauchy .
.Si y1 < y*(xo ) il existe un x 1 > x o , tel que v(x o , y 1 ; x 1)= 0 .
.Si y1 > y * (xo) il existe un x 2 > xo, tel que v'(x o, y2 ; x2) = 0.
ii) Encadrement de y *(x o ) en fonction de xo . Pour tout x o > 0 on a l 'encadrement

2.27

	

- 1 x + 1x-1~2 < * x < - x° -)

	

0 4 0

	

-Y ~ °)-

	

3

	

2

En particulier y * (x o) tend vers - oo lorsque x o tend vers + oo .
La figure 12 illustre la partie (i) du lemme 2.5 .

FIG . 12 . Représentation de v (x 0 , y1 ; • ), v* (x o ; • ), v (x 0 , y2 ; •) pour yl < y * (xo) < y2

Démonstration . i) Nous établissons le premier résultat ; le deuxième se démontre de
même. Soit donc y1 < y*(xo), et raisonnons par l'absurde : supposons que v(x o , y1 ; x)
ne s'annule jamais sur ] x o , + oo [ . D'après l'unicité de la solution du problème ~ xo, les
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deux fonctions v * (x ° ; •) et v (x °, y 1 ; •) prennent la même valeur en un point x' tel que
x' > x ° (voir figure 13)

v* (x° ; x')=v(x°,y1 ; x ' ) .

Or

w"(x)=x(v*(x° ; x)-v(x°,y1 ; x)) -- (v* (x° ; . ))3-'(v( .x°,yt, x)) 3 ) .

w" est positive sur ]x0, x'[, et w'(x °) = y *(x0)_y l > 0. w' est alors strictement positive
sur }x0, x'[, et ne peut s'annuler en x".

ii) La majoration résulte du lemme 2.4. En effet, la fonction

x-~ (v*'(x o ; x))2-x(v*(x°, x)) 2+ 2(v* ( x°, x))4

est décroissante et tend vers 0 à l'infini . Elle est donc positive en x ° :

Sx 2
0 .

18
La minoration provient de la remarque suivante : la fonction v définie sur ]x 0 , + oo [

par

v(x)= x0 4 exp 2xô 2x-l~4eXp - 2 x32
3

	

3

est une sous-solution. Sa dérivée en x o est donc inférieure à y*(x o ) .
Nous pouvons de plus préciser le comportement asymptotique des fonctions

v*(xo ; •) .
Effectuons un changement d'échelle et une translation ; posons pour celà :

U*~x o ; x)=/xowXO(y\ ,
(2.2g)

y=~xo(x-x0)
.

Posons

ALAIN BAMBERGER ET LAURENCE HALPERN

Fic. 13

W ( JC ) =U*( .xp ; JC ) - U( JCp,Yl + x ) •

x°<x " <x', w'( x ") =0

w s'annule en x° et x', sa dérivée s'annule donc en un point x" tel que :
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wxo est une fonction définie sur [0, + oo[ , solution du problème aux limites

- w "+ l+y )ww=0-- 3 ,
X3/2

0(2.29)
w(0)=~,

	

w(x)-0 quandx-+oo .

De plus la pente de wxo en 0 est déterminée :

Y*(x )
(2 .30)

	

w(0)=

Nous avons tracé ci-dessous les représentations de v * (x o ; •) sur [x 0 , x 0 + A] et de
wxo sur [0,A] pour différentes valeurs de x o . Il apparaît nettement sur la fig . 14 que la
pente de v * en x0 , y *(x o ) décroît et tend vers - oc lorsque xo croit et tend vers + oc .
La figure 15 semble montrer que la famille w xo est croissante sur [0, + oo[ et converge
uniformément lorsque xo tend vers + oc . C'est ce résultat que nous allons établir .

FIG . 14 . Représentation de v* (x o ; • ) sur [x 0 , + oo [ pour différentes valeurs de x0 .

1/

x o

3

x croissants

>V

v° xo (-t - xo)

FIG . 15 . Représentation de wxo sur [0, + oo[ pour différentes valeurs de x o .
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LEMME 2.6 . Comportement asymptotique de v * (x o ; •) lorsque xo tend vers l'infini.
La famille de fonctions w 0 est croissante avec x o et converge uniformément vers
V(4, - 3 2 ; • ) lorsque x o tend vers + oo . En particulier

i) la fonction x o y *(x 0 )/x0 est croissante et tend vers - 3 2 lorsque x o tend vers
+ oo ;

ii) sur ]xo , + oo[, v*(x o ; x)-X /x o er x°cx-x°~, où X est une constante .
Rappelons que V(1/V, - 41Ï; • ) est définie en (1.27) comme la solution du

problème :
-v"+v-v3=o,

	

x>O,

donc,

v'(0)=-.

Démonstration . 1. Montrons d'abord que la famille des fonctions w 0 est croissante
avec xo . Soient donc deux réels positifs x o et x 1 . Nous allons établir l'inégalité :

1
	 v* xo ;

x0+	 y
>_	v* x1 ; x1 +

y

~xo

	

~xo

	

~x1

	

Ix i )

µ

(2 .31)

	

b'y >_ 0,

Notons

(2 .32)

et, pour x >x 1 ,xl ,

(2.33)

		

v(x)=µv*(xo ; xo+µ(x-x1))

µ est supérieur à 1, et la fonction v vérifie

o(xl)=v*(xl ; x l ),

O<p(JC)<y

	

,70,X 1 ,

-U" + .xU-U3= (1-~d3)(JG-,X1)U(JC)>O,

	

,7C>,x

v est donc une sur-solution pour le problème de minimisation

	

et

Vx>x 1 ,

x1
Xo

1 •

v(x) >_v*(xl ; x ) ;

V y >_ o, v x1 +	 >_ v* x1 ; x1 +
/x1

	

U x 1

L'inégalité (2.31) est établie.
2. Montrons maintenant que, pour tout x o , la fonction w 0 est bornée par

V(1/,~- 3 i ; • ) . Il suffit pour celà de prouver que la fonction p définie sur [x 0 ,
+ oo [ par



est une sous-solution pour le problème de minimisation ~2 xo, ce qui se vérifie immédia-
tement .

La famille des wxo est une famille croissante de fonctions monotones, uniformé-
ment majorée sur [0, + oo [ ; elle converge donc presque partout . Pour assurer la
convergence uniforme, il suffit de vérifier que w 0(x) est uniformément bornée sur
[0, + oo [ . Or :

y *(xo)dx>_0, 0>= w' (x)>w' (0)_X0

	

X0 xo

et d'après le lemme 2 .4,

où X est déterminé par

d'où

dY >- 0 ' V

	

'
1 -

	

' Y
1 5

	

< Xe
-y

-

	

~ 3 2

	

'

et puisque v est un majorant de w xo

`dxo > o, dy> o,
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* x

	

(i+
	 ° >-

1

	

4
X0

	

xo 3~ 2 )

La famille wxo converge donc uniformément vers une fonction continue w .
3. Il nous reste à prouver que la limite de wxo est V(1/V, - 3 2 ; • ) . Rappelons

d'abord que, d'après le théorème 1 .1, v est donnée explicitément par

VI
1 1 5

3 2
ey+x

. y)-2~
'

	

1+e ~y + x>

C pour xo assez grand .

wx o(y) _<Xye -y -_< C .

Nous avons ainsi tous les éléments pour passer à la limite dans l'équation

-w"+ l+	 Y
x3~2 w-w3 =0,

	

y>_0.
0

La limite w de wxo vérifie donc

--w"+w-w3=0,

w(0) = 1 ,

	

w(Y)0quandY --~ + o0

et w est bien égale à V(1/', 4/ ;2 • ) . En particulier la fonction xo -~ y *(x o )/xo tend
vers - 3 i lorsque x o tend vers + oc .
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(2.34)

(2.3s)

(2 .39)

La majoration ii) du lemme provient de la majoration établie plus haut

Vxo > 0, dy ->-0,

Ces propriétés asymptotiques étant établies, nous poursuivons notre étude en
prolongeant les fonctions v*(x0 ; •) sur [O, x 0 ] .

2.1 .4. Description des solutions de I2R . Nous définissons un problème de Cauchy
sur [0, x 0] (en renversant le sens des x), par :

Les estimations ne sont pas uniformes en x 0, car p(x 0 ) et (x0) tendent vers
l'infini avec x o .

Démonstration . Les estimations seront établies en deux étapes. Nous montrerons
d'abord que la suite des extrema locaux est croissante, puis nous majorerons le dernier
extremum local, c'est-à dire celui qui est atteint le plus près de x o .

Rappelons d'abord l'estimation d'énergie :
I

	

4

(2 .40)

	

d ' d z -xv 2 + 2 )=-v 2 sur [O,x o ] .
1

La fonction

(2.41)

	

Vx E [O,xo],

ALAIN BAMBERGER ET LAURENCE HALPERN

U~~xo~-Y*(xo~ .

L'existence locale d'une solution à ce problème provient simplement des théorèmes
usuels d'équations différentielles . L'existence globale sera assurée par des estimations à
pnon.

LEMME 2.7 . On a pour une solution y de (2.34), (2.35) les estimations à priori

(2 .36)

	

liv ilLœao,x o D =< 9p(x0 )

(2.37)

	

il d ~~r.°°c[o, x o ]) ~ p (x0)

où qp(x0) et ~y(x o) sont données par :

(2.38)

	

qp2 (x0)=x0 + xô+2 y*2(xo)- 18 ))

x--~U'2-xU2+

w 0(y) <Xe y .

-U"+xU-U3=0,

	

0_<x-x 0 ,

~2 (xo)=2xoq~ 2 (xo)+y* Z(xo)- 18 .

U4

2

x o à

1/2

est décroissante . Puisque y est le prolongement de U *(xo, •) elle est égale en
(y * (x o ))2 - 5x/18ô

	

qui est positif, et donc

4

	

2

U'2 - xU2 +
U

> *2 x

	

5x0 .
2 Y

	

o) 18



En particulier, en un point où la dérivée s'annule, nous obtenons :

(2.42)

	

b'xE[O,xo ], a'(x)=0='v2>_2x .

Montrons le résultat suivant : si deux extrema locaux successifs sont atteints en x 1 et
x2 , 0 < x 1 <x 2 <x0 , alors Iv(x1)I < I v(x2)I.

Nous raisonnerons par l'absurde : soient x 1 et x 2 deux points tels que

o<x,<x2<xo,

	

Iv(xi )I>v(x 2)I ._I
Nous sommes par exemple dans le cas de la figure 16.
Par commodité, nous noterons

U1-U(x 1 ),

	

U2=v(x2) .

Nous intégrons l'égalité d'énergie (2 .40) entre x 1 et x 2 . Puisque y' s'annule en x 1
et x 2 , nous avons

Par hypothèse, nous pouvons majorer y sur [x1 , x 2 ] par vi. Après simplification,
nous obtenons :

Mais d'autre part, d'après (2.42),
2

	

2U1+v2
>v 2 >22

	

2x- _-
ce qui apporte une contradiction .

Le cas où un extremum local est atteint en zéro se traite de même .
Il nous reste à établir les estimations sur l'extremum le plus proche de x0 . Comme

pour la démonstration précédente, deux situations peuvent se présenter : l'extremum est
atteint, soit en 0, soit en x 1 > 0 (voir figure 17) .

Nous traitons le premier cas, le deuxième se résout de même . Nous intégrons
l'égalité d'énergie entre 0 et x 0 :

4

	

2 x
U' 2+ v0 - y* 2 (x0) - x0 = w2 (x) dx .2

	

18

	

0

Nous majorons y 2 sur [0, x 0 ] par vô et nous obtenons

4

	

2v0
x U2

	

*2 x

	

5x0 C
02 - 0 o - Y ( o) 18 -

ce qui n'est réalisé que si

Sx 22

	

i

	

*z

	

ovo _xo +(xo + y (xo)- 18

ce qui constitue l'estimation (2.36) .
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4

	

4U

	

U- x1U i + 1

	

- x2U2+ 2 = JX2y 2(x)dx .2

	

2

U1	-~- v 2
2 ~x 2 .

2'

xi
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Premier cas

FIG. 16

FiG . 17

4

	

2

UO <? i (*x0)- 5x0 + x 2 x-)18

	

0~ ( o)2

V2 x

Pour établir l'estimation (2.37), il suffit de remarquer que
4

	

4U
VxE [0,x 0 ], 0<U'2- xv 2 + y <U~ + 0

2

	

2

Deuxième cas

Nous avons ainsi
2

d x E 0 x o ], Ui 2 < 2x 2(x o )+ *2(x o )_ 5x0

	

2 x_o~

	

Y

	

18
Nous avons ainsi établi les estimations L°° sur u et u' .
Le lemme 2 .7 nous permet donc de prolonger v * (x 0 ; •) sur toute la droite R + . En

particulier, nous pouvons définir sa valeur en zéro ainsi que celle de sa dérivée, et donc
une application de R + dans R 2 par

(2.43)

	

~(x 0 )= U* (xo ; 0), dx ( xo ; 0)

Nous noterons ? l'image de R + par ~ :

(2.44)

	

{(vo ,vô)E1~ 2 , 3x o El~ + , ( vo,vô)=~(xo)} •

Les solutions de A sont les solutions de l'équation différentielle dont les valeurs
initiales appartiennent à ~ .

THÉORÈME 2.2. Caractérisation des solutions de ~R . L'ensemble des solutions de
~R est 1 'ensemble des U*(x 0 ; • ) et - v*(x0 ; •) lorsque x 0 décrit R + .



et Q
Il ne nous reste plus qu'à relier les caractérisations des solutions des problèmes
R
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2.1 .5. Le système d'équations non linéaires vérifié par v o et vô. Comme pour le
problème nous pouvons établir une équivalence entre les problèmes réel et
complexe sur R + :

LEMME 2.8 . Equivalence entre ~~ et 94 . La fonction u à valeurs complexes est
solution de ~~ si et seulement si il existe un nombre complexe z o et une fonction réelle v
tels que

(2.45)

	

u = zo v,

	

( zo =1,

	

v solution de ~R .

La démonstration est pratiquement la même que dans le lemme 1.2 . Ce qui tient
lieu ici d'énergie est la fonction

x-*Iu'I2-xIuI2 + 2 IuI
4

qui est décroissante, ce qui permet d'affirmer que u' tend vers zéro lorsque x tend vers
+00

Notons E«, p 1a famille d'ellipses définie par :

(2.46)

	

E«,p= (X Y)E R 2, (y- k x)2+ 3 k 2X2 - a 2p= 0
~

	

2

	

4
où k est le réel défini dans le lemme 2.1 .

Nous pouvons maintenant décrire explicitement les solutions de
PROPOSITION 2.1 . Caractérisation des solutions de Le problème «,p admet

une solution u si et seulement si il existe (v o , vô) appartenant à .9'r1 E« , . Elle s'écrit
alors :

(2.47)

où xo est tel que

(2 .48)

	

vo =v*(xo ; 0),

Démonstration . Soit u une solution de

	

D'après le lemme 2.8, u peut s'ex-
primer sur R + à partir des solutions de ~R , et donc

(2 .49)

	

3x0ER, 3z0 EC, u= zo v*(x o ; •) ,

	

~z o f=1 .

Nous utilisons maintenant la caractérisation des solutions de

	

donnée par le
lemme 2.1, et les conditions de transmission

u'(0_) +ke 2 ' ' 3 u(0_) = 0,
u(0_) = u(0 + ),

u'(o-) = u'(o+) -a.

(i%+ke_2i13vo)v*(xo ; • ),

	

x >
0,

ap

1 vo( v' + ke 2i/3y ) Ai(xe 2i/3)

	

x < 0o

	

o

	

~

	

_«p

	

A1(0)

d .vo = dx v*xo, O) .



122

(2 .50)

(2.s1)

Ce système se traduit par

Notons
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ZO
p dx

Cl( dv (x ; 0) +ke 2i~/3v*(x ; 0) = aoo .

vo =v*(x o ; 0),

	

vô=
d
v (xo ; 0) .x

La relation (2.50) se réécrit sous la forme

v' + ke 2 i /3 vo 2 = a 2p

zo =
1

( U ' + ke -2l/3v) .o

	

oap

(vo, vô) appartient donc à 5"rl Ea, p , et u est donnée par l'expression (2.47) .
Réciproquement si (v o , vô) appartient à 5°n Ea, p , il leur correspond par -1 un

réel xo positif tel que (v o , v)= (x0), et la fonction u définie par (2 .47) est solution de
a,p •

Nous sommes donc ramenés à étudier le nombre de solutions du problème

(2 .50)

	

(vo, oo ) E.9"n E

vi+1 - 2v i + vi-1
h

x i =xo +Eih,

v i ^'v*(x o ; x i ) ;

a,p

en fonction du paramètre a2p . C'est un système non linéaire de deux relations à deux
inconnues ; l'une, Ea , p , est connue exactement, et nous approcherons numérique-
ment .

2.2 . Etude numérique du système non linéaire reliant vo et vô. Nous commençons
par étudier l'approximation numérique de v*(xo ; • ) . Un pas h de discrétisation étant
donné, nous approchons v*(xo ; • ) par vh(xo ; • ) définie de la manière suivante :

Nous discrétisons l'équation différentielle - v" + xv - v3 = 0 sur [0, + x4 par un
schéma aux différences finies centré .

+x iv i - v3=0,

e prend la valeur + 1 ou -1 selon qu'on se place sur [0,x 0 ] ou [x 0 , + oc] .
1 . D'après le lemme 2 .5, nous avons un encadrement de y * (x o ) et de v * (x o ; • ) sur

[x0, + oo [ . Ces propriétés nous permettent de calculer une approximation y(x0) de
y *(x)o avec toute la précision souhaitée, et vh (x o ; • ) sur [x 0 , xo + A [ à l'aide du
schéma (2.51) .

2. Nous calculons vh(xo ; • ) sur [0, xo] comme solution de l'équation (2 .51),
associée aux valeurs de Cauchy (v * (x o ; x0 ), yh (x o )) .

3. Nous traçons les courbes représentant vh(x o ; • ) pour différentes valeurs du
paramètre x o (voir figure 18) .
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1

1

x0 =1. vh(x0 ; • ) est strictement décroissante sur [0, + oc [ .

A v*(X0, x)
X0 = 1 .6

l~~ (x0 ; X)

x 0 =1 .6 . Naissance d 'une oscillation .

X0 1

X

X0=7

x0 = 7 . vh (x0 ; •) a 2 oscillations .

FIG . 18 . Représentation de la solution approchée de ~R pour différentes valeurs de x0 , pour un pas de
discrétisation h = ~~ .

> ,t
1 x 0

>X
X0
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i 'i (x0 ; 'x)

	

.x~~ = 15

f

v
`~h - {( v(xo ; 0),

	

h
\x0 ;dx

X 0

x 0 =15. Le nombre d 'oscillations croit avec x 0 .

FIG. 18 (continuel).

Li
FIG. 19 . Représentation de l'approximation .9h de .5°.

Tant que x0 reste petit, vh est décroissante sur [0, x 0 ] . Pour une valeur de x0

proche de 1, il apparaît une oscillation . Puis, lorsque x 0 grandit, le nombre d'oscilla-
tions de vh (x 0 ; • ) sur [0, x0 ] grandit. Pour x >_ x0 , vh (x 0 ; •) est décroissante et tend
vers zéro de plus en plus rapidement lorsque x 0 croit. Tout ceci correspond bien aux
résultats démontrés précédemment.

Nous représentons ci-dessous l'image par l'application 'h du segment [0,20] .

0)) ; x o E [0, 20] }
Ï

J-3
>x

0)

h(xo) a été calculé pour des valeurs de x0 variant de 0 à 20 par pas de ~ôo (voir figure
19) .
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La fonction I sh (x o ) I croît : ~h est une spirale qui se déroule ; celà est du au fait que
lorsque x 0 est grand, vh(x o ; •) oscille de plus en plus sur [0, x 0 } .

Nous n 'avons pas d 'estimation d 'erreur sur 9"h' mais nous avons fait le calcul
numérique pour différentes valeurs du pas de discrétisation : h = 1~, h = Spp, h = i : les
courbes sont strictement superposables : `"h semble donc constituer, pour x o variant entre
0 et 20, une bonne approximation de 9" .

Par ailleurs nous n'avons pas pu établir le comportement asymptotique de (xo)
la nécessité de prendre un pas de plus en plus petit augmente notablement le volume
des calculs et en limite le fiabilité : nous ne savons donc pas s'il existe un cycle limite ou
si, au contraire, I h (x o ) I tend vers l'infini avec x0 .

Revenons maintenant au nombre de solutions du problème Il est donné,
rappelons le, par le nombre d'éléments (vo , vô) dans l'intersection de et Ea, p . Dans
la mesure où Uh est une approximation de 9", il est donné par le nombre d'éléments
dans `5"h nE a, p . Nous avons représenté ci-dessous `"h et les ellipses Ea, p pour des
valeurs du paramètre a2p croissant entre 1 et 5 (voir figure 20) .

pi
P2

0)

FIG . 20. Représentation de .9'h n Ea,n pour a2p =1, 3, 5 .

Lorsque a2p varie, il y a toujours au moins un élément dans `'h nEa,p . Plus a2p
est grand, plus il y a d'éléments dans l'intersection . Par contre nous ne savons pas s'il
existe une valeur limite de a2p au-dessus de laquelle `92h n E a, p contient une infinité
d'éléments .

Rappelons que nous avons pris toutes les précautions pour que `5h soit une
"bonne" approximation de 9' . Dans cette mesure, il semble que :

Le problème °fia, p admet toujours au moins une solution . Lorsque pat grandit, le
nombre des solutions croit comme le montre la figure 14 . L'ensemble des solutions peut
être paramétré par (x} . 11i i,et plus x . est grand, plus la solution associée oscille .
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SHOCK LAYERS IN PERTURBED SYSTEMS
RELATED TO STEADY CONSERVATION LAWS*
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Abstract. Singular perturbation techniques are used to determine the locations of shock layers in steady
solutions of a hyperbolic system to which viscosity terms have been added.

Key words, shock layer, jump condition, singular perturbation analysis
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1. Introduction. As a prelude to a study of the existence, asymptotic behavior and
stability of solutions of initial-boundary value problems for the weakly coupled system

(IBVP) u. + diag { f ( u. ), fn ( U. ) ) U.x eU.xx,

we consider the associated steady boundary value problem

(BVP)
eU.xx=diag( fl(u.),...,f,,(u.)}U.x, a<x<b,

.u(a,e) =4, .u(b,e) .B,

as the positive perturbation parameter e tends to zero. The steady problem is of course
much simpler than the time,dependent one, and so it is a natural starting point for the
investigation of the structure of solutions of (IBVP), some of which evolve as c
into solutions of (BVP). Despite its relative simplicity, though, (BVP) has solutions with
interesting features, including boundary layers and interior (shock) layers. Shock layers
connect different constant equilibrium states, and in a multicomponent system like
(BVP), the location of such a layer in one component usually depends on the occur-
rence or nonoccurrence of interior layers in the other components. Thus the theory for
(BVP) is inherently more complicated than the well-known theory for its scalar counter-
parts (Sx)eUxx=f(U)Ux or(S2)eUxx=f(x,u)ux+ g(x,u).

Before turning to our treatment of (BVP), let us review briefly some of the
previous work on (BVP) and (IBVP). The scalar theory for ($1) and (S_) is now fairly
well in hand; see, for example, [16, Chap. 5], [9, Chap. 2] and [4]. Using some of these
results, O’Malley [17], [18], O’Donnell [13], [15] and the author [6], [7] have studied the
Dirichlet problem for the more general steady system eU.xx F(x, u.)U.x+ g(x, u.), where
either F(x,u.)=diag{f(x,u.),.. ",fn(X,U.)} or F is an arbitrary (n xn)-’matrix-valued
function. In the present treatment of (BVP) we make extensive use of many of O’Don-
nell’s ideas, and we generalize his results on the occurrence of shock layers by allowing
shocks in different components at the same point. Turning to the time-dependent
problem (IBVP), we note that the scalar version has been studied by a number of
authors; cf. for example [9, Chap. 4], [20, Part I], [3] and [8] and the references
contained therein. Less is known about the general problem (IBVP), but some repre-
sentative results can be found in [10], [19, Part III], [11] and [61.
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2. The componentwise theory. The work of O’Donnell [14], [15] (cf. also [1,
Chap. 7]) is concerned, in part, with the Dirichlet problem on (a, b)

(DP)
,U;t---fi(X,Ul," Un)U + gi(X,Ul," ", Un)

ui(a,e)=Ai, ui(b,e)=Bi
where ’=d/dx and i= 1,..., n. Under the principal assumption that the reduced
system f(x,u.)u+gi(x,u.)=O has solutions ui=U(x) that satisfy this system in the
strong sense that

(2.1) f,(x,ul,..., Ui(x),..- un)Ui’(x)-Fgi(x,ul,"" U/(x),""", Un)=0
for all values of uj (j 4: i) in some domain of interest, he is able to prove the existence
of solutions of (DP) as e 0 which are close to certain reduced solutions .U in most of
[a,b]. In neighborhoods of the boundaries and/or interior points, however, such
reduced solutions often must be supplemented with layer terms that allow either a
boundary condition to be satisfied (boundary layer term) or a smooth transition from
one reduced solution to another to take place (shock layer term).

To be more precise, let us look first for solutions of (DP) that exhibit boundary
layer behavior at x= a; analogous results for boundary layer behavior at x= b then
follow by making the change of variable x b + a-x. We begin with the assumption
that the reduced problem

ui(b)--Bi,

has a solution ,U=(UI(x),..., Un(x)) of class C(2([a,b]), and we define the regions for
i=l,...,n

i= ( Ui" [u,- U(x) l< di(x) )
where each di is a smooth positive function,such that d(x)=lA U(a)l+6 for x in
[a,a+8/2] and di(x)=8 for x in [a+8,b], with 8 a small positive constant. Each of
the regions i is thus a 8-tube around U(x) that widens near x=a to include a
boundary layer of size IAi-U(a)l+8, since, in general, U(a)4:A. It is within the
region =1-I .@ that we look for a solution of (DP) by imposing further conditionsi=1

on fi(x,u.) in [a,b].. The second assumption is that .U additionally satisfies the
reduced system in the stronger sense that (2.1) obtains for all uj (j4: i) in .. This
assumption allows us to decouple the system, and thereby apply the extensive scalar
theory to the problem (DP) componentwise. Finally we require .U to be attractive in the
sense that there exist positive constants k such that for x in [a, b]

f,(x,u,..., U(x),. ., Un)<=
for all u. (j 4: i) in .. In particular, we must have fi (x, _U(x)) =< ki < 0 in a, b ], and
so these inequalities imply that .U is necessarily asymptotically stable in the linear
approximation. To see this, note that the perturbation wi=u-U satisfies approxi-
mately the equation ew[’=fi(x U.+ w.)w[ and the terminal condition wi(b,e)=O since
U,. is a solution of the reduced problem; hence, wi(x,e)=(9(IA- U(a)lexp[-ki(x-
a)/e]) for x in [a,b] as e0. Then under these assumptions it follows from a
continuity argument that the problem (DP) has a solution .u= (Ul,..., Un)(X, e) as e 0
which is close to (U(x),-.., U (x)) in a + 8, b ], provided the "boundary layer jumps"
IA U,.(a)l are sufficiently small. Estimates for the maximum allowable sizes of these
jumps are given by O’Donnell [13] (cf. also [1, Chap. 7]) in the form of the integral
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conditions: if Ui(a)4=A then

(Ui(a)-Ai) f.(a) fi(a’Al" " Ai-l’S’Ai+l" " An)ds>O

for all values of between U/(a) and Ai, 14: Ui(a ). Such conditions generalize the
well-known integral condition of Coddington and Levinson [2] (cf. also [4]) for the
scalar equation ($2), and they are the starting point for our investigation in [}4 of shock
layers in solutions of (BVP). The usefulness of (2.2) is easily seen by examining a scalar
problem like eu" uu’ + u, u(O, e) A, u(1, e) B; cf. [4], [9, Chap. 2]. Suppose that
B> 1. Then U(x)=x + B-1 is the solution of the reduced problem uu’=u, u(1)=B,
and it is attractive in the sense that f(U(x))<=-(B-l)<0 in [0,1] for f(u)=-u.
Now if A >0 then f(u)<0 for all values of u between A and B- 1, and so we know
that the solution of this problem has a boundary layer at x=0, that is,
(,)lim_oU(X,e)=x + B- 1 in [8,1]. On the other hand, if A =<0 then this inequality on
f does not obtain for all such values of u, and we might be tempted to conclude that (,)
does not obtain. However, we see that (,) is valid provided A >-(B-1), since
condition (2.2) is satisfied with this restriction on A =< 0. Thus it is the "integrated"
effect of f in the boundary layer, as measured by (2.2), that determines if there is a
boundary layer relative to the attractive reduced solution U. The n conditions in (2.2)
are an extension of this basic fact to the system (DP).

Let us illustrate O’Donnell’s approach by considering next solutions of (DP) in
which there is a shock layer in just the k th component. Our basic assumption is that
the reduced system has two C(2)-solutions .uL (Ul(x),’" -, U_ l(x), UL(x),
Uk+l(X),. ., U,(x)) and U.R=(U(x)," ", U_I(X), UR(X), U+I(X),"" ", U,(x)) which
exist in [a,b] and satisfy Ui(a)=A and Ui(b)=B for i4=k, U< UR, Uz(a)=A and
UR(b)=Bk. In addition, we assume that .u and .uR satisfy the reduced system in the
stronger sense that for i4:k (2.1) obtains in (a,b) for all values of uj (j4:i) in j.
(Here i=(Ui lu- U(x)l=<8} for i4:k and g=(uk" UL(X)--8Uk UR(X)-[-8}.)
For k we assume that in (a, b)

fk(X,Ul," ", /1,’’’, Un)lt’+"gk(X,ul," P,’’’, Un)-"O

for v= U or UR and for all values of uj (j 4: k) in . We can guarantee that these
solutions are attractive by assuming also that, for 4: k,

Ifi(x,Ul,’",U(x),’",u,)[>O,

and that there exists a positive constant K for which

fa:(X,Ul," ",Uz.(x),’. -, u,,) > K> O, fk(X,Ul," ", UR(x)," ", Un) --K<O

in the regions defined above. Then the theory [13], [6] implies that (DP) has a solution

u.= u.(x,e) as e-+0 such that for 4= k

limu,(x,e)= U(x) in [a,b]
e--- 0

and

--,01im u(x,e)= { U,(x)uR(x) in [a,xo-8 ],
in [Xo+8,b ],
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provided the "shock strength" IUL(x0)-UR(x0) is sufficiently small. The location x0
of the shock layer is determined as a solution x x0 of the functional equation

J[x]=[v(x) fk(X,.Vl(X),. ., Vk_x(x),s, Vk+x(x),. ., V,(x))ds=O
U(x)

which also satisfies J’[xo]4:0. This result can be extended in an obvious way to cases
in which there are shock layers in different components of the solution at distinct
points. The example eu"=-uu’+ u, u(O,e)=A, u(1,e)= B, again provides us with a
good illustration of this result; cf. [4], [9, Chap. 2]. We saw above that if B > 1 then the
function UR(x)=x+B-1 is the solution of the reduced problem uu’=u, u(1)=B,
which satisfies f(U(x))<O in [0,1] for f(u)=-u. Similarly, if A <-1 then the
function UL(x) x +A is the solution of the left-hand reduced problem uu’= u, u(0)=A,
and by virtue of the restriction on A, f(U(x))>O in [0,1]. Now if A < -(B-1) then
the integral condition (2.2) does not obtain, and if B>-(A + 1) then the integral
condition corresponding to (2.2) at x 1 also does not obtain. Thus if A < -1, B > 1
and [A + B[< 1 then boundary layer behavior relative to U or Un is impossible;
however, for these values of A and B,

fx+B-1(f) J[x]
"x+A

(-s)ds=O atx=x0=(1-B-A)/2

in (0,1) and J’[x0]4:0. The solution of the example is therefore a shock layer joining
U(x) and Ul(X) at the point x0. This should come as no surprise since the relation
(f), that is, uZ(xo)=UZ(xo) or U(xo)+U(xo)=O, is nothing more than the
Rankine-Hugoniot condition for a stationary shock wave at x0; cf. [10, 2], [20, Chap.
2].

O’Donnell’s shock layer theory does not apply to an autonomous problem like
(BVP) since attractive reduced solutions are constants, and the functional J is thereby
independent of x. In addition, his theory for (DP) is unable to describe what happens
when there is a shock layer in two or more components at the same point, because this
is no longer a scalar phenomenon. It turns out that we can now provide a shock layer
theory for (BVP) which complements O’Donnell’s boundary layer theory and which
covers the occurrence of a shock layer in several components at the same point. Before
doing so we review briefly the scalar theory for (Sx).

3. Shock layer theory for (S1). The occurrence of shock layers in solutions of the
scalar boundary value problem

eu"=f(u)u’, 0<x<l,
($1)

u(O,e)=A, u(1,e)=B, A<B,

has been considered in [5] and [12]. (In this and the following sections we replace,
without loss of generality, the finite interval [a, b] with [0,1], so as to simplify some of
our formulas.) Let us recall briefly the results in [5].

Suppose that the function f is continuous for all u in [A,B] and that the states.

Uz.=A and U=B are such that f(A)>0 and f(B)<0. Then if F(A)<F(B) [F(A)>
F(B)], for F an antiderivative of f, there is a boundary layer at x 1 [x 0], that is, the
solution u=u(x,e) of ($1) satisfies lim__,oU(X,e)=A, 0x__<l-8 [lim__,oU(X,e)=B,
=< x =< 1] (0 < < 1). This follows by virtue of the corresponding integral conditions

(2.2), expressed now in terms of F. Consequently, if F(A)=F(B) (the Rankine-
Hugoniot relation) boundary layer behavior is impossible, and there must be a shock
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layer in (0,1) joining A and B; indeed, the solution (S1) satisfies

(3.1) limu(x,e)={ A’ O<=x<--x-8’
-0 B, x0+=<x=<l

where xo=f(B)/(f(B)-f(A)) (in (0,1)) is the location of the shock layer. To see
this, note that such a solution satisfies u’(x)> 0 in [0,1], since u’(x)=
(const)exp[fXf(u(s))ds]. Thus ($1) can be rewritten as eu"/u’=f(u), that is, e[lnu’]’
=f(u). Integrating this equation from x=0 to x=xo, and from x=xo to x= 1, we
obtain the two equations

(3.2)

(3.3)

e[lnu,(Xo)_lnu,(O) =of(u(s))ds,

e[lnu,(1)_lnu,(xo) =flf(u(s))
Xo

Since F(A)= F(B) it follows by integrating both sides of ($1) from x 0 to x 1 and
using the boundary conditions that u’(0)= u’(1). Thus, adding (3.2) and (3.3) together,
we have that

(3.4) o flf(u(s))ds+ f(u(s))ds=O.
Xo

By virtue of (3.1) uA on (0,x0) and uB on (x0,1) as e0, and so by the
continuity of f and the Dominated Convergence Theorem, it follows from (3.4) that
f(A)xo+f(B)(1-Xo)=O, that is, xo=f(B)/(f(B)-f(A)).

Simple arguments such as these allow us to study the occurrence of shock layers in
the more general problem (BVP), to which we now turn.

4. Shock layer theory for (BVP). Let us consider finally the occurrence of shock
layers in solutions of the problem

O<x<l
(BVP) eu;’=fi(ul" " un)u"

ui(O,e)=Ai, ui(1,e)=B,, Ai<Bi,

where the functions f are continuous for all (Ul, Un) in I-l "/= l[A i, Bi]. Then (BVP)
has a solution .u=(ul,...,un) of class C(2)([0,1]) for each e>0 that satisfies Ai=<
u(x,e)<=B and u(x,e)>O in [0,1] for i=l,...,n, since IIin=l[Ai, Bi] is an invariant
region (cf. [19, Chap. 14]) and u’=(const)exp[fXfi(ul(s), ..., u,(s))ds].

In order to discuss our results in the simplest setting possible, we examine first the
two-dimensional system

I?,Ut=fl(Ul,U2)U Ul (0, l) hi, Ul(1,e)=B(P)
eu’2’=f2(ul,u2)u2, u2(0,e)=A2, u2(1,e)=B.

The theory of 2 tells us, for instance, that if B1, B2 are such that

fl(nl, ) <0(4.1)
f2(h,B2) <0

for all # in A2, B2 ],
for all
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then there is a solution of (P) as e0 with boundary layers (in both components) at
x 0, provided

_f/fl(S,A2)ds>O for in [Ax,Ba),
(42)

"/J1

.fff2(Ax,s)ds>O for rt in [A2,B2).

In other words, we have that

mo(Ul(X,e),u2(x,e))=(Bx,B2) in [3,1].

Silarly, if A1, A are such that

(4.3) fl(Al,)>0 and f2(X,A)>0
for the ranges of and in (4.1), and

_f. fl(S,B)ds>O for f in (A1,B],
(4.4)

for , i.

then there is a solution of (P) as e 0 with boundary layers (in both components) at
x 1. In other words, we have that

lim (u(x,e),u(x,e))=(A1,A) in [0,1-8].
e0

Finally under the appropriate combination of the integral inequalities there are solu-
tions of (P) as e 0 with a bounda layer at x 0 in one component and a boundary
layer at x 1 in the other.

Suppose now that we look for a solution of (P) whose th component has only a
shock layer at x in (0,1), that is,

(4.5) limu(x,e)={A, ONxNx-,
o B, x+NxNl.

Our basic result is contained in the following
ToN 1. Assume that the reduced solutions =(A,A) and e=(B,Ba) are

attractive in the sense that the inequalities (4.1) and (4.3) obtain for the stated values of X
and . Assume also that

and

FI ( B1,A z ) >= FI ( A1,A :z )

FI ( BI, B2) Z FI ( AI, B2 ),
where FI(.,A 2 or B2) is an antiderivatioe off(.,A or B2) and that

F:z ( A B:z ) >= F:z ( A1,A: )
and

F2 ( B1,B ) Z F2 ( B1,A ),
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where F2(A or B1,.) is an antiderivative of f2(A or B1,.). Then for these boundary
values there is a solution (u,u2) of (P) as e--.O whose ith component satisfies the
limiting relation (4.5).

Proof. For this choice of boundary values we know that there is a solution .u of (P)
as a consequence of the fact that the rectangle [A,B][A2,B] is invariant with
respect to (P); cf. [19, Chap. 14]. However boundary layer behavior is impossible, since
none of the boundary layer inequalities in (4.2) and (4.4) obtains by virtue of the
inequalities involving F and F2. Consequently each component u; of .u has a shock
layer at xi in (0,1).

It remains for us to determine the locations xi. We begin by noting that e{lnu(1)
-lnu(0)}0 as e 0, since .UL and U.n are constant vectors that satisfy the system (P)
in (0,1) and the boundary conditions at x=0 and x= 1, respectively. Suppose, for
definiteness, that x __< x:. Then by arguing as in [}3 we see that for 1, 2

(4.6) 0 "-f01 f(u(s),u2(s))ds
x’
fi(A1,Ax)ds+ L(B,A2)ds+ fi(B1,Bx)dds

"1 X2

fi( A1,A2)Xl +fi( B1,A2)(x2- xl) +fi( B1,B2)(1- x2).
Suppose we consider first the case when x X2 X0, that is, both components have a
shock layer at the same point. Then (4.6) implies that for 1, 2

whence,

provided that

[-f/(A,A) +fi( B, B2)] Xo =f/(B, B2)

Xo=f(B1,B2)/( fl( B1, B2)-fl( A1,A2))
--f2( B1,B2)/( f2( B,B2)-f2( A1,A2)),

f(A,Az)f:z( B1,B2) f(B1,B)f2( AI,A:z).
The point x0 lies in (0,1) by virtue of the inequalities (4.1) and (4.3). Thus for such
boundary values the problem (P) has a solution as e 0 satisfying the limiting relation
(4.5) with x x x0.

Suppose that we consider next the case when there is a shock layer in u at x and
a shock layer in u at x2 for x <x2. The points x, x2 are solutions of the linear
system (cf. (4.6))

(4.7) [fi(B,Az)-fi(Ai,A2)]x + [fi(B1,B2)-f(B,A2)]x=fi(B,B).
It follows that if

(4.8) f(AI,Az)fg_(B,B2)<f(B,B:z)f:z(Ax,A)

the deternant of the coefficient mat of (4.7) is positive by virtue of the inequalities
(4.1) and (4.3). Thus (4.7) can be solved uquely for x1, x, and these values satisfy
0 < x <x< 1. Indeed we have

x,:-ldet(fl(BI’B2) fl(BI’B’)-fl(B"A’) )f:(B,B:)
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and

x2=A-ldet(fl(B1,A2)-fl(A1,A2) fl(B1,B2) )f2(Bx,A2)-f2(A1,A2) fE(B1,B2)

for

A= fl(nx,a2)-fl(ax,a2)] f2(nl,n2)-f2(B1,A2)]
>0.

The remaining case when x2 < x can be handled without difficulty, as well as the
cases Ai>Bi, i= 1,2, or AI>B1, A2<B2 or A1 <B, A2>B2 in (P). We turn finally to
the general problem (1 =< =< n)

(BVP)
eu;’=fi(Ux,..., Un)Ui, 0<X < 1,

The basic result for (BVP) is contained in the following theorem. It follows by noting
that each of the corresponding boundary layer inequalities (cf. (2.2)) is violated and
then proceeding as in the proof of Theorem 1.

THEOREM 2. Assume that .UL=.A=(A1,.-.,A,) and U.R=B.=(B1,...,B,) are
attractive in the sense that ( cf {}2) for i= 1,.-., n

f(u,...,A,,...,u,)>O and fi(ul,...,Bi,...,u,)<O

for all values of uj in [Aj, Bj] (j 4: i). Assume also that for i= 1,..., n

F(A1,...,Ai_I,Ai,A,+I,-.., A,) =< F/( A1,. A,_I,B,A,+ I,.

and

where Fi(A or B1,. ., Ai_ or Bi_l,.,Ai+ or Bi+I,..., A, or Bn) is an antiderivative of
f/(A or B1,...,Ai_ or Bi_l,.,Ai+ or Bi+,...,A or Bn). Then there is a solution of
(BVP) as e 0 having a shock layer in each component.

The simplest situation occurs when each shock layer is located at the same point
Xo in (0,1). By proceeding as before, we see that for 1,. -, n

fO1 fO fl0-- fi(u.(s))ds--
x
fi(A.)ds+ fi(B. )ds,

Xo

and so

Xo =f, ( L( (.A)),

provided

(4.9)

for all i,j=l,...,n. The consistency conditions in (4.9) reduce to ()=n(n-1)/2
equations. Thus it is usually the case that the components of a solution of (BVP) do not
all have a shock layer at the same point, but rather different components have shock
layers at different points. The locations x of the shocks are found as before by solving
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a linear system of n equations. Unfortunately the prohibitive number of algebraic
manipulations prevents us from providing explicit conditions such as (4.8) for the
general problem (BVP), although the analysis is straightforward and could be per-
formed numerically.

5. Examples. In this final section we illustrate some of the theory developed
above.

Example 1. Consider first the problem

(El) ( )’EU;t --Uig Ul" . Ui-lUi+l" . Un Ui

u,(O,e)=A,, ui(1,e)=B,, A,<0, ni.O
0<x<l,

where gi> 0 for all values of uj in [Aj, Bj] (j g: i). We anticipate that each component
of the solution behaves very much like the solution of the scalar problem ey"= -yy’,
y(O,e)=A, y(1,e)=B (cf. 3 or [16, Chap. 1] where the exact solution is given). In
particular, if A= -B <0 then f(A)> 0, f(B)<0 and F(A)=F(B), for f(y)= -y and
F(y)= -y2/2. Consequently there is a solution y=y(x,e) as e0 with a shock layer
at xo=f(B)/(f(B)-f(A))=l/2 joining UL=A(x<xo)and UR=B (x>x0). For the
problem (El) we see that

(5.1) fi(ul,...,Ai,...,u,)>O and f(ul,’",B,’",Un)<O
for all values of uj in [Aj, Bj], since gi> 0 there. If we assume that Ai=-B < 0 for

1,- ., n, then

(5.:)
a,),

F/(BI,... ,Aim..- Bn) Fi( Bi," Bit’"
since Fi(ul,. ., ui_,’,l, Ui+l,. ., u,,)= -(y:/2)gi(ux,. ., ui_,ui+,. ., Un). Thus we
know that (El) has a solution with a shock layer in each component. It only remains to
locate the position x of the th shock. Suppose first that

(5.3) gi(A,.. .,A,,)gj(B,...,B,,)=gi(B1,.. .,B,,)gj(A1,. .,a,,)
for iq=j. Then it follows that (x0=) L(B.)/(L(B.)-L(4))=f,.(B.)/(f,.(B.)-f,.(4)) for
4:j, and so there is a shock layer in each component at x=xo in (0,1) joining A
(x <Xo) and B (x> x0). However if the () equalities in (5.3) do not obtain, then
different components of the solution of (El) have shock layers at different points in
(0,1). Rather than discuss this situation in its full generality, we turn to a much simpler
special case.

Example 2. Consider then the two-dimensional problem on (0,1)

eu;’=-ui(1-u2)u;, Ul(0, ) ---A1, u(1,e)=B
(E2)

eu’2’=-u2(l+u)u’2, u:z(O,e)=A2, u2(1,e)=B2,
where Ai= -B<0 and IAI < 1 for i= 1,2. Under these restrictions on the boundary
values the relations (5.1) and (5.2) certainly hold, but gx(.A)g2(.B)= (1-A2)(1 + B2)>
(1-B:)(I+A)=gx(B.)g2(A.), which implies that f(A.)f2(B.)<f_(A.)f(B.). Conse-
quently there is a solution (ux, u2) of (E2) as e0 such that u [u2] has a shock layer at

x [x2] in (0,1) with x <x. Proceeding as in 4 we find that xI=2BB2(B + 1)/A
and x2= 2BB2(2B + B2 + 1)/A, for A=4BIB:(B + B2 + 1), that is,

XI=(B q- 1)/[2(B +B2+ 1)]
and

x= (2B1 + B2 + 1)/[2(B "t- B2 -- 1)].
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SINGULAR PERTURBATIONS FOR NONLINEAR
HYPERBOLIC-PARABOLIC PROBLEMS*

AHMED BENAOUDA" AND MONIQUE MADAUNE TORTt

Abstract. A boundary value problem for a semilinear hyperbolic equation with a small parameter and
its reduced problem of parabolic type are considered. It is proved that the solution u of the initial problem is
approximated for eO by the solution u of the reduced problem in Sobolev spaces. Estimates of the
difference-norm are given in function of and are improved by using boundary layer correctors.

Key words, singular perturbations, semilinear hyperbolic equations, boundary value problems
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Introduction. We consider "hyperbolic-parabolic" singular perturbation problems
for semi-linear equations of the type:

(0.1) L(lu+Lu+Gu,=f (t,x)lO, T[Xf

where T is a real, T> 0, f is a bounded open set in Rn, e > 0,

2u
(0.2) Lz’)U= e--t Au,

(0.3) Lxu=a(t x)
i)u " 3u-+ E b(t,x) )x’k=l

G: R R is a continuous function which satisfies a monotonicity condition and a
growth limitation at c (the precise hypotheses are given in 1). Two examples of such
functions G are:

(i) G is a Lipschitzian function,
(ii) Gu--lul’u, O>0.

The questions of singular perturbations of "hyperbolic-parabolic" type do not seem to
have been much studied. However we may mention the works of Zlarnal [20] (1960),
Kisynski [4] (1963), Nazarkulova-Pankov [17] (1971), Lenjuk-Fedoruk [6] (1972),
Muradov [15] (1978), Muradov-Gasanov [16] (1974), concerning linear problems to
which we may add the study of nonlinear problems done in Muradov [14] (1974) and
N. A. Lar’kin [5] (1980). In [14] Muradov considers an equation like (0.1) with 2 R
where )au/lx2 and i)u/Ox may have discontinuous coefficients, and in [5] N. A.
Lar’kin studies a hyperbolic regularization of a one-sided problem for the Burgers
equation in Sobolev spaces when 2c R. Moreover two recent papers point out the
interest of such problems which model oscillator phenomena in a highly viscous medium
similarly to Prandtl’s model for ordinary differential equation (Hsiao-Weinacht [2]
(1979), [3] (1983)).

Received by the editors February 5, 1985, and in revised form September 1, 1985.
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Hence the mathematical model:

at x o,

=.0(x).

The study of this problem is given in [3] when G belongs to Cr(r>_ 8) and satisfies
G’(x)> 0, Vx R. An asymptotic representation of u, is given with an explicit calcula-
tion of the boundary layer correctors which are computed to all order when the reduced
problem has a bounded classical solution on [0, T] R.

Here, we study the variational point of view under weak hypotheses when x
belongs to an open set of R, in order to obtain the convergence in Sovolev spaces of u
to u, the solution of a problem relative to the equation:

L)u + Lxu + Gu f
This paper is an extension of a part of the work [1].

1. Notation-hypotheses. 2 is a bounded open set in W, of class /o), (Neas [18]),
F is the boundary of f, T is a given real, T>0. We set Q= ]0, T[ f, Y’.=[0, T]F.
For each real p, 2 <p < + o, we note [[p (resp. p) the usual norm of Lp(2) (resp.
WI’P(f)). We represent the inner product in L2(f) by (-,.); we keep the same
notation for the duality between H-I(), n() and LP(2), LP’()(1/p+ 1/p’=l).
( u, v) a( u, v) is the bilinear form defined by

vu,v dx.

The derivatives of u in the sense of vector-valued distributions on ]0, T[ are represented
by u’, u",-.-

We recall the hyperbolic problem that we consider:

(t,x)Q,
&

ulz=0.

We are going to study the behavior of u, when e0+ (L and L are respectively
defined by (0.2) and (0.3)). This work is undertaken when the following hypothesis is
satisfied:

Hla (i) uo H(f), u L2(f), fL2(Q),
(ii) a W’(Q)NC(-) and infoa=8>0, bk Wi’(Q), 1 <k<n,
(iii) G is a continuous function from R to R such that Gv Fv + Ov where is

a reil constant and F a function from R to R satisfying" F0=0 and
lpR, p>2, 3fl>0, 3,>0 such that:

(1.1) fllu-v <(Fu-Fv)(u-v)<y(lu +[vIP-2)Iu-v[2,

(iv) n and p satisfy the inequality:

n<2+ (nN* if p=2).
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The condition Hl.l(iv) implies the algebraic and topological inclusion"

(1.2) n()c-->tq(’) Vq [2,2(p-1)].
A comment on hypothesis Hl.l(iii) and examples offunctions G satisfying, Hl.(iii):

In fact (1.1) implies that the nonlinear part of G, denoted by F, satisfies the condition
F’(z)>O, VzR (instead of F’(z)>0, VzR as in [3]). So here F’ may be equal to
zero in a subset of R and G is not necessary a monotone function as 0 may be a
nonpositive real.

(1) A first example of such a function is given by every Lipschitzian function G:
R R such that GO 0 (for example Go sin v). Indeed if we denote by a Lipschitz
constant of G, we may choose 0= -1 and p 2.

(2) Another classical example is given by G(u)=lulOu, o>O. Indeed, Hl.l(iii) is
verified for 0 =0, F= G, and p =O + 2; then the existence of a constant fl is ensured
(see Lions [8, p. 200]).

A result on existence and uniqueness. We associate with the problem P the varia-
tional problem:

(1.3) e(u’’.v)/o(u.,)/(Lu.v)+(Gu.v)=(f.v)
Vve H(a), a.e. se lO, T[,

(1.4) L(0, T; Ho(a)) ueL(0, r; La(a))Ue
(1.5) u(O,x)=uo(X ), u:(O,x)=u(x)

for which we have the following property:
THEOREM 1.1. Under the hypothesis Hi.l, for each e>0, the problem has a

unique solution.
The proof of this theorem is founded on Galerkin’s method and is similar to the

one given in Lions [7, Thm. 1.1] for the case Gu-lulu or in Saut [19] for the case of a
Lipschitzian function G. We remark that the conditions (1.4) imply thanks to the results
of Lions-Magenes [9] that u is continuous from [0, T] to L(f) and that u’ is
continuous from [0, T] to H-(f), so (1.5) has a sense.

A result of regularity. We introduce the hypothesis:
H.2: Hx. with u0 H2(f) r3 H0(f), u H(2), f’ La(Q).
Then we have
THEOREM 1.2. Under the hypothesis H1.2, for each e > O, the solution of the problem

is such that:

The proof of this theorem is analogous to a proof given in Lions [7, Thm. 1.3] or in
Saut [19]. The only difficulty is to justify the differentiation of the nonlinear term.
Now, the hypothesis H.l(iii) implies that F is a local Lipschitzian function. Therefore
F’x exists almost everywhere on R (see for example Marcus-Mizel [13]) and verifies
thanks to (1.1)

2
O<_F’x<_2lx a.e. xR.

Moreover thanks to the results of [13, Thm. 2.1 and property 1.5] we may assert that:
for every function uL(O,T; W0,2(’-l)(f))such that u’L(O,T;L2(p-)(f)), we
have Fu L(O, T; H(f)), (Fu)’ L(O, T; L(2)) and the equalities:

’u Ou(eu)=(F l<_k<_n,
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Scheme of this paper. In the second paragraph we establish a priori estimates on u,
and its derivatives 3u/Oxk (1 < k < n), u’ by methods similar to those done in Madaune
and Genet [12] and Madaune [10]. These estimates are sufficient to establish the
convergence of u, when e-,0

/, by compactness arguments in the third paragraph;
some results of strong convergence and estimates of (u-u) are also given in this
paragraph. Lastly some remarks are gathered in the fourth paragraph in particular
when the operator L is nonlinear, f being a segment of R.

2. A priori estimates.
THEOREM 2.1. Under the hypothesis Hi.l, the solution u, of the problem is such

that:

(2.1) Ilu,ll,o.;HZ>+lu:l,.o.;,+ Ibl:IL2(Q) C.gl
where

(2.2) K? If I(o) + u0 I1 +lu0 I + el UX 122
and C is a positive constant independent off, uo, u and e.

Proof. We first establish the estimates (2.1) under the hypothesis Hx.2; then we use
a method of regulafization to prove the theorem.

(1) With assumption H.2. We consider the equality (1.3):

e(u:’,v)+a(u,,o)+(au:,v)+ b,v +(Gu,v)=(f,v)
k=l

uo n (u) a.e.

We put v 2u’(s); that is possible thanks to Theorem 1.2. We obtain

(2.3)

kl

Thanks to HNder’s inequality, the second member of (2.3) may be bounded by:

k=l

Tken, we intetrate (7.3) from 0 to t. We aenote y te pritive of F wok vaniskes
at 0; we obtain:

2 t 2 S

where

M= max 0 2, Ibl,=(e)
k=l
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As the inequality (1.1) of hypothesis H.l(iii) implies:

(2.4) VvR, --_Iv </o<--Io
p- P

it is easy to deduce the estimates (2.1) from Poincare’s inequality and Gronwall’s
lemma.

(2) With assumption H.. Let W=L2(Q)H(f)L() provided with the prod-
uct topology and let (f, uo, u) W. There is a sequence (f; u0,,; Ul,, ) which satisfies
Hx, and converges to (f, uo, u) in W. The solution u,, of the problem ,, associated
with (f,; u0,,; u,,) satisfies the estimates"

(2 5) Ue,/ IL(0, T; H(,, + 1U:, }L(0, T; L2(,, + u’ < Cgl,e, L2(Q)

where KI,= Ifl 2=(e)+llu0,ll+lu0,l+elux,l and C is a constant independent of
,f, uo, u and e. TaNng into account the convergence properties of the sequence
(f,; u0,,; u,), K,, may be bounded independently of . Then, we can extract from
the sequence ( u,, }, a subsequence still written ( u, } such that"

(2.6) u,v in L(O,T;H()) weakstar,

(2.7) u;,.v; in L(0, T;L()) weak star.

We deduce from (2.6) and (2.7) that u,. converges weakly in H(Q) to v. Conse-
quently, we may choose the subsequence { u,.} such that u, converges to v in LZ(Q)
and almost everhere in Q. Then, thanks to the continuity of G and to the condition
(1.1), we may assert that Gu, converges weakly to Gv in L(Q). Moreover eu’=f.
+ Au,,- Lxu- Gu is bounded in L2(0, T; H-I()) thanks to (2.5); so eu", con-
verges weakly ’in L(d,T;H-I()) to ev’. Hence, we can take the lit on in the
equation satisfied by u, and in the initial conditions. We deduce v= u wNch gives
us thanks to (2.5) the estimates of the theorem.

THEOM 2.2. Under hypothesis H.2, the solution u of the prob&m is such that:

where C is a constant independent of e.

Proof. To obtain the estimates (2.8), the idea is to differentiate the equality (1.3)
with respect to and then, to put v u’’(s). But we are not allowed to do so because u
is not smooth enough, even under hypothesis H1. (see Theorem 1.2). Therefore, we use
a method of difference quotients.

Let h be a positive real, wNch will tend to 0 and let s ]0, T- h[. We consider the
equafity (1.3) at times s and s + h and we substract these two equalities. Then if for
each function w: QR we denote by %w(s) the difference quotient (1/h)(w(s+ h)-
w(s)), we obtain:

(2.9)

e(%u:’(s),v)+a(hU(S),V)+(a(s+h)%u;(s),v)+ bk(s+h)
k=l

k=l

VvH(a), a.e. s]O,T-h[.
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Thanks to the results of Theorem 1.2, we may put v= 2%u’(s) in (2.9); we have:

(2.10)

2

<2(%f(s),%u’(s))-2([ra(s)]u:(s),%u:(s))-2 [%b(s)]-x(S),%u:(s)
k=l

-2(Lk=tbk(s+h )[ 1 u,(s)] %u’(s))-2(%Gu,(s),%u’(s)) a.e.

First, we bound the second member of (2.10) as follows (where # denotes a constant
that we will choose later):

2 1 2

}2([ra(s)]u:(s),rhu:(s))l<lla,12(ol Ue(S)122..i..l.hUet1 ,(s) 122,

2 [-,b,.(s)]-x(S).hu:(s)
k=l k=l

k=l

1 2

<Ix b,lOO(Q) II%u(s)112 1 2

k--1

and finally, thanks to inequality (1.1), the nonlinear term is bounded by

(lu,(s+h)[P2
lug(s) IP-2)I hu(s)I}rhu:(s)

+2}OIl(rhu(s),’r,u:(s)) l;
therefore by using HNder’s inequality (with (p-2)/(2(p-1))+ 1/(2(p-1))+ 1/2= 1),
Theorem 2.1 and (1.2) we have:

where k is a positive constant independent of e and h. Then, we integrate (2.10) from
0 to t]0, T-h[ and we set = . We obtain, thanks to the estimates (2.1) and
hypothesis Hi.1(ii):

(2.11) el’rhue(t) dS<cl(h)-t-c2+c3 II%ue(s)ll2 ds

where c2, c3 are two positive constants independent of e and h, q(h) is equal to:

5 f0 2
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It follows from hypothesis Hr.2, Theorem 1.2 and equality (0.1) that eca(h ) is bounded
independently of h and e. So, we deduce from (2.11) by Gronwall’s lemma, the
estimates:

where C> 0, is independent of h and e. Therefore, the properties of the difference
quotient allow us to take the limit when h---, 0 /. So we obtain the estimates (2.8). The
theorem is proved.

3. Convergence.
3.1. Convergence under hypothesis H.1. We assume that hypothesis H1.1 holds.

The estimates obtained in the Theorem 2.1 imply the existence of a subsequence of
{ u}> 0, again written ( u ) such that:

(3.1) uu
(3.2) u’--,u’

in L(0, T; H0(fl)) weak-star,

weakly in L2(Q).

Thanks to the compactness of the injection from Hi(Q) to L2(Q), we have:

(3.3) u,---, u in L2(Q) and a.e. on Q.

Then, it results from the continuity of G and from (1.1) that

(3.4) Gu-Gu weakly in L2(Q).
Finally, as eu’ is bounded in L2(0, T; H-l(a)) thanks to (1.3) and as eu’’ tends to 0 in
the sense of the distributions, we have:

(3.5) weakly in L2(0, T; H-l(fl)).
Therefore, we may take the limit in the equality (1.3) as e 0 /. We find that the limit
function u verifies:

a(u,v)+(Lu,v)+(Ou,v)=(f,v) VveH0(a), a.e. sel0, T[,

uL(O,T;H(a)); u’L2(Q).

Moreover, it results from (3.1) and (3.2) that u and u are continuous from [0, T] to

L2(f) and then:

u,(t)u(t) weaklyin L(a) Vt[0, T].

Therefore the lit function u satisfies the initial condition:

u(O,x)=uo(x ) a.e.

Then, the lit function u is solution of the parabolic problem

a(u,v)+(Lu,v)+(Gu,v)=(f,v) vH(a),a.e. 10,r[,
(3.6)

u(O,x)=uo(x) a.e. x a.
Now, such a problem has a uNque solution, under hypothesis H.. In consequence, we
have proved
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THEOREM 3.1. 14en e-0 +, the solution u, of the problem ,, converges to the
solution u of the problem q- in the following spaces:

(i) u,-,u in L(O, T; H()) weak-star and weakly in HI(Q),
Gu,-Gu weakly in LE(Q);

() u, u in L2(Q).
Now, we are going to establish an estimate for u,-u in L(0, T; L2(fl)) and also

in L2(0, T; H(fl)).
THEOM 3.2. The solution u, of the problem and the solution u of the problem

satis:

where C> O, is independent of e.

Proof. For each vH(fl) and for a.e. s ]0, T[, we have, by substracting (1.3)
and (3.6):

kl

where w u- u. We can set v w(s) in (3.7). We obtain:

kl

We integrate from 0 to and we use the condition (1.1). Then we have:

2 [IWe(S)llds+lwe(t)l:+2 Iwe(s)lds+2(O-l) Iwe(s)l dS

t tbk Zt 2-2e(u:(t),w(t))+2e (u:,w)ds+ a’+ Iw() I=d.
k=l L(Q)

Thanks to the estimates (2.1) and H61der’s inequMity, we obtMn:

t 2 ’ 2 Lt p t 2

where k and k2 are two positive constants independent of e. Then, the theorem results
from Gronwall’s lemma.

3.2. Convergence under hythesis H.. The additional estimates obtained in
Theorem 2.2 allow us to complement Theorem 3.2 by the results of

THOM 3.3. For each e > O, u-u where u ( resp. u) is the solution of the prob&m
(resp. ) satisfies the additional estimates:

where C> 0 is independent of e.

Proof. It results from (3.7) that w u-u satisfies:

in L(a), a.e. s]0, T[.
kl
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We can take the inner product in L2(f) of the two members of (3.8) with 2w’(s). We
do so and we integrate from 0 to t. It follows that:

(3.9) fo -(2Aw,,w[)ds+2fot Iv/-dw’l:ds

=-2 e( u’’, w;) + bk-x w + (Gu- Gu, w’ ) ds.
k=l

As w L(0, T; H())L(0, T; H()) and w[ L(Q), we may write:

(This result is established for instance in Madaune [11] by a technique of regularization.)
Next, in order to bound the three terms of the second member of (3.9), we first
use Theorem 2.2, then the properties of the coefficients bk, and finally for the non-
linear term, the condition (1.1), HOlder’s inequality (with (p-2)/(2(p-1))+
1/(2(p-1))+ 1) and (1.2). We obtain"

kl

where k and k are two positive constants, independent of e. Then, we deduce from
(3.9) and (3.10), the inequality:

with c and c, two constants independent of e. Gronwall’s lemma gives us the estimate
of (u-u) in L(0, T; H()) and the estimate of (u’-u’) in L2(Q); the proof is thus
aceved.

4. Some remarks. In ts section, we collect some remarks. In particular, we
introduce the notion of boundaw layer corrector wch will allow us to improve the
estimates on u-u. To do so, we need some regularity properties of u that we can
obtain under some additional assumptions on f and u0. Finally, we end this section by
giving some results when the operator L is nonfinear.

4.1. Relari of u. We have the first property:
POeTY 4.1. Under hypothesis H1.2, the solution u of the prob&m is such that:

u’ L(O, T; H())L=(O, T; L(fl)); u" e L(0, T; H- (fl)).
Proof. To estabfish the property for u’, one may consider a sequence { u } of

appromated solutions of , constructed by Galern’s method. It is easy to show, by
classical techniques, that the sequence {u} is bounded independently of m in
L(O, T; H())L(O, T; L()). So by tang the lit on m one obtains the property
for u’. Next to have: u" L2(0, T;H-()), it is enough to differentiate the equality
(3.6) with respect to t.

Now we assume the hypothesis
H1.3: H1.2 with u0 H3(), f(0) HI().
POeTY 4.2. Under hypothesis H1.3, the solution u of the problem is such that:
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Proof. Once again, we consider the sequence (u ) of approximated solutions of
q-. We show that u, (resp. u) is bounded independently of m in L(O,T;H())
(resp. in L2(Q)). (The technique we use to do this means formally that we differentiate
the equation (3.6) and we choose o= u".) The additional regularity imposed on u0 and
f(0) allows us to bound u(0) in H1(2), independently of m. Next, we take the limit
on m.

Consequence. Under the assumptions of Property 4.2, u’ C([O,T];L:(f)), so
u’(0,-) exists and

(4.1) )u0u’(0,. ) =f(0) +Au0- bk (0,.) Guo.
k=l

4.2. Utilization of boundary layer correctors. We assume the hypothesis H1.:.
4.2.1. Definition of the boundary layer COl’rector 0. Let be gL2(Q) such that

IglL2(O) is bounded independently of e. Then, we consider the problem

13( 0e’, t))-t-0( Oe, U)-lt- ( ZlOe, U )-" ( a( 0 d- u) au, u) E( ge-- //", U)
/vH(2), a.e. s ]O, T[,

o:
O(O,x)=O, O[(O,x)=u(x)-u’(O,x) in H-X(f)

(we know, from the Property 4.1, that u" L:(0, T; H-1(2))). We may assert that the
problem II has a unique solution since 0+ u satisfies the problem:

which has a solution and only one, thanks to the Theorem 1.1.
PROPERTY 4.3. Under hypothesis HI.., we hat)e:

where C & a positive constant independent of e.

Proof. Let be z=u- (0+ u); z satisfies

(4.3) Az + L z,+ Gu - G( + u)= -eg 
=o.

in L:(f) a.e. se]0, T[,

By using a method of regularization as in the proof of the Theorem 2.1 we may suppose
that g’ L2(Q). Then, thanks to the Theorem 1.2, we can take the inner product in
L:(f) of the two members of (4.3) with 2z(s). We do so and we integrate from 0 to t.
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By calculations analogous to the ones done in the proof of the Theorem 3.3, we obtain
the inequality:

where c and c are two positives constant independent of e and g. The utilization of
Gronwall’s lemma gives us the estimates of the Property 4.3.

4.2.2. Example of boundary lyer eorreetor. We introduce

(4.4) 0=
and we shall prove that 0 is a boundary layer corrector. Thus, the element 0 which is
a boundary layer corrector for the case of the linear equation L(2Ou + Lxue-f remains
a corrector for the case of nonlinearities of the type introduced here. We need some
additional properties on f and u0.

HI.4 H1.2 with u0 H4(), U H2(), f(0) H2(), GUo H2().
THEOREM 4.4. Under hypothesis Hi.4, Oe defined by (4.4) is a boundary layer

corrector that is O satisfies the Property 4.3.
Proof. We first remark that the assumption H1.4 implies, thanks to (4.1), that:

u’(0,-)-ul H2(f). We assume, in order to simplify the calculations, that a 1. The
result holds in the general case; only the calculations are more complicated. It is easy to
prove that O satisfies the equality (4.2) with

ge=u"--(Au’(O, .)-Aux)e-t/e

(3 u’(O,.)- 0 ) t/e 1
+ E e-

k=l

and that IgIL2(Q) is bounded independently of e. So, we can apply results of Property
4.3 to defined by (4.4).

4.2.3. Consequence. The corrector 0 defined by (4.4) is such that:

where C is a positive constant independent of e. Therefore we obtain
THEOREM 4.5. Under hypothesis H1.4, the solution u, of the problem and the

solution u of the problem - are such that:
(i) Ilu- ull,(o,r;4(,)) <_ C.e; I7(u;-u’)l-(e)-<

where C is a positioe constant independent of e,
(ii) for each ’]0, T[, ]U’-- U’]LOO(,r;L2()) < ClV/-,

where C is a positioe constant independent of e, but dependent on r.

4.3. A remark when L is nonlinear and fl c R. When fl is an interval of R, the
results of the Theorems 1.1 and 1.2 remain valid when the operator L is nonlinear:

Lu=a(x,t u) Ou Ou- +b(x,t,u)-x
upon condition of assuming instead of Hl.(ii), the condition

H.x(ii)" a,bC(-OR), a(x,t,u)>8>Oon OR, bL(QxR).



148 AHMED BENAOUDA AND MONIQUE MADAUNE TORT

To prove this, it is sufficient to work again with Galerkin’s method used when L is a
linear operator. Next, it is easy to verify that the solution u of the problem
satisfies the estimates of the Theorem 2.1 and the convergence results of the Theorem
3.1. Now, if we assume that the coefficient a is independent of u, we may prove that u
satisfies the estimates of the Theorem 2.2 and the convergence properties of the
Theorems 3.2 and 3.3. Of course, modifications must be brought on the treatment of
the term b(x,t,u))u/)x; we use in particular the algebraic and topological inclusion:
H(f)L(f).
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THE ONE-DIMENSIONAL NONLINEAR HEAT EQUATION
WITH ABSORPTION:

REGULARITY OF SOLUTIONS AND INTERFACES*

MIGUEL A. HERREROt AND JUAN L. VAZQUEZ*

Abstract. We consider the equation Ut=(Um)xx--kU with m> 1, >0, n>=m as a model for heat
diffusion with absorption. Hence we assume that u>0 for xR, t>__0. We study the regularity of the
solution to the Cauchy problem for this degenerate parabolic equation. When the initial datum Uo(X is
positive only in a part of the space R, we also study the regularity of the free boundaries that appear. The
asymptotic behavior of solutions and free boundaries is also discussed.

Key words, nonlinear diffusion with absorption, regularity, interfaces or free boundaries, waiting time,
asymptotic behavior
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Introduction. In this paper we study the regularity and propagation properties of
the solutions to the following Cauchy problem"

(0.1) Ut=(Um)xx--XU when

(0.2) u(x,O)=uo(X ) for

where , rn and n are positive constants and u0 is a nonnegative, continuous and
bounded real function.

Equations like (0.1) are used as mathematical models in a number of problems, in
particular in describing thermal propagation with absorption; then u stands for the
temperature, (um)xx is the diffusion term and -?u" represents the absorption of heat
by the medium. We see that in general the thermal conductivity mum-1 and the
absorption coefficient ,un-1 are temperature-dependent. We refer to Zeldovich and
Raizer [ZR] for a detailed account of nonlinear heat conduction problems.

In this paper we consider the case of "slow diffusion" rn > 1 and "weak absorp-
tion" n > m. The first restriction implies that initial data with compact support propa-
gate with finite velocity, so that two interfaces or free boundaries arise, x= ’l(t) and
x ’2(t), that bound the support of u(., t) for every > 0; see Oleinik, Kalashnikov
and Chzou [OKC] for the case ?=0 and Kalashnikov [K2] for positive A. We study
here the regularity of the solution u and the free boundaries ’i(t). We obtain the
following results.

I) Regularity.
i) For a.e. (x,t)S we have:

(0.3) l( u -1) (X t)12 m-ltzcllu011 -1
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for a positive constant c=c(m) (llfllp, 1 __<p __< + c, denotes the LP-norm of a function
f). This is proved in Theorem 1 under the more general assumptions m > 1, n > 0,
m+n>_2.

The fact that (u ) is bounded for __> z > 0 was already proved by Kalashnikov
[K3]. From this it follows that u is Hrlder continuous in S with respect to x with
exponent a= min(1, l/m-1), and consequently (cf. [G]) with respect to with expo-
nent a/2. It is also proved in [K3] that the result cannot be true in general for
m+n<2.

ii) Um- is a semiconvex function of x for every > 0 and we have

(0.4) (um-1)xx>=-k/t
with k= k(n,m)> 0 (Theorem 2). This result is due to Aronson and Brnilan [AB] in the
nonabsorption case =0, and has played a prominent role in the theory of that
"porous medium" equation. From (0.4) a sharper form of (0.3) follows, see (2.14).

II) Interfaces. We use the above results to discuss the regularity of the solution u
and the free boundaries. We prove that the ’i(t) are C1, strictly increasing functions
after a possibly positive time t* (Theorem 5) whose occurrence we characterize in terms
of uo (Theorem 4). The equation satisfied on the free boundary is proved to be the
same as in the porous medium case:

(0.5) -;(t)=limvx(X,t ) as xi(t), x(l(t),2(t)),
where v=(m/m-1)um-l (Theorem 3). Note that by (0.3) IVxl is locally bounded for
t>0. It now follows from (0.5) that whenever ’’(t)#:0 (i.e., for t>tT) the function
vx(x,t ) cannot be continuous at (’(t),t): we thus obtain the optimal regularity for
solutions with an interface. This is exactly the situation in the porous medium case (cf.
Aronson [A1], Knerr [Knl]). Of course, if u > 0 in S then s is smooth everywhere.

It is to be noted that in our study of the free boundary we do not require, as it was
customary in the literature ([K2], [Knl], [Kel], ) that u0 have compact support, but
only that

(0.6) d=sup(xg" Uo(X)>O} < + c.

This is the natural condition on u0 in order to have a (right-hand) interface x=’(t),
defined by ’(t)=sup(xR" u(x,t)>O), t>=O.

III) Asymptotic behavior. We use our previous results to describe the behavior as
t- oo of 1) the solution u of (0.1), (0.2) for general u0, 2) its interface ’(t) if u0

satisfies (0.6).
Under the hypothesis that u0 has compact support I=[a,b] (and is positive in

(a, b)) Kersner [Kel] studies the asymptotic behavior for m > 1, n >= 1 and distinguishes
three regions: 1 < n < m, rn < n < rn + 2 and n > rn + 2, with three limit cases: n 1,
n rn and n rn + 2. He gives rates for u and " as oo in the different cases. A
parallel study is done by Knerr [Kn2]. The set of estimates if then improved by Herrero
[H] and completed by Bertsch, Kersner and Peletier [BKP1].

We give simple proofs of some of the difficult estimates above (under our more
general conditions) by applying the results in i) and ii). Since we use (0.5) to convert
estimates on ox into estimates on "(t) this quantity is also controlled. But our main
result is to point out a basic difference between the cases rn =< n < rn + 2 and n > m + 2
that happens precisely because we consider general initial data: in the first region
m <_n <m+ 2 the asymptotic behavior of u (and that of " if u0 satisfies (0.6)) is
essentially unique and its rates are given by the absorption (Theorem 8). On the
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contrary, if n > m + 2 solutions corresponding to u0 LI(R) have minimal rates given
by the diffusion term (Theorem 6; they agree with the ones for the porous medium
equation, see Vhzquez [V1]), whereas when Uo(X)>=c>O for all x<<0 and some
constant c, the rates are maximal and given by the absorption as in the previous case
(Theorem 7).

Finally the paper is divided into several sections, according to the following plan:
1. Preliminaries.
2. Regularity of solutions.
3. Proof of Theorem 1.
4. Proof of Theorem 2.
5. Regularity of interfaces.
6. Asymptotic behavior.

1. Preliminaries. It is known that for ,=0 the problem (0.1), (0.2) does not have
classical solutions for initial data u0 that vanish in some interval, even if they are
smooth; this happens because of the degeneracy of the equation at u=0. A similar
situation occurs for 2 > 0 in view of particular explicit solutions and in general because
of the regularity results that we shall prove. Therefore a concept of generalized solution
is needed. A function u(x,t)continuous, nonnegative and bounded in S=R [0, c) is
said to be a generalized solution of (0.1) (0.2) if u(x,O)=uo(x ) and the following
equality holds for every function q,(x, t) C:’1() having compact support in :

I(U,t) ff (umtxx-lr" utt-un)dxdt-t-fuo(x)c(x,O)dx--O.s

When a function u(x, t) as above satisfies I(u,) _< (resp. I(u,) => 0) for all nonnega-
tive test functions q, as before we say that u is a supersolution of (0.1), (0.2) (resp. a
subsolution).

The existence, uniqueness and properties of generalized solutions have been studied
by Kalashnikov [K2], Kersner [Ke2] and Knerr [Kn2]. (Incidentally, they use slightly
different but equivalent definitions.) In the sequel we shall use a series of results that
we summarize here. We refer to the pertinent literature for some of them and prove for
the reader’s convenience those for which we could find no proof.

THEOREM 0. Let m > 1, n > O, m + n >= 2 and let uo be a continuous, nonnegative and
bounded realfunction. Then:

i) There exists a unique generalized solution u(x,t) of (0.1) (0.2).
ii) u is smooth in the open set((x,t): u(x,t)>O). In particular, if Uo>0 every-

where and n >_ 1 then u is smooth in S.
iii) If ft is a supersolution and fi a subsolution to (0.1) with initial data to and o

respectively, and ft o _> Ft o then ft >= Ft in S.
iv) Let uj(x,t) (j=l,2...) and u(x,t) be solutions to (0.1) with initial data

Uo(X), Uo(X) respectively. If Uo-uo uniformly on compacts asj then uj(x,t)
u(x, t) uniformly on compacts of S asj- .

Proof. Existence and uniqueness is obtained by Kalashnikov [K2] for the more
general equation

(1.2) Ut=(Ol(U))xx--(U )

under assumptions that in our case mean n >= 1 and u Lipschitz continuous. The range
0 < n < o is dealt with by Kersner [Ke2], as a particular case of equation (1.2), by using
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a sequence of approximate problems,

u,=(U)xx-XU+X,
(1.3)

where u0,(x)> Uo(X) and Uo,(X)$ Uo(X) as e$0. This allows him to avoid the degener-
acy of (0.1). He assumes compact support of u0. His proof of uniqueness (i), smooth-
ness (ii) and comparison (iii) can be repeated in our case (for this last point see also
Bertsch [Be]). But let us prove in detail the existence (i) and dependence (iv) parts.

As to the existence, we consider the approximate problems (1.3) with a sequence of
smooth, positive functions Uo,(X)>=e>O that converge to u0 uniformly on compacts
and is bounded by a constant M> 0 independent of e. It is easy to see that (1.3) has,
for each e, a unique classical solution in S u,(x,t) and e_< u,<_M in S (cf. [Ke2]).
Then, using Kalashnikov’s result (cf. [K3]), the uniform bound

m-1)xl C(’r) for t>=(1.4)
follows and therefore the functions u are HiSlder continuous with respect to x uni-
formly in e > 0, x R and >= r > 0. Hence { u } is also uniformly Hrlder continuous in
(see Kruzlakov [Kr], Gilding [G]). Thus, passing to a subsequence (that we label again

u), we find that u converges to a continuous function u(x, t) uniformly on compacts
on S, and therefore for every (x, t) S. Since we have

(1.5) I(u,,)= -XE g (X,l)dxdt
in the limit e $ 0 we get I(u,) 0.

We have yet to check that u is continuous down to t=0 and that u(x,O)=uo(x ).
The classical results for quasilinear parabolic equations, cf. [LSU], do not apply directly
because of the degeneracy of the equation.

Consider first a point xo where Uo(X0)>0. We construct an explicit lower barrier
for uo at xo as follows: given 0<8<Uo(Xo) there is an interval I=[xo-a,xo+a
where Uo(X)> Uo(Xo)-8=-b >0. We now consider the function

a )2(1.6) ?)( x, ) B--- (x xo ct,

with B (m/(m 1))b and c > 0, in the set

(1.7) a= (x,t)-S" B>-.(X-Xo)+Ct
If c>2B2(m-1)/a2+B# for some #, >=0, satisfies in g

(1.8) Lib t-- (m 1) bbxx-- 2x + *< O.

We now perform the change of variables O=(m/m-1)ftm-. Then eC(f2) and
satisfies there the inequality

(1.9) Lt t ( t ) xx + Xt < o
where/x )t rn ((rn 1)/m) # and/3 (m + n 2)/(rn 1) (hence we assume ;k 0, n + m
_> 2). It is easy to see that for e small the approximations u, above to the solution
u(x,t) of (0.1) with initial data Uo(X ) satisfy: i) u,C(2), ii) Lu,>O in 2, iii)
u,(x, t) >= (x, t) in f. By the maximum principle it follows that u
Letting e$0 we have u(x,t)>=(x,t) in f, hence as (x,t)S--,(xo, O) we get

liminf u(x, ) >= f,( xo, O) uo ( x ) -8.
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Letting 80 the lower semicontinuity of u at (x0,0) follows. The result is obviously
true if u0(xo) 0 since u > 0.

The upper semicontinuity at 0 is now easy. For any 8 > 0 we can take a smooth
function fq(x) such that 1(x)>8 and Uo(X)<=fx(X)<=Uo(X)+& Let ft(x,t) be the
corresponding solution. By the argument above h(x, t) and its approximations ft(x, t),
e small, will be uniformly positive in every strip Sr=R (0, T], T small, and the
classical theory implies that is continuous at 0. Therefore as (x, t) S (x0, 0) we
have

limsupu(x,t) <_ lim f(x, t)= U(Xo) <= Uo(Xo)+.
To end the proof of the theorem we remark that the dependence result, part iv),

can be proved by repeating these same arguments.

2. Regularity results. To motivate the results in this section, we disregard the
absorption term in (0.1), thus obtaining the porous medium equation:

(2.1) ut"-(um)xx, m>l,

that appears in a variety of situations (see for instance Peletier [P]), in particular as as
model for the flow of an isentropic gas through a porous medium. In this case u
represents the density of the gas and two other physical magnitudes play a role in
describing the flow: the pressure, defined by

rn(2.2) o= Um-1
m-1.

and the local oelocity, given by -.
Equation (2.1) has been extensively studied and many of its properties are well

known by now. In particular, with respect to the regularity Aronson [A1] proved that
for every solution of (2.1), (0.2) the velocity is bounded in every strip S, R (, c)
where r > 0, and this result is best possible in the sense that v can be discontinuous.
This gives a regularity threshold for solutions, since u(x, t) is H61der continuous in x
with exponent a=min(1,1/(m-1)), which is sharp as it can be tested against the
explicit similarity solutions obtained by Barenblatt [B]

m- 1 -1/(1+m) 211/(m-1)(2.3) P(X’t)--t-i/(i+m) P-2m(m+X) (xt )
+

(valid also for m < 1) where p > 0 is arbitrary. We just note here that this threshold no
longer appears when rn < 1, in which case disturbances from rest propagate with
infinite speed (cf. Aronson and Brnilan [AB] and Vfizquez [V2]) and nonnegative
solutions are always positive and smooth everywhere.

A second important regularity result is also shown in [AB]; it states that the
pressure is a semiconvex function with respect to the space variable. More precisely,

1(2.4) Vxx>= (m + 1)t’

where the inequality is to be understood in the sense of distributions in S. Noting from
this and the equation v=(m- 1)vv+ o2 satisfied by v, it easily follows that

u
ut> (m+ l)t

inS.
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On the other hand Kalashnikov [K3] proved that if we apply the previous defini-
tions of pressure and velocity to equation (0.1) (as we shall do in the sequel), the
velocity of solutions to (0.1), (0.2) is bounded in every strip of the form &, with > 0
if m + n >= 2, but not in general if m + n < 2. Though the boundedness of vx is already
an important fact, for some applications we need to know the way in which this bound
depends on time. This is included in our first result.

THEOREM 1. Let u(x,t) be the solution to (0.1), (0.2) with n, m as above and
n+ m>=2, n>0. Then v(x, t) is Lipschitz continuous in x for each t>0 and we have a.e."

t)l 2

Moreover, for every 1, 2 with 0 <_ < 2 one has

(2.6) sup Iv(x,t.)l< sup IVx(X,tl)I"
xR xR

The proof of Theorem 1 is postponed to {}3. To obtain from the theorem sharper
bounds for I1 as o, we remark that there exist two a priori bounds for solutions of
the problem under consideration. The first one is valid if Uo(X)Ll"(R) with 1 <_p<
+ and asserts that there exists a constant c=c(m,p)> 0 such that for every solution
of (0.1), (0.2) we have in S

(2.7) /(x, t) cll u0 II t-,
where

2p 1(2.8) a=2p+m_l O=2p+m_l
This has been proved for the case =0 by V6ron [Ve]. Since solutions of (2.1) are
supersolutions to (0.1) with the same initial data, the estimate holds for 2 > 0. There-
fore, using (2.7) in the time interval [0,t/2] and (2.5) in [t/2,t] after displacing the
origin of time from 0 to t/2, we get the following.

COROLLARY 1. Let u, uo, m,n be as above and let also uo L P(R), 1 <_p < + c.
Then we have in S

(2.9) Io(x, t)I c111 u0 II -t
where Cl--Cl(m,p)>O =p(m-1)/(2p+m-1), 8=(p+m-1)/(2p+m-1).

The second bound occurs for n > 1 and is a consequence of the existence of a
solution of (0.1) of the form:

u*(x,t) (}k(n- 1)t) 1/’- 1).

It then follows by comparison that for every solution of (0.1), (0.2) we have in S

(2.10) u(x,t) <= ()(n- 1)t) -1/(n-I).

Combining (2.10) and (2.5) as above yields the following.
COROLLARY 2. Let u, uo, m as in Theorem 1 and let n > 1. Then for every (x, t) S

we have

(2.11) Iox(X t)I <=2"t -(m+n-2)/(n-1)
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with

2o ( 1 ) (m-1)/(n-1)C=m-1 X(n- 1)
=2+m-1

n-l"

Our second result consists in establishing a semiconvexity property like (2.4) for
(0.1), (0.2) under the restrictions rn > 1, n >__ m.

THEOREM 2. Let u, v be as above and assume that n >= m. Then

k(2.12) vxx > in D’(S)

where

m+l +( 2(m+n-2) ) 1/m(m-- 1)
The proof of Theorem 2 fails for 1 < n < m, though it can be adapted to cover the

case n __< 1. When n= 1 one is easily reduced to the nonabsorption equation (2.1) by
means of the change in variables (see Martinson and Pavlov [MP])"

(2.13)
1 (1_ e_X(,,,_ )t)r=X(m_l)

u(x,t)=ft(x,r)e -at.
In proving Theorem 2, essential use is made of estimate (2.5). Conversely, (2.5) is a
simple consequence of Theorem 2 and the boundedness of v. In fact a stronger result
holds.

COROLLARY 3. Under the assumptions of Theorem 2, we have for every (x, t) S:

(2.14) IVx(X,t) I<= (2kllo(x,t) IIt-)1/,
where k is the constant in (2.12).

This result is a consequence of the following Calculus Lemma applied to v(-,t):
"Let f be a bounded real function such that f"(x) >__ d> 0. Then f is Lipschitz
continuous and

l/’(x)l (211 f d )1/2
for every x R."

3. The proof of Theorem 1. We begin by deriving the basic result, that consists in
applying Bernstein’s method to the pressure v assuming that our solution is smooth.
Let us write St= (0, T] with T> 0. We obtain the following.

LEMMA 3.1. Let v(x, t) be a smooth, positive and bounded solution of the equation

(3.1) vt=(m-1)vvxx+vx-cv
in St= R x [0, T] and let c, fl be nonnegative constants. Then we have:

2(3.2) vZ(x t)<--llv(x,O)IIt-=m
for every (x, t) Sr. In addition, for O <_ < 2

(3.3) sup [vx(x,t2)I< sup Ivx(X,tl)I.
x xli
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Proof. We begin as in Aronson’s proof for the case ;k=0, [A1, p. 463] (see also
[K3]). Let N=suPxRV(x,t ). We choose a C2 function : [0,1][0,N] strictly in-
creasing, concave and such that ("/’)’ =< 0; further specifications will be given below.
We also take a cut-off function C(Sr)fC(Sr) such that 0=<’=<1 and ’=0 for
t--0 or Ixl>_- c, c being some positive constant. Setting v=q(w) we obtain from (3.1)

wt=(m-1)qWxx+ (m-1)O-7+O’ Wx-C---.
Now we differentiate with respect to x, multiply by wx" and consider a point (Xo, to)
of Sr where the function (Xo, to)of Srwhere the function z=2w2 attains a maximum,
so that we have zt>=O zx=0, zxx__<0 at (Xo, to) and t0>0 (unless z=0, a case we may
disregard). It then follows that at such a point"
(3.4)

-mq’-(m-1)q ’2Wx< t+2(m-1),x-(m-1),xx-C- 2

Wx (m+l),’+2(m-1)--- ffxWx

Now set

al=max[’/[, a2=max[’x[, a3 =maxlxx [,
and assume that there are positive constants bi, 1,. ., 4 such that

(3.5) O<Nbl <=dp’ <=Nb2, d" <__ -Nb3, [tt/tl<=b4
Taking also into account that (Ca/q,’)’ > 0, we can disregard this term. We then get"

2 Wx_4 ClW2x / C_I Wx 13,
where

1

Cl=Nmb3 (a + N(m- 1)a + 2N(m- 1) a),

a2
c2=3((m + 1)b2 + 2(m- 1) b4).

Since for every 8 > 0, c2’[wx[ <= 8w4+ cw/48, we get

(1-8)’2w:_-< 1-- w:.

Therefore for every (x, t) Sr we have

(3.6) z(x,t)=<maxz__<l_ Cl+-
Since this bound depends on ’ and , we now fix a point (x,t)Sr and make a
suitable selection of these functions. We begin with ’: we choose

(3.7) n(X’t)
1
b n
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where qC’(R) satisfies 0 __< q __< l, (x)=l if ]xl__<l, 6(x)=0 if Ixl>_2. Plugging ’n
into (3.4) we obtain (3.6) with constants Cln, c2n depending on aln, a3n. Now aln 1/t
whereas a2n a3n---) 0 as n -- 00. Thus passing to the limit we obtain from (3.6)

1w2x (Xl,tl) =Z(Xl,tl) <= Nmb3tl
and noting that vx=’(w)w and Xl, >0 were arbitrary, we arrive at

Nb22 for every (x, ) Sr.(3.8) v(x,t) <__
mb3t

Now we choose a suitable q. For this purpose we consider the simplest form that
satsfies (h"/rh’)’ <_ 0 as well as (3.5), namely

k(r)=Nr(a-br), a,b>O.

Then (1)>_N if a>=b+ 1, is strictly increasing in [0,1] if a>2b and we have b=a,
b3 2b. Thus (3.8) becomes

Na2

(3.9) vE(x,t)=2mbt
The second member above is to be minimized with respect to a,b subject to the
conditions a, b > 0, a >__ b + 1, a >= 2b. This happens for a 2, b 1 for which (3.9) gives
(3.2).

To prove (3.3) we may assume that tl--0 and w C(Sr) by displacing the origin
of the times. We then repeat the previous argument taking now

to conclude that at any interior maximum of w, Wx=0 so that the maximum is
achieved at 0.

Proof of Theorem 1. Let us consider first the case n >_ 1. Then for every real x and
O<=t<_t, u(x,t)>O implies u(x,t)>O (see [Kn2], [Ke2]). Therefore if we assume
that uo(x ) is positive everywhere, so is u(x,t) in S and, as stated in 1, Theorem 0,
uC(S). Since the change of variables v=(m/(m-1))um- transforms (0.1) into
(3.1) with

(3.10) fl=m+n-2 (rn 1
c=,m rn 1

m

it then follows that estimates (2.5), (2.6) are a consequence of Lemma 3.1. When Uo(X )
is only nonnegative, we just approach it by strictly positive data Uo(X) such that
Uoj(X) Uo(X) as j--, uniformly on compact subsets of and use part iv) in
Theorem 0 to conclude the result.

When 2-m _< n < 1 we no longer can deal with smooth positive solutions of (0.1),
(0.2), since solutions may disappear after a finite time (see [K2]). We then start from
problems (1.3) with, say, e=l/j for j= 1,2,..-. Then the estimates hold true for
each u(x,t), since in applying Bernstein’s technique to the equation for v,=
(m/(m-2))u-1 it happens, as in Lemma 3.1, that the perturbation which appears
with respect to the case A =0 has the fight sign and may be dropped (see for instance
[Ke2, pp. 1957-1958] for this detail). Therefore letting j c (2.5), (2.6) follow.
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Remark. Estimate (3.2) does not depend on ,, so that it even applies to the case
h 0. However the constant in (3.2) is not best possible; for instance when , =0 one
has

2(3.11) v2 (x,t) < IIo( 0)IIo t=m+l

(see Vhzquez [V2]), a result which is sharp in view of the explicit solutions (2.3).

4. Semiconvexity of the pressure. This section is devoted to the proof of Theorem
2. To this aim we shall proceed in three steps.

i) The core of the proof lies in the following formal argument. Let v=
(m/(m-1))u’-1 where u is a smooth positive solution of (0.1) and c, fl are given in
(3.10). As in Aronson and B6nilan [AB] we set p= Vxx and differentiate twice in (3.1)
with respect to x to get

(4.1) pt (m 1) Vpxx + 2mvxp + (m + 1)p2- cflv- lp

cfl ( fl -1) va- 2v2
Let us consider now the differential operator:

(4.2) L0 (m 1) VOxx + 2mVxOx- cv-119 + (m + 1) 19 2 Ot"
It then follows from (4.1),and estimates (2.10), (2.11) that

2(m+n-2)<__
m(m_l)t 2

Take now b(x, t)= -k/t where k > 0 is some positive constant to selected later. One
then has

(4.3) p>__b att=0

and on the other hand

L/ (m + 1)p2-cv-l-t> (m+ 1)-----

Thus we obtain L >= Lp in S if

(m+l)k->=k+ 2(m+n2)m(m- 1)

A simple choice for k is, for instance,

(4.5) k
1 (2(m+n-2)) 1/2

m__------- -b m(m2-1)

k 2 k
2 2

(4.6) v_<A,

By the maximum principle it then follows that p >__ -k/t in S.
ii) We next show how to justify this argument in the case where is smooth in Sr,

T> 0, and satisfies there
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where A,/x, v are some positive constants. Fix > 0 such that < min(k/v, T), where
k is given in (4.5). Now write S, T R (, T[ and define

p*(x,t)

where 0 < " < z. Then if L is the differential operator in (4.2) one has upon replacing
by (t- z’) in estimates (2.10), (2.11)

Lp*>=Lp in

whereas, by the choice of and the fact that z’ <z, one has p*(x,t)<=p(x,z). From
the maximum principle, cf. [IKO, Thm. 8], it follows that p* =<p in S,T (though the
operators in [IKO] are linear, the proof applies unchanged). Then let z $ 0 to conclude,
since T> 0 is arbitrary.

iii) It only remains to show that under our current assumptions on n,m and u0,

v(x,t) can be approximated by smooth solutions of (3.1) vj(x,t) (j= 1,2,... ) satisfy-
ing (4.6) with bounds possibly depending on j. To this aim we select a sequence Vo(X )
as follows:

For each fixed j, vd(x)eC(R);vd(x)>l/j in R, vd(x), Ivd(x)l and
[vxx(x)[ are bounded in R and v(x) Vo(X ) uniformly on compact subsets
of.

We consider the Cauchy problem corresponding to (3.1) (where c, fl are given in
(3.10)) with initial datum od. Since the generalized solution vj(x,t) is such that v(x,t)
>(jn-l+ (n-1)t)-(1 the exact solution with initial data l/j, the equation is
then uniformly parabolic in each strip ST with T> 0. Then by classical results [LSU,
Chap. V, Thm. 8] v(x,t) is smooth and satisfies (4.6). Hence p=vxx satisfies (2.12)
and letting j o the same is true for p.

Remark. The constant k in (4.5), which is independent of h, is dearly not the best
possible. This is not surprising, in view of our remark in 3, since we use (3.2) to
calculate it. When ,=0, the best constant is 1/(m+ 1), as shown in [AB]. For X>0
and n m one also can check (2.12) against the explicit solutions obtained by Bertsch,
Kersner and Peletier [BKP2] which are of the form:

(y(xt))m-l= 1 { ch(ax)-I }f(’t) p-
g(t) +

where p>O is arbitrary, a=((m-1)/m) and f,g are positive increasing functions
which in particular satisfy

(fg)’=a(pg+l) with a=
X(m2-1)

m

In the support of y we thus have for (m/(m 1))y

)(m-1) ch(ax) > h(m-1) pg+l
X m fg m fg

Now since (fg)(t)>= af (pg+ 1)dt>= at and p/f=supym-1 one gets, using (2.10),

x> where k +m+l ’
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whereas our estimate reads

xx>-- wherek= +m+l m(m+l)

5. The free boundary. This section is devoted to the study of the propagation
properties of the solutions of problem (0.1), (0.2) under the hypotheses m > 1, n >__ m, u0

continuous, nonnegative and bounded, plus the support condition (0.6)"

sup{x" Uo(X)>O}=d< +c.

Under the stronger hypothesis that u0 is positive in a finite interval, say (-d, d) with
0<d< +, and zero otherwise, the set P=P[u] {(x,t)S: u(x,t)>O} has been
studied by several authors" Kalashnikov [K2], Kersner [Kel], Knerr [Kn2],. . They
prove that there exist two functions 1(t), 2(t) C[0, c) C O, 1(0, CX) such that ’1(0)
(- 1)id (i=1,2) and P(t)--(xR" (x,t)P) is the interval (l(t),’2(t)). In addition
(- 1)ii(t) is nondecreasing and [’i(t)[ c as c for i= 1,2. Actually these proper-
ties are true for n>_ m, but not for n < rn (cf. [K2], [Ke3]). The curves x= i(t) are
called interfaces or free boundaries. The proofs of these results can be easily adapted to
our situation; then we obtain the existence of a right-hand interface x=’(t)=
sup(x: u(x,t)> 0} with the above properties.

In the nonabsorption case =0 much more is known about the free boundaries:
equation satisfied on the interface, C regularity of ’(t) (cf. [All, [Knl], [CF]). It is
possible that the interface remains stationary for less than or equal to a certain time
t*[0, c), called waiting time, after which it moves with positive velocity: "(t)>0 if
> t* [K1], [Knl]. The existence of a waiting time has been characterized by one of the

authors [V3], and the behavior of " near t* is studied in [ACK], [LOT] and [ACV].
It is our purpose to use the regularity results of the preceding chapters to prove

similar facts for the absorption case > 0. Our first result is the following theorem.
THEOREM 3. Let u be the solution of (0.1), (0.2) under the conditions above, and let

x (t) be the right-handfree boundary. For every > 0 the right-hand derivative D +(t)
exists and

where vx((t),t) is understood as limv(x,t) as x (t), x < (t).
Proof. The line of argument parallels that of the nonabsorption case A=0, and

uses Theorem 2 followed by suitable comparisons.
i) Since v =< C and Vx >= C. t- for some C> 0, the function x v (x, t) + Cx2/2

is convex in R for every > 0, and hence it has one-sided derivatives at every point.
Therefore the limit vx((t),t ) appearing in (5.1) exists for each > 0.

ii) To prove (5.1) at t= to> 0, we first consider the solution (x,t) of the problem:

tt=(lm)xx for x, t>to,(5.2) ft( X, to ) U( X, to ) for xt.

It is clear (see e.g. [Ke2, Thm. 3]) that is a supersolution for our problem when >__ 0,

so that by Theorem 0, part iii) (x,t)>__u(x,t) for such t. Hence (t)>=f(t) if t> o and
(to)=’(to), being the interface for . Now for problem (5.2) the result holds,
D+(t0) vx((to),to) and therefore

1(5.3) lim sup -((to+h)-(to))<_ -v((to),to).
h-,O
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Next we consider the problem"

=(lm)xx--O if XR, t>t0,(5.4) (x,t)=u(X,to) if XR,

where k0=((n-1)to) -1, so that by (2.10) Xun<__Xou. Then u(x,t) is a supersolution
for (5.4) for t>= o. On the other hand (5.4) can be converted into a nonabsorption
problem by means of (2.13) and it is not difficult to see that D+’(to) -vx((to),to)
also holds. Therefore

(5.5) lim inf
1

h’-*O - ((t+ h)-(t)) >=D+(t) vx((t)’t)

and the theorem is proved.
We now extend the characterization of the existence of a positive waiting-time to

our absorption case.
THEOREM 4. Let u(x,t), Uo(X ), (t), m as above and let n>__ 1. Let t*=sup(t>=0:

(t) d ). Then * is positive if and only if

(5.6) sup (d-x) -(m+l)/(m- Uo(S)ds < +
x<d

Proof. If (5.6) holds we consider the solution of (5.2) with to=0. By the results
of [V3] we then have a positive waiting-time ’/* for . Since u, we conclude that
tT_>t? >0.

Conversely, if u does not satisfy (5.6), the solution of (5.2) with t0=0 has a zero
waiting time. By the change of variables (2.13) the same is true for the solution of
(5.4) with to=0 and 0 arbitrary. But choosing Xo large enough (x,t)<u(x,t)
whence 7 < [7 O.

Our next result deals with the behavior of ’(t) after a waiting time.
THEOREM 5. Under the assumptions of Theorem 3, (t)Cl(t *, ), "(t)>0 for

> t* and the function

(5.7) ’(t).tp

is nondecreasing when t> t* for a certain p=p(m,n)>O (see (5.13)).
Remark. When A=0 it has been proved in [V1] that (5.7) holds with t90= m/(m + 1)

which is sharp. In particular for the Barenblatt solutions (2.3) ’(t)t is constant.

Proof of Theorem 5. i) We first prove a weak version of (5.7). At any point > t*
with D+’(tl)> 0 we adapt a subsolution (x,t) to (0.1) in the strip (t1, c) satisfy-
ing (x, tl)<=u(x,t) and such that has a good contact with u at x= ’(tl); namely we
require that the corresponding interface and pressure, ’(t) and (x, t), satisfy

(5.8) ’(tl)=D+(tl) (i.e. x((tl),tl)=Vx((tl),tl)),
kv-(x,t)= , k as in (2.12).

To this aim we start from f(x, t) given as in (2.3) by
1/(m- 1)m-- 1 -1/(l+m) 2(5.9) fl(X’t)=t-1/(l+m) P--2m(m+ l) (x’t )
+
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where p > 0 is to be selected presently. Now for A1 > 0 fixed we consider the solution of
ut= (um)xx Alu obtained from (5.9) through transformation (2.13). This reads

p,x(X t)=e-Xt( 1 )
-1/(m+l)

A.l(m_ 1) (1-- e-Xl(m-1)t)-1

[ m_l (1)-2/(m+l) ]1if(m- 1)

P- 2m(m+ 1) hi(m- 1) (1 --e-X(m-1)t)-2/(m+l)x2

We now set

(5.10) Ft( X, ) p,xl(x--Xo,t--’r ) =-- Ft( x, t; Xl,P,Xo, "r )

with

kl= ((n-- 1)tl) -1

so that by estimate (2.10) ,1 >= An and is a subsolution to (0.1). Next we determine
xo, ,,p from (5.8). This last can be done in a unique way. In particular is obtained
from the third condition in (5.8) which reads

exp
n-1 1- -1=

m-1

k(m+l)(n-1)

whereas xo, p are determined from

(tl)-xo=’" D+( tl),

t (2m(m+l)p)l/-( (n-1)tl)l/(m+l)( (l-m( "r)))
1/(m+ 1)

k’D+’(/)= m-1 m+l
1-exp n-i 1-

It follows easily from (5.8) that U(X, tl)> (X, tl). By the choice of 1, u(x,t)>= (x,t)
for t >= t and therefore ’(t + h)>= (t + h) for any h > 0. Hence

(5.11) (tl+h)-(tl)-hD+(tl)>=g(tl+h)-g(tl)-hg’(tl).

On the other hand it follows from (5.10) that

(5.12)

(t)=x+(2m(m+l)p)l/2((n--1)tl)l/(m+l)(m--1m+l
1-exp((1-m)(t-r)))1/(m+l)(n_1)t

so that ’(t) is a C-function for t>z, and the second member in (5.11) can be written
as h2/2 "(tl)+ O(h3). Besides one easily checks on (5.12) that:

g’(tl__) with p + mk(5.13) "(tx)=- p
tl nS_ i

We now divide (5.11) by h 2 to obtain

2 p(5.14) Fh(t)=-[(t+h)-(t)-hD+(t)] >= -D+(t)+O(h)
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at any point where D+’(tl) > 0. It is obvious that (5.14) also holds at tl if D / ’(tl)= 0
(with O(h)=O in this case). On the other hand, it follows from (5.12) that O(h) is
uniform in t. Therefore letting h ---, 0 we obtain

P +(5.15) 70 t>o,

where ’" is to be understood in the sense of distributions. Since ’(t) is locally Lipschitz
continuous in (0, oo), D+’(t) "(t) a.e. and (5.15) may be rewritten as

(5.16) >0 in ’(0, c)
Assume now that p<l. Then (5.16) means that the function r(,)=’(t) with
(1-p)-lt1-p is convex for 0=<< . Therefore the lateral limits D+/(z), D-(,)
exist for every > 0, they are nondecreasing functions of ,, and

D+rl(’r) >=D-rl(’r) >=D+rl( ’- h )
Since D +rl(’r)=D+(t).t ’, we then conclude that

(5.17)

for ’>,-h>0.

D+"( ). , D-’( ). are nonnegative and nondecreasing,

D+(t)>=D-(t)>=D+(t-h) 1-- for every t> t-h> t*.

The same result is obtained if p_> 1, but now we have to take ,= log if p= 1 and
"r=-(p-1)t-(’-1) if > 1. Note that (5.17) implies that once the interface starts it
never stops.

ii) We have yet to prove that D+(t)=D-(t) for every > t* to obtain that
Cl(t *, o) and (5.7) holds. But once the estimates on v (2.5) and vx (2.12) have

been established, this can be done by repeating, with some minor modifications, the
arguments in [ACK, Thm. B], for the case , 0. We just indicate here for completeness
an important auxiliary tool that is used in the proof and has some independent interest.

LEMMA 5.1. Let v=(m/(m-1))um-l, where u=u(x,t) is the solution of (0.1),
(0.2) under our current hypotheses, and assume that

-Vx((to),to)=Y
for some to>0, >0. Then in a neighborhood of (’(t0), t0) one has

v(x,t)=Lv(x-(to),t- to)/O(Ix-xol/ It- tol)
where

/.

This result is in [ACK, Prop. 2.3] when , 0. The case , > 0 offers no difficulties.

6. Asymptotic behavior. In this section we study the asymptotic behavior of the
solution of (0.1), (0.2) with 1 <m<=n. We also study the behavior of the interface ’(t)
when uo satisfies (0.6).

We shall use the following notation: If f(t), g(t) are nonnegative functions
defined for all large > 0 we write:

i) f(t) O(g(t)) if there exists a constant C> 0 such that f(t) <= Cg(t) for all
large enough t.

ii) f(t)--g(t) if f(t)=O(g(t)) and g(t)=O(f(t)).
Our main contribution is the description of different behaviors if n > m + 2.
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6.1. The case n> m+ 2. It follows from (2.10) that [[u(.,t)[Io=O(t-1/(’-l)); this
bound is due to the effect of the absorption and holds for all initial data. A stronger
bound O(t-1/(m+l)) holds for all solutions with intial data uoL(R), cf (2.7), which
coincides with the one obtained in the pure diffusion case =0. We show next that
both rates can be exact.

THEOREM 6. Let uo LI(R). Then

(6.1) u(.,t)--t-1

uniformly on sets of the form Ixl <= ct1/(m+ 1), with c > 0 small enough. If (0.6) holds, one
then has

(6.2) ( ) l/m+ 1, ’( ) O( -m/(m+ 1)).

Proof. The estimates on u0 and " when u0 has compact support are due to
Kersner [Kel]. In fact he constructs subsolutions of the form

(6.3) w(x,t)-- o(t+’r)-l/(m-1)-e( p--x2(t+’r) e(m-1)-2/(m+l’) 1/(m-l)+
here e > 0 must be small but otherwise arbitrary, and 0, r, p are positive constants that
can be selected independently of e. It is clear by comparison of u with w for suitably
chosen 0, z, p that the rates in (6.1), (6.2) serve as lower bounds for every solution.

To obtain the upper bounds we observe that (6.1) comes from (2.7) and that (6.2)
is a consequence of estimate (2.9) for v with p 1 and formula (0.5); we obtain thus
"(t)= O(t -m/(m+l)) and by integration the corresponding one for ’(t).

We now obtain solutions with maximal rates.
THEOREM 7. Assume that Uo(X)> > 0 for all x < 0, Ixl large. Then

(6.4) lim Ilu(" ,t)IIoot1/(n-1)= (X(n- 1)) -1/(n-1)

t--. oo

and u- -(1/(n-1)) uniformly on sets of the form x < ct n-m/(2(n-1)), c > 0 small. If (0.6)
holds one has

n+m-2

(6.5) (t) n-m/(2(n-1)), t(t) O 2(n-1)

Proof. To get the upper bounds we argue as before: using (2.10) and (0.5) we
obtain the bound for ", and by integration the one for ’. The corresponding case in
(6.4) comes also from (2.10).

For the lower bounds we construct a new subsolution as follows: Let z z(x, t) be
the solution of the porous medium equation zt=(zm)xx with initial datum Zo(X )
defined by Zo(x)=a>O if x <0, z0(x)=0 if x>0. It is shown in [V3] that for each a
there exists a unique generalized solution of the form

(6.6) Z(X,t)=f(x,t-1/2),
where f: R ---, R satisfies

(6.7) (fm)"()+f’()=O,
f(-- oo)=a, f(+ o0)=0.
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Moreover there exists 0=0(a,m)>0 such that 0 <f()<a for x <o and f()=0 for
x >= o. Now we set

(6.8) w(x,t)--o(t+’r)-l/(n-1)f((X--Xo)(t+’r) -n-m/(2(n-1)))
for some constants o, x0, v such that o, > 0. We now impose the condition

(6.9) Lw =- wt- ( wgUm

n-m ,( 1=(t+z)-("/("-l)) 2(n-1) r/f r/)-n_lf(r/)

om--l(fm)"( n--lfn--1n)+XO

_<0

where /= (x- Xo)(t + "r) -((n-m)/(2(n-1)) Now (6.9) is satisfied if we choose

(n--m)o=
n-1 a=((n-1))k)-X/(n-1)"

In order that w(x, O)<=Zo(X ) we choose appropriately x0 and z. It then follows that

(6.10) u(x,t)>=w(x,.t), (t)>__w(t)=Xo+o(t+,r) n-m/2(n-x)

where w(t) is the interface corresponding to w(x,t). Taking into account that
IIw(x, t)llo oa(t + )-<1/<,- 1)) the estimates follow.

Remarks. 1) The subsolution (6.8) can be constructed for n > m. Therefore Theo-
rem 7 holds for this range of n ’s.

2) We have shown the two extreme cases. Results for intermediate classes of initial
data are not difficult to obtain in many instances. To point out a simple fact if
uo e L’(R), 1 <p < o, we have by (2.7)

(6.11) u(x,t)=O(t-), O=(2p+m--l) -1,
uniformly in x. Arguing as above it follows that

(6.12) ’(t)=O(t-(P+m-1/(2P+m-1))), (t)=O(t+(P/(2p+m-i))),
as t--> .

3) In the nonabsorption case, ? =0, a very detailed description of the asymptotic
behavior is available, cf. [V3] and its references.

6.2. Case m

_
n <m + 2. In this case there is only one type of asymptotic behavior

summarized in the following result that extends Theorem 7 (see Remark I above).
THEOREM 8. Let m<n <n+ 2 (resp. n=m) and let u be a solution of (0.1), (0.2).

Then as t--> o

(6.13) u(.,t)--t-1/n-1

uniformly on sets of the form ]x]<=ct n-m/<2<n-1)) (resp. Ixl<=c logt) for c small. More-
over if uo satisfies (0.6) we have

(6.14) t(t)=O(t-((m+n-2)/(2(n-X)))), (t)" ((n-m)/(2(n-x)))

(resp. ’(t)=O(t-), ’(t)-logt).
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Proof. This result was essentially known. Thus in [Kel], [BKP1], the lower esti-
mates are obtained by means of suitable subsolutions. As to the upper bounds, (6.13)
comes from (2.10) and the estimate "(t)= O(t-((m+n-2)/(2(n-x)))) (resp. "(t)= O(t-1))
is obtained as in Theorem 6 above. By integration we obtain (6.14).

A related argument to obtain the upper bounds is explained in [H]. For another
argument see [BKP1]. In both cases u0 has compact support.
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A VOLTERRA EQUATION WITH Lz-SOLUTIONS*

STIG-OLOF LONDENf

Abstract. Consider the nonlinear Volterra equation x’(t) + f6 a( s g(x(s)) ds =f(t) where a is strongly
positive and f L2(R +). We formulate sufficient conditions for bounded solutions to be square integrable on
R+. The result generalizes earlier work by Staffans [Proc. Amer. Math. Soc., 78 (1980), pp. 213-217.]

Key words. Volterra equations, Fourier transforms
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1. Introduction. In this note we consider the asymptotic size of bounded solutions
of the (scalar, real) nonlinear Volterra equation

(1.1) x’(t)+ g(x(t-s))a(s)ds=f(t), t_R+=- [O,m), x(O)=x0,

and prove the following result:
TOlN 1. Let x-L(R+) be a solution of (1.1) on R + satisfying

(1.2) sup frq(t)(a.q)(t)dt< c.
T>0 "0

Also assume that

(1.3) a is strongly positive definite,

(1.4) a’LI(R+),

(1.5) gC(R), xg(x)>O, xO, 0< lim inf
g(x)

IxlL0 x

(1.6) fL-(R+).
Then

(1.7) x,x’L2(R+).
We define x(t) to be a solution of (1.1) on R / if x is locally absolutely continuous

def
and satisfies (1.1) almost everywhere on R /. Above tp(t)= g(x(t)) and denotes
convolution, thus (a, tp)(t)= fJ a(t-s)p(s)ds. By definition the kernel a(t) satisfies
(1.3) if and only if there exists e > 0 such that a(t)-ee-t is positive definite. From (1.4)
follows that 3()= limo 0fi(o +/to)= limo o a(t)e-t-tdt is well defined for 0 4
0 and consequently (1.3) amounts to

Re3(0) >_ e[1 +02] -1, 0:#0, and some e>0.

The problem concerning the asymptotic size of solutions of (1.1) has earlier been
considered by Staffans [3] (where references to prior work can be found) and our

Received by the editors December 4, 1984; accepted for publication (in revised form) November 5,
1985. This work was done while the author was visiting the Institute of Mathematics of the University of

Graz, Austria.
Institute of Mathematics, Helsinki University of Technology, 02150 Espoo 15, Finland.
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theorem extends his result. Thus we show by an elementary proof that the additional
assumption

a’BV(R+)
which is made in [3] to obtain (1.7) is in fact unnecessary.

As in [3] one may slightly extend Theorem 1:
THEOREM 2. Let x be as in Theorem 1 and suppose (1.2), (1.3), (1.5) hold. Assume

a b + c where b LI(R +) and satisfies

IS(.) 12Z/3Reb(,0),

for some fl >= O,

c is positive definite,

Finally let f=fl+f+f3 where flL2(R+), fBV(R+), f3L(R+), fL2(R+).
Then (1.7) is satisfied.

The proof of Theorem 2 closely follows that of Theorem 1 and we only note that
by [3, Thm. 1] we may without loss of generality assume c 0 and that the integration
by parts in (2.9) is performed only with c(t).

To obtain xL(R+) (which is postulated in Theorem 1) one needs a somewhat
different hypothesis. For completeness we state the following result which is a conse-
quence of a result in [2].

THEOREM 3. Let x be a solution of (1.1) on R + and assume that (1.3) holds. Suppose
f, f’ L2(R+) and let limsuPlxl_, G(x)= oo. Then xL(R+), and (1.2) holds.

Above G(x)=fg(u)du, xR. To prove Theorem 3 multiply (1.1) by q(t),
integrate over [0, T] and use [2, Prop. 4.1].

2. Proof of Theorem 1. Note first that (d/dt)(a,ep)(t)L(R+) from which
(use (1.1), xL(R+) and fL2(R/)) follows (a p)(t) L(R+). Consequently x’
is the sum of two functions belonging respectively to L(R/) and L2(R /).

For any T>0 let yrLAC(R+) satisfy yr(t)=O, tq(O,T) and be such that for
p 1, 2 and some c independent of T,

(2.1) [r Ix’(r) -Yr( r)l
2
d<__c,

"o foT
As x L(R/) and by the above decomposition of x this is possible. (Below c always
denotes a constant independent of T. The actual value of c changes from line to line.)

Write tpr= Xt0, rlq- From (1.2) and by Parseval’s identity (see e.g. [1, p. 258])

(2.2) sup lift(to)12Reh(0) &0 < o,
T>O

and so, by (1.3),

(2.3) sup
T>0
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Multiply (1.1) by y(r(t) and integrate over [0, T] to get

(2.4) yr(z)f(,r)dz+ ) [y(+/-r) x’(,r)]

Thus, recalling (1.6) and (2.1),

(2.5) L2(R) 1 +

Obviously p}(o)=iopr(o), oR. Also note that as a’LI(R +) then
sup,o R\{o} I()1 < oo. Consequently (2.3) yields

(2.6)

I1

Since Id(o)[= O(lol-x) and a is strongly positive definite there exists q < oo such that
I(o)1 --< q2Red(o), Io1>- 1. Therefore by (2.2)

(2.7)

<=q(fl,ol>-I I>=1
Re&(o)lqr(,o ) 12do)

1/2

do )1/2
The estimates (2.5)-(2.7) imply

(2.8) fR I’+(+)12d<--c 1 + Ipr(+o) 12do
I1

Consider the last term on the right side of (2.4). Add and subtract an extra term
and integrate parts to get

(2.9)
0

T

-a(O)foT fox(,r)p(,r)d,r+a(O)
T [x(,r)_yr(,r)]p(,r)d,r

TyrC,r)(a’, qo)(’r) d+/-r.
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The absolute value of the second term on the right side of (2.9) is obviously uniformly
bounded in T. For the third term we have (d= fg [a’(’)[dr)

(2.10)

fR r()’(O)tr()d

[>__I ]>__1

+c

1/2

_<c [#(o) I=d0 +c I(o) dto
1/2

where we have used (2.2), (2.3). From (2.4), (2.9), (2.10) follows (note that by positive
definiteness a(0) > 0)

So [ s , o+(s, ,,,,)11x(r)q)(’r)d" =<c 1+ lyr(<o) ’
I>=1

and hence by (2.8)

fo x(’r)p(’r)d’r <=c 1+ I(o)ld,o

Together with (1.5) this implies (xr Xlo, rlx)

[ (. t]
With the aid of (2.1) we conclude that x L2(R+). From (2.1), (2.8) then follows

x’L(R+).
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SOLUTIONS OF A NONLOCAL CONSERVATION LAW
ARISING IN COMBUSTION THEORY*

ROBERT GARDNER,"

Abstract. We prove a local existence theorem for smooth solutions with Sobolev space data of a
nonlinear conservation law which contains a nonlocal operator. In a certain parameter range we also prove
that smooth solutions develop shocks in finite time. This gives further confirmation of the validity of the
equation as an asymptotic approximation for the prediction of spontaneous Mach stem formation in solutions
of the equations of reactive gas dynamics.

Key words, conservation laws, Mach stem, combustion shock formation
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Introduction. This paper is concerned with solutions of the equation

ut+Ruu,+(R-1) u(x+s)ux(x+s) ds =0,

u(x, o) Uo(X),
where x (we shall suppress the t-dependence of u in the integral term). Equation
(1) arises as an asymptotic approximation which governs the growth of multi-
dimensional perturbations in planar detonation front solutions of the equations of
reactive gas dynamics in two space variables (see Majda and Rosales [5]). In particular,
if bx u, then b describes the evolution of a 2-D perturbation in the primary planar
front. In this context the formation of shocks in smooth, rapidly decaying solutions
of (1) is associated with the onset of spontaneous Mach stem formation in solutions
ofthe original system. The appearance ofthe additional shock and contact discontinuity
at the Mach node is predicted by the first order asymptotics for the fluid components.
This, together with the mechanism leading to the presence of the nonlocal term in (1),
is discussed in depth in [5].

Conservation laws with nonlocal terms also arise in other contexts (see e.g. Majda
and Rosales [7]), and it has been suggested that (1) may serve as an important canonical
model in asymptotic approximations to multidimensional shock wave theory (see
Majda [4]). It therefore seems desirable to present a framework for this type ofproblem
in which analytical questions can be investigated. The local existence theory presented
here generalizes in a straightforward manner to equations with more complicated
nonlocal terms, such as those appearing in the general discussion in [5], and perhaps
to systems of the type appearing in [7]. However, we shall limit the discussion to
equations of the form (1). Our proof follows lines similar to those of the proof of [4,
Thm. 2.1], the main difference being that the nonlocal term forces us to work in Sobolev
spaces based on L rather than L2. In regard to the application of (1) to combustion
theory, the existence of solutions with integrable decay in x was postulated in [5] and
confirmed numerically in [6]. Such solutions were needed to construct suitable matched
asymptotic expansions. Our result provides a rigorous proof of the local existence of
such solutions.

* Received by the editors July 22, 1985, and in revised form December 9, 1985. This research was
supported by the Deutsche Forschungsgemeinschaft and by the National Science Foundation under grant
DMS 8320485.

f Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003 and Univer-
sit,it Heidelberg, 6900 Heidelberg, Federal Republic of Germany.

172



SOLUTIONS OF A NONLOCAL CONSERVATION LAW 173

We also prove that smooth solutions of (1) develop shocks in finite time. In the
application to combustion theory, the relevant parameter range is

R>0, RI, /3>1;

here, R and/3 depend in a complicated manner on several physical parameters (see
[5], [6]). We are not aware of any analytical results on breakdown for this problem;
however, there is strong numerical evidence that breakdown does indeed occur (see
[6], [7]). Moreover, these numerical results indicate that solutions of (1) exhibit a
strikingly rich, parameter dependent variety of phenomena. For example, when R > 1,
solutions with nonnegative data exhibit amplitude growth and oscillation through
negative values in the "tail," in marked contrast to solutions of the Burgers equation.
Our proof of shock formation is confined to the range 0 < R < 1, where the numerics
indicate that the mechanism leading to breakdown is somewhat closer to that occurring
in the Burgers equation. There is also another requirement for R and/ (see (iii) of
Theorem 2.1), which we discuss later.

By a solution we shall mean a C function which together with its first derivatives
is integrable, and which satisfies the equation in the classical sense (actually, we require
that u satisfies an equivalent equation, (10b) below, which only involves the first
derivatives of u). Since (1) is in conservation form it is also possible to consider weak
solutions; however, this is beyond the scope ofthe present discussion. Natural questions
about such solutions, for example, global existence and decay, are probably not routine
in character (see Dafermos 1] for a survey of this general area). For example, it does
not appear that the equation admits the symmetry of a centered rarefaction wave;
since it is not clear how to solve Riemann problems, the Glimm scheme is not
immediately available. It may be more appropriate to consider a conservative finite
difference approximation of the type used in the numerics in [6]. It would be interesting
to investigate the applicability of the method of compensated compactness to the
convergence of such approximate solutions (see Tartar [9] for a survey of this area
and DiPerna [2] for a recent application to conservation laws). An important ingredient
in such an approach is an a priori L bound for solutions. The numerics suggest that
such bounds are available in some parameter ranges but not in others.

1. Local existence of smooth solutions.
A. We will present a local existence theory for smooth solutions of (1) with

Sobolev space data. The proof employs an iteration scheme (see e.g. Kato [3], Majda
[4]) in which contractiveness is obtained in a low derivative norm while uniform
control is maintained over the iterates in a high derivative norm. The new aspect of
the present discussion is the presence ofthe nonlocal operator, which makes it necessary
to work in Sobolev spaces based on L rather than L2. We remark that a proof could
also be given based on the Nash-Moser implicit function theorem. However, the above
method is simpler and therefore seems preferable.

B. Notation. Let H denote the space of functions with s L(R) derivatives and
with norm

u Z foo 10%ul dx.
j<-s

Also, let Xs,r denote the space L([0, T] x Hs) with norm

u sup u (., t)I1 .
OtT
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If D c 1 and 1 c (x R1, -> 0} define

[[Ul]D,s-Z {10xUIIL’D), ]]UII,s,T---- sup
js OtT

where fl(r)= fl {t r}. Finally we will denote the supremum norm by Ilull; the
domain over which the supremum is being taken will be clear from the context.

C. Here are the main results of this section.
THEOREM 1.1. (i) Suppose that uo H with s 2. ere exists T=

T(, s, Iluoll, IlulI)>0, where uis defined in (8), below, such that there exists a
solution u X,T of (1). For s 3, u C1([0, T2] x 1).

(ii) Suppose that Uo H for all s 2 and let T2 be the T obtained in (i) with s 2.
en u C([0, T2] x ).

We note that if Uo H+ then ull uoll+. us the precise dependence of T
on Uo can be obtained by sacrificing one derivative.

COROLLARY 1.2. Let u and v be solutions of (1) such that u(x, O) v(x, O) for x
If x(t; a) is the solution of xt u, x(O, a) a, define

fl {(x, t): x x(t; a), u and v are smooth for t T}.

en u v in . In particular, if u O, then v 0 for 0 T, x x( t; a ).
Corollary 1.2 implies that signals propagate to the right with finite speed; this

plays a crucial role in our proof of breakdown in 2.
The proofs of Theorem 1.1 and Corollary 1.2 are concluded in G and H, below.

D. L estimates. We first present an L estimate for solutions of local linear
equations. Mthough this is a standard result, we include a proof for completeness.

LEMMA 1.3. (i) Suppose that uoLI()C, fXo,rC, and that a(x, t),
b(x, t) are smooth bounded functions such that

If u is the solution of
(2)

then

C= llaxlloo+ llblloo< o.

u, + au, + bu f, u(x, O) Uo(X),

(ii) Let x( t; t) be the characteristic curve defined by xt a(x, t), x(0, a) a, and let

={(x, t): x(t, a)<-x<-, 0<= <- T},

I={x:x>=a}.

Then with notation and hypotheses as in (i), we have that

u II.,o,r-<- eCr[lluol[,o/
Proof. (i) First assume that f=O. It suffices to consider data Uo(X) such that the

set D where Uo(X) 0 consists of a finite number of components, since such functions
are dense in L1. Thus let D be the union of/(0), 1 =<j =< N, where

/j(O) (X]-(O), x;(O)), xf(O) < X;+I(O).

Since f= O, u is of one sign along characteristics of (2). Let x(t) be the solution of

Yc a(x, t), x(O) xf(O),
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and let/(t) be the interval (x:,(t), xf(t)). Since u =0 on Oil(t) it follows that

19tflj ttdx’-fl utdx.
(t) (t)

Multiply (2) by the sign of u on/, integrate over/(t) and sum over j. From the above
identity it follows (after integrating aux by parts) that

0, u Iio <-- c u Iio, c aI1+ b I1;
this proves the lemma when f= 0.

If f 0 but Uo 0, let U(x, t; s) be the solution of

U, + a(x, t) Ux + b(x, t) U O, U(x, s; s) f(x, s).

Then u(x, t) is a solution of (2), where

u(x, t)= U(x, t; s) ds,

and it follows from the first step that

u o, <-- T U o, -<- T ecr fll o,.
If Uo 0, f 0, the lemma follows from the above and linearity.

(ii) The proof is virtually the same as (i) and we omit the details.

E. Linear aonloeal equations. In order to define our iteration scheme for (1) it
will be necessary to solve equations of the form

(3) u, + a2ux + alu + I(u, a) O, u(x, O) Uo(X)

where the operator I is defined by

(4) I(u, v) u(x + fls)v(x + s) ds.

LEMMA 1.4. Suppose that s > 2, Uo Hs, 0 k,a Xs_,T, 1, 2, k O, 1. For every
T> 0 there exists a solution u X,T of (3) which satisfies the estimate

(5) u II,.r <= err nolle,
where K depends only on s, Ila’ll,, i-1,2, (/-l)-llall, and R. tf s>-_3, then
u C([O, T] R1).

Proof. Define u=- Uo(X) and let u k, k >= 1 be the solution of
I 2 I 1 I(U I-1 a), u’(x, O) Uo(X).ttt+a ux+a u

Let vk+ u+- u, so that

++a--+ a k+ I(v, o), v+v, v, + v a (x, 0)=0.

Define w j- k+l /)k.0,,-u , 0( For eachr<-s, w satisfies

r--1

1) r--j 1)W0(6), wT+ a-wr E (c9+a2+0a w -(Oa + AjI(, 0-Ja) F,
j=o j=o

where A: depends only on r, and w 0 initially. From Lemma 1.3, we have that

A simple computation shows that

(7) lit(u, v)llo_-< (/ 1)-llu Ilollvllo.
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Also, for any g H it is immediate that Ilglloo Ilgll. Using these remarks to estimate
F, in the above we obtain

wr II0. <= arT e ’llall[(lla=llr,, -t-II alll ,)II wll. + (/3 1)- all,
where Cr is a constant depending only on r.

2 a2 Finally, we note that for r 0, 1 we obtainFor s-> 2 we have that Ilalloo < I1.-
wr 110.7 =< tesT e Tlla2xll(ll all=, + alll=,) wll-, + (/ 1)- all=, 11=,).

Thus we can sum the above for all r-< s to obtain

It follows that for sufficiently small T, say T <= T*, that

v+’ IIs, =< p v s,r*

for some p(0, 1), and so {u} is Cauchy in X,r*. If u.Xs,r, and s>_-2 it follows
that u and Ux are continuous functions of x, and using the equation, that u is uniformly
Lipschitz in t. From the differential equation it also follows that
and so u,, Xs-,r.. It then follows that u, is continuous in x and also, so that
u C’([0, T*] ’).

The estimate (5) follows from an estimate similar to the one obtained for v/"

this clearly allows us to continue the solution globally in T.

F. An iteration scheme for the nonlinear equation. We now use solutions of (3) to
define our iteration scheme. It will first be necessary to mollify the data; to this end
let j(x)= e-j(e-lx) be a C function with unit mass and let

(8)

It is well known that

(9a)

(9b)

uko(x) =j,, * UO, ek eo 2-k.

IIJu ull,- 0 as e --> 0,

Ilgwu- ullo < cllull, for u H’.
Next, note that integration by parts yields two equivalent and useful forms of (1), namely

(10a)
u, + auu,, + hi(u, u:,) O,

a=R-(R-1)fl-’, b=(R-1)(1-fl-’),
(10b) u+UUx+BI(ux, Ux) 0, B=(g-1)(1-fl),

where I is the operator defined in (4).
The approximation scheme is defined by setting u=- u(x), and for k >_- 1, setting

u k to be the solution of
k k-1 k k(lla) 0 ut + au u + bI(u k, k-1u ), u (x, o)= uo(x),
k uk-1 k k k-1(llb) [0= ut + Ux+ BI(u,,, ux )].

From Lemma 1.4 it follows that u k exists, and since each Uo
k is actually C, that u k

is smooth. Thus u k also satisfies the equivalent equation (1 lb).
The main task is to show that {u k} is uniformly bounded in a high derivative norm

on some uniform interval.
LEMMA 1.5. Suppose that s >-_ 2. There exists T*> 0 depending only on s, R, fl and

11Uoll s+a such that for sufficiently small eo in (8),

(12) Ilu- ugll,.= 1, k=0, 1,2,.’..
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Proof. The lemma clearly holds when k 0; we proceed by induction on k. We
shall always view u k as a solution of (1 lb).

We again use the notation w (resp. ff) for OxU k+l (resp. OxUk). We first establish
the following formulas for j >= 1"

(13a) OI(w, )= (2-/3- fl-)I(w+, +1) + R,
(13b) O]+i(w, )=(2_fl_fl-1)[i(+2, +)+i(+1, +2)] +,
(13c) R (resp. R) consists of local terms of the form Awv, where

la, y2j (resp. 2j+l) and 3a+y2j+l (resp. 2j+2). The
coefficients A depend only on fl and j.

We establish (13a) by induction on j; (13b) is obtained by taking 0x of (13a). For
j 1 we have that

a]I(w’, ffl)= I(w3, if1)+2i(w2 2)+ I(w’, 3)
(2---’)i(w2, ff) -’w2’ w’ ff2.

Now assume that (13a) holds forj 1; then
2O+2I(w w’)=(2---l)o]I(+ +)+OxR

(- -’)+I(+, +)
2-(2- # #-)[#-+++#++]+0.

If R satisfies (13c) then OR satisfies (13c)+; the other local terms satisfy (13c)+
as well. is establishes (13).

For eachj we obtain an equation for by taking 0 of (1 lb); using (13) we obtain

(14a) +o 2 A,w+B ,,=0

where is defined by

(14b) {I(/+" J even,
I( w+3/2, ff+/2) + I( w+/2, ff+3/2) j odd.

e crucial obseation is that forj 2 all terms on the right-hand side of (14a) involve
only wk and k with kj (this is false when j =0, 1). For example, it follows from
(13c) that if A, # 0 then at least one of a or fl is strictly less than j. It follows from
the embedding of H in L we have that for such a, fl,

(15a) w Iio wll
Similarly, from (7) we have that for allj 2,

(15b) Iio 2( 1)- wli 11.
We can now estimate uk- u. To this end let U du and define z, by

z + U, =e+u, o j s.

From (14a) we have for j 2 that z satisfies

(16) z + ,z -,v+’ + F,
where from (15), it follows that satisfies the estimate

where C depends only on j, fl and R.
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Let 12 #0[[s,T SO that for s > 2, I]-owxlloo<_- 12. For j>_-2 we obtain from Lemma 1.3
that

IIzII0,T eCr[llUo ulb + T( llUollj+l +
(17)j

+ CTII Ollo, olb. + llj(ll olb. + o
For j =0, 1 we obtain equations for z, z, where the right-hand side contains z, z
with i 2. This yields an estimate of the form (17) with j 0, 1 on the left and j 6 2
on the right. Finally, sum (17) over j, Ojs to obtain

flu- .II, K eCEll.g- ull + T( II.II.+, + C II.II)
(18) + CT(llu- ull,,ll u-’- ull,

+ ugll(llu ugll, + Ilu-’-
where K depends only on s. The induction hypothesis for the k- 1 step and (9) imply
that

-< 1 + 211.o11 -= d (for small eo).

From (8) and (9) we have for sufficiently small eo that

K ed Uo- ull < }, k 0, 1, 2,’..

Now choose T*_<- 1 so small that

T*K ed((d + 1)11 uoll/ + c uoll ) < I, T*K ed(C + ull) < 1/2.

For such T* the induction step will hold at the kth step; this completes the proof.
We remark that it" Uoe H/’, then Ilull+l--< Iluoll/,, so that T* can be chosen

uniformly for all small eo. If Uo Hs+l the choice of T* must tend to zero with
decreasing eo.

Armed with Lemma 1.5, we can now prove contactiveness in the low norm.
LEMMA 1.6. Suppose that a (0, 1). There exists T** (0, T*] such that

(19)

T** depends only on fl, R and T*.
Proof. Let 1)

k
Uk+l- t/k, k 0, 1,

seen that /)k satisfies
After an integration by parts, it can be

k k k k k kl)k-1O=vt+u vx-Buxv +(1-B)ux -B[flI(u,,,vk)+fl I(vk-1 ux)]

v(x, o)= Uo’(x)- Uo(X).
By Lemma 1.3, (7), and the embedding of H into L, we obtain

IIollo, eCr[CTllo’-’llo,r+ CTIIvIIO,T+ I1( 0)llol,

where C depends only on Ilull2,r, # and R. This determines a suitable T**<- T* such
that (19) holds.

G. Completion of the proof. (i) Lemmas 1.5 and 1.6 imply that for T =< T**, {U k}
converges to a limit u s XO, T. These lemmas, together with a standard interpolation
inequality for Sobolev space imply that the convergence occurs in the space X,_,r.
The equation implies that u kt converges to u, in X,-2,r, so that for s > 3 the Sobolev
embedding theorem implies that u is C([0, T] x R1).
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(ii) If Uo e H for all s 7/+, we claim that there exists T independent of s such
that u C([0, T] x R1). Pick T2 > 0 such that the existence holds when s 2. If w 02u,
then w satisfies

(20) w,+uw,+[3-(fl+fl-1)(R-1)(1-)]u,w=(Z--fl-1)(R-1)(1-)I(w, w).

From Lemma 1.3 and (7) we see that

0,11wild const I wll0
this inequality and [[u[[o determine the maximal T2.

For j> 2 we let =O{w. From (13) with it follows that the equation for
analogous to (14a) is linear in . us, given a bound for [[wk[[o,r for k<j and

T< T2 we obtain a bound for ]]]]o,r since by Lemma 1 and the previous remark
[[o,r can grow at most exponentially fast for T T2. This proves (ii).

H. Proof of Corolla 1.2. Let w u v; using form (1 lb) of (1) we have that

(21) O=wt+uwx+vxw+BI(w,u)+BI(vx, wx),

and after an integration by pas this becomes

(22) 0= w,+UWx+(V--lBux-Bvx)w-fl-lBI(w, ux)-BI(vx, w).

We now use (ii) of Lemma 1.3 with fl as in the statement of the corollary and (7) to
obtain

w cr w

where C depends only on Ilull ,=, , and g. Thus for sufficiently small T,
]]w]]a,0. 0. The argument can be repeated to obtain the result in all of ft.

2. Formation of shocks.
A. We will show that for ceain parameter values and rather general data the

solution of (1) breaks down in finite time, i.e., there exists Tb > 0 such that ux(x, t)
becomes infinite at some Tb.e result is not sharp in that may be substantially
smaller than Tb, although for solutions with a single positive pulse (such as those
studied numerically in [6]) Tb may provide a more accurate estimate for .

The analysis of breakdown is facilitated by having a suitable continuation theorem
for smooth solutions. For example, for local conseation laws it can be shown that
a bound for ]IV u]] implies a bound on the higher derivatives (see [4, Thm. 2.2]). The
difficulty in this regard with equation (1) can be seen in equation (20) for w =O]u.
Even if a uniform bound is postulated for Iluxll the quadratic term I(w, w) could
conceivably cause blow-up in the second derivative.

The key to continuation and breakdown is in controlling this term. To this end
we consider C data Uo supposed in {x 0} which, together with u and u, satisfy
ceain sign conditions near x 0. Using maximum principle type arguments it can be
shown that these sign conditions persist into a eeain region fl = { > 0, x < 0} as long
as the solution remains C. It can then be shown that if u] is uniformly bounded for

Tb, then intersects the line Tb. is is our continuation principle. Breakdown
is obtained from the explicit knowledge of the signs of the derivatives of u in ft.

In summa, breakdown could occur in two different ways. Either a shock forms
from the data in in time of order Tb or a shock fos somewhere to the left of fl
and rapidly moves into ft.
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THEOREM 2.1. Suppose that Uo C(x <- O) and that Uo, fl and R satisfy the condi-
tions

(i) There exists y < 0 such that ug(x) > 0 for y < x < O.
(ii) 0<R<I, fl>l.
(iii) ,>0, where /= 1-(1- g)(fl-fl-1)/2.

Then ux becomes unbounded at a time <- Tb, where Tb (’lu)(y)l)-1.
We have been unable to determine whether (iii) is a genuine threshold for

breakdown, or whether it is an artifact of our techniques. In the two numerical examples
reported in [6] with R < 1, condition (iii) is satisfied. The second example has y- 10-2.
However, the authors mention other experiments in the parameter ranges 0.5 _-< R _-< 1,
1 _-</-< 10 in which they still found evidence of breakdown. It may be that for y < 0
breakdown can be inhibited if the data are sufficiently small. Further numerical
experiments in this parameter range might provide a better indication of what sort of
results to expect.

In the following we will assume that Ux is uniformly bounded for t<= Tb. A
contradiction is obtained in D, below.

B. An a priori estimate. Given a solution u of (1) we define "characteristic" curves
x(t; a) by

dx
(23) u(x, t), x(O, a)= ct for a 1.

dt

The region f referred to earlier is defined by setting

To=sup{T_>0: u is Con O<-_t<-T,x(t;y)<-x<-O},
(24)

l’l={(x, t)" O< t< To, x(t; y)<x<O}.

Note that by (ii) of Theorem 1.1, To> O.
THEOREM 2.2. (i) For all < To, the set f f’) { } is an interval ofpositive length.
(ii) The inequalities u > O, u,, < O, and u,,, > 0 hold for all (x, t) f.
Proof. (i) Since u is assumed to be smooth in f’l {t =< f} solution curves of (23)

cannot cross in the (x, t) plane, so that the map a x(t; a) is a diffeomorphism of
[y, 0] onto Ix(t; y), 0].

(ii) We will show that u,,,,> 0 in f; the other inequalities follow immediately
from this.

By hypothesis (i) of Theorem 2.1 and Corollary 1.2, u must decay rapidly near
x 0. It is therefore difficult to control the sign of u,, in this region. This problem is
overcome by perturbing the equation slightly to

u+uu+(R-1)(1-fl)I(u, u,)=ef(x), u(x,O)=uo(x),

where f is specified below. If f decays rapidly at Ixl-oo and is reasonably smooth,
the existence theory of 1 proceeds exactly as before. In particular, the proofs of
Lemmas 1.5 and 1.6 are exactly the same. Thus for such f, u will depend continuously
on e in a high derivative norm, and it will exist on some interval [0, T] where T1 is
uniform for all small e. We omit the details.

We now choose f(x) so that f(x)= 0 for x >= 0, f and f’ are continuous, and so
that f"(x)=  (x)lxl for x < 0, where k is a large positive integer and p(x)>=0 is C
with p 0 for x < y and p 1 for x >- y/2. Clearlyf Hk/2 but f: Hk/l.

We next define "characteristic" curves x(t; y) and a region f for the solution
u as in (23) and (24). We will show that U,x > 0 in f fq [0, T] for all e > 0.
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To this end we make the following claim" there exists a (relatively open) border
Be c fe f’) [0, T1] containing the line segments in 0fe,

S= {t=0, y<-x<-O}l..J{x=O, 0 <- t<= T},

such that ux we> 0 in Be f’)fe. We assume the claim for the moment and proceed
with the proof.

If the lemma were false there would exist a smallest ’-< T1 such that w (, ,) 0
for some [xe( ’; y), 0]; since w > 0 in Be it follows that < 0. The equation for w
is (see (20))

(25)
w+uw,+Fu,w =(2--fl-)(R-1)(fl-1)I(w, w)+ ef"(x),

w(x,O)=ug(x), F 3- (/3 +/3-)(R- 1)(1 -/3).

For/3 > 1 and 0 < R < 1 the coefficient of I in the above is positive. Also, by minimality
of , w =Wx 0 at (, f). Since el’, we>= 0 and we> 0 near x 0 it follows that the
right-hand side of (25) is positive, whence w,(, f)> 0. This contradicts the minimality
of f. Thus w > 0 in Oe f’) [0, T] for all e > 0. Since w converges to w uxx as e tends
to zero in [0, T] x R", we have that w => 0 in f. It follows that u-> 0 and ux =< 0 in f.
Thus the free boundary of , x x(t; y), is an increasing function of t. If, for some
(, f) f, w(, f)=0, then the above argument applied to w at (, f) shows that w
must vanish identically on the segment x _-> , ’. Thus u must be a linear function
of x for x-> , y ’, and since u lies in a Sobolev space, it follows that u 0 on this
half line. Now the equation is reversible in time as long as u remains smooth, so that
we may apply Corollary 1.2 in backward time to conclude that u(x, O) Uo(X) 0 for
x >= . Since our assumption was that < 0, we have obtained a contradiction to (ii)
of Theorem 2.1. Thus w > 0 in O f’) [0, T].

Fix T < To, where To is as in (24); we next extend the result to the region I fq [0, T].
By hypothesis, u is C in fi (q [0, T] so that Ilu(., t)ll.(, is uniformly bounded for
r [0, T] and each s, where f(r) is as in 1.B. We next note that given a bound for
Ilu(., we can alter u(x, r) for x <x(r; y) to a (Coo) function t(., r) such that
11 7(., <- Cllu(., for some constant C depending only on s. Now fix s > 2;
for r [0, T] we can determine a T1 as in the beginning of the proof using t(., r) as
"data," and by construction, T1 will depend only on T. If v is the resulting solution
we have that u v in f by Corollary 1.2. Thus the mollification does not affect u in
l. (Note that such a modification may be necessary since a singularity could form
rapidly in the region to the left of f.) Proceeding by induction, we assume u(., nT)
satisfies (ii) of Theorem 2.1, with y replaced with x(nT1, y), modify u to t in the
manner described above at nT1, and apply the argument of the preceding paragraph
to conclude that ux > 0 in fq { -<_ (n + 1) T}. Since T is independent of n provided
that nT1 <- T, we obtain the result in fq [0, T] for any T < To.

To complete the proof it only remains to construct the border Be. We first claim
that there exists x(e)< 0 such that for x(e)_<-x _<-0 and <- T1 we have that

(26) l(2---l)(R-1)(-l)I(we, w)l<ef(x).
Sincef Hk+2 and Uo C it follows that u Xk+2.r, whence w is Ck-1 in near x =0
uniformly in t. Since w(x, t) 0 for x _-> 0 it follows that 0w 0 for j =< k 1, at x 0.
Thus by Taylor’s theorem Iw(x, t) <-_ Clxlk- for x near zero, uniformly in t. Thus for
x near zero we have that

Iconst I(we, we)l=< clxl-which clearly implies (26) for x close enough to zero (depending on e) and k=>2.
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Now let x(t; a) be the characteristics for u and define

pC(t; a)= u,(xe(t; a), t),
qe(t; a)= u(xe(t; o), t).

The equation for pe is

pT+Fqp=(2---)(R-1)(-l)I(w, w)+ef’(x),
(27)

p(0; )= u().
From (26) it follows that the terms on the right-hand side are positive provided that
a is close enough to zero. Moreover by (ii) of Theorem 2.1, pC(a, 0) > 0 for a (y, 0).
At the smallest f where pe 0 it would follow from (27) that Pt( ’, a) > 0 for a near
zero, contradicting the minimality of ’. Thus pe(’; a)> 0 on some region of the form
[0, T] x [a, 0) for la[ small enough. Finally, we note that from (i) of this theorem, the
intersection of Be with each line constant is an interval containing zero in its closure,
for t_-< T1. Thus Be has nonempty interior in x for each fixed t.

C. A continuation principle. Given a sign condition on u),x and Ux, it is relatively
easy to prove a. continuation theorem.

LEMMA 2.3. Suppose that lu,l is uniformly boundedfor <-_ Tb. Then To >- Tb where
To is as in (24).

Proof We need to show that a bound for luxl implies that u is C in [l. Clearly
Ilulla,l,r is finite. Since uxx > 0 in fl we also have that

Iluxx[I.,o,  - sup ux,,(x, t) dx= sup -ux(x(t; y), t)<oo.
O<=t<= Tb (t;y)

Thus <o. Proceeding by induction, suppose that II ll u,  is bounded for
j_->2. We then use (13) to obtain (14a) with Ox+lU w+1 and k= Wk. From (14b) and
(13c)t where I- [(j+ 1)/2], this equation is linear in w/+1 if j_->2. Thus we can apply
(ii) of Lemma 1.3 to obtain a bound for [lullna+,r. This completes the proof.

D. A proof of breakdown. We finally derive a contradiction to the hypothesis that
Ux is uniformly bounded for <- T.

Let q(t)= ux(x(t; y), t); then the equation for q is

(28)
qt --q2+(R- 1)(/3-1)[I(uxx, u,,)+ I(ux,

=[-1-(g-1)(fl-1)]qE-(g-1)(fl-1)2I(ux,,, ux).
Since ux < 0 and ux > 0 in l’l, u is monotone, and we have that

I(uxx, Ux) Uxx(X(t; y)+ flS)Ux(X(t; y)+ s) ds

< uxx(x(t; y) + fls)ux(x(t; y) + fls) ds

fl-’ u),(x(t" y)+ fls)2/2] ds
Ox

-fl-q2/2.
Thus from the above and (28) we obtain

qt < [-1- (R- 1)(13-1)+ (R- 1)(/3 1)2fl-’/2]q2= _yq2
where y is as in (ii) of Theorem 2.1. Thus q(t) is less than (-Tb + t)-1, which completes
the proof.
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APPLICATION OF TOPOLOGICAL TECHNIQUES TO THE ANALYSIS
OF ASYMPTOTIC BEHAVIOR OF NUMERICAL SOLUTIONS

OF A REACTION-DIFFUSION EQUATION*

SAT NAM S. KHALSAf

Abstract. The initial boundary value problem for a reaction-diffusion equation

(*) ut=u,o,+f(u), f(u)=-u(u-b)(u-1), 0<b<1/2,

was analysed in [2], [10] by using the Conley index. In this paper we study the asymptotic behavior of
solutions of the semidiscrete approximations

(**) (=(ui_-2ui+ui+l)/h-+f(ui), i=1," .-,n.

We show that for large n the spectrum ofthe linearized discrete steady-state problem is a "good" approxima-
tion for the spectrum of the linearized continuous steady-state problem. Using the interpretation of the
Conley index as the dimension of an unstable manifold of a steady-state solution, we establish that the
properties of solutions of (**) are completely analogous to those of the solutions of (*). The asymptotic,
as t--> o, second order convergence of the approximate solutions is proved.

Key words, reaction-diffusion, finite differences, Conley index

AMS(MOS) subject classifications. 65M20, 65M10, 35K57

1. Introduction. Many phenomena in biology and physiology can be modeled by
certain nonlinear reaction-diftusion equations. The asymptotic state of a solution
specifies its ultimate behavior while ignoring transient effects. The stable asymptotic
states may be represented by solutions which can be perturbed by a uniformly small
function without destroying their long-time behavior. These are the solutions generally
seen in applied contexts. It is therefore crucial to know that the asymptotic behavior
of the approximate solutions mimic those of the exact solution.

The asymptotic behavior of solutions for the problem

(1.1a)

(1.1b)

(1.1c)

where

(1.2)

u,=uxx+f(u), Ixl<L, t>0,

u(x,O)--u(x), Ixl<L,
u(+L, t) =0, t>0,

f(u)=-u(u-b)(u-1), O<b<1/2,
was analysed in [2] and [10] (see Theorem 2.2 below). In particular, it was shown
there that for L> Lo the steady-state problem

(1.3a) u"+f(u)=O,

(1.3b) u(+L) =0

has exactly three solutions: Uo, ul and U2 with U00< Ul(X)< U2(X), which are non-
degenerate (i.e., zero is not in the spectrum of the linearized problem). Uo and u2 are
attractors for the associated parabolic problem (1.1a-c). By this we mean that if the
initial data u is sufficiently close (in C) to either Uo or u2, then the corresponding

* Received by the editors May 28, 1985; accepted for publication (in revised form) September 5, 1985.
f Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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solution of (1.1a-c) converges (in C) to the corresponding solution of (1.3a-b).
Similarly, ul is unstable and has a one-dimensional unstable manifold. These results
are based on computation ofthe Conley index (the Morse index of an isolated invariant
set) for each of Uo, ul and u2. The Conley index generalizes the classical Morse index
of a nondegenerate critical point of a vector field in that the classical index is a
nonnegative integer n, where n is the dimension of the unstable manifold to the critical
point, and, considered as an isolated invariant set, the homotopy index of the critical
point is the homotopy type of a pointed n-sphere.

In this paper we analyse the asymptotic behavior of solutions of semidiscrete
approximations

(1.4a) tii (Ui-- 2u, + u,+)/hE +f(u,), 1,..., n, > O,

(1.4b) u(O)- U,o, i= 1,. , n,

(1.4c) Uo(t) un+l(t) O, > O,

of (1.1a-c). Here h=2L/(n+l), and u(t) is an approximation to u(xi, t), with an
appropriate choice of U.o, say, U.o u(x), x ih L, 0, , n + 1. We first study
the approximate steady-state problem

(1.5a) (tli_-2uiq-ui+)/h2-bf(ui)-’O, i= 1,’’’, n,

(1.5b) Uo u,,+l O.

In Theorem 3.1 we prove that for large n (1.5a, b) also has exactly three solutions_.. /0 /1 /2 and establish the second order convergence in the sup-norm of the
approximate solutions.

In Theorem 3.2 we show that the properties of solutions of the problem (1.4a-c)
are completely analogous to those of (1.1a-c) and establish the asymptotic, as t- c,
second order convergence of the approximate solutions.

Our approach is based on an (intuitively natural) fact that for large n the spectrum
of the linearized operator in the right-hand side of (1.4a) is a "good" approximation
of the spectrum of the linearized operator in the right-hand side of (1.1a). This gives
existence and convergence of the approximate steady-state solutions, and also implies
that the Conley index of a rest point /k of the approximate problem is the same as
the one of the corresponding rest point Uk(X), k-0, 1, 2, of the exact problem. The
latter implies the existence of orbits connecting the rest points of the approximate
problem.

The results ofthis paper have been extended [7] to the finite element approximation
of (1), with interpolation of coefficients for nonlinear terms.

In 2 we collect the results from [8] and [9] which we need to analyse the
approximate steady-state problem and the results from [10] about the continuous
problem (1.1a-c).

In 3 we prove our principal result, Theorem 3.2, which analyses the properties
of the approximate problem (1.4a-c) and establishes the asymptotic convergence of
the approximate solutions.

Recently, asymptotic convergence of numerical solutions of systems of reaction-
diffusion equations to constant and zero rest points was analysed by several authors.
In [4], [5] finite difference approximations were shown to converge with a time-
independent error bound by imposing a monotonicity condition on the reaction term
or under the conditions that the reaction term is "slowly varying." The conditions
imposed guarantee the exponential decay of the exact solution together with its
derivatives. The results in [4], [5] were obtained for both the Dirichlet and Neumann
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problems. For the Neumann problem similar results were obtained in [3] and in the
linear case, using finite elements, in [6].

2. Background and preliminaries. As we mentioned in the Introduction, in our
analysis of the approximate steady-state problem we follow [8]. The approach in [8]
is to replace the problem of solving the steady-state problem using finite differences
by an equivalent problem: solving the integral equation

(2.1) u(x)+ G(x, y)f(u(y)) dy =0
L

using the method of mechanical quadratures

(2.2) ui + G(xi, xj)f(uj) 0, 1, , n,
j=l

and then to analyse the latter problem. Here G(x, y) is the Green’s function of the
operator d2/dx2 for the boundary condition (1.3b).

Equation (2.1) can be regarded as an operator equation

(2.3)

where

u+ Tu=O,

(2.4) Tu I_t, G(x, y)f(u(y)) dy,

in the Banach space E of bounded measurable functions u(x) on [-L, L].
From [8, p. 307, proof of Thm. 19.5 and Thm. 19.6] we have
THEOREM 2.1. (i) The boundary value problem (1.3a, b) in C2([-L,L]) is

equivalent to the integral equation (2.1) in E.
(ii) Let u.(x) be an isolated solution of the problem (1.3a, b). Let also f(u) be

continuously differentiable in the domain

(2.5)

and set

(2.6)

[u u,(x)] - ,, 6 const > 0,

g(x) =f’(u.(x)).
Assume that the linearized problem

(2.7) u"+g(x)u=O

with the boundary conditions (1.3b) has no nontrivial solutions.
Then there exist no and 6o such that for n >-no the system (1.5a, b) has a unique

solution satisfying the inequalities

(2.8) [ui- u,(xi)] <- 60, i= 1,..., n.

Iff(u.(x)) is twice continuously differentiable, then the rate of convergence is given
by

(2.9) max lui- u,(xi)] <= ch2, c const.
lin

Remark. Note that by Theorem 2.2 below all solutions u,(x) of (1.3a, b) are
isolated, and (2.7) has no nontrivial solutions.
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Theorem 2.1 together with the argument in [8, p. 302] imply
LEMMA 2.1. Under the assumptions of Theorem 2.1, for any given 6o there exists

no such that for n >-no any solution t*= (Uo*,""", u,*+l)r of (1.5a, b) satisfies
(2.10) max ]u*- u,(x,)l_--< 60,

O_--__i--<n+l

for some solution u,(x) of (1.3a, b).
The following lemma is contained in [9, Thm. 6.2] and can also be obtained using

[8, Thm. 18.1].
LEMMA 2.2. Under the assumptions of Theorem 2.1 every limit point ofany sequence

A,, of eigenvalues of equations

(2.11) (v,_ 2v, + v,+)/h2 + g(x,) v, Av,, 1,. ., n,

(2.12) Vo V,+l 0,

is an eigenvalue of the equation

(2.13) v"+g(x)v=Av,

(2.14) v(+/-L) =0.

We shall use the notation t--ft, =(Uo,""", U,+l) r for t R"+2 and the notation
t < when u < v, 1, , n; Uo<-_ Vo, u,+a -< v,+. With some abuse of notation we
shall also write t for the vector (u,. , u,) r, in the case that Uo u,+ =0.

We shall also need a comparison principle by Kamke in the following form:
LEMA 2.3 1 ]. Let ( t) and ( t) be solutions of (1.4a, c), defined for a <- <-_ b.

Then a(a) < 6(a) implies a(b) <- 6(b).
A solution u,(x) of a steady-state problem (1.3a, b) is called an attractor for the

associated parabolic problem (1.1a, c) if, for the initial data u(x, 0) sufficiently close
(in C) to u,, the corresponding solution of (1.1a-c) converges (in C) to u,. We shall
use the notation h(I) for the Conley index of an isolated invariant set I, and Ek for
the pointed k-sphere.

THEOREM 2.2 [10, Thm. 24.13]. Let f be defined by (1.2), and let L> Lo. Then
there are exactly three steady-state solutions Uk C, k =0, 1, 2, of (1.1a, c)" 0-- Uo(X) <
u(x) < HE(X) -<_ 1, Ix] < L. They are isolated invariant sets, h(uo) h(u2) o, in par-
ticular, Uo and u2 are attractorsfor (1.1a, c), and the linearized operators Qo and Q2, where

dE

(2.15) Qk=-x2+gk, gk(x)=f’(Uk(X)), k=0, 1,2,

together with the boundary conditions (1.3b), have only negative eigenvalues, h (Hi) ,,
in particular Q has precisely one positive eigenvalue, and ul has a one-dimensional
unstable manifold which consists of orbits connecting u to each of the other rest points.
Initial data u(x, O) which satisfies ux(x) < u(x, 0) < HE(X) (resp. 0< u(x, 0) < Hi(X)) on
Ix] < L is in the stable manifold of u2 (resp. 0).

3. Convergence.
THEOREM 3.1. Let Uk(X), k O, 1, 2, be the solutions of (1.3a, b). There exists no

-k lksuch that for n>-_no the system (1.5a, b) has exactly three solutions un--
u ,+1) r, k 0, 1, 2, satisfying

(3.1) max ]uk- Uk(X,)] <---- ch 2, c const, k 1, 2,
0<=in+l

(3.2) _= rio < t < t2,
where - (0,. ., O)r.
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Proof. By Theorem 2.2, for u.(x) uk(x), k 0, 1, 2, the conditions of Theorem
2.1 are satisfied. This gives the existence of solutions t k, k 0, 1, 2, of (1.5a, b), satisfying
(3.1). By (2.9) and Lemma 2.1 ti k, k- 0, 1, 2, are the only solutions of (1.5a, b).

By Theorem 2.2 0 Uo < ul < u2 are isolated solutions of (1.3a, b). Together with
(3.1) this implies (3.2) for no sufficiently large. [3

Define

(3.3) F(u)= f(t) at,

(3.4) (t/) [Uk(Uk---2Uk + Uk+l)/2h2+ F(Uk)].
k=l

Then we have
LEMMA 3.1. The system (1.4a-c) is a gradient one with respect to thefunction , i.e.

(3.5)

Let Uk(X) solve (1.3a, b) and t/k solve (1.5a, b). For k =0, 1, 2, define the linearized
matrix operators Q,k (qij) and 0k (t0), i, j 1, , n, by

(--2/ h2+f’( uk ), =j,

(3.6) qi 1/h2, ]i-j[ 1,

q + 3’,, =j,
(3.7)

qo, ij,

where

(3.8) 3’i =f’(Uk(Xi)) --f’(uk).
LEMMA 3.2. Suppose the assumptions of Theorem 3.1 hold. Let no be chosen as in

Theorem 3.1. There exists n’o >- no such that for n >-_ n’o we have"
(i) QO, and Q2, have only negative eigenvalues, and Q has precisely one positive

eigenvalue, and 1 has a one-dimensional unstable manifold.
(ii) t k, k=0, 1, 2, are isolated invariant sets of the system (1.4a, c) and h()

h(t/2) o, h(
Proof. By Lemma 2.2 with u.(x)= Uk(X), k=O, 1,2, every limit point of any

sequence A, of eigenvalues of (2.11)-(2.12) is an eigenvalue of the problem (2.13)-
(2.14). Using the notation (2.15) and (3.6)-(3.8), we rewrite (2.11)-(2.12) and (2.13)-
(2.14), respectively, as

(3.9) (,k h,

(3.10) Q[=Av, v(+/-L) =0.

Let us prove the lemma for k- 0. For k- 1, 2, the proof is completely analogous.
Let , be a sequence of eigenvalues of (3.9). Since by Theorem 2.2 the largest

eigenvalue A of Qo is negative, say, A --3e, e > 0, by the above there exists n such
that for n -> ng, n -< -2e. To complete the proof of (i) it is sufficient to verify that the
eigenvalues An of QO, satisfy An --< -e for sufficiently large n. For n >- no from (3.8) and
(3.1), using that f" is bounded on [-L, L], we have

u(xi C
(3.11) It, I--- ,,,o

f"(t) dt <=c]u(xi)-ul<=-.
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From (3.7) and (3.11)

(3.12)

Q,,v, )= sup (QO,, fi)+

7] c
_-< sup (O,fi, fi)+

c
=X,+-, c const,

where

i=1 i=1

Now the above implies that choosing n_->max {no, n’d,}, we have for n_-> n,
c/n2 < e, and therefore h, < -e.

By (i) t k, k 0, 1, 2, are nondegenerate rest points of (1.4a, c). Since from Lemma
3.1 the system (1.4a, c) is a gradient one, then by [10, pp. 151-152] the Morse index
of ilk, which is the number of positive eigenvalues of Q,k, is defined and is equal to
the Conley index h(k). Thus by (i) h(a) h(a2) X and h(t1) 1. Alternatively,
the latter result follows from [10, 4, pp. 503-504]. By [10, p. 468 and Thm. 23.32]
fig, k 0, 1, 2, are isolated invariant sets for (1.4a, c). [3

LEMMA 3.3. The rectangle

(3.13) R= {fi: 0 <- u, -< 1}
i=1

is attractingfor the problem (1.4a-c), i.e., all solutions ( t) of (1.4a-c) tend to R as - o.
Proof. Let R- zR, z > 1, be a family of contracting rectangles about R. We say

that (t) is in the jth right-hand face on R, if u(t)=, with a similar definition for
the jth left-hand face. We shall also use the notations f= {f(ul),’’’ ,f(u,)}r and V
(see (3.5)) for the vector field which is the right-hand side of the system (1.4a).

If now (T) OR,, e.g., (T) is in the jth right-hand face, then from the definition
(1.2) of f(u) we have

(f, (a)) =f(u) < -,
where a is the outward-pointing normal at , const> 0. And therefore by (1.4a)
and Lemma 3.1 there holds

(3.14) (7, )=(u+-2u+u_a)/hZ+f(u)<-.
Thus (3.14) shows that (t) must lie in a smaller rectangle for T< < T+ 6, for

some 6 > 0.
Using Lemmas 3.2 and 3.3 and repeating the proof of [10, Lemma 24.12] with

u(x) replaced by we arrive at the next lemma.
LZMMA 3.4. Under the assumptions of Lemma 3.2, there exist solutions o and

of (1.4a, c), which connect to o and 1 to , respectively; i.e.,

lim oo(t) fi lim oo(t) u
t t

lim fi2(t) ill, lim 2(t) fi2.

Combining the above results, we have the following:
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THEOREM 3.2. Letf be defined by (1.2) and L> Lo. Then there exists no such that
for n>-no

(i) The steady-state problem (1.5a, b) has exactly three solutions" =-rio< ill<

(ii) t7 k, k 0, 1, 2, are isolated invariant sets for the associated parabolic problem
(1.4a, c). h(t) h(t2) E, in particular, o and 2 are the attractors, and the linearized
operators 0, and Q2,,, where ok, are defined by (3.6), have only negative eigenvalues.
h(a 1) E1, in particular, a has a one-dimensional unstable manifold which consists of
orbits connecting 1 to each of the other rest points.

(iii) Initial data which satisfies a1< a(O) is in the stable manifold of a2, and there
holds:

(3.15) lim max lui(t)- u(xi, t)l =< ch2.
tc 0in+l

Initial data which satisfies (0) < 1 is in the stable manifold of , and there holds:

(3.16) lim max lu,(t) 0.
0_-----i<--n+l

Proof. Condition (i) follows from Theorem 3.1 and Lemma 3.3. Condition (ii)
follows from Lemmas 3.2 and 3.4. Condition (iii) follows from (i), (ii) and Lemmas
2.3, 3.4 by repeating the argument in [10, pp. 535-536]. l-1
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ON THE ZEROS OF THE ASKEY-WILSON POLYNOMIALS,
WITH APPLICATIONS TO CODING THEORY*

LAURA CHIHARA-

Abstract. In a symmetric association scheme that is (P and Q)-polynomial, the P and Q eigenmatrices
are given by balanced 4b3 Askey-Wilson polynomials. In this paper, the parameters of the Askey-Wilson
polynomial are classified so that its zeros are not contained in its spectrum. These results, together with
theorems of Biggs and Delsarte, imply the nonexistence of perfect codes and tight designs in the classical
association schemes of type As, BN, CN, D and the affine matrix schemes.
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1. Introduction. In classical coding theory there is a well-known relationship
between the existence of perfect codes and the properties of certain orthogonal
polynomials. Lloyd’s theorem [7, p. 179] states that if a perfect code exists in the
Hamming metric, then the Krawtchouk polynomial must have integral zeros. In this
paper we consider a very general set of orthogonal polynomials, the Askey-Wilson
polynomials 1 ], and give sufficient conditions on their parameters so that they do not
have the corresponding property from Lloyd’s theorem. Our main result is Theorem
4.8, which shows that perfect codes do not exist in the families of association schemes
10] defined by Chevalley groups over GF(q). The only possible exceptions are perfect
1-codes for BN and CN when N 2m- 1. Since B and C provide q-analogues of
N-tuples of O’s and l’s, this is the natural condition for perfect Hamming 1-codes [7,
p. 23].

The fact that the Askey-Wilson polynomials are relevant is due to work of Biggs
[3], Delsarte [5] and Leonard [6]. Biggs showed that Lloyd’s theorem generalized to
distance regular graphs, while Delsarte generalized it to metric P-polynomial associ-
ation schemes. Both theorems stated that related polynomials must have zeros in a
very restricted set. Leonard proved that the polynomials for a (P and Q)-polynomial
association scheme must be the Askey-Wilson polynomials. The set for the zeros of
these polynomials is easily identified. Since the Askey-Wilson polynomials have an
explicit formula, it is possible to show that the zeros do not lie in the set. Since the
parameters of the association scheme are related to the parameters of the polynomial,
this proves nonexistence of perfect codes. A dual theorem of Delsarte [5, p. 76] also
proves the nonexistence of tight designs.

Our paper is organized in the following way. In 2, we give the Askey-Wilson
polynomials and identify the generalized Lloyd polynomials in Proposition 2.1 as other
Askey-Wilson polynomials. Properties of the zeros are given in 3. Under the
hypothesis that q is integral and a, b, d rational, sufficient conditions on a,b and d
are listed in Table 1 so that the zeros do not lie in the spectrum. In 4, we show how
to use the results from 3 to prove nonexistence of perfect codes and tight designs in
the classical association schemes. These results are summarized in Table 2. Finally, in
5 we show that if a perfect 1-code exists in types Bn and Cn, then N 2m- 1. We

also give another proof of Proposition 2.1.

* Received by the Editors November 12, 1984; accepted for publication November 20, 1985.
t School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. Present address,

Department of Mathematics, St. Olaf College, Northfield, Minnesota 55057.
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2. Preliminaries. In this section, we review the basic facts about (P and Q)-
polynomial association schemes and the Askey-Wilson polynomials. References for
this material are [1], [2], [5].

A symmetric association scheme X is called P-polynomial, where P is the eigen-
matrix of X with (i, k) entry Pk(i), if for a given set of distinct nonnegative real
numbers Zo--0, zl,’’ ", z, and each integer k, 0-<_ k-<_ N, there exists a polynomial
(.)k(Z) over R of degree k such that

Ok(Z,) Pk(i), i=0, 1,"" ", N.

A Q-polynomial scheme is defined analogously from the Q eigenmatrix. We denote
the corresponding polynomials by k*.

If X is a (P and Q)-polynomial association scheme, Leonard showed [6] that
for N_->9, (I) k and k* are given by Askey-Wilson polynomials, including certain
limiting cases. These polynomials Pk(O(x), a, b, c, d; q) of degree k in O(x) are defined
in terms of basic hypergeometric series and have the explicit formula 1

(2.1) Pk(O(x) a,b,c,d’q)=Pk(O(x))=4tP3(q-k’abqk+l’q-X’cdqX+l[ )aq, bdq, cq
q; q

where

(2.2) O(x) (1 q-X)(1 cdqx+l)
and

(2.3)

with

q-k, al, ar
+4> \ bl, br

q; q) (q-k),(al),.

q)=(1-a)(1-aq)...[ (1-aq/-’), j= 1,2,...,
(2.4) (a) (a"

1, j=0.

Askey and Wilson showed that if aq, bdq or cq is assumed to be q- then
{Pk(O(x))}=o are orthogonal polynomials on {0(0), , 0(N)} and have the discrete
orthogonality relation

N

(2.5) Z P,,(O(x), a, b, c, d; q)Pm(O(x), a, b, c, d; q)w(x)=O,
x=0

rn#n, 0_-<m, n-<N

where

(2.6) w(x) w(x, a, b, c, d; q)=
cdq)x(1 cdq2x+l)( aq)x( bdq)x( cq)x(abq)

q)x(1 cdq)( cda -l q),,( b-1Cq)x(dq)x

Leonard’s theorem [6] states that for N_->9, given a (P and Q)-polynomial
association scheme X, there exists parameters a, b, c, d, q such that

(2.7) k(O(x), a, b, c, d; q)=cbk(O(x))= UkPk(O(x), a, b, c, d; q)

and

(2.8) *(O*(x), a, b, c, d; q)= k*(0*(X))= txkP,(O*(x), C, d, a, b; q)

where O*(x) (1 q-X)(1 abqX+l). The nonzero constants Vk and k are the valencies
and multiplicities, respectively, of the association scheme. Moreover, up to a constant,
Vk w(k, c, d, a, b; q) and k w(k, a, b, c, d; q).
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For such an association scheme X, recall that the generalized Lloyd and Wilson
polynomials [5, p. 58] are given by

(2.9) kte(O(x)) (I)k(O(x)),
k=0

(2.10) xIt*(0*(x))= *k(O*(x))
k=0

where e is a positive integer.
We now state a proposition that identifies (O(x)) and *(O*(x)) also as

Askey-Wilson polynomials.
PROPOSITION 2.1. Suppose X is a (P and Q)-polynomial association scheme such

that (2.7) and (2.8) hold. Then

(2.11) (0(x)) AP(O(x-1), aq, b, cq, dq; q),

(2.12) xIt*(0*(x)) a*P(O*(x-1), cq, d, aq, bq; q),

where A andA* are nonzero constants, (x 1) (1 q-X+)( 1 cdq’+) and *(x 1
(1-q-X+)(1-abq’+2).

Remark. Recall that for Pk(O(x), a, b, c, d; q), we have defined O(x) as in (2.2).
Thus, for polynomials with shifted parameters, P( O(x), aq, b, cq, dq; q), we get O(x)
(1-q-X)(1-cdq+3). From now on, O(x) will always stand for the variable in
Pk(O(x), a, b, c, d, q), and whenever the parameters shift, we will denote the correspond-
ing variable as O(x).

ProofofProposition 2.1. Delsarte shows [5, p. 58] that 0(0(x))," ., N_I(O(x))
form an orthogonal set of polynomials on { 0(1), , 0(N)} with respect to the weight
O(x)w(x). From (2.2) and (2.3), we see that

(2.13) O(x)w(x, a, b, c, d; q)= aw(x-1, aq, b, cq, dq; q)

where a S0 is a constant. Since e(O(x)) is a polynomial in O(x) and orthogonal
polynomials are unique with respect to a weight, we have (2.11). Similarly, we get (2.12).

Remark. In 5, we will present another proof of Proposition 2.1 in which we
explicitly determine the constant A.

3. Properties of the roots of the Askey-Wilson polynomials. There is a generalized
Lloyd’s theorem for perfect e-codes due to Delsarte [5, p. 63] and Biggs [3, p. 294].
It states that ifthe association scheme X has a perfect e-code, then the Lloyd polynomial
of degree e, e(O(x)), must have e distinct roots among {0(1),. , 0(N)}. A similar
result holds for tight t-designs (t 2e) and Wilson polynomials [5, p. 76]. By Proposi-
tion 2.1, e(0(X)) and e*(0*(X)) are explicitly given by an Askey-Wilson polynomial.
In this section, we state properties of Pe(O(x--1), aq, b, cq, dq; q).

PROPOSITION 3.1. Let 01, Oe be the e roots of Pe( (X--1), aq, b, cq, dq; q) as
a polynomial in 0 (x). Then

(1 aq2)(1 bdq2)(1 cqE)q-1
(i) 01 0(1) - (1 abq3) ife 1,

(ii) Oj O(j)-
(1 aqe+l)(1 bdqe+)(1 cqe+l)(1 qe-1)(1 qe)q-e

j----1 j=l (1-abqEe+l)(1-q)

ife>-2.
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Proof. Note that (x-1)=qO(x)+ 1-q-cdqE+cdq3. Let Fe(O(x))=
Pe(O(x 1), aq, b, cq, dq; q). Then clearly Fe(O(x)) fl(O(x) 01) (0(x) Oe) for
some constant /3 # 0. Thus, to get a formula for the sum of the roots, we need to
consider the coefficient of oe-l(x) in Fe(O(x))/fl. From (2.1) and (2.3), we have

(3.1) Fe(O(x))=
(q-e)j(abqe+E)j(q-X+l)j(cdqX+E)jqJ

j=o (aqE)(bdqE)(cqE)(q)
An explicit computation yields (1- q-x+k)(1- cdqx+k+l) qk(O(x)- O(k)). Hence, for
j->_l,

J J
(q-X+l)j(cdq+2) I-I (1--q-x+k)(1--cdqX+k+l) I-I qk(O(x)--O(k))

k=l k=l

Thus,

(3.2)

where

(q-e)e(abqe+2)eqe+e(e+l)/2 (-1)eqe(abqe+2)e
[3 (aq2) bdq2)e(cq2) q)e aq2)e bdq2)e cq2) e"

Thus, the expression between the brackets in (3.2) is now monic in O(x). The coefficient
of O(X)e-l(e>--_2) in Fe(O(x))/fl is

(1 aqe+l)(1 bdqe+)(1 cqe+l)(1 qe-1)(1 qe)q-e
O O(j),=1/" -=1 (1- abqe+l)(1- q)

where the sum on the right side of the equality is the contribution when j e in (3.2),
and the second is the j= e-1 contribution. For e= 1, Fl(O(x)) is of degree 1, so
solving explicitly for 01 yields (i).

PROPOSITION 3.2. If 01, ", Oe are the e roots of Pe(O(x- 1), aq, b, cq, dq; q) as
a polynomial in O(x), then

(3.3)
i-- (abqe+2)eqe e43 aq2, bdq2, cq2 q; q

Proof. Using the same notation as in the proof of Proposition 3.1 we see that we
want the constant term in Fe(O(x))/. From (3.2) we have

1 (q-e)j(abqe+2)j(_l)JO(1)... O(j)qJ+J(J+l)/2
Oi:fl+j=l_ V

fl(aq2)j(bdq2)(cq2)j(q)Ji=1

Noting that O(k) -(1 qk)(1 cdqk+l)q-k and recalling (2.3) and the.definition of
/3, the result follows.

From now on, we assume cq q-.
PROPOSITIO 3.3. Suppose Pe((x-1), aq, b, cq, dq; q) has e roots O such that

O O(x) for some x, i= 1, 2,..., e. Then

-(1-abq2e+l) (dqX,+q-X,)=-(1-abq2e/l)(dq+q-e)(1 +p’(q))
i=1

(3.4)
+(1 aqe+l)(1 bdqe+l)(-1 +p(q))
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where p’(q) and p(q) are polynomials in q with integer coefficients and p’(q)=-O mod q
and p(q) =- 0 mod q.

Proof. Recalling O(x) (1 q-X)(1 dq-N+x), we have

0(x,)= (1-dq-N+X,-q-X,+dq-)
i=1 i=1

e(1 + dq-) (dq-+x, + q-X,)
i=1

and . O(j) e(1 + dq-v) (dq-N+-i + q-i)
j=l j=l

e(l + dq-V)_(dq-V +q-e)
(1-qe)
(i-q)

where the last equality is obtained by the sum for the geometric progression. Substituting
the above expressions into (i) and (ii) of Proposition 3.1 and multiplying the resulting
identity by q(1- abq2e+l) yields the desired result, where

1, e 1,

and

l+p’(q)=I1 _qe e>-_2,
1-q

+ q-, e 1,
-1 +p(q)=l(qV_e_ 1)(1_ qe_) (1qe.___)

(i--q)’
e-->--2"

Remarks. The existence of a perfect e-code in X implies that the e distinct roots
of e(O(x)) are contained in {0(1),..., 0(N)}. In fact, we can eliminate 0(1) and
O(N) as possible roots Ofe(O(x)). From (2.11) and (3.2), we see that e(0(1))= 1 0.
On the other hand, if we let x N, then

atte(O(N))=3b2( q-e’ abqe+2’ dq ) (1/bqe)e(aq/d )e
aq2, bdq2 q; q aq2)e 1/-bqe-1-)-e

where the last equality was obtained by the 32 evaluation [8, p. 96]

( q-e,A,B ) (C/A)e(C/B)e
(3.5) 3b2 C, aBq / C

q; q -(- -(- --A--
Hence, We(0(N)) 0 implies that either

(3.6) b=q-k, l<=k<-e or a/d=q-k, l<-k<=e.

However, since the Askey-Wilson polynomials are orthogonal on { 0(1), , 0(N)},
certain positivity conditions must be satisfied, putting some restrictions on a, b and d
[1, p. 1015]. These considerations rule out (3.6). Thus e(O(N)) O.

We assume that the (P and Q)-polynomial association scheme X has a perfect
e-code (2e + 1-< N). Thus, the generalized Lloyd’s theorem and the previous remarks
tell us that Ie has all its roots in {0(2),..., O(N-1)}. For integral q 1 this will
imply conditions on the parameters a, b and d. For the known association schemes
we will record those values a, b and d and find they do not satisfy these conditions.
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The main idea is to assume q integral and a, b and d rational. Then (3.4), upon
clearing denominators, is a polynomial identity in q. We get an expression that is
0 mod q on one side, and not 0 mod q on the other. This contradiction establishes that
Xlte(O(x)) cannot have e distinct roots among {O(i)[i-2,...,N-l} and hence X
cannot have a perfect e-code. These results are given in Table 1. For simplicity’s sake,
we only list those parameters for which a contradiction can be obtained without detailed
knowledge of the zeros themselves. We give two examples to illustrate the techniques.

We assume q is integral, q 1, and e is an integer, 2e 4-1 _-< N. Also, recall cq q-.
Example 1. Suppose d r s, a m tlq k, b- m’/n’q, where r, s, m, n, k, m’, n’,

are integers, r, s, m, n, m’, n’ 0 mod q, and k-< e, l-<_ e. From (3.4), we get

/,//,/r i=1

1- q+ (l+p’(q))

4- 1--- 1-q (-14- P(q)),
n /rs

or upon clearing fractions,

-( nn’ mm’q)-e/--k) . rq", + sq t-x,)
i=1

(3.7) -(nn’- mm’q2e+l--k)(rq 4- sqr-e)(1 4- p’( q)

+ (n mqe/l-k)( n’s m’rqe+l-’)(-1 4- p(q)).

Since we have e distinct zeros O(xi){O(2),..., 0(N- 1)}, we let 2_-<x <x2<"" "<

xe --< N 1. Noting that all powers of q are positive (k _-< e, _-< e, 2e 4-1 <_- N), we see
that the expression on the left of the equality in (3.6) is 0 mod q. On the right side,
the first term is 0 mod q. Thus, we get a contradiction if the second term on the right
side is not 0 mod q, orin particular, nn’s 0 mod q. This is listed in Table 1 under 2B(ii).

Example 2. Suppose a mnqe+l, b m’/n’qe+l, d rs where m, n, m’, n’, r, s
are integers not congruent to 0 mod q. Substituting these values into (3.4) and clearing
fractions yield

-(nn’q-mm’) . (rqX,+sqt-x,)=-(nn’q-mm’)(rq+sqN-e)(l +p’(q))
i=1

+ q(n m)(n’s- m’r)(-1 +p(q)).
If we have N-xi _-> 2 for all (recall we always have x->2), then the expression on
the left of the equality is 0 mod q2, SO we get a contradiction if we insist that mm’r-
(n-m)(n’s-m’r)Omod q. This case is not listed in Table 1 since in general, we do
not know if N-xi >_-2 for all i.

To consider results on tight t-designs (t 2e) in the known (P and Q) association
schemes, the following limiting case is very important. We will see (Corollary 3.5) that
knowledge of the xi’s is crucial.

PROPOSITION 3.4. Suppose the parameters of Pe((X--1), aq, b, q- dq; q) have
the following limiting values" d O, a O, b 00, ab u vqp, where u, v and p are
integers, u, v 0 mod q. Then the e roots of Pe((X 1), aq, b, q-, dq; q) satisfy

(3.8) --(V-- tlq2e+l-p) qV-x, _(v_ uq2e+l-p)qN-e(1 +p’(q))+ v(-1 +p(q)).
i=l

Proof. Using (3.4), the proof is straightforward.
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TABLE
Parameters such that Pe((x- 1), aq, b, q-, dq" q) does not have e distinct zeros in {O(j)lj 2,. ., N- 1}.

a= m/hq
m, n 0 mod q, k b m’/n’qt

integral m’, n’ 0 mod q, integral

1. d=O A. a->O (i) b no restriction (Ibl <)
(ii) b-), ab--)u/vqp, u,vOmodq p<=2e+l

B. k<-e (i) b 0
(ii) l<-e+l, nn’Omodq
(iii) />e+l, l+k<-2e+l, nn’Omodq

C. k=e+l (i) b=O, n-mOmodq
(ii) l<-e, n’(n-m)Omodq
(iii) l>- N, mm’Omod q

D. k>=e+2 (i) b=O
(ii) l<-e, mn’Omodq
(iii) I>-N, mm’Omodq

(i) Ibl<c, b#O, l<=e
(ii) Ibl<, I>=N

2. d=r/s
r, s0 mod q

A. a=0 (i) b=O
(ii) /<e+l, n’sOmodq

(iii) l=e+l, n’s-m’rOmodq
(iv) />e+l, rm’aOmodq

B. k<-e (i) b=0, ns0modq
(ii) l<=e, nn’sOmodq
(iii) /=e+l, n(n’s-m’r)Omodq
(iv) />e+l, nrm’Omodq
(v) b-->o, nr0mod q

C. k=e+l (i) b=0, s(n-m)Omodq
(ii) l<-e, n’s(n-m)Omodq

D. k- e+2 (i) b=0, smOmodq
(ii) l<=e, mn’sOmodq

(i) Ibl<lbl<c, l<=e, sn’Omodq

3. d rqt/s
t>=l
r, s 0 mod q

A. a=0 (i) b 0
(ii) l<e+t+l, sn’Omodq
(iii) e + + 1, sn’- rm’ 0 mod q
(iv) l>e+t+l, rm’Omodq

B. k<=e (i) b 0
(ii) l<-_e+t, l+k<-2e+l, nn’sOmodq
(iii) l=e+t+l, k<-e-t, n(sn’-rm’)Omodq
(iv) l>-e+t+2, k<-e-t, nrm’Omodq
(v) b oo, k <- e t, nr O mod q

C. k=e+l (i) b=0, n-mOmodq
(ii) l<e+t+l, (n-m)sn’Omodq

D. k>-e+2 (i) b=0, sm0mod q
(ii) <= e, msn’ 0 mod q
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TABLE (cont.).

a m/hq
m, n0 mod q, k

integral
b=m’/n’q

m’, n’ 0 mod q, integral

(i) l<e, n’saOmodq
(ii) l=e, n’s-m’rOmodq

(iii) I> e, m’ra0mod q

4. d r/ sq
t>_2

r,sOmodq

A. a=O (i) b 0
(ii) l<e, n’rOmodq
(iii) e, r(m’- n’) 0 mod q
(iv) le, m’rOmodq

B. k<-e (i) b=O, nrOmodq
(ii) l<e, nn’rOmodq
(iii) e, nr(m’- n’) 0 mod q
(iv) l>e, nm’rOmodq
(v) b--> , rn O mod q

C. k=e+l (i) b 0
(ii) l<e, nn’rOmodq
(iii) e, nr(m’- n’) 0 rood q
(iv) I> e, nm’raOmod q
(v) b-*, rnOmodq

D. e+2<=k<e+t (i) b=O, nrOmodq
(ii) l<e, k+l<=2e+l, rnn’Omodq

E. k=e/t (i) b=O, nr+msOmodq
(ii) I<=e-t+l, mn’s-nn’rOmodq

F. K>e+t (i) b=O, smOmodq
(ii) l<e-t+2, k+l>2e+l, mn’sOmodq
(iii) l<e, k+l<=2e+l, mn’sOmodq

(i) Ibl<oo, l<-e-t+l, n’sOmodq

5. d=r/sq
r, s0 mod q

A. a-0 (i) b=O, r+sOmodq
(ii) l<e, n’(r+s)Omodq
(iii) l=e, n’r+n’s-m’rOmodq
(iv) l>e, m’rOmodq

B. k<-_e (i) b=O. n(r+s)Omodq
(ii) l<e, nn’(r+s)Omodq
(iii) l=e, nn’r+nn’s-nm’rOmodq
(iv) l>e, nm’rOmodq
(v) b->, nrOmodq

C. k=e+l (i) b=O, rn+sn-smOmodq
(ii) l<e, n’(ms-ns-nr)Omodq
(iii) l=e, n’s(m-n)+nr(m’-n’)Omodq
(iv) l>e, nm’rOmodq
(v) b->, nrOmodq

D. k>-e+2 (i) b=O
(ii) <- e, mn’s O mod q

E. a- (i) l<-_e, n’sOmodq
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TABLE (cont.).

a m/hq
m, n0 mod q, k

integral
b m’/n’q

m’, n’ 0 mod q, integral

A. a=0 Ibl<oo
(i) l<e
(ii) l=e, m’-n’Omodq
(iii) l> e

B. a 0, lal<o
a) k<=e+

) k>-e+2

(i) l<-e-1, nn’COmodq
(ii) l=e, n(n’-m’)Omodq
(iii) /_->e+l, m’nCOmodq
(i) l<e, k+l<=2e+l, nn’COmodq

Ibl <o, bO

b0
ab ghqX; g, h 0 mod q, x integral
bd u l)q

p u, t 0 mod q, p integral
(i) x<e+l

(t) p<l, p+e<x, huOmodq
(/3) p<l, p+e>x, gvOmodq
(3’) p_->l, hu0modq

(ii) x e +
(tr) p<l, gvOmodq
(/3) p l, gv hu O mod q
(3") p> l, huOmodq

(iii) e+l <x<2e+l
(a) p<-l, gvOmodq
(/3) p>l, x<p+e, huOmodq
(3") p> l, x=p+e, gv-huCOmodq
(3) p> l, x>p+e, gvOmodq

(iv) x 2e +
(a) p<e+l, gvOmodq
(/3) p=e+l, gv-huCOmodq
(3’) p>e+l, huOmodq

(v) x > 2e +
(or) p<-e+ l, gvOmod q

COROLLARY 3.5. Under the hypothesis of Proposition 3.4, Pe(O(X--1), aq, b,
q-,dq;q) does not have e distinct zeros O(xi), Xl<XE<’’’<Xe, in {O(j)lj
2,...,N-I} if

(i) p<_-2e+l, or
(ii) p > 2e + 1 and N Xe < min {p 2e 1, N- e}.
Proof. (i) Since 2-<_xi_-< N-1, the left side of (3.8) is 0 mod q, whereas on the

right, v 0 mod q by assumption. This is a contradiction.
(ii) We see that (3.8) is equivalent to

__(vqp-2e-l__U) qrV-., ____(vqp-2e-l__u)qN-e(1 +p,(q))+vqp-2e,-,(__l +p(q)).
i=1

Both sides are now 0 mod q. However, if N x < min {p 2e 1, N e}, then we can
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divide both sides by qN-’e. The left side will not be 0 mod q (since u 0 mod q), but
the right side will still be 0 mod q. This is a contradiction.

4. Allflieatiolas. We shall show that the results of the previous section establish
the nonexistence of perfect e-codes and tight e-designs in the classical association
schemes of types Av_I,2A2N, 2A2N_I,BN, CN, DN, 2DN+I, and the affine matrix
schemes. We refer the reader to [2] for a brief description.

As an example, consider the association scheme of type DN. The (i, k) entry of
the P eigenmatrix is given by

Pk(i) VkPk(O(i), O, O, q-N, _q; q).

Hence we have a 0, b- 0, d --1. These parameters lie in Table 1 under 2A(i). We
conclude that the Lloyd polynomial does not have e distinct roots in { O(j)lj 1, , N}
and .so there are no perfect e-codes.

The (i, k) entry of the Q eigenmatrix in type DN is given by

Qk( i) Id’k3t2 ( q-k’ q-i’ -q-N+k )O, q-V q; q

The 3b2 is derived from (2.1) by considering the limiting case d =0, a, b-0,
ab _q-S-1. To apply Corollary 3.5, we will need to establish some lemmas giving
us more information on the roots of the corresponding Wilson polynomial. (For this
reason, Table 1 is inapplicable here.)

LEMMA 4.1. /f Pe((x-1), aq, b, q- 0; q) has e distinct roots 0(x1),... O(Xe)
in { O(j) j 2, , N 1 }, 2 <= Xl < < xe <= N 1, then x > 2e except in thefollowing
cases:

(i) Ifq>O, Xl=2, x2=4, ...,xe=2e.
(ii) If q < 0 and e is even, then either

x1= 2, x2= 3, x3=6, x4= 7, xe-l 2( e-1), Xe 2e- l, or

Xl--3 X2=4, X3=7, X4=8,’’’,Xe_l=2(e--1)+l, Xe-’2e.

(iii) If q < 0 and e is odd, then

Xl=2, X2=3 X3=6 X4=7,’’’,Xe_l=2(e--1)+l, Xe=2e.

Proof. Recall that the open interval between two consecutive zeros ofan orthogonal
polynomial must contain a point of the spectrum [4, p. 59]. Also, since d 0, we have
O(x)=l-q-x.

(i) If q > 0, then 0(k) < 0(k + 1) for all positive integers k. Hence x > 2e unless

xl 2, x2 4, , x2 2e.
(ii) If q < 0, then for nonnegative integers n and k, we have

0(2n)<0(2n+2), 0(2n+l)>0(2n+3), 0(2n)<0(2k+l).

If e is even, then there are only two ways to choose the xi (xl < x2 <" < Xe) SO that
x<= 2e. We take (e/2) of the xi to be even and (e/2) of the xi to be odd to get either

0(2)< 0(6)< 0(10)<... < 0(2e-2)< 0(2e-l)< 0(2e-5)<... < 0(7)< 0(3),

or

0(4) < 0(8) <... < 0(2e-4)< 0(2e)< 0(2e- 1)< 0(2e-5)<... < 0(7)< 0(3).
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(iii) If q <0 and e is odd, we choose ((e+ 1)/2) of the xi to be even and ((e- 1)/2)
of the xi to be odd

8(2)< 8(6)<... < 0(2e-4)< 0(2e)< 0(2e-I)<... < 8(7)< 0(3).

LEMMA 4.2. For the association scheme DN, *(0"(3)) 0 for e >-- 1.
Proof. If e -> 2 and e* 8"(3)) 0, then

A* (q-e)J(--q-N+e+l)j(q-2)jqJ--O.--
j=0 (q-+l)j(q)j

Multiplying the above expression by (1 q-V+l)(1 q-/2)(1 q)(1 q2)q2V-2 yields
qf(q)_(qN-2_ 1)(qN-e-l+ 1)(qe_ 1)(q2_ 1)2=0 where f(q) is a polynomial in q with
integer coefficients. Since 2e + 1 _<- N and e >= 2, the second term on the left side of the
equality is not 0 mod q. This contradiction implies *(8"(3)) # 0. A similar calculation
establishes the result for e 1.

THEOREM 4.3. The association scheme of type Ds has no tight t-design of order
e(t 2e) unless 2e + 1 N.

Proof. Since e*(0*(X))= Pe((x-1), m, 0, q-, 0; q), we apply Corollary 3.5 with
d =0, a->m, b-->O, ab-->q-v-1. We take u=-l, v= 1 and p= N+ 1. Since 2e+ 1 < N,
we have p>2e+l and so *e(O*(x)) does not have e distinct roots in {O(j)lj
2,.-., N-1} if N-xe> min {P-2e-1, N-e}, or equivalently Xe> 2e. By Lemma
4.1 and Lemma 4.2, the only possibility is x 2, x2 4, , x 2e if q > 0. Checking
e*(0(2)) =0 yields e=(N-1)/2. Tight designs where N=2e+ 1 are known to exist
[11, p. 661].

We summarize our results in Table 2. We list the P and Q polynomials for the
classical association schemes and affine matrix schemes along with the values of the
parameters for the Askey-Wilson polynomials. Finally, we give the references which
establish the nonexistence of perfect e-codes and tight t-designs. Note that Table 1
gives the nonexistence of perfect e-codes for all the schemes except types Bv and
(these will be done later in this paper). The results for e-designs in types Av-1, 2A2N,
2A2v_l, B, Cs, Dv and 2Dv+ follow from Corollary 3.5 and Lemma 4.1, and for
2A2_1, B and C, a calculation similar to Lemma 4.2 showing e*(0*(2)) 0.

We conclude this section by showing that there are no perfect e-codes for e >-2
in the association schemes of types B and CN. The sum of the roots formula for the
Lloyd polynomial fails to yield a contradiction in this case, so we will use the product
of the roots formula.

The polynomial for this scheme is

Pk( i) ’kPk( O( i), O, O, q-V-,, _q-l; q).

Assuming tte(O(x)) has e distinct roots O(x), Xl <" < Xe, in {O(j)lj 2,. ., N- 1},
Proposition 3.2 yields

i=l 0, q- q; q).
We shall need a transformation of a terminating 3(2 10, p. 101]

3b2(q-e, A, B
C,D

(c/m)eAe Iq-e, A, D/Bq; q
(C)e 3b2\Aq’-e/c, D
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TABLE 2
Askey- Wilson parameters.

Scheme (cq=q-N)
Reference for no
codes or designs

1. N x M matrices/GF(q), N <- M

(q-k,q-i, 0 )Pk(i)-" l 32 q-M, q-N q" q

Qk( i) Pk( i)

-M-1

b=0
d=0

same as above

Table 1D(i)

2. N x N Hermitian matrices/GF(q2) (q->-q)

( (_q)-k, (_q)-i, 0
Pk(i) ’k 3b2-(_l)S+lq-U\.., (_q)-v q; q

/
a (-1)q--1
b=0
d=0

Qk(i) Pk(i) same as above

Table 1D(i)

3. N x N Skew symmetric matrices/GF(q), (q--) q2),2 # q

(q-2k, q-2i, 0
q2;Pk( i) lk 3dP2 \ q_N, q_N+ q2 b=0a=q-N-’

d=0

Qk(i)= Pk(i) same as above

Table 1D(i)

4. Type Av_ (q-Johnson)

Pk( i) 1 3P2 ( q-V-l+i
qV-o, q-

2N<_V

q-i, q-k, q-V-l+k
Qk(i) =/x 32 qN-v, q-N

a=0
q;q b=l

N--o--1d=q

(v N+ _>- 2)

a qN-v--1
q" q b q--

d=0

Table 4A(ii)

Table
1C(iii), 1D(iii)

5. Type 2A2Nm (q q2)

q-Zk, q-2i, _q--ZN+2i-3
Pk( i) u 3(2

0, q-2N

q-2i, q-2k, _q--2N+2k-3
Qk( i) [-k 32

0, q-EN

q2; q2)

q2; q2)

a=0
b=0
d _q-3
r=-l, s=q
s 0 rood q2

a->0

d=0
ab q-2r-5
u=-l, v=q
p=N+2

Table 5A(i)

Corollary 3.5(ii)
Lemma 4.1(i)

6. Type 2A2N_l, (q q2)

Pk(i) /’k 3t2 (q-Ek, q-2i,
0, q-EN

q2; q2) a=O
b=O
d=-l/q
r=-l, s=q
s 0 mod q2

Table 2A(i)
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TABLE 2 (cont.).

Scheme (cq q-N)
Reference for no
codes or designs

q-2i, q-2k, _q--2N+2k-I
Qk( i) Ixk 3b2

0, q-2N
q2; q2) a-0

d=0
ab _q-2N--3
u=--l,
V q 0 mod q2
p=N+l

Corollary 3.5(ii)
Lemma 4.1(i)
e*(O*(2)) # 0

7. Types Brv and Cv

Pk(i) l 2 ( q-k, tl -i,
\ O,q_N

q-i, q-k, _q--N+k--1
Qk( i) l, 3t2

0,

a=0
b=0
d _q-1

a0
b-o
d=0
abe_q-N-2
u=-l, v=
p=N+2

Theorem 4.8

Corollary 3.5(ii)
Lemma 4.1
e*(O*(2)) # 0

8. Type DN
q-k, -i q--N+i

Pk( i) v 3b2
q ’-
O, q-S

/ q-k,
Qk( i) Ik 3t2 / q; q)

a=0
b=0
d=-I

a0
bo
d=0
ab_q-N-I

Table 2A(i)

Theorem 4.3

9. Type DN
q-k, --2i _q-N+kPk( i) ’k 3b2

q

q-2k, q-i, q-N+i
Qk(i)= Id, 3t2 0, ql--N

a-0

d=0
ab_q-N-

u=-l, v=l
p=N+l

a=0
b=0
d=-I
k2k

Corollary 3.5(ii) x 2x

Table 2A(i)

10. Type DN+

Pk(i) =/3 32 (
O,\

q-k,
Q [1 3t2 / O,

a=O
b=O
d _q-2

aO

d=O
--N--3ab -q

u=-l, v=l
p=N+3

Table 4A(i)

Corollary 3.5(ii)
Lemma 4.1
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Thus, (4.1) is equivalent to

(4.2) fl O(xi)--(q-N)e (q-e)j(--1)J
i=1 j=0 (q-e+lj’,

or, upon multiplying by qNe+e,

(4.3) qNe+e (I O(xi)’--qNe+e(q-N)e (q-e)J(--l)J

Next, we state without proof, a result from 11, p. 630].
PROPOSITION 4.4. Let k, y and M be integers, 0 <- k, y <- M and d O. Then

32 ( q-k’ q-y’ -d-lq-2M+y-1
O, q-M q; q

(--d)-kq-k(M+l)3P2 ( q-k’ q-M+y’ -dqM-y+l
O, q-M q; q

In particular, setting k e, y x- 1, M N- 1 and d q-N in Proposition 4.4
and checking the expression for We(0(X)), we see that We(0(X)) We(O(N x + 1)).
Hence we record

COROLLARY 4.5. In types lN and CN, O(x) is a root ofWe ifand only ifO(N x + 1)
is.

LEMMA 4.6. Set f(q) qNe+e H,=I O(x,). Then f(q) (-1) + (-1) -lqZX, + higher
ordered terms in q.

Proof Suppose e is even. We take the e/2 smallest xi: Xl < x2 <" < Xe/2. Hence,
by Corollary 4.5,

e/2
f(q)=qNe+e ]-I O(x,)O(S-x,+ 1)

i=1

e/2

H (q2,,_ 1)(q2N-2,,+2_ 1)
i=1

1 (q2X + q2X +...) + higher order terms in q.

If e is odd, then Corollary 4.5 implies that O(k) 0(N- k+ 1) for some k. Hence
k=(N+ 1)/2 and so N must be odd also.

f(q) qNe+eo(N+l) (e-l)/2

I-I O(x,)O(N-x,+ 1)
2 i=o

(e-l))’2

(qN+l_l) I-I (q2,,_ 1)(q2N-2x,+2_ 1)
i=0

1 (q2X, + q2X +...) + higher ordered terms in q.

LEMMA 4.7. Let

h(q) qNe+e(q-N)e (q-e)j(--1)J
=0 (qN-e+)

Then h (q) 1 -Jr- 1 q2 + higher ordered terms in q.
Proof. If h(q) =Y.=o C(j), then

C(e)=(qe-1)(qe-l-1) (q-l)

(- 1)
_

(__ 1) e+l (q + q2 +... qe)
__
terms in q of order -> 3,
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C(e- 1)= q(qN_ 1)(qe_ 1)(qe-1 1)’’" (q2_ 1)

(_l)eq+(_l)e-l(q3+...+ qe+l + qN+l) +terms in q of order >-6,

and for 0 <=j-< e- 2, we have

C(j) qee+l/2(qn_ 1)(qV-1 1)’’" (qV-e+j-1 1)(q-e)j

(_l)e. q(e+)e/2-ej+(j-1)j/2 / higher ordered terms in q.

In particular, for 0<-j-<e-2, we have e(e+l)/2-ej+(j-1)j/2>-3 (recall e>-2).
Thus h(q) (- 1 / 1 q- + higher ordered terms in q.

From (4.3) we have f(q) h(q) and hence f(q) (- 1 h (q) (- 1 e. But since
X ->2, we havef(q)-(-1) ---0mod q3, whereas h(q)- (-1)3-= (--1)e-lq2 mod q3. This
contradiction shows that for e >_-2, there are no perfect e-codes in the association
schemes of type B and Cv.

We summarize our main results:
THEOREM 4.8. (i) There are no perfect e-codes for e >-_ 1 in the dual polar spaces of

types Av_l, 2AEN 2AEN_l, DN, 2DN+I, and the affine matrix schemes, and no perfect
e-codes for e >-2 in the spaces Bv and Cv.

(ii) There are no tight designs of order e in the spaces of types Av-1, 2A2v, 2AEv-,
BN, CN, ON, 2DN+, and the affine matrix schemes with the exception of tight designs
of order e N 1)/2 in Dv.

5. Conclusion. We have determined the nonexistence of perfect e-codes and tight
t-designs (t 2e) in the classical association schemes and affine matrix schemes for
e-> 1, except in type Dv where tight designs exist if e-(N-1)/2 and in types Br
and C for e- 1 where perfect codes are still undetermined. For types B and Cv,
the phere packing bound says that if a perfect 1-code exists, then [11, p. 659]

(5.1)
qN+l 1 (l+q)(l+q2)... (l+qV).

We are grateful to J. Shearer for the following proposition.
PROPOSITION 5.1. For q integral, q# 1, (5.1) implies N/ 1 2mfor some integer m.

Proof. Suppose (5.1) holds and N/ 1 has an odd prime factor p, then (qP- 1)/(q-
1) 1(1 / q). (1 + q). Let r l(qP- 1)/(q- 1) for r prime. Then r 1 + q for some s
(pick s minimal). Hence qS_=-1 mod r and thus qES= 1 mod r. We also have qP=
1 mod r. If r # 2 then clearly s <p and p]2s. Since p is odd, we see that p ls which
contradicts p < s. If r 2, then 1 + q /. / qP- =- 0 mod 2 which contradicts p being
odd.

Thus, if there are perfect 1-codes in types B and C, then N/ 1 2m. This is
the same condition for perfect 1-codes in the Hamming scheme. Perfect 1-codes are
known to exist in Ca [11, p. 660], [12].

To conclude this paper, we present another proof of Proposition 2.1. We establish
that

Pe( (x-1), aq, b, q- dq; q)

(5.2)
B w(n, q-V-,, d, a, b)Pn(O(x), a, b, q-V-,, d; q)

n=0

for a nonzero constant B (to be determined).
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We shall need the following 4t)3 transformation [8, p. 167]

4dp3( q-e’ qe-laBCD’ a/z’ az
AB, AC, AD

q; q

(nf)e(nD)e(aB-1)e (q-e, qe-laBCD /Z, BZ )(AC)e(AD)e
4(3 An, BC, BD

q; q

Recalling (2.1), we see that (5.3) implies

(5.4) Pe((X--1), aq, b, q-% dq; q)

(aq/d)(bq)
q2i:-d--i:(dq)epe((N-x), b, aq, q-, 1/dq; q).

Note that (1-q’-+)(1-d-q-X+)=d-’q(O(x)-O(N-s)), so that (qX-N),,
(d-lq-X),, is a polynomial of degree m in O(x). Since {po(O(x))," ", pm(O(x))} forms
a basis for the vector space of polynomials of degree at most m in O(x), we have

(5.5) (qX-V),,(d-lq-X),, E A,,,,,P,,(O(x), a, b, q-V-, d; q)
n--0

for constants Am.n. Askey and Wilson have calculated Am,nil, p. 1014].

(5.6)

ab 2(m-1)(abq),,(1-abq-"/)(aq),,(bdq),,(a-dq-m)m(b-q )m(q-),,,(q-m),,( q
(q),(1 abq)(bq),,(ad-lq),(abq"+2),,(abq2)mdm+"

Thus, from (5.4), (5.5) and (5.6), we clearly have that the coefficient Bm, of
P,,(O(x), a, b, q--, d; q) in Pe((x-1), aq, b, q-N, dq; q) is

(aq/d)(bq)(dq)e abq),,( 1 abq2"+l)(aq),,( bdq),(q-’),( q"/ab).(q-").q"/((- 1 )"
(aq2) bdq2) e(q).( 1 abq)(bq).(ad -1 q).( abq2).(q"+2ab),, q-V+’),,d"

x 32 ( q-,+’’ qe+’+2ab’ q-+" )abq2,,+2, q-+,,+ q; q

(aq/d)e(bq),(q-e),(abqV+2), __,(dq)" i-qq2i--(d---(-__e3i-b w(n, q d, a, b)

where we have recalled the evaluation (3.5) and the definition of the weights (2.6).
Hence,

aq/ d)e( bq)e(q-e)e(abqN+2)e
Pe O x -1) aq, b, q-N, dq q dq i-q "bq (’----- i (-q2 N 2

x w(n, q-V-, d, a, b)P,,(O(x), a, b, q--, d; q)
n=0

and so finally, recalling (2.7) and (2.9), we have

aq2)e( bdq=)(_.q_,,r-___)e(abq2) _,(O(x))=(dq)-e(-q/-i2iq)iq_)ei-qq’-) P((x-1), aq, b, q dq; q)

which establishes (2.11).
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TIME TO REACH STATIONARITY IN THE BERNOULLI-LAPLACE
DIFFUSION MODEL*

PERSI DIACONIS? AND MEHRDAD SHAHSHAHANI:I:

Abstract. Consider two urns, the left containing n red balls, the right containing n black balls.
At each time a ball is chosen at random in each urn and the two balls are switched. We show it takes
3n log n + cn switches to mix up the urns. The argument involves lifting the urn model to a random walk
on the symmetric group and using the Fourier transform (which in turn involves the dual Hahn polyno-
mials). The methods apply to other "nearest neighbor" walks on two-point homogeneous spaces.

Key words. Markov chains, eigenvalues, Gelfand pairs, Hahn polynomials

AMS(MOS) subject classifications. Primary 60B15; secondary 60J20

1. Introduction. Daniel Bernoulli and Laplace introduced a simple model to
study diffusion. Consider two urns, the left containing n red balls, the fight containing
n black balls. A ball is chosen at random in each urn and the two balls are switched.
It is intuitively clear that after many such switches the urns will be well mixed, about
half red and half black. The process is completely determined by the number of red
balls in one of the urns. The stationary distribution may be described as the law of
the composition of n balls drawn without replacement from n red and n black balls

n- O<--J<-n"

The main question addressed here is the rate of convergence to the stationary
distribution. Let P. be the law of the process after k steps. Distance to stationarity
will be measured by variation distance

(1.2)
J

THEOREM 1. Let P. be the probability distribution ofthe number ofred balls in
one urn ofthe Bernoulli-Laplace diffusion model based on n ofeach color.

(1.3) Let k 1/4n log n + cn for c >-_ O. Then for a universal constant a,
IIPa-- r,,ll --< ae-2‘’.

(1.4) With k as above, and arbitrary negative c in [-1/4 log n, 0] there is a universal
positive b such that Ilea-- 11 --> be4c.

Remarks. Theorem gives a sharp sense in which 1/4n log n switches are needed:
for somewhat fewer switches, the variation distance is essentially at its maximum
value of 1. For somewhat more switches, the distance tends to zero exponentially fast.
There is a fairly sharp cut-off at n log n.

* Received by the editors August 26, 1985, and in revised form October 30, 1985.
f Department of Statistics, Stanford University, Stanford, California 94305.
Jet Propulsion Laboratories, Pasadena, California 91109.
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A somewhat stronger result, starting with r red balls and n- r black balls is
proved in {}{}3 and 4 ofthis paper. The argument uses Fourier analysis on the symmetric
group S and the homogeneous space S,/Sr x S,_,. This last space is a "Gelfand pair"
so the Fourier analysis is essentially commutative, involving spherical functions that
turn out to be the dual Hahn polynomials. Section 2 develops the needed background
material. Section 5 describes how essentially the same argument applies to nearest
neighbor random walks on two-point homogeneous spaces. These include the Ehren-
fest’s model of diffusion (random walk on the "cube" Z) and random walk on the k
dimensional subspaces of a vector space over a finite field.

The Bernoulli-Laplace process is discussed by Feller (1968, p. 423) who gives
historical references. See also Johnson and Kotz (1977, pp. 205-207). We conclude
this section by listing several "real world" problems.where the model appears.

1) r sets of an n set. Let X be the set of r element subsets of {1, 2, ..., n} so
IXI (’/-). A random walk can be constructed on X as follows. Begin at {1, 2, ..., r}.
Each time, pick an element from the present set and an element from its complement,
and switch the two elements. This is a nearest neighbor walk using the metric:
d(x, y)= r- Ix Yl. The stationary distribution is the uniform distribution over X.
Professor Laurel Smith points out that when n r 2, this becomes nearest neighbor
random walk on the vertices ofan octahedron. The rate ofconvergence to stationarity
is the same as the rate for the Bernoulli-Laplace model with r red and n- r black
balls as shown in Lemma below.

Walks ofthis type are an essential ingredient ofthe currently fashionable approach
to combinatorial optimization called simulated annealing. Given a function
j X---, annealing algorithms perform a stochastic search for the minimum of f
based on the walk. Kirkpatrick et al. (1983) or Aragon et al. (1984) give further details.

2) Moran’s model in mathematical genetics. Moran (1958) introduced a simple
process to model the stochastic behavior ofgene frequencies in a finite population. In
one version, there is a population of n individuals each of whom is either of type A
or A2. At each time, an individual is chosen at random to reproduce. After reproduc-
tion, an individual is chosen at random to die. The model allows mutation of the
newborn (from Al to A2 at rate u, from A2 to A at rate v). If u 1, the transition
mechanism of Moran’s model becomes precisely the transition mechanism of the
Bernoulli-Laplace diffusion. A clear discussion of Moran’s model is in Ewens
(1979, {}3.3).

Ewens gives numerous references to eigenvalue-eigenvector analysis of this
Markov chain. We will use part of this literature as an ingredient of our analysis.

3) Piaget’s randomization board. In investigating children’s ability to compre-
hend randomness, Piaget and Inhelder (1975, pp. 1-25) worked extensively with the
physical device shown in Fig. 1. The left side of the box contains 8 red balls, the fight
side contains 8 white balls. When the box is tipped about an axis through its center
(like a child’s see-saw) the balls roll across to the other side. Usually one or two balls
"change sides"--a red moving into the blacks or vice versa.

Piaget asked children of varying ages questions such as "how long will we have
to wait until the balls are mixed up?" Answer: 5-10 switches for 8 reds. He also asked
"how long will we have to wait until the balls return to the way they started?" Piaget
offered an answer to the second problem for 10 reds and 10 blacks: about 185,000
moves are needed! Naturally, children (and most adults) do not guess it takes such a
long time.
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FG.

One natural reaction for a mathematician is "how on earth does he know?" We
began work on this paper by considering the Bernoulli-Laplace model (ignorant of
its origins). Theorem shows the random walk is "rapidly mixing," to use terminology
of Aldous (1983). That is, the time to reach stationarity is of the order of the log of
the number of states. Aldous (1983) shows that for rapidly mixing walks, the time to
return to the original state has approximately the same distribution as a random walk
with independent uniform steps.

If there are IXI states, and W is the first time to return, then for large IxI,

For 8 red and 8 black balls, IX] (86) 12,870, so the median return time is about
9,000. For 10 red and 10 black balls IXI 184,756; the median return time is about
128,000.

A referee points out that the associated Markov chain is doubly stochastic,
irreducible, and aperiodic. Standard Markov chain theory shows that the expected
number of steps to return to the starting state is IXI.

As explained in Diaconis and Shahshahani (1981), the analysis presented for this
problem yields all the eigenvalues and eigenvectors of the associated Markov chain.
Using these, it is straightforward to derive a closed form expression for the generating
function of Was in Flatto, Odlyzko and Wales (1985). This can be used to get sharper
asymptotic estimates for Piaget’s problem.

2. Group theoretic preliminaries. One natural way to analyze the Bernoulli-
Laplace process is by lifting to a random walk on the symmetric group. For integers
r and b with r + b n, let S, be the symmetric group on n letters. Let Sr X Sb be the
subgroup of permutations that permute the first r elements among themselves and
the last b elements among themselves. Then X S,,/Sr x Sb may be identified with
the set of all (r") r-element subsets. The random walk on X moves from x to y by
choosing an element in the set x at random and an element of the complement of x
at random and switching the two elements to form a new subset y. Choose a metric
d(x, y) r Ix Yl on X. The walk is thus a nearest neighbor random walk on X. It
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is easy to see that the Bernoulli-Laplace process corresponds to the distance process
of this walk on subsets.

It is useful to work in more generality: let G be a group and K a subgroup. Let
X G/K be the associated space of cosets. Choose Xo id, x, ..., Xm as fixed coset
representatives, so G xoK t3 x K... t3 Xmg. We will often identify X and {x;}. Let
Q be a K bi-invariant probability on G, so Q(kgk2) Q(g) for all k, k2 K, g G.
The probability Q induces a random walk (more precisely a Markov chain) on X by
the following recipe

(2.1) Q(x, y) a___ Q(x-’yK).
In (2.1), Q(x, y) is the probability of going from x to y in one step. The definition
comes from the following considerations: think of Xo as the origin. Each time choose
g G from Q and move from Xo to gxo. This motion is then translated to motion
around x via y xgxo. Thus, the chance of moving from x to y is Q(x-yK).

Note that Q(x, y) is well defined and satisfies

(2.2) Q(x, y) Q(gx, gy) for any g G G.

Philippe Bougerol has pointed out a converse. If Q(x, y) is a Markov chain on
X G/K satisfying (2.2), then Q is induced by a bi-invariant probability defined by

Q(A) Q(xo, Axo) for A C G.

Alternatively, write a genetic element of G as xk, then Q(xk)= Q(xo, x)/IKI. This
measure is K bi-invariant and Q(x-yK)= IKlQ(x-y)= Q(xo, x-y)= Q(x, y) as re-
quired. The following elementary lemma gives further connections between the
random walk and Markov chain.

LEUA 1. Let Q(x, y) Q(gx, gy). For any k >- 1, the k step transition matrix of
the Markov chain Q(x, y) is induced by the kth convolution of the associated bi-
invariant probability Q. The variation distance to the stationary distribution equals
the variation distance to the uniform distribution.

Because of Lemma 1, Fourier analysis on G can be used to approximate the
convolution powers. We briefly review what we need from representation theory.
Serre (1977) or Diaconis (1982) contain the details. Recall that a representation of G
is a homomorphism p: G --. GL(V) from G into invertible matrices on a vector space
V. The dimension do of o is defined as the dimension of V. A representation o is
irreducible if there are no nontrivial invariant subspaces of V. For Q a probability
and o a representation, the Fourier transform of Q at o is defined by

(p) 4ffg)Q(g).
The Fourier transform takes convolution into products through P
The uniform distribution of G" U(g)= I/IGI, has (o)=0 for every nontrivial
irreducible representation t. For X G/K, the set of all complex functions on X is
denoted L(X). The group acts on Xand so L(X) can be thought of as a representation
as well.

The variation distance can be approximated by the following
LEPTA 2. Let Q be a K bi-invariant probability on afinite group G

Q- UII --< 1/4*do Tr (O(o)O(o)*)
where the sum & over all nontrivial representations that occur in the decomposition of
L(X).
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Proof
[[Q- U[]={,[Q(g) U(g)[}z<-1/4[G[ 2;[Q(g)- U(g)[ z

1/42; o* do Tr (((o)((o*)).
Here, the Cauchy-Schwarz inequality was used and then the Plancherel theorem as
in Serre (1977, p. 49) applied to Q(g) U(g). Terms corresponding to representations
o that do not appear in the decomposition of L(X) have zero Fourier transform
because ofFrobenius reciprocity (Serre (1977, p. 56)): this implies that a representation
o occurs in L(X) with multiplicity corresponding to the dimension of the space of K
fixed vectors of o. Thus if o does not occur, then the restriction of o to K does not
contain the trivial representation. Thus ((o)= Z,.Q(x)o(x),o(k). The inner sum is
zero because of the orthogonality of the matrix entries of the irreducible representa-
tions (Serre 1977, p. 14)).

The Fourier transform can simplify a great deal further. Indeed, for the cases
treated here the matrix ((o) has only one nonzero entry in a suitable basis. The
simplification in general is discussed in Volume 6 of Dieudonn6 (1978).

Dwymoy. The pair (G, K) is called a Gelfandpair if each irreducible represen-
tation of G appears in L(X) with multiplicity at most 1.

Remarks. Probability theory for bi-invariant probabilities on a Gelfand pair has
an extensive literature. Readable overviews appear in Letac (1981), Bougerol (1983),
or Dieudonn6 (1978). The Bernoulli-Laplace model can be treated directly in this
framework. However, the more general framework developed here is needed if one is
to attack more general problems such as the natural extension to three urns where
L(X) has multiplicity.

For a Gelfand pair, let

(2.3) L(X) Vo V (3... Vx
be the decomposition into distinct irreducibles. Frobenius reciprocity implies that
each Vj has a one-dimensional subspace of K invariant functions. Let s(x) be a K
invariant function in Vj normed so that s(xo)= 1. This is called the jth spherical
function. The spherical functions have been explicitly computed for many Gelfand
pairs.

LEMA 3. If(G, K) is a Gelfand pair and Q is a K bi-invariant probability, then

IIQ- U]l 2 --<.o[((J) 12’

where the sum is over the nontrivial irreducible representations occurring in (2.3) and

((j) ,gQ(g)s(g).

Proof Fix i, and consider the vector space V,. of (2.3) as a representation #,. of G.
Complete s to a basis for V,., taking s,- as the first basis vector. With respect to this
basis, the Fourier transform of any K bi-invariant function fon G becomes

(0) Z,gf(g)o(g) xf(X)O(x)Z,-o(k).

But the Schur orthogonality relations imply

Z,kpij(k)= {[oK[ ifi=j= 1,
otherwise.
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Thus

with a KI Zf(x)s,(x).

Since the trace norm is invariant under unitary changes ofbasis, the result follows
from Lemma 2. !-1

Remark. In the description above, the random walk associated to a bi-invariant
probability Q can be represented somewhat curiously as a right action of G on X.
Thus if the basic random elements chosen from Q on G are g, g, g3, .--, and the
walk starts at x, the successive steps have the representation x, xg,xgg,
xg gg3, ..., where xg denotes the coset containing xg. This is well defined for Q bi-
invariant.

There is another natural way to associate a Markov chain to a probability Q,
using the natural left action" x, g x, g2g x, g3g2g x, .... This process does not cor-
respond to a nearest neighbor walk. It yields a Markov chain with transition matrix
O_(x, y)= Q( yK-x-). Chains defined in this way satisfy (kx, ky) (x, y) but we
do not know a necessary and sufficient condition for a chain to lift to the left action
ofa bi-invariant Q. Ofcourse, if a lifting can be found, the Fourier analysis is precisely
as above, all the bounds and lemmas holding without essential change.

3. The upper bound. Let r and n- r be positive integers. The stationary distri-
bution for the Bernoulli-Laplace model based on two urns, one containing r red balls
initially, the second containing n- r black balls may be described as the distribution
of the number of red balls in a random sample of size r from the total population of
n

r 0<J<

Let P/ be the probability distribution of the number of red balls in the urn containing
r balls after k switches have been made.

THEOREM 2. If

then, for a universal constant a,

P- r ,". -< ae-’’/.

Proof Without loss, take r <= n/2. The decomposition of the space L(X) is a
standard result in the representation theory of the symmetric group. James (1978,
p. 52) proves that L(X)= Vo V ) Vr where V,. are distinct irreducible repre-
sentations of the symmetric group corresponding to the partition (n i, i). In partic-
ular, the pair S,,, S,. x S,,_,. is a Gelfand pair. Since this result holds for all r <-n/2,
induction gives dim (V,) (7) (;"-).

The spherical functions have essentially been determined by Karlin and
McGregor (1961). Stanton (1984) contains this result in modern language. The
spherical functions turn out to be classically studied orthogonal functions called the
dual Hahn polynomials. As a function on X, the function s(x) only depends on the
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distance d(x, Xo) and is a polynomial in d given by

(3.1) s(d) i (--i)m(i-- 1)m(-d)
m=0 (r-- n)m(--r)mm!

where (j),,,=j(j + 1) (j + rn 1). Thus

O<-i<-r,

r(n- r)

(n 1)(n- 2)d(d- 1)

so(d)= 1, s,(d)=1-
(3.2)

2d(n- 1)s2(d) 1- +
r(n- r) (n- r)(n- r- 1)r(r- 1)"

The basic probability Q for this problem may be regarded as the uniform
distribution on the r(n- r) sets of distance one from the set {1, ..., r}. Thus, the
Fourier transform of Q at the ith spherical function is

0(i)=s/(1) i(n-i+ 1)
0<i<r.=

r(n- r)

Using this information in the upper bound lemma (Lemma 3) yields

_1i{(7)_( n )}(1 i(n-i+l).)
2

(3.3) lIPs- rTllZ =<4 i=1 i-1 r(n r)

To bound the sum, consider first the term for

(n-1) 1-r(n_r)

2kn )exp
r(n- r------ + log n

This is smaller than

Thus k must be at least

1- [logn+cl

to drive this term to zero. With k of this form, the problem is reduced to bounding

i ea(i)+b(i)
i=

where

a(i)=ci(-1)_ 1), b(i)=i(i- 1)n lgn-lg (i!).

Calculus shows that a(i) <- a(1) -c for all [2, n/2]. Thus, to prove Theorem it
suffices to prove

n/2
Y, e)_-< B independently ofn.
i=1

Clearly, the sum of e;) over _-< _-< 21 is uniformly bounded. For the remaining
range, upper bound b(i) by i(logn/n)-ilogi+ i. It will be argued that
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i2(log n/n) log + < -i for 21 <- <- n/2, equivalently, log n/n < (log 2)/i.
Now if f(x) (log x 2)/x, f’(x) (3 log x)/x. This is negative for x > e3, so for
i>21>e3,

log i- 2 log (n/2)- 2
n/2

This last is greater than log n/n for n _-> e4+21g2. Thus,
n/2

Y ebi) <-- e-<B uniformly in n. if]
i=22 i=22

Remarks. Change n to 2n and take r n. The result becomes (n/4) log n + (c/2)n
which gives (1.3) of Theorem 1. If r o(n), the result becomes (r/2) log n + (c/2)r. As
usual with approximations, some precision has been lost to get a clean statement.
When r 1,.for example, there is only one term: (n- 1)(1/(n- 1))2. For k this
gives 1/2(1/x/n- 1) as an upper bound for the variation distance. Elementary consid-
erations show that for this case the correct answer is 1/n. Thus, the upper bound
lemma gives the fight answer for the number of steps required (namely, 1) but an
over estimate for the distance.

4. The lower bound. A lower bound for the variation distance will be found by
using the easily derived relation

(4.1) liP- QI[ sup [P(A) Q(A)[.
A

Any specific set A thus provides a lower bound. Intuitively, if the number of steps k
is too small, there will tend to be too many of the original color in the urn. The
argument below gives a sharp form of this. For ease of exposition, we only prove the
result for r n r (for example (1.4)) but the proof works in the general case.

The idea of the proof is to again use spherical functions, but this time-as random
variables, not transforms. Thus for any Gelfand pair (G, K) with X G/K, consider
s: X as a random variable. IfZ is a point chosen uniformly in X, the orthogonality
relations (as in Stanton (1984, eq. (2.9))) give

(4.2) E{s(Z)}=o, Var (s(Z))
dim (V)"

If Z. denotes an X valued random variable with distribution P* for P a bi-invariant
probability on X the basic convolution property of spherical functions becomes

(4.3) Els(Z)l EIs(Z)}.
On $2,/S, x S, the first three spherical functions, as functions of the distance d

are given (from (3.1)) as

2d
so(d)= 1, Sl(d) 1-

n

2(2n 1)d (2n- 1)(2n 2)d(d- 1)
s2(d) 1- +

n2 [n(n 1)]2

Since these are polynomials in d, it follows that for some a, b, c, szl a + bSl q- CS2.
After a computation



216 P. DIACONIS AND M. SHAHSHAHANI

2n-2
(4.4) Sl-2n- +

2n- s2.

Remark. When working with general r, n- r values the term s appears in the
expression for s.

To lower bound the variation distance, consider the normalized spherical function
f(x) d__ x/n ls(x). Now (4.2) implies for Z uniform on x,

E{ f(Z)} 0, Var f(Z)] 1.

Under the convolution measure

(4.5) El f(Z.)} /n’l -n (n 1)(2n 2) 2(2n 1) (n 1)(4.6) Var{ f(Z.)}-
2n-

-t
(2n- 1) n

For k of the form -n log n cn, the mean becomes

+O

where c > 0, and all eor tes are unifo in both n and c. Thus, for c large, the
mean is large. Similarly

Varlf(Z.)l=+O +exp 4c+O
n
+O

-exp(4c+o(l2n)+O())
=+e"{o(l:n)+ O()}.

Thus, the variance is uniformly bounded for O c log n. Now use Chebyshev’s
inequality: ifA, {x: If(x)l a}, r,(A,) 1/a while P(A,) < B/(e2 a)2 where
B is uniformly bounded for c log n. Thus, for any fixed a and c, for all sufficiently
large n,

B
az (e-This completes the proof of (1.4), choosing a e/2, for example.

Remark. From the definition of s, the set A, can be intereted as the event

# reds e a.

5. Other nearest neighbor walks. A class of problems that can be treated by
following the steps above involves a connected graph with vertex set X and an edge
set E. Define a metric on X as

d(x, y) length of shortest path from x to y.
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We want to analyze nearest neighbor walks on this graph. An automorphism of the
graph is a l-1 mapping from X to X which preserves the edge set. Let G be the group
of automorphisms of X. Call the graph 2-point homogeneous if d(x, y)= d(x’, y’)
implies there is a g G such that gx x’, gy y’. Taking x y, x’ y’ shows G
operates transitively on X, so X - G/K where K g G: gxo Xo} for some fixed
point x0. Stanton (1984) shows

THEOREM. For a 2-point homogeneous graph, (G, K)form a Gelfand pair and
the sphericalfunctions are orthogonal polynomials.

This means that in principle the analysis above can be carried out for such
examples. Here is a list of some of the examples in Stanton:

Example 1. 9( Z, d(x, y) number of coordinates where x and y differ. Here
the random walk becomes nearest neighbor walk on the n cube. This is a well studied
problem equivalent to the well-known model of diffusion known as the Ehrenfest urn
model. A wonderful discussion of this model is in Kac (1945). Further references are
in Letac and Takacs (1979). The straightforward random walk never converges
because of parityafter an even number of steps the walk is at a point at an even
distance from 0. One simple way to get convergence is to stay fixed with probability
1/(n + l) and move to a vertex away with probability 1/(n + 1). For this process,
the analysis can be carried out just as in 3 and 4 to show n log n + cn steps suffice
and that this many steps are needed.

THEOREM 3. Let X= Z. Let P(00 0)= P(10 0) P(00 l)=
1/(n + 1). Let U be the uniform distribution on X. Suppose k (n + 1)log n +
c(n + for c > O. Then

-4cP* UII <- (e -1).

Conversely, for k -(n + l) log n c(n + 1), for c > O, the variation distance does not
tend to zero as n tends to infinity: lim lIP*- UII --> (1 8e-).

Remark. It is curious that the critical rate is precisely the same 1/4n log n, for the
cube and n sets of a 2n set.

Example 2. Let F, be a finite field with q elements. Let V be a vector space of
dimension n over F,. Let X be the set of k-dimensional subspaces of V, with metric
d(x, y) k dim (x O y). Here, G GL(q) operates transitively on X. Stanton (1984)
gives all the ingredients needed to carry out the analysis.

Example 3. Let X be the set of (n r) x r matrices over F with metric d(x, y)
rank (x y). Here, GL-r X GLr operates transitively on X. Again a complete analysis
seems in reach using results given by Stanton.

Example 4. For q odd, let X be the set of skew-symmetric matrices over F with
metric 1/2 rank (x- y). Here G GL acts on X by x ArxA. Again Stanton gives
enough information about spherical functions and dimensions to allow a complete
analysis.

Stanton also gives results for orthogonal, hermitian, and symplectic matrices over
finite fields. He also gives results for a variety of less familiar combinatorial objects.
Combinatofialists have also studied such objects: see Biggs (1974, Chaps. 20, 21).
Further surveys and examples of Gelfand pairs are given by Heyer (1983) and Sloane
(1982).

Finally, there are Gelfand pairs that do not arise from two point homogeneous
graphs. An example is the set X of all partitions of I1, 2, ..., 2hi into n two-element
subsets. In graph theoretic language this is the set of all "matchings" of a 2n set. The
symmetric group S, acts transitively on X and yields a Gelfand pair. A natural
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random walk involves picking two elements at random and switching them to form
a new partition. This gives an algorithm that converges to a random matching. The
spherical functions are "zonal polynomials." It can be shown that 1/2n log n switches
suffice.
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REAL SINGULARITIES OF SINGULAR STURM-LIOUVILLE
EXPANSIONS*

GILBERT G. WALTER" AND AHMED J. ZAYED*

Abstract. Elliptic equations in polar coordinates lead to singular Sturm-Liouville problems on (0,
with equations of the form y"+(,-q)y=O. Let q(x,,) be solutions to the problem satisfying the
condition q(0,k)=sinfl, ff’(0,,)=-cosfl. The associated generalized Fourier transform F(A)=
fo f(x)k(x,A)dx is extended to cases where F(,) is a function of polynomial growth. This enables us to
study the location of singularities of the analytic representation f of the generalized function fix)=
f-oo F(A)dp(x,,)dp(A). We do so by comparing them to the location of the singularities of the analytic
representation of the tempered distribution g which is the Fourier transform of F(s2).

Key words, generalized functions, analytic representations, Fourier transforms
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1. Introduction. In this paper we extend the results of [7] on singularities of
Sturm-Liouville expansions to include cases in which the location of the singular
points lies on the real axis. This includes many cases of interest in which the function to
be expanded is not holomorphic on all of (0, c).

Indeed most convergence theorems for Sturm-Liouville expansions involve only
real derivatives of the functions to be expanded, or as in the case of L or L2, no
derivatives at all. Nonetheless they may be locally holomorphic and it is of interest in
some applications to find the location of those real singular points [4].

In order to develop a theory encompassing such points we first introduce a space
of generalized functions which will include most ordinary functions of interest. Each
element in this space will have a convergent Sturm-Liouville expansion and an analytic
representation obtained from a dual system of eigenfunctions. The singular points of
these analytic representations are then compared to those of an associated Laplace
transform of a tempered distribution [1]. The results obtained are similar to those in [7]
whose terminology and results we shall also use.

A similar theory had been developed in [6] for regular Sturm-Liouville series. This
in turn was an extension of the results found in [3] to the case of real singularities.

2. Preliminaries. We consider singular Sturm-Liouville problems of the form

(2.1) y"+(,-q(x))y=O,

with boundary conditions

(2.2)
y(0) cosa +y’(0) sina=0,

I<
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Let q(x, 2) be a solution of (2.1) such that

q(0,h) sina, q/(0, ,) cosa.

We shall suppose that q(x) zX(0, oo) and is holomorphic in the right half plane.
Hence the negative portion of the spectrum of the problem (2.1), (2.2) is discrete and
bounded below, and can be ignored for most of what we shall do.

We shall be interested in Sturm-Liouville expansions of the form

(2.3) f(x)--f
where F(h) is a continuous function of polynomial growth and where p()) is the
spectral measure. In this case the integral in (2.3) does not exist in the usual sense but
must be interpreted as a generalized inverse Fourier transform of a generalized func-
tion. Similarly f(x) will not necessarily be an ordinary function but rather a gener-
alized function belonging to a particular space.

2.1. A space of generalized functions. Let A0 denote L2(0, oo) and let A1 be the
space of those functions q, L2(0, ) whose derivative is absolutely continuous such
that

ck"-qqL2(O, oo), q(0) cosa+q/(0) sina=0

and successively,

A/x= { qL2(0, )lq2/1) is absolutely continuous,

(D2-q)ckAn, (0)cosaWb’(0) sina=0).
Then

is a linear space contained in L2(0, ) topologized by the countable family of semi-
norms given by

PROPOSITION 2.1. Let q be in A and let ()) be its generalized Fourier transform

(2.4) q’(X) f  (xl+(x,Xlax;
then the eigenfunction expansion of

conoerges to in the sense ofA. Furthermore

Proof. Let +u be ven by
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Then NL2(0, O) ([5, p. 131]) as is (D2--q)k/N for each integer k>=0, since

)kkxr()k)X[_N,N], (where X[-N,N] is the characteristic function of [-N,N]) is also in
Lz(R). By the expansion theorem for Sturm-Liouville problems ([5, p. 130])

(DZ-q)kqu(D2-q)q (L-).
Hence +u in the sense of A. The second conclusion follows silarly.

We now consider the dual space A’ of A. Clearly L2(0, )cA’ and A contains
S(0, ), the space of all C-functions with support in a closed half line in (0, ) and
wch with their derivatives are rapidly decreasing at . Since convergence in S
implies convergence in A, S’ contains A’. That is, the elements of A’ are tempered
distributions on (0, ). Silarly A’ contains E the space of distributions of compact
support on (0, ).

PROPOSITION 2.2. Letf E and let F(X ) be its generalized Fourier transform
(2.6) F() (f,(. ,));
then the restriction ofF to (0, ) is a continuous function ofpolynomial growth.

Proof. Since fA’, it must belong to the dual space A of one of the A’s ([2, p.
11]). Hence f=(D2-q)kG for some GL2 since (f,)=(G,(O2-q)kG) and GA
L2. Since f has compact support, G satisfies

(D2-q)G=0
in (O,a)W(b, ) for some 0<a<b. Let X be the characteristic function of (a/2, 2b).
Then we have

f= (D2-q)kG=(D2-q)k[Gx]+(D2-q)k[G(1-X)]
=(D2-q)kG1 +(D-q)k-I[((D2-q)G)(I-X)+2DGD(1-x)+GD2(1-X)]

2k-1

--( D2- q)kGx + E (c (i) +d.i2b _1)
i=0

where G GX has compact support and 8)(x)= 8(x a). Therefore we have

2k-1

F()=((D q)kG (a, O(’,h))+ c,O(0 , h +diO(’)(2b,h)
i=0

,(.,x)) +
by the asymptotic formula for O [5, p. 206]. Thus the conclusion follows.

For f in A’ we cannot use (2.6) as the definition of the generalized Fourier
transform since 0(x,h)A. However we can use another property wch is consistent
with Parseval’s relation.

DEFINITION 2.1. Let f=(D2- q)kG be an element of A’ where G L2(0, ). Then
the generalized Fourier transform F of f is given by

(2.7) F(X) (-X) 1.i.m. a(x)(x,X)dx.
M

If G L(0, m) as well, then f is called adssible.
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PROPOSITION 2.3. LetfA’ and let FI() ) be the restriction of its generalized Fourier
transform to positive values of ,. Then

(i) for admissiblefFI()) is .a continuous function ofpolynomial growth;
(ii) the eigenfunction expansion off converges to f in the sense of A’.
Proof. Since q(x,X) is bounded for x(0,), F(,) is at most of polynomial

growth by (2.7). The continuity follows from the expression ([5, p. 206])

sinx(2.8) q (x, ,) sin a cosv/X-x cos a

+ -- sin(x-t)q(t)(t,X)dt.

Now we let F(X) be a continuous function of polynomial growth; then fu given
by

fN(t) f_NNF()q(t,)dP(X)=
O

belongs to L2(0, oo) and hence A’. Furthermore

(2.9) {fN,) f_ FN(X)(X)dP() fo F()(X)do()

where the integral converges by Proposition 2.1. But this is just the eigenfunction
expansion of f if F() is as in (2.7).

2.2. Analytic representations. The analytic representation of a function h
L2( m, m) is given by

1 f h(x)
dx, Imz4=0.(2.10) h(z)= _x-z

This can be extended to S’ by using the inverse Fourier transform ow-1

fe( lh )( s ) ds, Imz > 0,
h(z)= "o

e (w- )(s)ds, Imz<0.
J_

(See [1].) In our case we have, for =S 2,

(2.11) fomei,F( 2,
0,

Im>0,

Imz<0.

This is the analytic representation of a tempered distribution gS’. It is related to
the element fA’ through its Fourier transform F which is the same as the generalized
Fourier transform of f, i.e. o(g)=F(s 2) and F(s2) (f,(.,s2)).

In order to construct an analytic representation of f we use another solution to
(2.1), namely

7 7,
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where +io is used for Imz>0, -io for Imz<0, and d(X) is a constant to be
determined. We shall assume that the behavior of q(z,k) is similar to its upper bound
off the real axis.

Assumption 1.

I (z,s=)l --e Ilmzsl, S real (see [5]).
Then I+/ (z, s -)1=< Ae- Im z, S real, Imz > 0. Since q is assumed holomorphic in

the right half plane, q -+ is also holomorphic there. The function q /(x)-q-(x) is also
a solution to (2.1) on the real axis. It is related to q by

provided

4: (z,X)
This is independent of the contour since the Wronskian of q+-q- with q is zero.

Thus we may take k/(+-) to be the analytic representation of q(x,k) in the upper
(lower) half plane respectively.

The usual analytic representation of q given by (2.10) exists as well provided the
integral is 1.i.m.

From this we get an analytic representation forfA’ given by

which converges for [Imz[ sufficiently large.

3. Associated kernels. It was shown in [7] that the kernels

(3.1a) K(t,z)= [(t,s)e-iSZdp(s), Imz<0, 0<t

and

(3.1b) L(t,z)= foq(t,s2)eids, Imz>0, 0<t

are holomorphic in the lower (resp. upper) half plane and may be continued to the real
axis except possibly at the point z +_ t. The analytic representations of each, / and
L, may be shown to be singular at most at the same values as well. Indeed K(t,z)
L2(0, ) for Imz < 0 as a function of and

(3.2) /(w,z)= 1foK(t,Z)dtt_w
is holomorphic for Imz < 0, Imw 4: 0. It may be continued for w fixed in the upper half
plane to any value of z except possibly z + w by deforming the contour of integra-
tion.

The same is true for L(w,z). Hence both are holomorphic in C2 except possibly on
w=0 and z= +w.
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Another analytic representation of these kernels is obtained by using p -+ in place
of q. We have

it +/-(w,z) +-(w,s2)e-’SZdp(s 2)

which differs, from/ by a function holomorphic in {(w, z)IRew > 0} and similarly for
L+/-(w,).

4. Relation between f and g and their analytic representations. For the same
coefficient function F(X) we have on the one hand, formally,

f(t) f_(4.1)

wherefA’, and on the other

(4. (xl- eX’e(l

where g S’. Both integrals must be interpreted as the limits in an appropriate sense,
(namely A’ and S’) of the functions obtained by truncating F to its value on bounded
intervals. But F(X) may be obtained from f by using the fact that f=((D
where G L is given by

a()- -*(’Xl(X+I),

If p is chosen sufficiently large, F()t)/(Xa + 1) L(O) and hence a(t)/5 and the
usual inversion theorem holds

F(X)
1.i.m.(4.

(X+l,

The analytic representation of g(x) is also given by (4.2) with x replaced by the
complex variable . We now replace F by the expression (4.3)

(= e’(s+l)" ,(,(lee.

For Imz > 0, eiS(s 4 + 1) f L and hence tNs integral ests. It may also be given by

(4.4) (z) (D+ 1)"

where d is the usual analytic representation of G and c +, c- are contours from 0 to
lying respectively in the upper and lower half plane.
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Since

To go in the other direction we first use the fact that

f(z)= + +(z,s2)F(s2)dp(sZ).

1 fo ixsF(s2)= s_ g(x)e dx

we have by interchanging the order of integration

(4.6) f(z)= g(x) p+-(z,s2)e-’XSdo(s)dx

1
(g, .))2

w) (w)dw

where c+ is a contour in the upper half plane.

5. e sinari theorem. The main result can now be given.
THEOM. Let fA’ and admissib&, &t F(X) be the generalized Fourier transform

off; then the analytic representation off is singular at t= a > 0 if and only g (z) given
by

(z)= e s )ds

is singular at or -.
Proof. ForfA’ we have

f(t)= 1.i.m.N_
where the limit is in the sense of A’. Since the negative part of the spectrum is discrete
and bounded below, we may express f as

(5.1) f(t)= F(X)q(t,X)dp(.)+foF(t)(t,X)dp(X)
=m(t)+fl(t)

where rn is hglomorphic for Re > 0 and fl A’.
Clearly f(z) and fl(z) the analytic representations of f and f respectively, are

singular at the same points in Rez > 0.
Let us suppose that f has an isolated singularity at z a on the positive real axis.

Then either (a + i0) or ((a- i0) of (4.4) is singular there as well, say G(a + i0). Then

fc+C(w,z) (w)dw
is holomorphic for Imz >0. It may be continued to Real z for all values except the
singularities of ( or their negatives (since L(w,z) has singularities at most at z= + w)
by deforming the contour c /. The same is true for c- Hence the only possible singular
point of (z) is at z= + a. Since (z)=0 for Imz < 0, no possible singularities arise
there.
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Now suppose ,(w) has an isolated singularity at fl#:0. Then by (4.6) for Imz < 0,
f(z) may be continued to the entire real axis since/-(z, w). has singularities only at
w= +_ z, and the contour lies above, the x-axis. For Imz >0, f(z) may be continued to
the real axis by again deforming the contour except at whichever of fl or -fl is
positive.

Hence if f is singular at a, must be singular at least at -et and a since if it
were not, f would not be singular at et

Example 1. q(x ) O.
a) a=r/2, ,(x,s)=cosxs, do(,)=ds.
For F(sX)=eiaSs v-l, a,s> 0, Rev> 0, we have fA’ given by

f(x) classY- COS XS ds

where the integral converges in the sense of A’. The integral converges locally as well to
the function

F(v) ((x_a)_+(x+a)_}.f(x)=
2(_1)

The analytic representation f of f has a singularity on [0, m) at most at x= a. Since

k +(z, s) can be calculated explicitly in this case,

e +- isz

+ 2

we can also find f explicitly:

+(zl=+2(_l)(a+-z)
with + or corresponding to Imz > 0 or Imz < 0. The corresponding is

F(v)(z+a)_ Imz>0,fo(z)= e’aSs"-le’Sds (-1)
0, Imz <0,

which agrees with the theorem of {}5.
b) 0 4: et 4: r/2, (x,s)= sinacosxs- (cosa/s)sinxs,

(1/rr ) (2s E/(cosEa + s 2sinEa)} ds.
For F(s2) r(cos2a + sEsinEt)s, Re/ > 2, we havefA’ given locally by

f(x)= lrr fomF(s2)q(x’s)2sla’(s) ds

2 sin cos xs s / ds

2 cos sin xs s"+ ds

2sinr(+ 3) cos
((v+ 3)r)

2
x

2cosaF(v+ 2) sin
((v+ 2)r)

2
x
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Thus f +(z) has singularities at most z 0. Similarly (z) can be found to be

cos2a z ’- + sin2a z ’-
(-1)+1 (-1)+3

for Imz > 0.
Example 2. q(x)=(,2-1/4)/x -, >1, q(x,s)= -J(xs), dp()t)=sds.
a) F(s2)=s-2, Re(/x + g)-I >0,/> 1.
Then fA’ is given locally by

f(x ) foS’- lv/-J, ( xs ) ds F((/ + v)/2)2"-1
r((,- )/2 + 1)X- 1/2

while

Imz > 0,

Imz <0.

b) F(s2)=s-lsinas.
Then

f(x) s-1/2sin asg-J.(sx) ds

-2x+1/2

r(1/2)( a2- x2) + 1/2 X [0,a) X )

where X[0,a) is the characteristic function of [0,a). Now

(z)= I [z/a[

0,

-Iz a I-"sgn(z a)
4F(1 ) cos(,r/2)

+i
[z-al "lz+a[

Imz>0,4I’(1 sin( , r/2)
Imz <0.
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q-POLLACZEK POLYNOMIALS AND A CONJECTURE
OF ANDREWS AND ASKEY*

W. A. AL-SALAM" AND T. S. CHIHARA*

Abstract. The q-Pollaczek polynomials are orthogonal polynomials having a generating function of the
form A(t)I-lkoF(x, tqk)=EnO=oPn(x)tn, where F(x,t)=[1-xn(t)]/[1-xK(t)] and A(t), n(t) and K(t)
are formal power series with H(0) K(0) 0, A (0) H’(O) K’(O) : 0. We determine all orthogonal polynomials
having generating functions of this form. We find that in addition to the q-Pollaczek polynomials, there are
two other sets that are closely related to the q-Pollaczek polynomials.

Key words, q-Pollaczek polynomials, orthogonal polynomials

AMS(MOS) subject classification. Primary 33A65

1. Introduction. In the characterization of a class of orthogonal polynomials hav-
ing a certain "convolution structure" [2], we were led to generating functions of the
form

1-I 1 atq k + bt2q2 n=0 1 xtq + ct2q- Pn (x)

in which the Pn(x) are orthogonal polynomials. These polynomials are special cases of
certain orthogonal 43 polynomials ("q-Askey-Wilson polynomials") studied by Askey
and Wilson and the orthogonality relations for Iql < 1 can be obtained from those given
in [6]. These relations are rederived by Askey and Ismail in [5] and the orthogonality
relations are also given for Iql> 1 in those cases where the associated Hamburger
moment problem is determined. Andrews and Askey [4] have recently conjectured that
the only generating functions of the form

(1.2) A(t) I-[ [1-xK(tqg)] -1= E Pn(x) tn
k=0 n=O

in which { P(x)} is a sequence of orthogonal polynomials are (after change of vari-
ables and renormalization) the ones we found in [2].

Independently, in a private communication, Askey suggested to one of us that it
would be interesting to characterize those orthogonal polynomials that have generating
functions of the form

(1.3) A(t) ]-I [1-xH(tqk)] E P.(x)t".
k=0 n =0
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A1-Salam was able to find all orthogonal polynomials of the latter class and this
suggested to him the further characterization problem of finding all orthogonal poly-
nomials having generating functions of the form

(1.4) A(t) I-I 1-8xH(q"t)= E Pn(x) t""
--0 1- OxK(qmt) n=0

When apprised of the latter, Askey noted that the q-Pollaczek polynomials have a
generating function of this type. He pointed out that the q-Pollaczek polynomials
can be defined (after a scale change of the independent variable: x- x/2) by the
recurrence relation

(1.5) (1-qn+l)Pn+(x)=[(1-aqn)x+bqn]Pn(x)-(1-cqn-)Pn_l(X),

P,(x)=P(x; a,b,c). They have the generating function

l_(ax+b)tq+ctq(1.6) F(x;q;a,b,c;t)= H E Pn(x) tn.
=0 1 xtq + t2q 2k n=O

This can be written in the form (1.4) with

A(t)= I-I 1-btq+ct2q2
k=0 1 + tEq2

H(t)=(1-bt+ct2) -1,
K(t)=(l+t2) -1.

Askey suggested that these were essentially the only orthogonal polynomials having
such generating functions. These polynomials were initially studied by Askey and
Ismail and the orthogonality measures have now been found in most cases. The special
case of the symmetric polynomials (b=0) is discussed thoroughly for 0 < q < 1 by
Askey and Ismail in their memoir [5]. For the general case, weight functions have been
obtained for all cases where the spectrum is continuous by Charris and Ismail [8]. These
authors also discuss a sieved version of the Pollaczek polynomials which can be
obtained from the q-Pollaczek polynomials by letting q a root of unity.

In this paper, we will investigate Askey’s suggestion by looking for all cases where
(1.4) generates orthogonal polynomials. We will show that the initial conjecture of
Andrews and Askey concerning (1.2) is correct and that in the general case (1.4) with
80:#0, Askey’s conjecture is nearly right. However there are two exceptional cases
closely related to the q-Pollaczek polynomials. We mention that the different but
related generating function

A(t) I-I [1-xK(t)q"] -= E P.(x)t"
n =0 n=O

was studied by Ismail [11] who found all cases where the P,,(x) are orthogonal
polynomials.

2. General necessary conditions. We study the polynomial generating function

(2.1) G(x,t)=A(t) 1-I 1-SxH(tq’)=
,=o 1 OxK(tq) n=O
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where 0 < Iql < 1, Il + 101 > 0, and

(2.2) A(t) E amtm,
m=O

n(t)-’- E hmtin,
m=l

K(t)= E kmtm
m=l

and we assume that (Qn(x)) is a sequence of orthogonal polynomials. In particular,
Qn(x) must be of precise degree n and there is no loss of generality if we take

(2.3) a0=l, hl=kl=l,

and for convenience we also write

(2.4) h0=k0=0.
Now considering (2.1), replace x by x -1, by xt. Upon letting x 0, we obtain

A (0) I-I 1 8q
m=0 1-Oq"t bntn

n’-O

where b denotes the leading coefficient of Qn(x). This yields

(2.5) b
(6/0; q )non

(q;q)n

Here we use the usual notation,

(a;q)o=l, (a;q)n=(1-a)(1-aq)...(1-aqn-) forn>0.

It then follows that the three-term recurrence relation for these polynomials has the
form

(2.6) (1 qn+l)Qn+(x ) [(0--qn)x + fin] Qn(x)-’nQn-l(X)

From (2.1), we have that Q,(0)= a so

(2.7) (1--qn+l)an+x=nan--Ynan_x, n21.

Next we set

A(qt) E lntA(t) n= 0

We then have

1-OxK(t) G(x t)G(x,qt)=sg(t)
1-SxH(t)
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from which we obtain

[1-oxg(t)] E tmtm Qn(x)tn=[1-SxH(t)] E Qn(x)qntn.
m=0 n=0 n=0

This can be expanded to

oo n

E E ajQ._(x)t"- E
n----O j=O n=O

-’X OK(t) E ajQn-j(x)tn-SH(t) E Qn(x)q ntn
n=0 j=0 n=0

and this yields for n > 0

(2.8) q"Q,,(x)- ajQ,,_j(x)
j=0

=X

n-1 n-1 n-m-1

E hm+lan-m-x(X)qn-m-x-O Z km+l E
m=0 m=0 j=0

We use the recurrence formula (2.6) to eliminate ixqSQs(x) from the right side of (2.8).
The result is

n

j--O

n-1

E hi+l[n-i-lQn-i-l(X)-’n-i-lQn-i-2(x)-(1-qn-i)Qn-i(x)]
i=0

--OX kr+l E tjQn-r-j-l(X)-hr+lQn-r-l(X)
r=0 j=0

which in turn yields

(2.9)
n--1

aiQn_i(x)=Ox Y’ Fn,i(x)-fln_lQn_l(x)+(1-qn-1)hzQn_l(X)
i=0 i=0

n

E [hjfln-j-hj-l"gn-j+-hj+(1-qn-j)]Qn-j(x)
j=O

where

n-i-1

Fn,i(x)=ki+ E tjOn-i-j-x(x)-hi+Qn-i-(x)
j=0
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Once again using (2.8), we eliminate the xQs(x) terms from xF,,i(x ) and obtain

(2.a0)
k_J_.+.l .h-i+.1. (1--qn-i)O"xf.,i(x)=o__Sqn_i_

[oqki+l(1-q"-i-1) ki+l-hi+l ]-Jl" (X)
O-Sq --i--2 O__qn_i_ n--i--1 Qn--i--1

where

find

ki+l-hi+l ]O__qn_i_ "n-i-1 Q.-i-2(x)

) Ols-2"n-i-s+lD,(n,i)= as 1 qn-i-s Os_l.n_i_s
-[-

O_qn-i-s-1 O_qn-i-+s O_qn-i-s+l
We next compare the coefficients of Qn_l(X) in (2.9) with the aid of (2.10) and

O(l+k2-h2)(1-q"-l) fl,_+(1 q -1)h2,ax n>l
O-3q --

so that

(2 11) fin
O(al + k2)-Sh2qn-1

O-3q -1
(1--qn)--al, n>O

Similarly, comparison of the coefficients of Q,,_:(x) yields

O(Otl + k2)-h2q"-1

(2.a2) v.= O-Sq"-
O_q-

As derived, (2.12) does not necessarily hold for n 1 but (2.7) can be used to obtain

=- (l-q) +
and if (2.11) is used to elinate B, tNs reduces to (2.12) for n 1. Finally, we equate
coefficients of Q_(x) and obtNn

(2.13) = 0 ik_i+-h+q - 1

0 otiks_i-Shsq
i=o

O-3q"-

+ 19 Z tiks-i-l-hs-lqn-s+1 yn-s+l

i-o O- ’---+1
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One can verify directly that (2.13) remains valid for n >= 1 provided we interpret an
empty sum as 0.

3. The special cases where 8{t 0. We first take up the case 0. We can then set
1 without loss of generality so that (2.11) and (2.12) can be written

(3.1) fln fl bq n, "yn "y cq -1

where

fl k2, "t k22- k3, b a + k2, c al
2 + alk2- a2- k3.

Setting Q*(x)=(q; q),Qn(x-fl), we can write the recurrence formula (2.6) as

(3.2) O*+l(x)=(x-bq")Q*(x)-(/-cq"-l)Q*_l(x ).

Thus the Q*(x) are the polynomials found by us in [2], the ones whose orthogonality
relations were first found by Askey and Wilson (see the introduction). If 3’ :# 0, these
polynomials are special cases of the q-Pollaczek polynomials. If 3,=0, these poly-
nomials are the A1-Salam and Carlitz q-polynomials ua)(x) (see [1], [8, p. 196]). The
generating function given in [2] is

(3.3) (x,/)= 1-I 1--btqk+ct2q2 nO=0 1--xtq+tEq2=
Q(x-fl)t

which is one of the right form.
It remains to show that the product representation in (3.3) is the only one of the

form (2.1). We let n---, oo in (2.13) and obtain

s-1 s-2

as= aiks-i+-fl E tiks-i+’t E tiks-i-1,
i=0 i=0 i=0

s-1

E li(ks-i+l dt- ks-i-’Yks-i-1)-O, s z 1.
i=0

Since a0 : 0, it follows that

ks+l- flks+ "/ks_l=O, s>l.

Together with the initial conditions k0 0, k 1, this yields

(3.4) K(t)=
1- flt + ,t 2

Thus

1-xK(t)= 1-(x+ fl)t+,t 2

1 fit + 3It 2

and this shows that the generating function (2.1) must be (3.3).
Next we let/9=0 and take 8= 1. Now (2.11) and (2.12) reduce to

(3.5) fl fl bq , / cq -1
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where

b=h 2, c=h-h3, fl=h2-a1, y=h-h3-ath2+a:.

Now (2.13) reads

as= (1-- qn-S)[ hs + l_ bhs + chs-1]-ax( hs- bhs-1)-a2hs-t,
from which we conclude

(3.6)

(3.7)

hs+l-bhs+chs_ 1=0,

a= -ath+(bat-a2)h

s>=l,

s>l.s-l,

For s=l and 2, (3.6) yields ax=a2=0; hence as=0 for all s>= 1. Thus A(t)=l and
from (3.7) we find,

(3.8) H(t)=
1 bt + ct 2

The recurrence formula (2.6) becomes

(3.9) (1 qn+ X)Qn+ t(x)= [-xq + fl- bqn]Qn(x) (,- cqn-l) Qn-l(X).
Comparing (3.9) with the recurrence formula (3.68) in Askey and Ismail’s memoir [5],
we see that (using their notation)

(3.10) On(x)=v,(x + b; q; fl, y,c).

For 0 these polynomials are special cases of the q-Pollaczek polynomials. For , 0,
they can be transformed to the A1-Salam and Carlitz polynomials Va)(x) ([1], [8, p.
196]). The generating function (2.1) determined by (3.8) is the one given by Askey and
Ismail.

4. The case 80 0. Turning now to the case 80 0, we take 8 1 without loss of
generality.

Referring to (2.11) and (2.12), we first note the limits

(4.1) fl= lim fin =k,
n-- o

(4.2t ",/-= lim "/n k:z2- k

We let n in (2.13) and get exactly as we did in 3

(4.3) K(t)=
1- flt + yt 2

(4.4)

Next we note that if we write x qn, (2.13) can be rewritten as

as= (A_ $q-- lh 1- xq
+tx)

1 q-S- ix

(B- $q-Shx) l Sq-x

+(Cs_q_S+lhs_lX ) y(x)
1-1q-+ x
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where As, Bs, and C are independent of x, fl(x) is obtained from (2.11)"

(4.5) fl(x) =(tl+k2-h2q-s-lx)(1-q-sx)
l_iq_S_lx

-eq

and 7(x) is similarly obtained from (2.12). Since Iql 0,1, (4.4) is valid for infinitely
many values of x and hence it must be an identity in x. We therefore multiply both
sides of (4.4) by x-1 and let x o. We have

so (4.4) gives

lim fl ( x h__ lim "r ( x ) h h3
x--, 1-q-Sx x--, 1-q-+x q2

O=h+l-h2hs+(h22-ha)hs_l, s>_l.

Letting

(4.6) b=h2, c=h-h3,

we conclude

(4.7) H(t)=
1 bt + ct 2

The generating function (2.1) thus has the form

(4.8) G(x,t)=D(t)

where

1-I 1--(Sx+b)tqk+ct-q2k
k=0 1--(X+ fl)tqk+7t2q

D(t)=A(t) 1-I 1- fltqk +’t2q2ik
k=o 1 btq k + ct2q’ ,,=0

dntn"

At this point we can see that there will be no loss of generality if we assume henceforth
that fl 0 and 3’ 1 since this amounts to a translation in x and a scale change in t.
With this convention adopted, comparison of (4.8) with (1.6) shows that we have

(4.9) Qn(x)= E dkPn-k(X;q;a,b,c) (a=i,d0=l)-
k=0

We will complete the characterization problem by determining all sequences (d }
such that the Q(x) determined by (4.9) will be orthogonal polynomials. To this end,
we recall the recurrence formula (2.6) which now reads

(4.10) (1-qn+l)Qn+l(X)=[(1-aqn)x+fl]Qn(x)-y,,Qn_l(X).
Now we use (4.9) to eliminate Qg(x) from (4.10). We also use the recurrence relation
(1.5) to linearize the XPk(X) terms. The result is

n+l

(1-q+) dP+l-(x)
k=0

fl,, dke,,_,(x)-’l,, E d,e,,_,_(x)
k=O k=O

n

+(1-aq") F d
=o 1-aq"-

[(1-q )P.+l_(x)-bq"-P_(x)

+ (l (X)]
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Note that (4.10) shows that a is restricted by the condition that

(4.11) 1-aq"4O, n>=O.
Equating coefficients of P,,_,(x) now yields

(1 q"+ ) dk+ dkfl,,- d,_ l"y,, +
(1--aqn)(1-qn-k)

dk+l
1 --aq n-k-1

(1--aqn)(1--cq n-k)bq"-’(1 aq")
d, +

l_aq,,-, l_aq,,-k+l dk-1

and this can be written

(4.12) q-k-l(1--qk+)(q--a)
dk ( fl-bq’-(1-aq’) ) dl aq,,_k_ +1

l aq,,_

Setting k 0 and k 1 yields, respectively,

(4.13) fl,,= bq" +

(4.14)

+ { (1--aqn)(1--cqn-k)
n-k+11 aq

dlq"-l(1-q)(q-a)
1 aq n-1

,,_ dxb(1-q)q"-1 d?(1-q)(q-a)q "-1 d:z(1-q2)(q-a)qn-2, 1 cq +
l_aq ,,-1 l_aq,-1 l_aq,-2

Because of (4.10), (4.13) and (4.14) are valid for n > 0 and n >= 1, respectively, except in
the special case a q. In the latter case, (4.13) need not hold for n =0 and (4.14) need
not hold for n 1.

Using (4.13) and (4.14) in (4.10) now gives

(4.15)

(1-q’+l)(q-a) { bq(1 -/’)
1 aq’--7’--7 dk+l +

1 aq "
dl(1-q)(q-a)q }1 aq-1

+ I q(c-aq)(1-q’-) dlb(1-q)q"
1_ aq,,-,+l l_aq,,-1

+ d?(1-q)(q-a)q’ d:z(1-q2)(q-a)q’-}1-aq"-1 1 -aqn-2 dk_ =0.

5. The case 804:0 continued. Referring to (4.15), we note as before that we can
formally replace q" by x and observe that the result must be an identity involving a
rational function with poles at x a- lqS, s 1, 2, k 1, k, k + 1. Taking k >_ 2, the re-
sidue at x a- lqk / gives US the condition

(5.1) (q-a)dk=O, k>=3.
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Let us first consider the case a 4: q. In this case, dm= 0 for m >= 3. Now take k= 2 and
look at the residue at x a-lq2. We find

d[a-(q-a)dl] =0.

a

Then let k 3 and consider the pole x a-lq2. We find

(5.3) [q(1-q2(c-aq)-d2q2(1-q2)(q-a))] d2=0
so that

(5.4) d=
c- aq
q(q-a)

Thus for the case a 4: q, c 4: aq, we will have

(5.5) Q,,(x)=P,,(x)+ a c-aq (x)q aP"-l(X)+--Pn 2q(q--a)

and the corresponding recurrence formula will read

(5.6) (1-qn+l)Qn+l(X)

={(l_aqn)x+ b(1-aqn)qn-1} (1-cqn-3)(1-aq n)
l aq,,-1

Qn ( x )
l aq- Qn- ( X )

If we set

Q#(x)+ 1-.s.a--q--1-- Q,,(x)
1 aq n-1

it is easily seen from (5.6) that Q,(x) satisfies the Pollaczek recurrence (1.5) with
parameters aq- 1, bq- 1, cq- 2. Thus

(5.7) Qn(x) =l-aqn-1l_aq-_i Pn(x;q;aq-l,bq-X,cq-2), a4:q, c4:aq.

Still keeping a 4: q, suppose next that d2 0 so that

(5.8) On(x)=Pn(x)+dxPn_l(X).

We then take k 2 in (4.15) and consider x a- lq. This time we get

(5.9) q(q-a)d-bqd +c-aq=O

as the condition determining the value of d1. The coefficients for the recurrence
formula can be written

dl(1-q)(q-a)qn-1

fl,,=bq"+
1-aqn-

(5.10)
(1 -cq"-z)(1-aq ")

1 aq n-1
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We will identify these polynomials in terms of their orthogonality relations in the
next section. Here we turn to the remaining cases which occur when a--q. When a q,
(4.15) reduces to

(5.11) bq(1-qk) (q(c--q2)(1--qk-1) dlb(1-q)qk )1 q----- dk + dk_ =0.
l_q-+2 1-q

If b 0, (5.11) yields the condition

(c-q2)dn--O, n >= 1.

Thus if c 4:q2 we have dk 0 for k > 1 Therefore when a q, b 0, c 4= q2

(5.12) Q,(x) P,,(x; q; q,O,c).

If, however, c q2, the recursion coefficients (4.13), (4.14) become

ft, 0, n>__l, 7n 1 n>=2.
Thus the recurrence relation reduces to

(5.13)
Qn+l(X)--xQn(x)-Qn_l(X),
Q2(x) xQ (x)- /Qo(x ),

Qo(x)=l.

n>2.

It follows that for the case a q, b 0, c q, the generating function is

(5.14) 1 + fit + Vt 2

l_xt+t
E On(x) tn
n=0

where fl and 7 > 0 are arbitrary. The polynomials are

(5.15) Q,(x) U,,(x/2)+flV,,_l(X/2)+’,lU,,_2(x/2),
where Un(X)=P,,(2x;q;q,O,q 2) are the Chebyshev polynomials of the second kind
(with U_ (x) U_ l(X) 0). The orthogonality of these polynomials is included in
studies of a more general situation by Geronimus (see [10, p. 52]). The distribution
functions (including any isolated mass points that occur) are given explicitly for all
cases by Allaway [3]. (Note that Q*(x)=.-Qn(x) satisfies (5.13) for n> 1.) They can
also be found in [6] where Askey and Wilson have given a further extension of
Allaway’s work.

The remaining cases occur when a q, b 4= 0. To handle this case, first take k > 2
in (5.11). The residue at x=q’-1 then tells us that dk=0 for k>2. When k=2, (5.11)
then yields the condition

(c-qZ-bqd)d=O.
If d=0, we have Q,,(x)=P,,(x;q;q,b,c)(b4:0)so take d 4=0. Then

2

(5.16) dl=C-q 2

bq
c4:q

The recursion coefficients now become

(5.17) fl,,= bq", ",,=
(1-cqn-2)(1-qn+)

1 _qn n>l.
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According to the remarks made following (4.14), the formula for ’n is valid for n >_ 2
but it can be verified directly that (5.17) gives 71 correctly also. Also, it is easy to verify
directly that

(5.18) flo= b + dt(1- q).

When these formulas are compared with (5.9) and (5.10), we see that this case is
included in (5.8) as the limiting case a= q, b 4: 0, c 4: q2. Thus (5.8) with d determined
by (5.9) remains the only case for which orthogonality relations are not known.

6. Orthogonality relations. We will now find orthogonality relations for the poly-
nomials given by (5.8) and (5.9) with Pn(x)=Pn(x;q;a,b,c) and with a=q now
allowed. We set

1
(6.1) o= d +--d

translate: x x- o, and then consider the monic polynomials

(6.2) 0n(x) (q; q) Qn(x-o).(a;q)n

With reference to (5.10), we find these polynomials satisfy

(6.3) O,,(X)=(X--C,,)O,,_(X)--,,,(2n_(X), n>=l,

(6.4) cn=o-
bqn-x dl(1-q)(q-a)qn-2

n-11 aq (1-aqn-:Z)(1-aqn-1)

(6.5)
(1_ cqn-a)(1 __qn)

(1-aqn-1)-
Note that when a q, C d- b/(1 q).
Now define

1 cqn-(1 q")d
F,+ 2(6.6) Fn+= n>O.

1 aq (1 aq ) dl,

With the aid of (5.9), one can now verify directly (but tediously) that

(6.7) Cn=I’2n_l+2n, Xn+l=2nr2n+l, n>=l.

On the other hand, the corresponding monic q-Pollaczek polynomials,

/n (x) [(q;q)n/(a;q)n]Pn(x-o;q;a,b,c),

satisfy

(6.8) n(X)=(x-dn)Pn_(x)-VnPn_2(x), n>=l,

bq n-1 (1--cqn-1)(1--q n)
tin---o- ln+l n-l)(1 )1 aq (1 aq aq
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Now one can verify that

(6.10) d.= r2.+ r2.+1, .+ F2.+lF2.+, n__>l.

It follows from (6.6) and (6.10) that the (x)^are kernel polynomials (with K-
parameter 0) corresponding to (x). That is, if (Q,,(x)) is an orthogonal polynomial
sequence (OPS) with respect to a measure dt,(x), then the existence of F such that
(6.6) and (6.10) hold is necessary and sufficient for (P(x)} to be the OPS with respect
to xdtt(x) (see [9, p. 46]). Therefore, if dp(x) denotes the measure with respect to
which the q-Pollaczek polynomials are orthogonal, then the polynomials given by (5.8)
are orthogonal with respect to the measure given by

(6.11) dq (x) (x -l-

together with a possible positive mass at x -o. All of this is subject to restricting the
parameters a, b, c and d so that the F, are positive for n >__ 2. If they are not all positive
but are all nonzero, then corresponding relations still hold formally with-integrals
replaced by moment functionals (see [9]). We will here assume we have the positive
definite case:

dt>0andeither (i) 0<q<l, a<l, c<q;
or (ii) -l<q<0, q-l<a<l, 0<c<l.

We will complete the analysis by determining the cases where dp has positive mass at

First note that we have not lost any generality by the assumption that Iql < 1 since
the case Iql> 1 can be handled by setting q=p-, IPl<l. The resulting recurrence
formula written in terms of p can be reduced after a linear change of variable to the
original form and the generating function would remain of the same type. Now in any
case, the coefficients in the recurrence formula are bounded so the corresponding
Hamburger moment problem is determined. We consider the corresponding orthonor-
mal polynomials

(6.12) 0,(x) (XX2.-.
where ’1 denotes the total mass of the measure dp. Now [0,(0)] 2=
(F2. Fz,)/(;kI’ F2,+) (see [9, p. 49]). Hence we have

(6.13) [O,(0)]z= (cq-1; q)n
Xl(q;q),,d"

Now it is a classical result from the problem of moments [12] that when the Hamburger
moment problem is determined, the mass at x is p(X)={E[gln(X)]2} -- Thus when

d > 1, at the point x= -o, dq(x) will have the mass p(0)= XlJ, where

(6.14) J {1*0 ( cq-1" ;r) } -= nI-Io 1 rq
(l_rcqn- 1)’ r=dl

and + will be continuous at o in all other cases.
Finally, we note that the total mass of d+(x) is given by

(6.15) ,1 (l_Jl_lf? dq(x+o).
X+O
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In those cases where the q-Pollaczek polynomials have a continuous spectrum, the
measure dq(x) is given by Charris and Ismail [8, [}6]. They denote the q-Pollaczek
polynomial by F (x; u, v, w; q) where

(6.16) Fn(x; u,v,w; q)=P,(2x; q; uw,2v, w2).

7. Summary and remarks. For the special case =0 of (2.1), the Andrews-Askey
conjecture is verified: the only OPS generated are the so-called A1-Salam-Chihara
polynomials (apart from trivial changes of variable and renormalizations). When 0=0,
the only OPS generated are the "q-duals" v,(x) which correspond to the formal
replacement of q by q-1 in the first set.

In the general case 804:0, the OPS generated are the q-Pollaczek polynomials
together with two closely related classes. The first consists of the most general orthogo-
nal solutions of the Chebyshev recurrence (coefficients independent of n), and the
second is the class of "inverse kernel" polynomials discussed in 6. An interesting near
exception is provided by the polynomials given by (5.5). According to (5.7), these
polynomials are also q-Pollaczek polynomials which satisfy the interesting identity
(5.5). Additionally these results say that if a 4:1, 3’ 4: a, then P(x; q; a,/3, ,) and
(1- aq)P(x; q; a, fl, V) are each generated by different generating functions having
the general form (2.1).

The relations involving Fn obtained in [}6 are quite general and provide a number
of formal identities involving q-Pollaczek polynomials. In particular, we obtain the
symmetric OPS ( S(x)} defined by

(7.1) S2n(X)-On(X2), S2n+l(X)--XPn(X2).
In the positive-definite case, these are the polynomials orthogonal with respect to the
symmetrization of the measure d+(x) (6.11).

Finally, we observe that the q-Pollaczek polynomials enjoy a convolution property.
Using here the normalization of Askey and Ismail [5, p. 17], consider the generating
function for the A1-Salam-Chihara polynomials Q,(x)= Q,(x; q; a,b, c):

Q(xq;a,b,cc;t)= I-I 1-atq +bt Yokf01--xtq+ct2q2’=
Q"(x)tn

and for their q-duals, v,(x)=v,(x; q;

V(x;q;a,fl,/;t)= 1-I 1-xtq +’t._ E v,(x)t".
k=01-atqk -tq ,=0

Referring to (1.6), we see that

Q(x; q; a,fl, 1; t)V(ax + b; q; a,fl,c; t)= G(x; q; a,b,c; t).
Thus we have the convolution formula

(7.2) Pn(x;q;a,b,c)= ak(x;q;a,fl,1)v,_k(ax+b;q;a,fl,c).
k=O

Note that P,(x) is independent of a and ft.
Thus the polynomials of one orthogonal sequence are expressed as the convolution

of polynomials from two other orthogonal sequences in the same independent variable.
Other examples of this phenomenon are given by setting y x in all examples found by
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us in our characterization problem [2] while another class of examples is furnished by
the associated Legendre polynomials which are expressible as a convolution of ordinary
Legendre polynomials [7]. These include the Chebyshev polynomials of the second kind
as a limiting case. All of this of course suggests a characterization problem. Indeed, it
was this characterization problem we originally considered before we followed Polya’s
dictum and looked for an "easier problem we couldn’t solve" (which eventually led to
[2]). We suspect that the solution of the more difficult characterization problem with
only one independent variable would lead to the discovery of new, important classes of
orthogonal polynomials.
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ON THE GENERALIZED CHEBYSHEV POLYNOMIALS*

MOURAD E. H. ISMAIL" AND FUAD S. MULLA:i:

Abstract. We study the spectrum of the Jacobi matrix (m,n+ + m,n-l + aqnim,n), m,n=0,1,. and
the corresponding orthogonal polynomials. The spectral measure is computed when q 1,1) and sufficient
conditions are given to guarantee the absolute continuity of the spectral measure. When q> 1 or < -1 the
measure is purely discrete. The case q=-1 leads to a set of polynomials orthogonal on the union of two

disjoint intervals. When q--1, the polynomials are essentially the Chebyshev polynomials Un (x)}.

Key words. Chebyshev polynomials, asymptotics, continued fractions
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1. Introduction. The Chebyshev polynomials U (x) = sin[(n + 1) 0 ]/sin O, x
cos O, satisfy the three term recursion formula

1 1(1.1) xPn(X)=-p,+l(X)+-p,_l(X), n>0,

and the initial conditions p0(x) 1, px(x) 2x. The associated Jacobi matrix is

1(1.2) A =(m,n+l "+ m+l,n), m,n=0,1,2,..-.

The spectrum of A is [-1,1]. Avron and Simon [5] considered the doubly infinite
Jacobi matrix

(1.3) B=I (m,n+l +m+1,n)+(.Cos(Z’n’rtot+e)6m,n) m, n=0, +_ ,1...

where a is an irrational number belonging to (0,1) and e > 0. They conjectured that the
spectrum of B is a Cantor set when ;k > 1. The spectrum of the semi-infinite Jacobi
matrix

1(1.4) B+=(rm,,+ +m+l,n)+(.cos(2qrna+e)am,,), m,n=0,1,...,

where a and e are as before, is not known but is also very likely to be a Cantor set
when A > 1. The orthogonal polynomials associated with B/ are generated by

2xp,,(x)=p,,+(x)+p,,_(x)+2,cos(2rna+e)p,,(x), n>O,

P0(x)=l, Pl(X)=2x-2Xcose,

and are very interesting. The limiting distribution of their zeros coincides with the
spectrum of B+. Even the special case e=0 is very interesting. When e=0 the term

2hcos(2ran) is (q"+q-"), where q now lies on the unit circle and argq is not a
rational multiple of rr. This problem, or rather our inability to solve it, motivated us to
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*Department of Mathematics, Arizona State University, Tempe, Arizona 85287. This work was done

while this author was visiting Kuwait University in 1982.
*Department of Mathematics, Kuwait University, P. O. Box 5969, Kuwait.
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study the polynomials On(a)(x; q) generated by

(1.6) 2XOn(a)(x; q)=On(_)l(X; q)+O(na)l(X; q)+aqnOa)(x; q),

with

n>0

(1.7) O(oa)(x’ q)=l, O(la)(x; q)=2x--a.

When a= 0 the 0,’s reduce to the Chebyshev polynomials Un(cos 0)= sin[(n + 1)0]/sin0.
Since the 0n’s generalize the Chebyshev polynomials it is appropriate to call them the
generalized Chebyshev polynomials. The associated Jacobi matrix is

(1.8) J=A+D,

where D is the diagonal matrix

1 " ) m n=012...(1.9) D -(aq S,,,,,,

and A is as in (1.2). When -1 < q < 1, J is the sum of the self-adjoint operator A and
the compact operator D; hence the essential spectra of J and A are identical, i.e. the
essential spectrum of J is [-1,1] since 2A is the forward shift plus the backward shift.
When q > 1 or q < -1 the matrix operator A is unbounded (on 12).

In 2 we treat the case 1 < q < 1. We derive a generating function for the 0,’s and
apply Darboux’s method to the generating function in order to determine the asymp-
totic behavior of O}a)(x; q) for fixed x and large n. This asymptotic result is then used
to compute the resolvent of the operator J in the case -1 < q < 1. The resolvent and
some recent results of P. Nevai [12] are used in 3 to compute the absolutely continu-
ous component of the spectral measure of J explicitly. In the rest of 3 and all of 4 we
give some necessary and some sufficient conditions for the absence of a discrete
singular component of the spectral measure. In 5 an explicit representation of
0a)(x; q) is derived and the sign of the linearization coefficients is determined. Section
6 contains an analysis of the spectrum for q> 1 and q<- 1. We show that the
continuous spectrum is empty, hence the spectral measure is purely singular. In 7, we
treat the case q 1.

The present work is a sequel to Askey and Ismail’s work [4] and uses their
approach which is originally due to Pollaczek [14].

The following well-known theorem will be used in the text.
THEOREM 1.1. Let ( P,(x)} be a sequence of moniepolynomials generated by

(1.10) Po(x) 1, Pl(x)=x-cl,
(1.11) Pn(x)=(X-cn)Pn_l(X)-XnPn_z(X), n> 1.

The positivity condition ,> 0 is satisfied if and only if there exists a nondecreasing
function o(x) of bounded variation on (-oo, ) such that

f_ooPn(x)Pm(x)d(x)=klX2X3 kn+lCm,n,

where o is normalized by

Ax’= do(x)=l.
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For a proof, see Chihara [8, pp. 16-22 and 56-58]. Akhiezer [1] gives an account
of the role played by orthogonal polynomials in the spectral theory of Jacobi matrices.

2. The resolvent when 1 < q < 1. We first establish the generating function

o k k(k-1)/2

(2.1) E O(na)(x; q) tn= E (--at) q

n=O n=O (t/A; q)k+(t/B; q)k+l’

where A and B are roots of 1 2xt + t=O and the q-shifted factorial (o; q)n is
n

(2.2) (o; q)0 1, (o; q),= I-[ (1-oqj-X), n= 1,2,-.-..
j

The case n= o is also allowed in (2.2) since the infinite product converges for
q (- 1,1). To fix the notation we set

(2.3) A,B=x + V/x 2-1, IBl_-<

Proof of (2.1). Denote the left side of (2.1) by H(x,t). Multiplying (1.6) by n+l

and adding the resulting equalities for n= 1,2,..., we see that H(x,t) satisfies the
functional equation

(2.4) H(x,t)=(1-2xt+t2)-l[1-atH(x,qt)].
We also used the initial conditions (1.7). Iterating (2.4) formally leads to (2.1). This
formal argument can be justified. Observe that the fight side of (2.1) is analytic in in a
neighborhood of t=0 and it satisfies (2.4). Let wt be its Taylor series about t-0.
It is easily verified that w: and 0a)(x; q) agree when j=0,1 and that w satisfies (1.6).
This identifies wn as 0/a)(x; q) since both satisfy the same three term recurrence
relation and the same initial conditions. This completes the proof of (2.1).

The polynomials of the second kind (a)(x; q) satisfy the recursion (1.6) and the
initial conditions

(2.5) t(oa)(x’ q)=0, *(la)(x; q)=2.

It is not difficult to identify the q,,’s as

(2.6) ,a)(x; q)=20naf(x; q), n>0, oa)(x; q)=0.

We now investigate the asymptotic behavior of Oa)(x; q) and qa)(x; q) for large n
and fixed x. The reason is that if dk is the spectral measure of A + D then the On’S are
orthogonal with respect to db(a)(t; q) and db(a)(t; q), normalized by

lp(a’(d t" q)=l,

satisfies

t(na)(x; q) [ db(a)(t; q)(2.7) lim
O(na =J_ x

Imx4::0,
n--* oo (x;q) o

see [4, Thm. 2.4]. The relationships (2.6) and (2.7) identify the resolvent

(d(a)(t; q)/(x-t))

in terms of the asymptotic behavior of O(na)(x; q).
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(2.8) x[-1,11,

THEOREM 2.1 The asymptotic behavior of O(a)(x; q) is given by

qOn(a)( X, q)’A"E (_aB)k (-1)/2

o (B/A; q)k+x(q; q)k’

q + conjugate, x ( 1,1),(2.9) O.(a)( x, q)--A"E (--a) 1/

0 (B/A; q)k+x(q; q)k

0,()(1; q)-’(n+l)E (-a)kq(k-1)/2
0 (q; q)

O(na)(_l,q)_(_l)n(n+ l) akq k(c-1)/2

0 (q; q)

(2.10)

(2.11)

Note that A and B are complex conjugates when x belongs to [-1,1]. An
essential tool in proving (2.8)-(2.11) is the following asymptotic method of Darboux.

THEOREM 2.2 (Darboux’s method). Assume that f(z)= Efnzn is analytic in Izl < r
and has a finite number of algebraic singularities on Izl-r. Let g(z)=Egnzn be a
comparison function, that is g is also analytic in Izl < r, has a finite number of algebraic
singularities on Izl r andf- g is continuous on Izl- r. Then fn gn + o(r-n).

Olver [13] used the Riemann-Lebesgue lemma to prove Theorem 2.2, see also
Szegi3 [18].

Proof of Theorem 2.1. Apply Darboux’s method with the comparison functions

(1 t/B ) -1 E ( aB ) kqk(- 1)/2

k=0 (B/A; q),+l(q; q)k

q(1-t/B)-X- (_aB)k k(k 1)/2

_-o (/; q)/x(q;

(a+t)-E (+a)k ,(,-1)/2

o (q; q)]

+(I_t/A)-I E (-aA)kq(’-1)/9
k=o (A/B; q)g+l(q; q),

ifx(-a,a),

when Imx 4= O, where

The details are straightforward and will be omitted.
THEOREM 2.3. Thepolynomials ( O(a)(x; q)) satisfy the orthogonality relation

(2.13)

(2.12) f? O(na)( x; q)O(ma)(x; q)dtp(a)(x; q)=m,n,

where d & a positive measure with bounded support. Furthermore the Stieltjes transform
ofd is given by

o db(a)(t; q)=2BFaq(x)/Fa(x )
o x-

(_aB) ,qk(k-1)/2(2.14) Fa(x)’= E " l(q; q),=o q) ,+
Proof. The monic polynomials associated with the 0,’s are

(2.15) Pn(X):= 2-nO(na)(x q).

if x [-1,1],

if x= -T-1.
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The p’s satisfy

(2.16) p+(x)= x--aq" p,(x)--p,,_l(x ),

so the coefficients in Chihara’s notation [8, see Thm. 1.1] are given by

1 1(2.17) Cn=aq
n-1 n> 1 Xn= - for n> 1

Combining Theorems 4.2 (p. 19) and 4.4 (p. 21) in Chihara [8], we establish (2.12). The
boundedness of the support of dq(a) follows from Theorem 2.2 in [8, p. 109]. Now
Markoff’s theorem [8, pp. 89-90] implies (2.7) which when combined with (2.6) and the
asymptotic formula (2.8) establishes (2.13). This completes the proof.

Note that (2.13) actually holds for x off the support of dq(a).

3. Absolutely continuous component of the spectral measure. We first compute the
absolutely continuous component of dq. If (pn(x)) is a sequence of orthonormal
polynomials,

coefficient of x in Pn (x),
then (Pn(X)} satisfies a three term recursion of the type

Yn p,,+1(x)+anpn() + "Yn-1(3.1) XPn(X)=yn+1 Pn-l(X)

Combining Corollaries 36 (p. 141) and 40 (p. 143) in Nevai [12], we get
THEOREM 3.1 (Nevai). If

(3.2) E
k=l

"Yk- 1

then

dq(t)=’(t) dt + dq(t),
where ’ is continuous andpositive in (- 1,1), suppq/= [- 1,1] and q is a step function
constant on (- 1,1). Furthermore

(3.3) lim sup p’(x)v/1 x p(x) 2,
n

7/"

holds for almost every x
In the case of the 0n’s, y,=2n, a,= 1/2aq", so (3.2) is satisfied. The O’s are

orthonormal. The asymptotic formula (2.9) can be written in the form

q cos(n0 + tp),(3.4) 0n(cos0; q)---2 (-aei)g ( 1)/2

o (e2i; q)k+l(q; q)k

holding for 0 < 0 < r, where

(3.5) tp= arg( (--ae-iO)kq:(k-1)/2)
k=0 (e-i; q)k+l(q; q)

This analysis and Nevai’s theorem establish the following.
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THEOREM 3.2. We have

(3.6) k’(x)= 2V/1 x (_ aeiO) q(-/2
o (qe2i; q)k(q; q)k

-2

holdingfor q ( 1,1).
We now analyse the discrete measure dq,. Recall that

(3.7) Fa(x)’= E (-aB)JqJ(J-X)/2

x COS 0,

=< ]- -dq(a)(t; q) < .
When x is real and lies outside [-1,1] the quantities A, B will take real values and
0 < B/A < 1 since AB= 1. Observe that (3.7) implies the positivity of Fa(x ) if a < 0 and
x > 1, q > 0 because in this case

B=x- v/x2-1 >0.

On the other hand when a > 0 and x < 1 with q still positive B is x + v/x 2_ 1, which
is negative, and Fa(x ) is strictly positive. This means that when q>0 the zeros of
Fa(x ), if any, are to the right of [-1,1] if a > 0 and to the left of [-1,1] if a < 0. In
general for fixed real x [-1,1] and q > 0 the function Fa(x) as a function of a, has
infinitely many zeros and all the zeros are real and simple, [2], [10]. So, without
restricting a discrete masses will appear. In fact for every prescribed value of xo > 1
(< -1) of x and q>0 there are infinitely many values of a>0 (<0) that will make
Fa(x ) vanish at x= x0 and, of course, Faq(Xo)4: O.

THEOREM 3.3 (Chihara [9]). In order that d/j=O, outside [-1,1], for -1 <q< 1 it
is necessary that

(3.8) -2<a<2.

Proof. In Chihara’s notation [8, p. 18] the recursion (1.6) is

(3.9)

where

(3.10)
so

(3.11)

( ) 1Pn+I(X) X-- q" P(x)- -Pn_I(X)

en(x): 2-nO(na)(x q),

Cn qn-1 (n>=l).

o d(a)(t; q)
o x+iy-t

where A, B are as in (2.13). These functions, as functions of a, are essentially basic
Bessel functions, see A1-Salam and Ismail [2] and Ismail [10]. Furthermore Fa(x ) and
Faq(X) have no common zeros. A jump J in k (t) at contributes J(x ) to the
left side of (2.13). Hence the location of the discrete masses coincides with the poles of
the fight side of (2.13), i.e. Faq(X)/Fa(x ). These poles are the zeros of Fa(x ). Since
computing the zeros of the transcendental function Fa(x seems impossible, we will
make additional assumptions on a and q to guarantee that Fa(x ) does not vanish.
Theorem 3.1 ensures the nonvanishing of Fa(x ) for -1 < x < 1. The zeros, if any, of
F (x) are all real since for x, y real, y 4: 0,
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By Theorem 4.1 in [8, p. 122], we see that o= -1, = 1, that is the zeros of Pn(X) are
dense in (- 1,1) confirming our earlier result that suppq/(t)=[- 1,1]. Thus, the true
interval of orthogonality is [1,r11] [-1,1]. Theorem 2.1 and Corollary 1 in [8, p. 108]
imply that if [1,/1]=[-1,1], i.e. qj is constant outside [-1,1], then --l<Cn<l
(n __> 1). Clearly -1 <Cn< 1 is equivalent to (3.8). This completes the proof.

In particular there will be mass points < 1 ( > 1) if a __< 2 (>__ 2).
The results presented so far are valid for -1 < q < 1. In the rest of this section we

shall restrict ourselves to the case

(3.12) l>q>0.

The cases q 0,1 are essentially the Chebyshev polynomials.
We now prove the following.
THEOIM 3.4. Thepoints t= +_ 1 are not masspoints when 1 > q > 0 and lal__< (1 q)2.
Proof. From the theory of moment problems [15, pp. 45-46] we know that is a

mass point if and only if

(3.13) E [0(a)(; q)]2< ,
0

since the 0 ’s are orthonormal. The asymptotic formulas (2.10) and (2.11) imply that the
above series diverged at j +_ 1 if

(3.14) E (- lal)/Cq k(k-1)/2
4:0.

0 (q; q)
We rewrite (3.14) in the form

,_,’ a2kq(2-1 )2 2k,-5---((1-q2+1 -la]q }
0 (q;q)2k+

which will be positive if (1-qZk+)Z-]alqZk is positive. Let w be qa, so w [0,1]. The
function (1 wq)-lalw is positive when w=0,1 and its global minimum (on (- m, m))
is at w= 1/2(2q+lal)q- which lies outside [-1,1]. This establishes the positivity of the
series (3.14) when [a[__< (1- q)2 and completes the proof.

For completeness we include the definition of a chain sequence.
DEFINITION. A sequence { a,}], is a chain sequence if there is a parameter

sequence { g,} such that 0__<g0< 1, 0<g,< 1, (n>__ 1) and a,=g,(1-g,_) (n> 1).
Chihara kindly communicated the following theorem and its proof to us.
TI-IEOIM 3.5 (Chihara [9]). A necessary condition for +(a)(t; q) to be continuous

outside [-1,1] is

(3.15) la < (1 + q- 1 +q )q-l,
when q (0,1).

Proof. Recall the notation (3.9), (3.10), (3.11). Theorem 2.1 and Corollary 1 in [8,
p. 108] characterize the true interval of orthogonality to be [-1,1] if and only if
-1 < cn< 1 and { an(-1)} and { an(l)} are both chain sequences, where

Oln(X)__n+l[(Cn_X)(Cn+l_X)] -1,
cn, )t are as in (3.11). As we saw in Theorem 3.3, -1 < c < 1 is equivalent to (3.8). It
is clear from (1.6) that

(3.16) O(n-a)(--X; q)=(--1)nO(,a)(x; q),
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so in the rest of the proof we shall assume 0 < a < 2, from (3.8). Clearly,

(1)a,(-1)=[(2+aq-)(2+a’qn)]-l 0,

so { ,(-1)} is a chain sequence because it is dominated by the chain sequence
{ 1/4, 1/4,.-. }, see [8, pp. 91, 97]. This implies that there are no mass points to the left of

1. Clearly q > 0 implies

1 1
o,,(1)=

(2_aq,,_)(2_aq ) 4

Now { 1/2, 1/4, 1/4,--. } is a chain sequence that determines its parameters uniquely, see [8,
Exercise 5.1, p. 99], so no chain sequence can dominate it [8, p. 97]. Thus (1)< 1/2 is
necessary for q,(l(t; q) to be continuous to the fight of 1. The condition oq(1) < - is

qa- 2(1 + q)a + 2 > 0,

which is equivalent to (3.15) and the proof is complete.

4. The singular component of the spectral measure. The purpose of the present
section is to define conditions sufficient for the absence of the point spectrum, that is
a(x; q) is constant outside [- 1,1]. Since the point spectrum coincides with the zeros
of F (x) we now study the function F (x).

THEOREM 4.1. When 0 < q < 1 and

(4.1) [a[ =< (l-q)2

the function Fa(x ) will have no zeros and the discrete spectrum will be empty.
Proof. We know that the zeros of Fa(X), if any, are real and lie outside (-1,1).

The definition (3.7) of Fa(x) clearly implies the positivity of F when aB <0, so we
shall concentrate on the case aB > 0. We express Fa(x) in the form

F (x ) jo
( aB )2jqj(2j-1)

(4.2) (B2; q):zj+:z(q; q)2j+x

[(1-B2q2j+l)(1-q:J+l)-aBqJ].
Observe that the positivity of Fa(X) will follow from (4.2) if

(4.3) (1-B2q2j+x)(1-q2j+X)-aBqJ>=O, j=0,1,-..,

holds with strict inequality for at least one j. The cases x>= 1 and x <_- 1 will be
considered separately.

Case (i). x >= 1. In this case B= x-V/x2-1 (0,1] for finite x > 1, and we need
only to consider the case a > 0. Clearly we have

(4.4) 1 Bq2+ >= 1 q:J+ 1;

hence (4.3) will hold if

(4.5) (1-qy -ay>=O, 0_<y=<l,

where y q2L The polynomial on the left side of (4.5) has a local minimum at

1 a

q 2q 2
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which is outside [0,1]. Thus (1- qy))-ay is monotone on [0,1] and takes the value 1 at
y 0. Therefore (4.5) holds for y [0,1] if and only if it holds at y 1, that is

(1-q)-a>=O,
which is (4.1).

Case (ii). x_<-l. Now B is x+V/x2-1, so 0>B>=-I and we need only to
consider the case a <0. The analysis in case goes through until (4.3). In (4.3) we
replace aB by laBI then use IBI__< 1 and the rest will follow in the same way but a is
now replaced by lab

THEOIM 4.2. Thefunction F (x) does not vanish for x real when 0 < q < 1 and

(4.6) IBI =< (1 q)/la [.

Proof. The proof is similar to our proof of Theorem 4.1. In Case (i) we use (4.4) to
replace (4.3) by

2(4.7) (1-qy -aBy>=O, y [0,11.

In the proof of Theorem 4.1 we used 0< B =< 1 to essentially replace (4.7) by the
stronger condition (4.5). Repeating the same argument we establish (4.3) from (4.6).
Case (ii) can be handled in a similar fashion.

COROLLARY 4.3. If [a[>(1--q) 2, 0<q< 1 and Fa() vanishes then

d2+1(4.8) 2d

where

(4.9) d’=(1-q)2/]a[.

Proof. If > 0 then j > 1 and B -2_ 1 > 0. The inequality (4.6) should be
violated at , so

>d.

Thus j-d> 2_ 1 which is equivalent to (4.8) because -d>0 due to the fact
d < 1 < . The case < 0 can be treated similarly.

Observe that (4.8) provides a bound for the spectrum in general. We now treat the
case 1 < q < 0. Define Q by

(4.10) Q 1-q2-/(1-q -4q O>q>-l.

It is easy to see that Q > 0.
TIOmM 4.4. Let 0> q> -1. The zeros, if any, of Fa(x) lie outside the region

(4.11)

In particular if

(4.12)

IBl(1-q)Q/la].

lalN(1-q2)Q,

then F(x) has no zeros and the discrete spectrum is empty.
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Proof. There is no loss of generality in assuming a > 0 because

O(n-a)(--X; q)= (-- 1)nO(na)(x; q),

see (3.16), and the 0n’s reduce to Chebyshev polynomials when a=0.
We express the series (3.7) defining Fa(x as the sum of four series according to

whether the summation index k is 0,1, 2 or 3 (mod 4). We then regroup the series in
the form

(4.13) Fa(x)-- E (aB)4jq2j(4j-1)nj
j=o (B2; q)4j+4(q; q)4j+3

where

(4.14) Hj’= 1=1 (1 qnJ+t)(1 B2q4j+ t)
3

-aBq4j II (1-q4j+l)(1-B2q4j+‘)
1--2

+ a2B2q8j+ 1(1 q4j+ 3)(1 B2q4j+ 3)_a3B3q12j+3"

The cases x >__ 1 and x __< 1 require separate treatment.

Case (i). x >__ 1. Now B x /x 2 1 (0,11, so aB > 0 and the last term in // is
positive. From (4.14) we get

(4.15) Hj> (1- q3)(1-B2q3)q)(q4j),

if tp (q 4j) > 0, where

(4.16) (y) (1 q2)2 aB(1 q2)2y+a
The quadratic polynomial qg(y) has a local maximum at the point

y= (2aBq)-1(1 q2)2< 0,

and tp(0)=(1-q2)2>0, hence q0(y) is monotone on (0,1) and (4.13) and (4.15) will
imply the positivity of Fa(X ) if we show that q(1)>__0. It is not difficult to see that
tp(1) >= 0 is equivalent to (4.11).

Case (ii). x <_- 1. In this case B= x + V/x2-1 [-1, 0) and aB < O, so the first
and second terms in Hj are positive while the third and fourth terms are negative. The
sum of the first and third terms is bounded below by

2 ) 2 2B 2q(1--q4j+ )(1-B2q4j+ )[(1-q +a

which is nonnegative if

(4.17) aB <= (1- q2 )/v/- q

Similarly we prove that (4.17) implies the nonnegativity of the sum of the second and
fourth terms in Hi. Finally observe that the condition (4.17) is weaker than (4.11), so
(4.11) implies the positivity of Fa(x ) in all cases.
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COROLLARY 4.5. /f lal> (1 q)Q, 0 > q > 1 and F()= 0 then

c2+1(4.18) I[< 2c

and

(4.19) c=(1-q2)a/lal.
The proof of Corollary 4.5 is very similar to the proof of Corollary 4.3 and will be

omitted.

5. Explicit representation and linearization of products. The present section con-
tains two additional results concerning the On’S. The first is the following explicit
representation for o(a(cosO; q) as a trigonometric polynomial of degree n.

THEOREM 5.1. We have

O(na)(cosO; q)= Y’. qk(k-1)/2(q; q)n-j(q; q)j+, (_a)kcos[(n_k_2j)O].
j,,>__0 (q; q)](q; q)j(q; q)n-k-j
j+kNn

Proof. We use the q-binoal theorem

(az; q) (a; q)n
(Z; q) 0 (q; q)n

(Slater [16, p. 92]) to expand (t/A; q);l and (t/B; q); in the generating function
(2.1) in the form

(t/c" q)-X k+t/c, )/(t/c, ) E qk+;qlJtJc-J+=(q "q "q =;=0 (q; q);

E (q’q)+; t;-;.
;=0 (q; q)(q; q);

Ts identity, the substitutions A e, B e- and some simple manipulations estab-
lish (5.1) and the proof is complete.

In the process of proving Theorem 5.1, we essentially proved the following.
COROLLARY 5.2. The O,’s have the explicit representation

q (q, q)+,(q; q)+m-,B-m(S.2) Oa(; q)= E (_a) /-1/

.,.0 (q; q)(q; q),(q; q)m
k+l+m=n

where A and B are as in (2.3).
The second result in ts section concerns coefficients in the linearization of a

product of two On’S as a sum of On’S. We shall show that these linearization coefficients
are nonnegative. Our proof of the nonnegativity of the linearization coefficients de-
pends on the following key lemma of Askey [3].
LE 5.3. Let ( P,(x)} be a sequence of monic polynomials, that is

G (x) x + a polynomial of &gree at most n 1,

that satisfies
(s.3) P(z)P()=Pn+()+anen()+bnP_(z).
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If a >_ O b,,>0 and a + >= a n, bn + bn, then

m+n

(5.4) Pn(X)Pm(X) E OlkPk(X)
k=lm-n

with a >= O.
THEOREM 5.4. The coefficients a( k, m, n) in

m+n

O(ma)(x; q)O(na)(x; q)= E a(k,m,n)O(ka)(x; q)
k=lm-nl

are nonnegatioefor a <= O.
Proof. The associated monic set is P,(x)" 2-"Ona)(x; q). Hence Pl(X)= x-1/2a.

Therefore

1 a(1 n)Pn(X),Pl ( X ) Pn ( x ) Pn+ X ) -- "- Pn_ ( X ) " q

since the P’s satisfies (3.9), i.e. b,=1/4, an=-(1-q"). If a__<0 then an>=O and
an+ >= an, so by Lemma 5.3 we establish the nonnegativity of the linearization coeffi-
cients in this case.

COROLLARY 5.5. If a > 0 then ( 1) + + na(k, m, n) >= O.
Proof. This follows from

(--1)nOn(a)(--X; q)--O(na)(x; q),

see (3.16).

6. The ease Iql> 1. In this case the generating function (2.1) no longer holds but
the explicit formula (5.2) remains valid because both sides of (5.2) are well defined for
q > 1 or q < -1 and computing any O involves only a finite number of steps. We now
determine the asymptotic behavior of O for large n and fixed x. We set

(6.1) p’=l/q.

THEOREM 6.1. The following asymptoticformula

(6.2) O(na)(x" q)"(-a)"q"(n-X)/( A Pk(’-)/(-B/a)k
-;P

=0 (P; p)k(A/a; p)k

holds for x off the support ofd+(a).
Proof. We replace q in (5.2) by l/p, use the observation

(q" q), (-1)’ ,(,+1)/2q (P,P),,
and replace the summation index k in (5.2) by n- k to obtain

(6.3)
Pk(k-)/(-a)-k(P" P)n+,-,(P; P)n-,A-’B’-(--a) nq n(n_l)/20(na)= E

O<,<k<=n (p; p),(p; p)_,(p; p)2n_ k

We now apply Tannery’s theorem, a discrete and earlier version of the Lebesgue
dominated convergence theorem, see Bromwich [6], to the right side of (6.3). The
pointwise limit exists and since the infinite product (p; p) exists the right side of (6.3)
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is bounded by a constant multiple of

_, P(/+I)(k+I-1)/21AI ’IBI l
,,=0 (P; P)(P;

which is a convergent double series. Thus

(_aA)-lpl(l-1)/2 p l, i, -1)/2 ( aBp ) l

lim (-a) p("-x)/oa)(x a)- ,=o (p; p), =o (p; p)

The inner sum can be evaluated by Euler’s formula

(--x)nq n(n-1)/

Slater [16, p. 93], and we get

(-a e_,:O(x; ql_ (-al "’-: ’/=0 (P; P)I ; p

’wch can be easily reduced to (6.2) since AB= 1 and (opt; p) is noting but
(o; p)/(o; p). Ts completes the proof.

We define

(6.4) G(r,s)’= (s; P)o E Pk(k-1)/2rk
=0 (p; p)(; p)

THEOM 6.2. There exists a unique measure dp()(x; q) such that

(.5 o(x; qlO(x; qle,(x; q-.

The support of dg,( is unbounded and the Stieltjes transform of dg,(al is given by

(6.6) =-2a ---q,-- G
-o x-t a a a a

valid for x q supp{ d(a)}. Furthermore db() is singular with respect to the Lebesgue
measure, that is its absolutely continuous component vanishes almost everywhere.

Proof. The existence of d/(a) follows from Theorem 1.1 because the positivity
condition X, > 0, (2.15) and (2.17) remain valid when Iq[> 1. In the terminology of the
moment problem, [15], the uniqueness of dk() is called the determinacy of the
moment problem. Theorem 2.9 in Shohat and Tamarkin [15, p. 50] insures the unique-
ness of d/(a) if the series

(6.7) E [O(na)(x; q)12
0

diverges at one point x, real or complex. The existence of an x that makes the series

(6.7) diverge when a4:0 is clear from (6.2) because G(-B/a, A/a) does not vanish
identically and [q[> 1. This proves (6.5). The polynomials of the second kind are

( t.,n_l\l(aq)gx; q)}, so the continued fraction

21 21_. 21(6.8) [2x- a 12x- aq -12x- aq"



256 M.E.H. ISMAIL AND F. S. MULLA

converges to the left side of (6.6), see the discussion in [15, p. 46]. On the other hand the
continued fraction (6.8) is

lim o(naql)(X,q)/O(na)(x; q)
n---* o

which, in view of (6.2), is the fight side of (6.6). It only remains to show that dqa) is
singular. Recall that (Stone [17])

(6.9) d.(,)
z (suppd)

_z-t

if and only if

(6.10) 1 ft’2/(t:)-(q)= -,lia+ {F(t-ie)-F(t+ie))dt,

where/ is normalized by/( o) 0, / (t) 1/2 (/ (t + ) +/(t ). Therefore the abso-
lutely continuous component of d/ is

1(6.11) ’(t) --i(F(t-iO)-F(t+iO)} a.e.

so if F(z) is single-valued across the x-axis /d will vanish almost everywhere. The
functions G(-B/a, A/a) appearing in the right side of (6.6) is

o (P" P)k(P" P), a a

hence both G(-B/a, A/a) and G(-Bp/a, A/a) are uniform limits of polynomials
symmetric in A, B. We now show that the polynomials symmetric in A and B are
single-valued functions of x. Any such polynomial is a sum of terms of the type

a..{ AmonwomA ), m>_n.

But

amn, ..].. nma, ( an ) ( Am-n ..[ nm-n ) Am-n .qt- B m-n,
since AB 1. Therefore

mon ff. omAn--- A W B ) m-n- m-.)j AJBm-n-J

=(A-B) m-n- 2 (m-n)
j=l

J AJ-iBm-n-j-1

where we used AB=I. Recall that A +B=2x. The above relationship expresses
B"A"+ B"A" as (2x) plus some symmetric lower degree polynomial. Repeating
this process shows that AmBn+ Bma is a polynomial in x of degree m-n; hence is
single-valued. Therefore both G(-B/a, A/a) and G(-Bq/a, A/a) are entire func-
tions of x, hence single-valued across the x-axis. This completes the proof.

The idea of using Tannery’s theorem to derive asymptotic expansions for certain
polynomials has been used successfully in other cases, see [2], [10] and [11].
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7. The case q 1. When q 1 the generating function

(7.1) G(x,t)’= Eto(,a(x; 1),
0

satisfies the functional equation, see (2.4),

(7.2) (1-2xt+t2)G(x,t)=l-at G(x, -t).
We now iterate (7.2), that is replace by -t, then use the result and (7.2) to eliminate
G(x, t). The result is

(7.3) EtnO(na)(x; -1)=(l+(2x-a)t+t2}((l+t2)2+(a2-4x2)t2}-l.
0

THEOREM 7.1. Forfixed x, let c, fl be the roots of
2 2 2(7.4) (l+u +(a-4x )u=0 with ll<__ll.

The polynomials ( O(a)(x; 1)} can be expressed explicitly as

02(na)(x; --1)=(Ot--Ot)-l[(ot-bfl)otn--(fl+ 1)fin],
(7.5) n=0,1,2,

0 (a) (X"--1)=(2x--a)(ot--fl)-l(otn+l--fl n+l)2n+l

Proof. Rewrite the fight side of (7.3) in the form

a fl 1 t20t 1 t2fl
q-(2x-a)t

1-- 2ot 1-- 2fl
then expand (1 2a- 1) and (1 2fl- ) in powers of 2 and equate coefficients of like
powers of t. A simple calculation yields (7.5) and the proof is complete.

THEOREM 7.2. The polynomial (O(a)(x; -1)} satisfies the orthogonality relation

(76) fe[ 2x + a (l + a2 1,/2

2x-a "---X2 O(na)(x; --1)O(ma)(x; -1) dx=rm’n’

where E is given by

1 2 [a[]u 1_ Iv/a2+4(7.7) x/4+a 2 -E=

Proof. The corresponding continued fraction X(x) is periodic and satisfies

1X(X)= 2x-a-1/(2x+a-1/2x(x))"
Therefore

(7.8) X(X) foo dk(a)(t,-1) =2(fl+ 1)(2x-a) -1.

We now invert (7.8) to compute d(a). It is clear from (7.8) that d(a) is absolutely
continuous because fl= 1 when x= 1/2a. We now apply (6.9), (6.10) and (6.11) to get

(7.9) (2ri) -1A
---rJ(a(x -1)= lim 2(flx-fl )dx __,o+ 2x- a
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where 1 and 2 are the values of fl when x= x-i0 and x= x + i0, respectively. It is
not difficult to see from (7.8) and (7.4) that k(a) is constant outside E and

(7.10) xx (x, 1) + 2 2 (2x- a)} -1

which implies the orthogonality relation (7.6) because tp(a) is normalized by

dtp(a)(x; 1)= 1.

Remark 7.3. The fact that d/dxlp(a)(x; -1) vanishes outside E is predicted in
Chihara [8, Thm. 4.1, p. 122].

Observe that as a 0 the orthogonality relation (7.6) reduces to the orthogonality
relation for { Un(x)}. The results obtained here also follow from Chihara’s work [7].
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GENERALIZED FEJIR AND LANCZOS KERNELS*
M. CLUTTON-BROCK

Abstract. On a circle, the Fejrr kemel is nonnegative and is useful for approximating positive densities,
and the Lanczos kernel is an approximate identity and gives rapid convergence when applied to discontinu-
ous functions. These kernels are easy to construct from trigonometric functions because the Dirichlet kemel
is invariant under translations. This paper uses the invariance under rotations of the Dirichlet kernel
constructed from spherical harmonics to construct Fejrr and Lanczos kernels on a sphere. On a (q + 2)-
dimensional sphere, the kth order Lanczos kernel is an approximate identity for q< 2k. The corresponding
Fejrr and Lanczos kernels in Euclidean space can be constructed by a simple mapping.

Key words, kernels, approximate identity, convergence
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1. Introduction. One sometimes wants to approximate a function which is every-
where nonnegative. For example, Smoothed Particle Hydrodynamics [5] fits a mass
density to discrete masses at points Xl..XJ, and in statistical estimation the kernel
method [12] fits a frequency density to a sample x .xj. These methods generally use
something like a Gaussian for a nonnegative kernel, but a more economic representa-
tion is obtained if the kernel is constructed from a set { n } of orthonormal functions:

N

(1.1) Kv(x,Y)= E Onn(X)qn(Y)"
n=O

The problem is, how do we choose the sigma factors % so that the kernel (1.1) is
everywhere nonnegative?

The best known nonnegative kernel is the Fejrr kernel Fv(x,y) constructed from
trigonometric functions with

(1.2) %=l-n(N+l).
It can be derived from the Dirichlet kernel either as the (C, 1) mean or by squaring the
Dirichlet kernel of order N/2 and normalizing. These methods work essentially because
the trigonometric functions are invariant under translation so that the Dirichlet kernel
Dv(x,y) is a function of x-y only. Now spherical harmonics are invariant under
rotations, so the Dirichlet kernel DN(A,B) on a sphere is a function only of the angle
AB. Because of this it is possible to construct a Fejrr kernel on the sphere, as we see in
3. How to do this using Ceskro means is already known: the (C,q + 1) mean of the
Dirichlet kernel on a (q + 2)-dimensional sphere is everywhere nonnegative (Kogbetlianz
[9], Askey and Pollard [3]). For even N, however, the (C,q+ 1) mean is everywhere
greater than zero and is not the sharpest possible kernel. It may therefore be better for
even N to use the kernel obtained by squaring the Dirichlet kernel of order N/2 and
normalizing, and in [}3 we derive the corresponding sigma factors.

In practical problems we more often want kernels in Euclidean space. It is easy,
however, to map Euclidean space Eq+ onto the surface Sq/ of a (q + 2)-dimensional
sphere; we discuss this briefly in 6. The case q= 2 is especially important because it

*Received by the editors June 4, 1982, and in final revised form May 15, 1985. This work was supported
in part by the Natural Sciences and Engineering Research Council of Canada.

Department of Mathematics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
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corresponds to 3-dimensional Euclidean space, and fortunately the ultraspherical poly-
nomials from which the Dirichlet kernel on a 4-dimensional sphere is constructed are
especially simple.

The Fejrr kernel has many desirable properties apart from being nonnegative: it
captures all continuous functions, and it avoids the notorious Gibbs oscillations. The
Gibbs oscillations induced when the Dirichlet kernel is applied to a discontinuous
function get worse as the number of dimensions increases, and in 3 dimensions they
can be very serious indeed. Of course, if the function we are approximating is smooth
enough, there is no trouble, and the Dirichlet kernel will converge rapidly. But in
practical problems functions are not always smooth; compressible flows develop dis-
continuities, and in particle methods of simulating fluids and plasmas the data is noisy.
In these circumstances some form of smoothing is essential.

The Fejrr kernel, however, may provide too much smoothing. The Nth order Fejrr
kernel is about as sharp as the Dirichlet kernel of order N/2, and in 3 dimensions the
Fejrr kernel needs about 8 times as many terms to achieve the same sharpness as the
Dirichlet kernel. We therefore want a kernel which is better behaved than the Dirichlet
kernel but is sharper than the Fejrr kernel.

Lanczos [10], [11] showed how to construct a kernel for trigonometric functions
that gives rapid convergence when applied to a discontinuous function. The Lanczos
kernel Lv(x,y ) is obtained from the Dirichlet kernel Dv(X,Z ) by integrating over a
window in z"

(1.3) 1 fy+a/2Dv(X,z)dz"Lv(x’Y)=X
"y-A/2

In other words, the Lanczos kernel is a moving average of the Dirichlet kernel. This
provides the same amount of smoothing for all x because the Dirichlet kernel is a
function of x-z only. Because the Dirichlet kernel Dv(A,B) on a sphere is a function
of the angle AB only, we can also construct a Lanczos kernel on the sphere, and we
derive the Lanczos sigma factors in [}4.

The Lanczos kernel constructed from trigonometric functions is well behaved
because it is an approximate identity, that is, it fulfills the following conditions:

(1.4) fal Lv(x’y) dy 1,
ly

(1.5) sup fal ILN(x’Y) Idy< ’N ly

(1.6) s-,oolim f_yl>,lLv(x,y)I dy 0.

An approximate identity captures all continuous functions and avoids Gibbs oscilla-
tions. Many of the troubles of the Dirichlet kernel stem from the fact that it is not an
approximate kernel. On a (q + 2)-dimensional sphere, for example, we have

fal (O(lnN) for q=0 (a circle),
(1.7) ,BIDv(A’B) Id(B)= O(Nq/2) for q>0,

which shows how a Dirichlet kernel gets worse behaved and farther from being an
approximate identity as the number of dimensions increases.
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In 5 we show that the Lanczos kernel is an approximate identity for q= 1 (the
2-dimensional surface of a 3-dimensional sphere), but not for q= 2. To obtain an
approximate identity for q >= 2, we must use higher order Lanczos kernels, which are
obtained by repeated Lanczos averaging, that is, by repeated integration over the
window. The second order Lanczos kernel is an approximate identity for q 2 or 3, and
the kth order Lanczos kernel is an approximate identity for q < 2k.

For ease of reference and to define the notation 2 gives the most important
formulae involving spherical harmonics in (q + 2)-dimensions. An excellent account is
given by Hochstadt [6].

2. Notation and useful formulae for spherical harmonics. In terms of the angular
coordinates (0o, 01...Oq) the element of area of a (q + 2)-dimensional sphere can be
written

dq (sin00)qdox (sin01) q-1 dO1X’’" Xdq.
This suggests representing a (q + 2)-dimensional spherical harmonic in terms of ultra-
spherical polynomials C(x Icos0) orthogonal under the weight function (sin0) 2x

( ) - (k+q/2={H k’’kq C
n-k

cos 0o) (sin 0o)

X-.-XC

where H is the normalizing integral

kX C ( k2+(q-1)/2]C1_k2 cos 01 ) (sin 01 ) k2

Ikql+l/2
kq-l-lkq[

cos 0q_ 1 (sin 0q_ )[kqlx exp(ikqOq),

()(kl+q/2)(k2+(q-1)/2) Ik I+a/2)(2.3) H kl"kq =h xh ... xh
q

2’,
n n-k1 kl-k2 kq_l_lkql

and h is the normalizing integral for ultraspherical polynomials

(2.4) h(n) =f0{C( cos0)} (sin0)   0
with

(1 +n/X) 0

(2.5) h(t) q’/’21- 23’(2t )
0

and the ultrasphefical polynomials are standardised so that

(2.6) C(nll) (n +2nh- 1 ).
The Dirichlet kernel on a sphere is

N ( kx kql ) ( kl k(:.7) E r r ’q

n 0 k kq n n
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The sum over k .kq is invariant under rotations [6], and on rotating B to the pole
(0, 0.. 0) and A to the point (AB, 0.. 0), all terms vanish except those with kl.. kq= 0.
We therefore obtain the addition formula

(2.8)

k .kq

Recalling (2.3) and (2.4), we have

(2.9)

where

(2.10) fq=h( q/2 h( q-1)/2)X’’’0 xh(1/2)X2r0
is the surface area of a (q + 2)-dimensional sphere. The Dirichlet kernel is therefore

N

(2.11) Du(A,B)=a- Z (1 +2n/q)C( q/2
n= 0 n

Our task is now to find the sigma factors in the Fej6r and Lanczos kernels which take
the form

(2.12) Kv(A,B)= Y’- ,, E Y A Y q

n 0 k kq H 11

N

=f-I E %(1+ 2n/q)C( q/2
n=0 n

3. The Fej6r sigma factors. The simplest way to obtain a nonnegative kernel is to
use Ceshro means. Recall that the (C, fl) mean of Y’. is

N [N]n(3.1) SN(C, fl; t)=F0 [N+/3I.’"
where [a], is the nth descending factorial of a. Kogbetlianz [9] first stated that the
(C, 2 + 1) means of

(3.2) (l +n/)C( n lx )
are nonnegative. Askey and Pollard [3] gave a simple proof, which is also outlined in
Askey’s book [1]. Now (3.2) is simply proportional to the Dirichlet kernel (2.11) with
q=2h, so it is clear that the (C,q+ 1) means of the Dirichlet kernel should be
nonnegative. The corresponding Fej6r sigma factors are

[Nln(3.3) %=[N+q+l],,"
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It is desirable that the Fej6r kernel should be as sharp as possible consistent with
being nonnegative. The smallest value of fl which will make the (C,/3) mean of the
Dirichlet kernel nonnegative is q + 1 for odd N, but less than q + 1 for even N. For
example, with q 2, N 6, the (C,/3) mean of the Dirichlet kernel is positive for

(3.4) /3 2.28 < q + 1 3.

Thus, for even N the optimum value of/3 which will give the sharpest nonnegative
Fej6r kernel is less than q + 1. I would like to be able to find the optimum value of fl by
using the elegant methods in Chapters 8 and 9 of Askey’s book [1], or perhaps to
extend Askey’s results [2] for positive radial functions on a sphere, but I am not clever
enough.

For even N we can obtain another nonnegative kernel by squaring the Dirichlet
kernel of order N/2 and normalizing. The square of the Dirichlet kernel (2.11) is

(3.5) {Dv/:z(A,B)}Z= : E (l+2n/q)(l+2m/q)

C( qn/2 cos’)C( q/m2 cos").
The product of two ultraspherical polynomials can be linearized:

(3.6) C( qn/2 Ix)C( q/m2 Ix)= I-[ (n,m; ,)C( q/l2 ]1).
The product linearization coefficients are given by the explicit formula

(3.7)

II(n m" n+m-2k)= (m+n+q/2-2k)
(m+n+q/2-k)

( q/2) ,( q/2)m-,( q/2)n-,( q)m+n-,(m + n 2k )!
k!(m-k)!(n-k)!(q/2)m+,,_,(q),,+n_2k

where (a), is the n th ascending factorial of a. This result was first stated by Dougall
[4] and proved by Hsi [7]; see also Askey’s book. We can see from (3.7) that all the
coefficients are nonnegative, and the only nonzero coefficients in (3.6) are those for
which n + rn + is even and In ml-< < n + n.

When many product linearizations are needed, it is easier to generate them using a
recurrence relation such as the one found by Hyllaraas [8] or, more simply still, using
the one found directly from the recurrence relation for the ultraspherical polynomials:

(3.8)

a,,I-[(n+l,m; l)+b,,1-I(n-l,m; l)=at_ll-I(n,m; l-1)+b,+lII(n,m; 1+1)
where

(3.9) a,,=(n+l)/(Zn+q) and b,,=(n+q-1)/(Zn+q)

are the coefficients in the recurrence relation

(3.10) xC q/21x ) n+lq/21x)+b"C( n
x )
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Linearizing the square (3.5) of the Dirichlet kernel gives

(3.11)
N/2

( E (1 + 2n/q)(1 + 2m/q)

E
n+ m+ even

The Fej6r kernel has the form

(3.12) Flv(A,B)= E o,(1+ 21/q)C q 2

1=0

with oo 1 for proper normalization. Comparing (3.11) and (3.12), we see that the Fej6r
sigma factors are

s,/So(3.13) o,= (l + 21/q)

where

(3.14) St= E
In-ml<l_n+m
n + m + even

(1 + 2n/q)(1 + 2m/q) II (n,m; l).

For even N, the Fej6r kernel with sigma factors (3.13) should be sharper than the
Fej6r kernel with sigma factors (3.3). The sigma factors (3.3) are easier to obtain, and of
course there may be some purposes for which the resulting kernel is actually better. For
the important case q= 2 the sigma factors (3.13) are, however, easy to obtain.

For q 2 the ultraspherical polynomials are Chebyshev polynomials of the second
kind, and all the nonzero product linearization coefficients are unity, as may be seen
directly from the explicit formula (3.7). Then (3.14) becomes

(3.15) Sl= E (1 +n)(1 +m).

In-ml<l<n+m
n + m + even

On evaluating these sums we obtain

(3.16) $2= ( 21+ 1
6
N-

(3.17) S21+1

212- 1 )2 (N/2 + 1)(N/2 + 2)

l(l+ 2) 2/+1)l(l+1),+ 3 6

1+1
3 [(N-31)(N/2+l)(N/2+2)+l(l+l)(l+2)].

In particular

(3.18) So= (N/6 + 1/2)(N/2 + 1)(N/2 + 2), SN+ =0.
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4. The Lanczos sigma factors. The Lanczos kernel on a sphere is obtained by
integrating the Dirichlet kernel Dv(A, C) over a window in C centered at B with
radius A:

(4.1) Lv(A,B)=c DN(A,C)df(C)/cB dft(C).

The second order Lanczos kernel is formed by integrating again over the window:

(4.2) L’(A,B)=c Lv(A,C)da(C)/L da(C).
_A <A

Higher order Lanczos kernels are obtained similarly by integrating repeatedly over the
window.

To obtain the Lanczos sigma factors, we expand the Dirichlet kernel in spherical
harmonics as in (2.7), so that
(4.3)

cf-B
N

(kl kl)f (kxkq)D(,C)ae(C)= E E r q r c ae(c)
A n=0 k kq n A n

We put B at the pole (0, 0.. 0), A at (AB, 0.. 0), and give to C coordinates (0, Vx--Vq)
where o CB. In the representation (2.7) all spherical harmonics vanish at A unless

k2..kq=O. The integral over the window o=CBA then vanishes unless k=O,
because the part of the spherical harmonic wch depends on 1 is

,4.4, )n k
cosy

and the integral over the window is proportional to

(4.5)
kl cosl (sinl)q-ldl=0 if

The integral (4.3) of the DificNet kernel then becomes

(4.6) Dv(A, C) da(C)

N

0( ’n" I)f( ’n’ I)"()
N

n__0(H(0’0)) 1C( ql2 cos 3’0 ) (sin 3’0 )
qd3’0-

Since

(4.7) c da(C)=aq-lfoa(Sin) qd’YO

we find, using (2.9) for H, that the Lanczos kernel becomes
N

(4.8) Lu(A,B)=f; E %(l+2n/q)C( q/2
n=O n
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with

(4.9) G
foa C( q/21 cos Yo )(sin Yo )qd]to

C( qn/2 1) f0 (sino)qdo
From the Rodrigues formula

(4.10) C q/2 cos0
Aq 1 d (sin0)2n+q-1

n (sin0)q-1 sin0 dO

with

(4.11) I’((q + 1)/2) F(n + q)
2nn!F(n+(q+ 1)/2)F(q)

we find for n > 0 that

(4.12) foaC( qn/2 q(sinA)q+l
cos3’o (sinYo)qd3’o n(q+n)

C [ q/2 + 1
n-1

cos A).
Since

(4.13) C( q/2n 1)=(n+q-1)=q(q+l) ( q/2+1
n n(q+n)

C
n-1

we have for n > 0

(4.14) G
(sinz)q+/(q+ 1) x

foa (sin 3’o )
qdIt0

C( q/2+l
n-1

cos A )

We shall fix A by the requirement that

(4.15) ON+ O,

or

(4.16) C( q/2+l cosA =0.
N

For the important case q= 2, the ultraspherical polynomials are Chebyshev poly-
nomials of the second kind, Un(cosO)=sin((n+ 1)0)/sin0. It is then easiest to obtain
the sigma factors by direct integration of (4.9)"

foa sin(( n + 1) 70 ) (sin 70 ) d7o(4.17) G
( n + 1) foa (sin,/o dYo

1 [sin(nA)sin((n+2)A)/(n + ’-- ----n--- (n + 2) ( a- sin(2a)/2).

The condition ou+ 0 gives

(4.18) tan((N+ 2) A ) (N+ 2)tan A 0
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which is easily solved by the iteration

(4.19) A

with the starting value

r + arctan((N + 2) tan A)
(N+2)

Z(4.20) A
N +----

where Z 4.4934 is the solution of

(4.21) Z r + arctan(Z) or J3/2 (Z) 0

with r < Z < 3r/2.
On integrating again over the window, each spherical harmonic in the expansion

(2.7) is simply multiplied by another factor of on, so that the mth order Lanczos kernel
is

(4.22)
N

(k kql ) ( kl kq ).L(Nm)(A,B) E n E Y A Y B
n o k kq n n

5. The Lanczos kernel as an approximate identity. To show that the Lanczos
kernel LN(A,B)= LN(COsAB) is an approximate identity it is sufficient to show that

fall B L(cs)’-)I da(/)= O(1),

(5.2) L>
[LN (COS’) da (B ) O(N-") with a > 0.

Over most of the interval 0 NAB <= r the Lanczos kernel for large N oscillates rapidly,
but to get the asymptotic behavior of the integrals (5.1) and (5.2) we need only concern
ourselves with the amplitude of the oscillations. We get this amplitude from the integral

(5.3) LN(COS’)=g DN(COS’)da(C)/c da(C)
__<A __<A

by substituting th...e asymptotic form of the Dirichlet kernel.
The angle AC is

(5.4) cosAC= cosABcos CB + sinABsin CBcosABC.

As before wput B at (0,..0), A at (0,0..0) where O=AB, and C at (0,--q)
where o CB and ABC. Then

(5.5) cosAC cos( 0 3 ) cos 0 cos 3 + sin 0 sin 3

cos 0 cos 7o + sin 0 sin Vo cos Vl.

Now Vo=NA in the integral (5.3), and we saw in the last section that A is O(N-1),
so o is O(N-) also. Then

(5.6) 8 tan0-[(tan 0): + yg 2otan 0 cosy1] 1/ +O(U-3)

0cosl- Vgcot0(sinv): + O(N-3(cot0):).
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We have to include factors of cot0 when 0 is near 0 or r. To accuracy O(N-2), we can
replace sin ’o by ’0, and (5.3) becomes

(5.7) LN(COSO) 0(1)fo/.yoqd.fofor(sin.l)q-ld.YiDN(OS(O_))Aq+

We can obtain the asymptotic forms for the Dirichlet kernel by starting with a
simple closed expression in terms of Jacobi polynomials (Szegi5 [14, 4.5.3])"

(5.8) DN(COSO) O(N(q+,)/:)p ( (q+l)/2, (q-1)/2 )cos0
N

For the interval c/N<=O<_r-c/N with fixed c, the Jacobi polynomials have the
following asymptotic form (Szegi5 [14, 8.21.12 and 8.21.18]; see also [15]):

(5.9) P( aifl cosO)=O(N_/2)(sinO/2)-a-1/2(cosO/2)-B-/2
X {cos(N00-0)+ O(N-1)cos(N10-,1)+ )sin 0

with No,NI=N+O(1) and q)o,q)x O(1). For the interval O<=O<=c/N we have (SzegO
[14, 8.21.171):

(5.10) P( aNti cosO ) O(l)O-"J,( NoO ) +O-O( N’).

We will consider first the interval /N< 0 <= r-c/N. Combining (5.8) with (5.9), we
have

(a.aa) Dv(osO)--O(Nq/)(sinO/2)-q/Z-t(cosO/2)-q/2

(cos(N00_0)+ O(N-)
sin0 cos(Nx0- q,x ) + ....

When we substitute the asymptotic form (5.11) into the Lanczos kernel (5.7), we
find the Lanczos kernel contains the integral

(5.12) for(sinYl)q-ldYlCOS(No(O-)-do)
cos( No0 (/)o) fo’(sin’/l) q-X dl cos No0cos /1 -[- O(N- 1) cot 0 (sin 3q):]

+ sin(No0-o)fo’(Sin,/)q-idOl sin[ NoVo cos Vx + O(N-) cot 0 (sin /1):].
Now we use the integral representation for Bessel functions

(5.13) J,,(z)=O(1)z" cos(z cos7)(sin7 d/,

together with the fact that

(5.14) sin( cos ,)(sin , d, 0,
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and we find that (5.12) becomes

(5.15) fo"(sin,l)q-1 COS(ah No(O- )-qo)

cos(N00-q0) {O(1)(No,/o)-(q-1)/J(q_l)/(No3/o)+O(N-)(cotO)}
+ sin(N00-q0) O(U- 1)cot 0.

The integral over 3’0 becomes

d’Y No(O- ) o)(5 16) mq+l ]t(do (sln]tl)q-1 cos( i

o(1)cos( NoO q’o) (q +

(NoA) q+l Jo X 1)/2S(q_l)/2(x)dx

+ sin(Nee-q,o) O(N-1) cote.

From the ascending series for Bessel functions, it is easy to see that

(5.17) foNAx(q+l)/2j(q_X)/2(x)dx=(NoA)(q+l)/2j(q+l)/2(NoA).
We shall now see that this vanishes to order O(N-1) if A is fixed by

(4.16) C( q/2 +1 )cosA =0.
N

The asymptotic form of the ultraspherical polynomial is obtained from (5.10) and
A= O(N-1) as

cosA O(1)P (q+ 1)/2, (q+ 1)/2 cosA
N N

=O(N(q+l)/2){ J(q+I)/2(NA)+O(N-2)}.
Since No=N+ O(1), (4.16) and (5.18) together imply that

(5.19) J(q+I)/2(NA)=O(N-2) and J(q+I)/2(NoA)=O(N-1).
Thus the Lanczos kernel becomes, for c/N <= 0 <= rr- c/N,
(5.20) LN(COSO ) O( Nq/2)(sinO/2)-q/2-1(cosO/2)-q/2

(O(N-1) cos(NoO-qo)+O(N-1) cotOsin(NoO-eo)

+ O(N-2)sinO cs(N10-ql)+ O(N-Z)sin0 ctOsin(NlO-ql)+"" }"
We see that the effect of Lanczos averaging is to reduce the amplitude of the kernel in
the interval c/N <= 0 <__ r-c/N by a factor O(N-1) cot0. The amplitude will be re-
duced by the same factor every time the averaging is carried out, so the amplitude of
the k th order Lanczos kernel in this interval will be less than the amplitude of the
Dirichlet kernel by a factor of O(N-)(cotO).
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In the interval e__<O__<r-e for fixed e, cotO is 0(1), so

(5.21) fer-elL(uk)(cosO)l(sinO)qdO=O(Nq/2-).
Over the interval c/N <= 0 <= e we can replace cot 0 by 0-1, sin 0/2 by 0/2, and cos0/2
is O(1), so

(5.22) fc Ir(k)(csO)l(sinO)qdO=O(Nq/2-k)fce?-q/2-10-kOqdON/N /

O(1) for q/2 < k,
O(lnN) forq/2=k,
0(Nq/2-k) for q/2 > k.

Over the interval rr-e<=O<=rr-c/N, sin0/2 is O(1) and we can replace cos0/2 by
(r 0)/2, so

(5.23) f=-/NILN(COSO)I (sinO ) qdO--O(Nq/2-k) ?-q/20-kOqdO/

f O(N-1) for q/2 <=k- 1,

O(Nq/2-k) for q/2> k- 1.

In the intervals 0 =< 0 _< c/N and r- c/N <= 0 <= r, Lanczos averaging does not
produce any effective cancellation, and the Lanczos kernel is of the same order of
magnitude as the Dirichlet kernel. (5.8) together with the asymptotic form (5.10) gives,
for 0 __< 0 =< c/N

DN(COSO ) O(U(q+ 1)/2 ) o-(q+ 1)/2j(q+ 1)/2 ( NoO ) + 020(u(q+ 1)/2),(5.24)
so that

(5.25) foc/NILv(COSO) I(sin O)qdO--O(1)c/N[DN(COSO)I(sinO)qdO
O(N(q+ 1)/2) foC/No-(q+ 1)/20qdO

0(1) for all q.

Recalling that

we obtain from (5.8) and (5.10)

(5.27)
so that

(5.28)

ON (cos( q/" O )) O(Nq/2 + 1)O-(q-1)/2j(q_ 1)/2 ( NoO ) + O 20(N q- 1)/2 ),

f5 IZn(CsO)l(sinO)qdO--O(1) foc/NlDN(cs(r-O))l(sinO)qdO-c/N

O(N<q+ 1)/2 ) foC/No-<q 1)/20qdO

--O(N-1) for all q.
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Combining (5.21) through (5.23), (5.25) and (5.28), we have

.29) fan [L)(A’B) drY(B) f0’l L)(cs0) I(sin0)qdO

o( )
O(lnN)
O(Nq/2-k)

for q/2 < k,
for q/2 k,

for q/2 > k,

and

(5.30) [L)(A,B)Idf(B)= ’lL)(cos0)I(sinO)qdO>__e

[ O(N-) for q/2 <=k- 1,

O(Nq/2-) for q/2> k-1.

Thus the kth order Lanczos kernel is an approximate identity if q <2k. In particular,
the first order Lanczos kernel is an approximate identity for q=0 or 1, the second
order Lanczos kernel is an approximate identity for q 2 or 3, and so on.

6. Fejr and Lanczos kernels in Euclidean space. We can obtain kernels Kv(x,y
in Eq+ from the corresponding kernels Ke(A,B) on the surface Sq+ of a (q+2)-
dimensional sphere by a mapping f: x A such that

(6.1) f" (r,O ..Oq)---) (Oo(r),O ..Oq).
A simple form for Oo(r ) which maps Eq+ onto the whole of Sq+ is

(6.2) 0o 2 arctan(r/a).
This maps widely separated points at large r in Eq+ onto points near the pole

0o= r of Sq+ . This will not matter if the function we are approximating either vanishes
rapidly or tends to a constant as r oe. If however the function varies significantly
with 0x.. Oq as r , it is better to map Eq+ onto the half sphere 0 =< 0__< r/2 by a
transformation such as

(6.3) Oo= arctan( r/a ),
which maps points at large r with different 0..Oq onto well separated points on the
sphere. Functions such as a radiating wave which oscillate at constant 0.. Oq even at
large r need special treatment.

The kernel Ke(A,B) is normalized over the full sphere; if we wish to use (6.3), we
need a kernel normalized over the half sphere. Such a kernel is

(6.4) KH(A,B)=Ka(RA,B)+Ka(A,B )
where R is the reflection operator

(6.5) R ( OO, Ol O1) -" ( l’- Oo, O1. Oq).
Now the part of the spherical harmonic Y which depends on 00 is

(6.6) Y kl ..kq 00,01 ..Oq of. C cos00n n-k
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Terms in Ku(A,B) which are odd functions of 00- r/2 will cancel in the sum (6.4) of
Kn, so only those terms for which n- k is even will survive in the kernel Kn. The
expansion of Kn is therefore

(6.7) KI(A,B)=2 E On E Y kl"’kq A Y kl"’kq n
n nn-----0 ( k kq )n k even

The kernels Kv(x,y) obtained from Ku(A,B) by a mapping of the type (5.1) are
not normalized over the volume element dVq of Eq+ but over the element dq of
Sq+ 1- Consequently the normalization is not

(6.8) fKz(x,y)aV(y)=l or fav(x)IC (x,y)=l,
but is instead

(6.9)

where

fKv(x,y)W(y)dV(y)=l or fdV(x)W(x)Kv(x,y)=l,

daq =(sinOo)qdOo(6.10) W=
dVq r dr

is the appropriate weighting function.
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ON THE ASYMPTOTIC EXPANSION OF
MELLIN TRANSFORMS*

C. L. FRENZEN

Abstract. The asymptotic behavior of the Mellin transform M[f; x] is studied as x- + , and it is
shown that the Mellin transform of a certain class of asymptotic sequences (q,n (t)) (t ) yields another
asymptotic sequence (M[qn; x]) (x--, o). An analogue of Watson’s lemma is also established; i.e., under
certain circumstances, the asymptotic expansion of f(t) (t o) induces an asymptotic expansion of M[f; x]
(x o).

Key words, asymptotic expansion, Mellin transform
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1. Introduction. Recently A. Sidi [7] studied the asymptotic behavior of the Mellin
transform

M[f; x]= tx-y(t)dt

as x + . This transform and its associated convolution have played an important
role in recent developments in the asymptotic expansion of integrals; see Wong [9], and
Handelsman and Lew [3]. Sidi, however, was interested in establishing a Mellin trans-
form analogue of Watson’s lemmama result which would say that, under certain
circumstances, an asymptotic expansion of f(t) induces an asymptotic expansion of the
Mellin transform of f(t), M[f; x]. Until Sidi’s work, this problem had received little
attention, although Doetsch [1] and Handelsman and Lew [3] had considered the
problem of analytic continuation of the Mellin transform, Riekstins [6] had considered
the asymptotic expansion of the inverse Mellin transform and Wagner [8] had obtained
some Tauberian theorems for Mellin transforms.

By giving several specific examples, Sidi established some evidence to support the
following: under certain circumstances, (1) the dominant contribution to the Mellin
transform M[f; x] as x + c comes from the large t-behavior of f(t); (2) the Mellin
transform of an asymptotic sequence (for c) yields an asymptotic sequence (for
x + c); (3) the Mellin transform of an asymptotic expansion (for c) yields an
asymptotic expansion (for x + o). In this note we show that (1), (2) and (3) hold for
a general class of functions, sequences, and asymptotic expansions, respectively. In
particular we dispense with Sidi’s assumption that the Mellin transform of a specific
asymptotic sequence is again an asymptotic sequence by showing that (2) holds for a
general class of asymptotic sequences.

Suppose that a function f(t) is locally integrable for 0 < < c, such that for some
real constant o, if(t) is absolutely integrable in any finite interval of the form [0, a],
and f(t)=o(t-) as too for any />0. It follows that M[f; z] exists for all
sufficiently large Rez =x. We shall say that a function f(t) is in the class M (or in M)
if M[f; z] exists for all Rez=x> x0, where x0 may depend on f. It is well known that

*Received by the editors February 20, 1985, and in revised form July 25, 1985.
Department of Mathematics, Southern Methodist University, Dallas, Texas 75275.
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if f(t) is in M, then M[f; z] converges absolutely and is holomorphic for all Rez x >
xo. Here we show that (1) holds for all real nonnegative functions in M which are
strictly positive beyond some (perhaps large) value of their argument. For (2) to hold,
each individual function of the asymptotic sequence must satisfy the above require-
ments for (1). Finally in (3) we make use of generalized asymptotic expansions. We
require that the function itself and each of the functions in its generalized asymptotic
expansion be in M, and that the asymptotic sequence or scale be equivalent to another
asymptotic sequence which satisfies the requirements for (2).

In many ways this paper is the Mellin transform analogue of A. Erdrlyi’s [2]
fundamental paper on generalized asymptotic expansions of Laplace integrals. How-
ever there are some differences. Erdrlyi considered a one-sided Laplace integral:

(1.2) L[g; x]= e-XUg(u)du.

As x + c, the kernel e -xu decreases for each fixed positive u, but decreases least
rapidly for small u. Consequently the small-u behavior of g(u) most influences the
large-x behavior of L[g; x]. If t=e u and f(t)=g(u) then the Mellin transform
becomes a two-sided Laplace integral"

(1.3) M[f; x]= tx-lf(t)dt eXUg(u)du.

The constant fo_ Ig(u)ldu bounds the part fo eXUg(u)du, which is a standard
one-sided Laplace integral. In the remaining part, f0 eXUg(u)du, as x the kernel
ex increases for each fixed positive u, and increases most rapidly for large u. Hence it
is the large-t behavior of f(t) which most influences the large-x behavior of M[f; x].

Since the Mellin transform of a function in M converges in the complex half plane
x > x0, it is also natural to ask, in an attempt to extend the validity of (2), whether it is
possible for an asymptotic sequence { n(t)} for to induce an asymptotic se-
quence (M[n; z]) as z tends to infinity in some region of the complex plane. By
means of a simple example we show that limited results in this direction are possible.

2. A basic inequality. Throughout this paper is a real variable, z is a complex
variable, and we always write z=x + iy. The Mellin transform analogue of Watson’s
lemma will follow from a result relating the relative behavior of two functions at o
to the relative behavior of their Mellin transforms at x . Let the two functions be
denoted by g(t) and h(t), and their Mellin transforms by M[g; x] and M[h; x]. The
result below is the Mellin transform analogue of Lemma 1 in [2].

LEMMA 1. Suppose g and h are in M, h (t) >= O, and h (t) > 0 for tl < < o for some
t > O. Then

IM[g; z] <essF.suplim sup
 t[h; ,2 h(t)

when z in such a manner that x
Proof. If g and h are in M, they possess Mellin transforms for x > x0 for some x0,

so that M[g; z] and M[h; x] exist and M[h; x]>0 whenever x>xo. Let x >x0, and
assume Rez=x>=x. For some fixed T, < T< o, we write M[g; z]=I +12 where

(2.2) Ii xg( ) dt,
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and

(2.3 

From (2.2) we have

(2.4) I11 I<= tXl-llg(t ) Itx-xldt<=B(T, xl)Tx-x,

where B(T, xl) is a constant depending only on T and x. This result follows from the
absolute convergence of M[g; x] for x >__ x > x0.

We set

(2.5) Ur=esssup[Ig(t)’’h(t) T<t<o]
and assume that Ur< o for some T. (Otherwise the fight-hand side of (2.1) is equal to
+ oe and there is nothing to prove.) Then g(t)l Urh (t) for almost all > T, and so

(2.6) Ihl=< tx-Urh(t)dt<= UrM[h; x].

Consequently, for any < T< oe, we have

(2.7) IM[g; zll < U+M[h;x]
B(T,x)Tx-x1

M[h;x]
Now by the conditions imposed on h(t), for every e>0 we have

(2.8) M[h; x]>= xl-lh(t)tx-xdt>e(X-X’)Tx-x xl-lh(t)dt,
T *T

where the last integral in (2.8) is a constant D(e, T, Xl) depending only on e, T and xl
and is bounded away from zero as e --, 0. Using (2.8) in (2.7) gives

B(T, xx) e(/- 11)(2.9) IM[g; z]l < UT+ e
M[h; x

Now let z- oe in a manner satisfying the last condition of the lemma, i.e. so that
x + oe as well. The second term on the right-hand side of (2.9) then approaches zero
and

(2 10) limsup
IM[g; z]l< Ur.

zo M[h; x]
Since the left-hand side of (2.10) is independent of T, and the right-hand side tends to
the fight hand of (2.1) as T m, this proves the lemma.

Note that the last condition in the lemma is satisfied if z tends to infinity in the
sector Sa :[arg z I__< r/2 A, h > 0.

We now show that under certain circumstances (1) holdsthat the dominant
contribution to _M[h; x] for x o comes from the large t-behavior of h(t). This is
suggested by Lemma 1, in which only large values of are important. Specifically,
suppose that h and h are in M and h(t) h _(t) > 0 for t < < o for some t: > 0.
Then

(2.11) M[hx; x]-M[h2; x]=fttx-x[hx(t)-h2(t)] dt=O(t)
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as x o by an argument similar to that leading to (2.4). Without loss of generality, we
shall assume t2> 1. Then logt2> 0 and from (2.11) we have for logt2 <8 < o

(2.12) e3X/2(M[hl; x]-M[h2; x])0 (x o).
Now by the conditions on h and h_, for x >__ xl > x0

fot2txl- x-x1 f tx-h -(2.13) M[hx; x]> Ihl(t)lt dr+ (t)t dt
de2t2

t2 x-1 -xxe2(x x)f x- 1hi(t) dt.2 -t x Ihl(t)ldt+
de2t2

From (2.13) it follows that

(2.14) e-3/2M[h; x] (x ),
and a silar argument holds for e-a/2M[h2; x]. Ts result together with (2.12)
implies that

(2 15) M[ h1; x]
M[h;x]l (x).

Since t was arbitral, (2.15) shows that the donant contribution to M[h; x] as
x for h (t) > 0 beyond some value of comes from the large t-behavior of h (t).

3. Asymptotic sequences. The results of the preceding section may be used to
show that under certain circumstances the Melfin transforms { M[,; x]} of an asymp-
totic sequence (,(t)} form an asymptotic sequence.
THO 1. (i) Suppose that (,(t)} is an asymptotic sequence for t and for

each n, ,(t) is in M, ,(t) 0 and ,(t) > 0 for t, < < . Then { M[,; x } is an
asymptotic sequence as x .

(ii) If, in addition, there is an unbounded set R in the complex plane such that x
whenever z in R, and iffor each n,

(3.1) M[,,; x]=O(M[,; z])
as z in R, then { M[n; z]} is also an asymptotic sequence as z in R.

Proof. (i) From Lena 1, we have

M[,+; x] n+l(/)(3.2) lim sup < ess lim sup
x+ f; X] t n(t)

and the fit-hand side is zero since {n(t)} is an asymptotic sequence. Hence
M[n+X; x]=o(M[n; x]) as x , and ts proves the first half of the theorem.

(fi) Since ,(t) O, we have

so that M[,; ]=O(M[; x]) as m in R. Since by (3.1) we also have
M[,; x]= O(M[; z]), it follows that the two sequences { M[; x]} and { M[; z]}
are equivalent as m in R. Since by part (i) the first sequence is asymptotic, the
second must also be asymptotic.

Example 1. Consider the sequence { (t) } with (t) x exp( t), where
X, and B are real. The sequence { (t)} is an asymptotic sequence as m in any
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one of the following cases: for n > m
(a) fl,,>flm>O, and ak>0, k=1,2,3....
(b) fl,,>=flm>O and ak>0, k=1,2,3... when flm=fl,,, then
(C) flnflm’O and ag>0, k=1,2,3...; when tim=fin, then Oln>Om’O; when

tim fl. and a a. > 0, then . > m"

Note that each 0.(t) is in M if x > .. The sequence (0.(t)) satisfies the conditions of
Theorem 1(i), and hence, as is easily checked, the sequence ( M[q,.; x]) where

(3.4) m[ft)n xl=__ol(x-,n)/flnF (X" k )

is an asymptotic sequence as x o under any of the conditions (a), (b), (c). In this
example one can also allow a. to be complex. The sequence (0.(t)) then becomes
complex valued and Theorem 1 (i) is no longer applicable, but the path of integration
in M[q,.; x] may be rotated and further conditions placed on the sequences ([an[) and
(Rea.) so that the sequence (M[q,.; x]) is again asymptotic. This particular example
was treated by Sidi [7, Thm. 2.1].

The next example illustrates that in certain cases the domain R in Theorem 1 (ii)
in which M[n; x] and M[q,; z] are equivalent asymptotic sequences may not be the
largest domain in the complex plane in which M[0,; z] is an asymptotic sequence.

Example 2. Consider the sequence ( 0,(t)) where q,(t) e- ant and O + > On " 0.
As , (0,(t)} is an asymptotic sequence and each q,,(t) is in M. Since M[0n;
z]= a- F(z), Rez > 0, we have

(3.5) IM[,.; z]l= I ;zr(z)I Ir( ) < 1 (Rez=x>0)"

see, for example [5, p. 38]. Therefore M[On; z]= O(M[0,; x]), and to apply Theorem 1
(ii), we need to exhibit an unbounded set R with x- m whenever z m in R, such
that, for each n, M[0,; x]= O(M[0,; z]) as z m in R. Since

Ir(z)l .=0 (x+n)
(see [5, p. 38], for example) this means finding an R such that as z c in R, x
and the fight-hand side of (3.6) is bounded. From the latter, we have

(3.7) logI --0log 1 +
(x+n):Z 2

+O
n=0 (x+n) (x+n)4

=y2t(2, x)+ O( y4t(4, x))
where (m,x)=Y’.n=O(1/(x+n)m) is the generalized zeta function. For fixed m and
large positive x, ’(m,x)= 1/(m-1)xl-m+ O(X-m) (see [4, p. 25]), and using this in
(3.7) gives

y: (y2)(3.8) 1ogI=--+ O
x 5"

Thus log/, and consequently I, is bounded as z - in R if R consists of a region of
the complex plane in which

(3.9) (Imz)2=O(Rez) (z , Rez =x> 0).
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In this region x oe as z o and M[rkn; x]= O(M[qn; z]), so that by Theorem
1 (ii) ( M[q,; z]) is an asymptotic sequence as z oe in R, defined in (3.9). However,

(3.10) iM[qn+l;z]l ( )xIM[,/,.; zl
and the fight-hand side of (3.10) tends to zero as x oe. Consequently, for example,
M[q,; z] is an asymptotic sequence as z--, oe in the sector Sa= (z :largz[<_ r/2- A,
A > 0}, a larger region than that in (3.9), which was determined from Theorem I (ii).

Example 3. Consider the sequence { qn (t) } where

(311) qn(t) { 0, t<c,
(logt)a"e -b"t, t>=c

where c > 1 and b > 0 for all n. As m, the sequence ( qn(t)} is an asymptotic
sequence under either of the conditions

(a’) bn+ > bn>0,
(b’) b,+l>b,>0; if bn+l=bn then a,+1 <an.
By Theorem 1, M[q,n; x] will be an asymptotic sequence under (a’) or (b’) as

x + oe. We now confirm this. Note that if a is a positive integer, the asymptotic
behavior of

(3.12) M[qn; x]= tx-l(logt) a" e-bnt dt

may be obtained by considering the derivative of the incomplete gamma function.
Now write (3.12) as

(3.13) M[q,; x]=I +I+I3
where

(3.14) I1=
xl- t)’-l(logt)a"e-b"tdt,

e-b.xydy(3.15) 12 xX(logx)a. _y -1 1 + logx

and

(3.16) 13 1+at (log t) an bnt

with 8 a positive number satisfying 0 < i < 1. We estimate 11 as follows"

(3.17) Ii <_e-b"c((1--1)la"l(logx)la"l) fxl-tx-ldt.
Equation (3.17) implies

(3.18) Ii=O((logx)la"lxxx -Sx-1) (X--’ + C).
TO estimate 13, note that for any a there exists a constant A such that

(logt)la"l<=Ant, xl+<=t<
and since bnt/2x <exp(bnt/2x) it follows that tx<(2x/bn)Xexp(bnt/2) for xl+<=t<
o. Consequently

(3.19) hA
1+
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or

(3.20) I3=O(e-.//2) (x--) oe).
To evaluate I:, note from (3.15) that within its range of integration Ilogy/logxl <= < 1,
and so using the finite binomial expansion gives

(3.21) 1 + 10gx
j=0

j logx

where N is a positive integer and

(3.22) IRI<=K logx

for some fixed K> 0. Substituting (3.21) into (3.15) gives
N

(3.23) 12=xX(logx)a" z
j=0

where

+RN,

an)( JBJ (x)+ru(x)

(3.24) Bj(x)=fX"e-x(b’y-lgy)x- (lgy) J

Y
dy

and

Since

lfxX6 N+I]rN(X ) ]<=Kxx(IOgx) a"-N- _v X]logy] e -b’xydy.

(3.26) Bj(x),...,fome_x(b,,y_logy, (logy)y
dy

as x + , by (a modification of) the method of Laplace (see [5]),

(3.27) Bj(x) 12r -x( )Je b -logb, (xoc).

A similar estimate in (3.25) coupled with (3.27) and (3.23) then shows that

@2rr (xm)(3.28) 12- xX(lgx)"e-XbX x

and from (3.13), (3.18) and (3.20) it follows that

(3.29) M[,’, x

Thus, the sequence { M[,; x]} is indeed an asymptotic sequence under either condi-
tions (a’) or (b’), in agreement with Theorem 1.

4. Asymptotic expansions. We will now use the previous results to deduce asymp-
totic expansions of Mellin transforms. Let { q,(t)} be an asymptotic sequence as
and f(t), f(t), k=0,1,..., functions such that for each nonnegative integer n

(4.1) f(t)=
k=0
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Then we say that 2fk(t ) is a generalized asymptotic expansion off(t) with respect to the
asymptotic sequence ( pn(t)} and write

(4.2) y(t)- E fk(t), { +k(t)) (t ).
k=O

Our main result is the following analogue of Watson’s lemma for Mellin trans-
forms.

THEOM 2. Let (/n(t)) be an asymptotic sequence for o which is equivalent to
a sequence ( qn(t)} satisfying the conditions of Theorem 1. Let R be an unbounded region
of the complex plane such that x + o as z o in R, and let ( X,(z)) be a sequence
equivalent to { M[q,,; x]} as z o in R. If, under these circumstances,

(4.3) f(t)’- E f(t), (b(t)) (t)
k=O

wheref( ) and all the f ( ) are in M, then

(4.4) M[f,z]-- E M[fk; z], (Xk(z))
k=0

as zoo in R.
Proof. Fix n and set

(4.5) g(t)=f(t)- f,(t), h(t)=d,(t).
k=0

Then g(t) and h(t) are in M, q,(t)> 0 and qn(t)> 0 for tn<t< . Since by (4.3) and
(4.5), g(t)=o(p,(t))as to and (n(t)} and (q,,(t)} are equivalent asymptotic
sequences, we also have g(t) o(q,(t)) as o. Applying Lemma 1 to g(t) and h (t),
it follows that

(4.6) M[g; z]=o(M[q,; x])
as zo in R. However since (M[qn; x]} and (Xn(z)} are equivalent asymptotic
sequences as z o in R, it is also true that

as z- o in R, or

M[g; z] =o(X.(z))

(4.8) M[f; z]- M[f,; zl=o(X,,(z))
k=O

as zo in R. Since (4.8) holds for each n, we have the conclusion of the
theorem. [3

Note that in the real case z=x and one may take X,(z)=M[,; x]. Theorem 2
extends Sidi’s Theorem 2.1 [7] to a wide class of asymptotic sequences and, in view of a
remark following (3.4), covers some of the examples in [7] too.

Example 4. Consider the integral

I(x )’- f0t 1(1 q-t )-1/2(1 -[- b exp(a (1 +t )l/2))-Udt
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where a, b and v are fixed positive constants. The asymptotic expansion of I(x) is not
easily obtained from Sidi’s theory. However the function

(4.10) f(t) (1 + t)-1/2(1 + bexp(a(1 + t)1/2))
in the integrand of (4.9) is in M, and

(4.11) f(t)-- Y’ fk(t), (q(t)} (t-+ oo),
k=0

where

(4.12)

and

(4.13) k(t)=(l+t)-X/2exp(--a(k+v)(l+t)/9)
both satisfy the requirements of Theorem 2. Consequently, since I(x)= M[f; x ],

(4.14) I(x)- E M[f; x], (M[q; x]}
k=0

as x oo. From [5, p. 254], for example, we have

(4.15) M[k; x] --- r(X)Kx_/2(a(+v)).
r/ (a(k+)/2) x-1/

Note that the asymptotic behavior of Kx(a) for fixed argument and large order is

(r)/(2x) (afixed /+m)"(4.16) Kx(a)- e--
see, for example [5, p. 328]. Combining the above results and applying Theorem 2, we
obtain
(4.17)

r/9_
b-

k=0
I(x) (,,+:)Kx-/2(a(k+v))

( a( k + v)/2) x-I/2’
F(x)Kx_l/2(a(k+ v)) }(a(k+v)/2) x-/2

as x +c.
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POSITIVE SOLUTION OF A PROBLEM OF
EMDEN-FOWLER TYPE WITH A FREE BOUNDARY*

GEORGES IFFLAND"

Abstract. A sufficient condition is given for the existence of a solution for a generalized Emden-Fowler
problem with a free end point. In the special case of the Emden-Fowler equation, this condition is also
necessary; and moreover, a monotone iteration scheme holds for the approximation of a positive solution.

Key words. Emden-Fowler equation, nonlinear boundary value problem, free boundary problem,
monotone iteration method
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1. Introduction. We are interested in the question of existence of a solution of
the following free end point problem. Find T> 0and y C[0, T]f3 CI[0, T)f’)C2(0, T)
such that

y"(t)+ q(t)y(t) =0, (0, T),

(1.1) y(0) y(T) 0, y’(0)

y(t) > 0, (0, T),

where 3’ --> 1, a > 0 and q, a positive function, are given. With q(t) := ’, (1.1) gives the
Emden-Fowler equation [10]. Its origin lies in theories concerning gaseous dynamics
in astrophysics around the turn of the century [2]; see 10] for more recent applications.
In this special case, (1.1) can be written

y"(t)+ ty(t) =0, (0, T),

(1.2) y(0) y(T) 0, y’(0) a,

y(t) > 0, (0, T).

The question of existence of a solution of (1.1) is related to that of existence of
oscillatory solutions of the differential equation

(1.3) y"(t)+ q(t)y(t) v =0.

This problem has been profusely studied; see for example [4], [10] or [3]. In this case,
3’ is supposed to be the quotient of odd, positive integers. For 3’:= 2n-1, where
n 2, 3,. ., a result of Atkinson [1] allows one to show the existence of a solution
of (1.1) if tq(t) dt ; for problem (1.2), this condition becomes /3 > -2. Owing
to a theorem of Hinton [5], we are able to give a more general (sufficient) condition
for the existence of a solution of (1.1). Moreover, this condition is necessary and
sufficient if q(t) := ; it then becomes 3’ + 2/3 + 3 > 0.

Problem (1.2) can be set in the form of an eigenvalue problem of the following type

x"(-) + ha(z)x(’) :0, re (0, 1),

(1.4) x(O) x(1) O, x’(O) 1,

x(’) > 0, ’ (0, 1).

* Received by the editors December 21, 1984, and in revised form May 15, 1985.
f D6partement de math6matiques, Ecole polytechnique f6d6rale, CH-1015 Lausanne, Switzerland.
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A monotone iteration method has been proposed by Luning and Perry [7], in order
to establish the existence of a solution of (1.4). Their proof needs the assumption
a LI(0, 1); for problem (1.2) it becomes/3 > -1. Without such a restriction, we show
first the convergence of the iterative method to a solution of (1.4), if the existence of
a solution is presupposed. The method can then be applied to the Emden-Fowler
problem, that is for a(z) := z, with y + 2/3 + 3 > 0.

Let us further point out a problem related to (1.1). We introduce the following
initial value problem

y"(t)+q(t)y(t)=O, (0, c3),

(1.5) y(0) 0, y’(0) c,

y(t)> 0, (0, oct).

Under quite general assumptions, (1.3) has a positive solution satisfying the initial
condition y(0)=0, y’(0)= a. Moreover, y may be chosen such that the following
alternative holds: either y is solution of (1.5), or there exists a T>0 such that (T, y)
is a solution of (1.1).

Notation and definitions. Let yl and Y2 be functions defined on the same interval
I (bounded or not). Then Yl <=Y2 if[ lt I: y( t) <= yE( t); Yl <Y2 if[ Yl--<Y2 and Yl Y2.
A function y is positive if y > 0. A sequence (y,) of functions is increasing if[ y, <-_ Y,+I
for all n N; it is decreasing if[ (-y,) is increasing.

2. Existence result for (1.1). Let us introduce the following conditions"
(H1) a>0, y_->l.
(H2) q C2(0, ), t>0: q(t)>0, t->tVq(t) belongs to L(0, 1).
(H3) r/r/"Ll(1, c), where r/C2(0, c) is the function defined by r/(t):=

[q(t)]-1/+3).
(n4) 1 [r/(t)]-2 dt=.- "(s ]2/(y--l)(H5) If y> 1" limto r/(t)[ r/(s)[r/ )l ds =0.

The main result is contained in Theorem 2.1; its proof partly reproduces Hinton’s [5]
and will be given later.

THEOREM 2.1. Let assumptions (H1)-(H5) be satisfied. Then problem (1.1) has a

unique solution (T, y), with y C[0, T] 71C[0, T) fq C2(0, T).
LEMMA 2.2. Let assumptions (H1) and (H2) be satisfied. Then problem

y"(t)+q(t)y(t)v=O,
(2.1)

y(0) 0, y’(0) a

has a positive (local) solution.
Proof One establishes the existence of a solution by an alternating iteration

method, like the one used for example by Stuart [8]. Let us introduce the following
iteration scheme

(2.2) y,+(t):=at- (t-s)q(s)y,(s)Vds.

Set yo:= 0; by (2.2) define y" t-at. Then

Y2" t->at 1-a v-1 1- q(s)s v ds
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By assumption (H2), a t*> 0 can be chosen such that Y2 remains positive on (0, t*).
By means of formula (2.2), an alternating sequence is defined:

O=yo<- y2<-_y2,,<-_y2,,+l<-_y3<=y=at on[0, t*].
Differentiating (2.2)"

fo’ fo q(s)s ds’a>y+l(t)=o_ q(s)y(s)ds>a_a v [0, t*].

The sequence (y’,) being uniformly bounded, the Arzel-Ascoli theorem implies the
existence of a convergent subsequence of (y,). The subsequence (y2,), increasing and
containing a convergent subsequence, is convergent itself to a function )7, uniformly
on [0, t*]. Likewise, the decreasing subsequence (Y+I) converges to a function )3.

fi(t)=at- (t-s)q(s)fi(s)Vds
(2.3)

=- (-sq(s)(s’ds=(), e [0, t*].

Define w := fi-. The following inequality holds"

(2.4) Vte[O,t*]" O(t)v-fi(t)VTy(t)V-lw(t)Cw(t)
where C > 0 is a constant. Introduce (2.4) into (2.3):

Ow(t)C (t*-s)q(s)w(s)ds, te [0, t*].

By Gronwall’s lemma, w 0. The function y := satisfies

y( t) at- t- s)q(s)y(s)" as, e [0, t*]

and is a solution of (2.1) on [0, t*]. E
LEMMA 2.3. Every positive solution of (2.1) may be extended to a function for

which the following alternative holds:
(i) is a solution of (1.5);
(ii) there exists a T > 0 such that T, ) is a solution of (1.1).
Proof Let y be a positive solution of (2.1) and be the maximal positive extension

of y. If is defined for each > 0, we are in case (i) and (t)> 0 on (0, ). Assume
now that y is only defined on a bounded interval L As is positive and concave, I
must be closed; write I [0, T]. If (T)> 0, Peano’s existence theorem would allow
one to extend at the the right side of I; but it is in contradiction with the definition

of. Hence(T)=0.
LEPTA 2.4. Suppose > 1. Assume conditions (H2), (H3) and (H5) to be satisfied.

Let y be a positive, C function, such that y(O)=0 and y’(O) > O. en for every X > 0
there exists a to > 0 such that

(2.5) y(to)>Xn(to) n(s)ln"(s)l ds
to

Proof By contradiction, assume the existence of a C > 0, such that for every q
in a neighbourhood of zero, the following inequality holds"

y(t) Cn(t) n(s)l n"(s)l as

Moreover



286 GEORGES IFFLAND

Dividing by and letting tend to zero, we get

t,o

in contradiction with assumption (H5).
Proof of eorem 2.1. (i) Uniqueness is easily established by using an inequality

of (2.4) type and Gronwall’s lemma. Then owing to Lemmas 2.2 and 2.3, it is sucient
to show the nonexistence of a solution of (1.5). In order to do that, suppose, by way
of contradiction, that y is a solution of (1.5). If y 1, choose an arbitrary to> 0. If
y> 1, set X:= [2(y+ 1)]/(v-; then, by Lemma 2.4, a to>0 can be chosen such that

(2.6) y(to) > [2(+ 1)K]l/(-l(to)

where K := (r)l"(r)[ dr <, by (n3).
Define

and

h" t- [r/(’)] -2 dr, t[to, )
to

x: s--(y/rl)(h-l(s)), s[0, c)

where h -1 is the inverse function of h. Since y is a positive solution of (1.3), x cannot
vanish on (0, ) and satisfies the following differential equation

(2.7) x"(s)+(q3rt")(h-’(s))x(s)+x(s)’=O, s(O, ).

Define a function z by

1 )2 1
(2.8) z(s) := -(x’(s) + (x(s))+ s

_
[0, ).

y+l

(ii) We show that z is bounded on [0, ). If not, there exists an increasing sequence
Sl < s_ <.-. for which lim_o z(s)=; without loss of generality, the sequence can
be taken such that

(2.9)

By (2.7) and (2.8)

(2.10) Vs (0, o), z’(s)= -(rl3rl")(h-l(s))x(s)x’(s).

From (2.8) we deduce that

(2.11) Vs[0,), x(s)<=[(y+l)z(s)]/+) and

By assumption (H3), a t > to can be chosen such that

(2.12) ’/(Y + 1) 1/(’/+1)

Consider the si such that si > h(q) and integrate (2.10)

z(s) (h(q)) (nn")(h-())x(r)x’(,)

z(si)> l and z(si)=max {z(s); O=< s-< s,}, i=1,2,....

IX’(S)I < [2Z(S)] 1/2.



PROBLEM OF EMDEN-FOWLER TYPE WITH A FREE BOUNDARY 287

Taking into account (2.9), (2.11) and (2.12), it follows that

O<=z(si)-z(h(t,))

<=V/(y+ 1)l/(v+l)g(Si) 1/2+l/(v+l) I(’r/a/")(h-l(o’))l dcr
(tl)

< V(a/’+ 1)’/(v+l)z(si) n(,)ln"(,)l d,<-(,,).
Whence z(s)<-2z(h(h)), and this is in contradiction to the assumption that z(s)- oo
as

(iii) Let us show that z tends to a limit L as s-> oo, Since z is bounded, we define
a constant

C := x/(y + 1) u(v+l) sup {z(s)l/2+l/(/+l); s f (0, oo)}.

Let e > 0 be arbitrary. By assumption (H3), a t2 > to can be chosen such that

2 C

Integrate (2.10) with s >-h(t)

Iz(s)-z(h(t2))l<= [(rt3rt")(h-(r))lx(r)[x’(cr)l dtr
(t2)

_<- C I(r/3rf’)(h-(o’))l dcr < e.
(t2)

The existence of the limit L follows.
(iv) Let us show that L> 0. Consider first the case y 1. From (2.10)

d
ss (In z(s)) -(rl3rl")(h-i(s))x(s)x’(s)(z(s))-, s (0, o0).

Using estimates (2.11)

Iln z(s)-ln z(0)l_-< 2

Thus In (s) is bounded for se[0, oe); hence L>0. Consider now the case y> 1 and,
by way of contradiction, suppose L 0. The function z being bounded, one can define

L := sup {Ix’(s)l; s e [0, oo)} and L:= sup {x(s); s e [0,

Putting this in (2.10)

z(S) (rl3rl")(h-(o’))x(o’)x’(o") dcr<= KL1L2.

From (2.11) we obtain

L <- T + I KL1 and LI <= 2KL2.
Whence L-<=2(T+I)K2 and

y(to) rl( to)x(O) <= rl( to)L2 <- rt( to)[2( y + 1 )K2]’/-’),
in contradiction to (2.6).
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(v) Since L>0, one can find an So such that z(s)>=1/2L for all s>=so. First case"

x’ has an infinite number of zeros sl < s2 <"" on [So, ). On every interval Is1,
the minimum of x is achieved at a zero Sk of X’ and

L 1
-<-_ z(s) <- (x(s))/.
2 y+l

Hence

x(s)>-_x(sk)>=(1/2(y+ 1)L)/(+) s[s, )

By (2.7), the following holds on [s, o)-

IsIx’(s)l- x"() &r >_- x(g) dg- (n3n")(h-(g))x(g) dg

e (+ (S-Sl-.

It follows that x’ is unbounded and therefore we have a contradiction. Second case:
x’ is monotone on some interval [so, m). Since x is bounded, x(s) M as s. M
cannot be zero, for in this case I/’(s)l and x would be unbounded. So assume
M > 0. An Sl can be found such that x(s) M/2 for all s N Sl. As in the first case, we
establish

(s sl)- KL2, s [s, o).

A contradiction follows again, since x’ must be bounded. We conclude that x must
vanish, and so must y.

3. Existence result for (1.5). Let us introduce two additional conditions:
(H6) limt$o tr+2q(t) O.
(H7) ’t>0: (y+3)q(t)+2tq’(t)<-_O.
We show first the nonexistence of a solution of (1.1); by Lemmas 2.2 and 2.3, the

existence of a (unique) solution of (1.5) follows.
LEMMA 3.1. Let assumptions (H1), (H2), (H6) and (H7) be satisfied. Then (1.1)

has no solution.

Proof. Every solution of the differential equation (1.3) must satisfy the following
identity

d--t t(y’(t))-Y(t)Y t)+-tq(t)y(t)r+
(3.1)

1

y+l
[(y+3)q(t) + 2tq’( t)]y(t)v*.

By contradiction, assume (T, y) to be a solution of (1.1). Integrate (3.1) between 0
and T; according to the boundary conditions and hypothesis (H6)"

T(y’(T))2 1 //" T ((7+3)y(r)+2rq’(r))y(r)v+l dr.
y+l Jo

This is in contradiction to the hypothesis (H7), since y’(T)> 0. 13
THEOREM 3.2. Let assumptions (HI), (H2), (H6) and (H7) be satisfied. Then

problem (1.5) has a solution.



PROBLEM OF EMDEN-FOWLER TYPE WITH A FREE BOUNDARY 289

4. A monotone iteration method. We now develop some results given by Luning
and Perry [7]. They apply to the eigenvalue problem (1.4). The relation with the
problem (1.2) will be shown in the next section. We admit here any nonnegative value
for y. The following condition is prescribed for the function a"

(H8) a C(0, 1), ’z (0, 1): a(’)> 0, ’-->’v(1- -)a(-) belongs to LI(0, 1).
Introduce the following iteration scheme for n 0, 1,.

A.:= (1-O)a(O)x(O)VdO

(4.1) x+(r) -A,a(r)x,(r) v, r (0, 1),

x.+,(0) x.+,(1) 0.

Suppose that 0 and assume (HS) to hold. Setting Xo: r, r [0, 1], one defines
by (4.1) two sequences (A,) and (x,); and for each n: x(0)= 1. Let us recall a result
drawn from [7].

LEMMA 4.1. Suppose 0 and let a satisfy the condition (H8). en the sequence
(A) defined above is increasing, and the sequence (x,) is decreasing; moreover, n N
and Vr (0, 1): 0<X,+l(Z) <x,().

The following theorem and its corollary are drawn from [6].
THEOREM 4.2. Suppose that 0 and let a satisfy (H8). Let (A,) and (x,) be the

sequences defined as above. Assume the existence of a solution (A, x) of (1.4). en the
sequence (A,) tends to a limit , the sequence (x,) converges uniformly on [0, 1] to a

function ; (, ) is a solution of (1.4), and A, x.

Proof (i) Let us show that Vn N: A, < A and x, x. Of course Xo > x; moreover
for each (0, 1) there exists a unique Zo() (0, 1) such that Xo(ro) X(o). Make
the following inductive hypothesis: x, > x and for each (0, 1) there exists at most
one r,() (0, 1) such that x,(r,)= x(,). If this is true, an obvious first consequence
is that A. < A. Secondly: x,+ > x,. To show this, set := (A,/A)l/v < 1 and w := x X,+l.

Since x(0)= x(0) and x(0)= x’(0)= 1, there exists a B > 0 such that

w"() a()[.x.() x()] a()[x.() x()] < 0

if (0, B). We obtain w(0) w’(0) w(1) 0 and w"(r) < 0 for r (0, 8); by the
inductive hypothesis, w" changes sign at most once in (0, 1). We conclude that w() < 0
for r (0, 1). Third consequence: for each (0, 1), there exists at most one r,+()
(0, 1) such that X,+l(r,+l) x(+l). Indeed, set v := (A,/A)/r < 1 and v := x-x+.
Since x,(0)= x(0) and x(0)= x’(0)= 1, there exists a B > 0 such that

v"(r) a()[x.x() xx()] xa(r)[ x() x()] < 0

if r (0, ). We have v(0) v(1) 0, v’(0) 1 > 0 and v"() < 0 for (0, ); by
the inductive hypothesis, v" vanishes at most once in (0, 1). Therefore v cannot vanish
more than once in (0, 1).

(ii) The sequence (A,), being increasing and bounded by A, tends to a limit A.
The sequence (x,,) is decreasing, and x, x. For r [0, 1], we get from (4.1)

Ix.+,()l < I+A. a(O)x.(O)’dO

NI+ a(O)xo(O)’dO<l+ a(O)O’dO<m.
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By the Arzel-Ascoli theorem, the decreasing sequence (x,) converges to a function
_>-x (since it contains a convergent subsequence). From (4.1) again, one has

x,,+,(’r) "r- ,, (7"-O)a(O)x,,(O)’dO, z [0, 1].

Making n tend to infinity

(r)= r-X (r-O)a(O)(O) v dO.

It is easily checked that (, :) is a solution of (1.4).
COROLLARY 4.3. Let (A,) and (x,) be the two sequences defined as above. Then

the following alternatives hold"
(i) The sequence (A,) is unbounded. In this case, problem (1.4) has no solution

and the sequence (x,,) tends to the zero function.
(ii) The sequence (A,) converges. In this case, problem (1.4) has a solution (, ),

such that A,--> and x, converges uniformly to . If (A, x) is another solution of (1.4),
then A > and x < .

5. Emden-Fowler problem (1.2). Consider now the problem (1.2), which corre-
sponds to the special case of (1.1) when q(t):= .

THEOREM 5.1. Let 3/>= 1 and fl be real numbers. Then problem (1.2) has a solution

if and only if 3/ + 2fl + 3 > O.
Proof. (i) Suppose that 3/+ 2/3 + 3 > 0. Then 3/+/3 + 1 > 0 (for fl =< -2: 3/+/3 + 1

(3/+2/3+3)-(/3+2)>0 and for/3>-2: 3/+fl+l =(3/-1)+(+2)>0). Hypothesis
(H2) is satisfied iff 3/+/3 + 1 > 0. Conditions (H3) and (HS) hold iff 3/+ 2fl + 3 > 0, and
(H4) iff 3/+ 2fl + 3 => 0. Thus Theorem 2.1 applies and (1.2) has a unique solution T, y),
with y C[0, T]fq C1[0, T)f3 C2(0, T).

(ii) Notice that if y C1[0, T) satisfies (1.2), then 3/+/3 + 1 >0. Indeed, for any
to (0, e)

By continuity at the origin

y’(e) y’(to) .y(.)v dr.
to

’ty(’) a y’(e).dr=

Therefore t-->ty(t) belongs to LI(0, e). Taking e small enough and a ?(0, e), we
have

t’y(t)v=tt+Vy’(?)>- +, t6(0, e).

Thus t- + is integrable.
(iii) Suppose now that 3/+ 2/3 + 3-<_ 0 and, by way of contradiction, that (T, y) is

a solution of (1.2). According to the preceding notice: y+/3 + 1 > 0; thus condition
(H6) is satisfied. On the other hand, (HT) holds iff 3/+ 2/3 + 3 =< 0. Therefore (1.2) has
no solution, by Lemma 3.1.

Suppose that 3/+ 2/3 + 3 > 0. We establish now the relation between problems (1.2)
and (1.4). Let T, y) be the solution of (1.2) and define - := t/T, x ’-- (a T)-y(T-),
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for re[0, 1], and A := a-lT++1. Then (A,x) satisfies

x"(z)+ Arx(r) =0, ’c (0, 1),

(5.1) x(0) x(1)=0, x’(0) 1,

x(r) > 0, rc (0, 1).

Reciprocally let (A, x) be a solution of (5.1). Define T:= A 1/(’+/3+1)(3’-1)/(y+/3+1) (note
that y+/3 + 1 > 0), := T and y" taTx(t/T), for [0, T]. Then (T, y) is a solution
of (1.2). One thus gets the uniqueness of the solution of (5.1); this solution may be
approximated by the monotone iteration method of the preceding section. Define
Xo() := , for [0, 1 ], and

A.:= (1-O)Ox.(O)’dO

(5.2) X+l(r) -A,ztx,(z), rc (0, 1),

Xn+l(O) Xn+l(1)=0 for n =0, 1,....

The existence of the solution of (1.2), by Theorem 5.1, involves the existence of the
solution of (5.1). The condition (H8) being satisfied, Theorem 4.2 yields the convergence
of the method (5.2). The sequence (An) converges to A, the sequence (xn) converges
uniformly to x, and (A, x) is a solution of (5.1). With the inverse transformation, one
gets the solution T, y) of (1.2).

6. Remarks. (i) In this paper, a sufficient condition for the existence of a solution
of (1.1) has been obtained. We do not know any necessary and sufficient condition,
except in the special case (1.2).

(ii) The eigenvalue problem (1.4) has a solution if the function a belongs to
LI(0, 1) and satisfies (H8); see [7]. This condition is not optimal, since if a(r):= re,
the necessary and sufficient condition for existence is y+2/3 +3 > 0 (thus a is not
necessarily integrable).

(iii) For 3’ < 1, the study of problems (1.1) and (1.4) requires other methods. Let
us mention a paper of Taliaferro [9], which is devoted to problem (1.4), with 3’ < 0.
In [7], Luning and Perry studied (1.4) with y>-I and acLl(O, 1).

(iv) More generally, one can consider a differential equation of the type

(6.1) (p(s)u’(s))’+ r(s)u(s)V=O

with p c C 1(0, ) and p(s) > 0 for all s > 0. Moreover, suppose that lip c Loc(O, c)
or lip c LI(1, c); we then introduce one of the following transformations"

If1 LI(0, 1) and 1/pV: LI(1, ), set

t:= and y(t):= u(s).
p()

If l/pC: LI(o, 1) and l/pc LI(1, o), set

t:= and y(t):= tu(s).
p()

If 1/p c L(O, ), set

to: t:= -to and y(t):=(t+to)u(s).
f( f(

In each case" 0 -< < if 0 -< s <, and y is a solution of (1.3) if u is a solution of (6.1).
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BEST INTERVAL LENGTHS FOR BOUNDARY VALUE PROBLEMS
FOR THIRD ORDER LIPSCHITZ EQUATIONS*

JOHNNY HENDERSONf

Abstract. For the third order differential equation y’" =f(t, y, y’, y"), where If(t, y, Y2, Y3)
f(t, z, z2, z3)[-<-= kilyi- zi[ on (a, b) R3, subintervals (a,/3) of (a, b) of maximal length are character-
ized, in terms of the Lipschitz coefficients k, 1, 2, 3, for the existence of unique solutions of certain

two-point and three-point boundary value problems. The techniques for establishing best interval length
involve applications of the Pontryagin Maximum Principle coupled with uniqueness implies existence

arguments. For the case k 1, 1, 2, 3, comparisons are made with interval lengths obtained via standard
applications of the Contraction Mapping Principle.

Key words, boundary value problem, Lipschitz equation, Pontryagin Maximum Principle, optimal length
interval

AMS (MOS) subject classifications. Primary 34B10, 34B15; secondary 49A10, 49A36

1. Introduction. We shall be concerned with solutions ofboundary value problems
for the third order differential equation

(1) y’":f(t,y,y’,y")

where we assume throughout that
(A) f(t, Yl, Y2, Y3)" (a, b) R3--> R is continuous, and
(B) f satisfies the Lipschitz condition

If(t, Yl, Y2, Y3) -f(t, zl, z2, z3)l =< ki]y,-- z,I
i=1

for each (t, Yl, Y, Y3), (t, Z1, Z2, Z3) E (a, b) x R3.
In particular, we will address the question concerning interval length bounds on

subintervals of (a, b), in terms of the Lipschitz coefficients ki, i= 1, 2, 3, on which
certain two-point and three-point boundary value problems for (1) have unique sol-
utions. Such questions have been commonly resolved by various applications of the
Contraction Mapping Principle; for example, see [1]-[7], [15], [20]. A limitation of
the methods using the Contraction Mapping Principle is the fact that often unique
solations of the boundary value problems exist on longer subintervals of (a, b).
Recently, for two types of the boundary value problems for (1) that we consider here,
Aftabizadeh and Wiener [1] sharpened some of the previous bounds by using the
Contraction Mapping Principle, after having transformed their problems into boundary
value problems for a second order integro-differential equation. We further mention
that in [4], a weight function technique previously used by Collatz was employed in
obtaining best possible subinterval lengths in the cases (with one exception) where (1)
is independent of y" or independent of both y’ and y".

The purpose of this paper will be to characterize in terms of the Lipschitz
coefficients ki, i= 1, 2, 3, the subintervals (a,/3) of (a, b) of maximal length for the
existence and uniqueness of solutions of certain boundary value problems for (1). We
accomplish this by applying techniques from optimal control theory that are motivated
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1986. This research was supported in part by a grant from the Auburn Research Grant-in-Aid program.
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by works of Melentsova and Mil’shtein [18] and Melentsova [19], and most notably
by the two works of Jackson [12], [13].

Jackson’s [12], [13] papers dealt with the cases of conjugate type boundary value
problems and right focal type boundary value problems for nth order Lipschitz
equations. In terms of the third order equation (1), his results concerned solutions of
the conjugate problems,

(2) y(t) Yl, Y’(t2) Y2, y(t3) Y3, a < tl tz < t3 < b,

(3) y(t)=y, y(t2)=y, y’(t3)=Y3, a<tl<t=t3<b,

(4) y(tl) Yl, y(t2) Y2, y(t3) Y3, a < < t < t3 < b,

and solutions of the right focal problems,

(5) y(tl) Yl, Y’(t) y, y"(t3) Y3, a < tl t < t3 < b,

(6) y(t) y, y’(t) Y2, Y"(t3) Y3, a < tl < t t3 < b,

(7) y(tl) Yl, Y’(t) y, y"(t3) Y3, a < tl < t < t3 < b.

In [13], Jackson proved the first two theorems we present here.
THEOREM 1.1. Let h > 0 be the smallest positive number such that there is a solution

x(t) of the boundary value problem

X’’= -klX klx’l- k31x"[,

x(O):x’(O):x(h)=O,

with x(t) > 0 on (0, h ), or h +oo ifno such solution exists. Then boundary valueproblems
for (1) satisfying (2), (3), or (4) have unique solutions,for any assignment ofyl, Y2, Y3 E R,
provided tl < h. Furthermore, this result is best possible for the class of all differential
equations that satisfy the Lipschitz condition (B).

The use made by Jackson of optimal control was via an application of the
Pontryagin Maximum Principle in establishing the uniqueness of solutions ofboundary
value problems, when solutions exist. In the case of conjugate problems, uniqueness
implies existence (see [9], [14]), thus, the existence statement of Theorem 1.1. For
right focal problems, the second theorem of Jackson’s that we state is a uniqueness
result.

THEOREM 1.2. Let h =min {hi, h2}, where hi >0 is the smallest positive number
such that there is a solution x( t) of the boundary value problem

x’"= -k,x- k=lx’l k3lx"l,

x(O):x’(O)=x"(hl)=O,

with x(t) > 0 on (0, hl], or hi +eo if no such solution exists, and where h> 0 is the
smallest positive number such that there is a solution y( t) of the boundary value problem

x’"= -klX- klx’l k31x"l,

x’(O)=x"(O)=x(h2)=O,

with y(t) > 0 on [0, h_), or h= +oo if no such solution exists. Then boundary value
problemsfor (1) satisfying (5), (6), or (7) have at most one solution, provided tl < h,
and again, this result is best possible.

Recently, Henderson [10] proved that uniqueness implies existence for solutions
of right focal problems. Thus, we can state an analogue of Theorem 1.1.
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THEOREM 1.3. Let h > 0 be as in Theorem 1.2. Then boundary value problems for
(1) satisfying (5), (6), or (7) have unique solutions, for any assignment ofyl, Y2, Y3 R,
provided tl < h, and this result is best possiblefor the class ofall differential equations
satisfying (B).

For our purposes here, we shall consider, (as in 8], 11 ]), boundary value problems
for (1) that are "in between" those of the conjugate type and the right focal type.
More specifically, we shall be interested in solutions of (1) satisfying

(8) y(tl) Yl, Y’(t2) y2, y’(t3) Y3,

(9) y(tl)=Yl, Y(t2)=y2, y’(ta)=Y3,

(10) y(tl)=Yl, y(t2)=y2, y’(ta)=Y3,

and in solutions of (1) satisfying

(11) y(tl) y, y’(t2) y2, Y’(Y3) Y3,

(12) y(tl) y, y’(t2) y2, y"(t3) Y3,

(13) y(tl) y, y’(t2) y2, y’(t3) Y3,

and finally, in solutions of (1) satisfying,

(14) y(tl)=y, y"(t2)=Y2, y’(ta)=Y3,

a < t2 < t3 b,

a < 2 b,

a < t2 < t3 b,

a < t2 < t3 b,

a < t < t2 t3 < b,
a < < 2 < < b,

a < t t2< t3 < b.

In order that this presentation be self-contained, we will briefly state in 2 the
basics involved in applying the Pontryagin Maximum Principle to each of the families
of boundary value problems for (1). That discussion is taken from [13]. In 3 and
4, we then apply the Pontryagin Maximum Principle and determine maximal length
subintervals on which solutions for each family of "in between" boundary value
problems for (1) are unique, when solutions exist. Then, for each case, we will either
reference theorems or prove uniqueness implies existence theorems for these boundary
value problems. Finally, in 5, we consider the case where ki 1, i= 1, 2, 3, and we
compute the corresponding best subinterval lengths for subintervals of (a, b), on which
there exist unique solutions, for the cases of the conjugate, the right focal, and the "in
between" boundary value problems for (1). In some of the cases, we compare the best
interval lengths with those obtained by standard applications of the Contraction
Mapping Principle; in a couple of cases, we compare the best interval lengths with
those obtained by the methods developed in [1].

2. The Pontryagin Maximum Principle. In this section, we will give a briefpresenta-
tion on the manner in which the Pontryagin Maximum Principle can be applied. Our
discussion is taken from Jackson [13]. We formulate this application in terms of nth
order differential equations.

Let ki > O, 1-<_ i-< n, be fixed and let

U= {(u(t), u,(t))lu(t is Lebesgue measurable
on (a, b), and lu,(t)] _<- k, 1 -< _-< n, on (a, b)).

Let/, J be nonempty subsets of {1,..., n} such that card(I)+ card(J)= n, and let I,
J denote the respective complements of/, J in {1,..., n}.

For fixed sets/, J, consider the boundary value problems

(15) x(")= u( t)x(-),
i=1

(16) x<’-’)(tl)=O, iI,

(17) x<’-)(t2) 0, iJ,
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where a<tl<t2<b and u=(ul(t),...,un(t))U. Since the ui(t) are bounded
measurable functions, we define here what is meant by a solution of (15).

DEFINITION. x(t) is a solution of (15), for a control vector u U, if x(t) is of
class C("-l)(a, b), x("-l(t) is absolutely continuous on (a, b), and x(t) satisfies (15)
for almost all (a, b).

We assume similar definitions for solutions of other differential equations which
appear in this paper and which involve the control vectors u U.

Now, if (15)-(17) has a nontrivial solution for some tl < t2 and some u U, then
it follows that there is a boundary value problem in the collection which has a nontrivial
optimal solution, (see Lee and Markus [16, Thm. 1, p. 30 or Thm. 4, p. 259]); that is,
there exists at least one nontrivial u* U and tl-< c < d-< t2 such that

X
(n)-- U/*(t)x(i-l),

i=1

x(-)(c) 0, iI,

x(i-1)(d)=O, iJ,

has a nontrivial solution x(t) and d-c is a minimum over all such solutions. For this
time optimal solution, if z(t) (x(t), x’(t),. ., x"-l)(t)) r, then z(t) is a solution of
the corresponding first order system

z’=A[u*(t)]z.

By the Pontryagin Maximum Principle [16, Cor. 1, p. 314], the adjoint system

q’= -Ar[u*(t)]d/

has a nontrivial solution q(t)= (ql(t),..., qn(t)) " such that

(i) x(i)(t)i(t)=(Z’(t), (t))-- Max {(A[u(t)]z(t), (t))},
i=1 uU

for almost all [c, d], ((.,.) denotes inner product);

(ii) (z’(t), d/(t)) is a nonnegative constant for almost all t[c, d]; and

(iii) I]/i(C) 0, I,
Pi(d)=0, 6 Jc.

(18)

As shown in [13], the maximum condition in (i) can be rewritten as

qt.(t) 2 u*i (t)x(i-1)(t) Max din(t) ui(t)x(i-1)(t)
i=l uU i=l

for almost all [c, d], whence it follows that if ,,(t) has no zeros on (c, d) and
if x(t)>O on (c, d), then (18) can be used to determine an optimal control u*(t) for
almost all [c, d], (conceivably some derivative of x(t) might be zero at some points).

In particular, if x(t)> 0 and qn(t)< 0 on (c, d), then the time optimal solution
x(t) is a solution of

(19) x<")=-[klx+ i=lk’lx’-’)l]
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on c, d]. On the other hand, if x(t)> 0 and q,(t)> 0 on (c, d), then the time optimal
solution x(t) is a solution of

(20) x(")= k,x + k, lx’-’l,
i=1

on [c,d].
In subsequent sections, converse statements concerning the adjoint equation play

a major role. If u e U is such that the boundary value prolem (15)-(17) has a nontrivial
solution, then

(21) qt’= --AT[u(t)]q,

(22) qi(tl) 0, iI

(23) q,(t2) O, jc,

also has a nontrivial solution; thus, the converse is also true. As a consequence of that,
the Pontryagin Maximum Principle associates with a time optimal solution of (15)-(17),
a time optimal solution of (21)-(23), and conversely.

In applying our statements in this section to nonlinear equations, consider the
nth order differential equation

(24) y(") =f(t, y, y’,..., y("-l)),

where f is continuous and satisfies the Lipschitz condition

(25) If(t, yl,’’’,Y,)-f(t, z,, z,)l<-- k, ly,-
i=1

on (a, b) R".
If y(t) and z(t) are distinct solutions of (24) on (a, b), and if u(t), l<-_i<=n, is

defined by

(t), ", z(i-2)(t), y(i-,)( t)," y"-’)(t))f(t__,Z ..,.
--f-(. i. (-t3-:-i_-_-_-_--t-)-,_-2-iS,

ui(t)= l__f2(t,z(t),’’’,z _,?t),y(,)(t),. ,y("-l)(t))(7._1)(
for y(

for y(- )(t) z(’-)(t),
then u(t) is measurable on (a, b) and lu,(t)l--< k. Let x(t) y(t) z(t). Now if (a, b)
is such that y(i-1)(t) z(i-1)(t), H c {1, ., n}, and if K Hc, then invoking the
two parts defining ui(t),

x(")( t) Z ui( t)x(i-l)( t) + Z ki(O) ui( t)x(i-1)( t),
iK iH i==1

and consequently, x( t) y( t) z( t) is a solution of the linear equation (15).

3. Intervals of existence, I. In this section we will be concerned with determining
best possible interval lengths in terms of k, 1, 2, 3, of subintervals of (a, b) on which
boundary value problems for the third order equation (1) satisfying (8), (9), or (10)
all have unique solutions. First, we will use the results of the preceding section to
determine optimal length subintervals on which solutions of each ofthe above boundary
value problems are unique, when solutions exist. We then appeal to uniqueness implies
existence theorems for this family of problems.
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As we noted in 2, if a time optimal solution of (15)-(17) and a corresponding
solution of the adjoint equation satisfy certain sign conditions, then the time optimal
solution is a solution of either (19) or (20). For this section and those that follow
(since n =3), equations (15), (19), and (20) take the respective forms

(26) x’"= Ul(t)x + u2(t)x’+ u3(t)x",

(27) x’"= -klx- kzlx’l- k31x"l,
(28) x’"= k,x + klx’l + k31x"l.

THEOREM 3.1. If there is a vector u U such that the corresponding equation (26)
has a nontrivial solution satisfying

y(tl) y’(tl) y’(t2) 0,

and if x(t) is a time optimal solution with

a<tl<t2<b

x(c)=x’(c)=x’(d)=O
and with d-c a minimum, then x(t) is a solution of (27) on [c, d].

Proof. By the time optimality, it follows that x’(t) 0 on (c, d), and thus x(t) 0
on (c, d]. Without loss of generality we may assume x"(c) > 0, so that x(t) > 0 on (c, d].

Now, if q(t) is a solution of the adjoint system associated with x(t) by the
Pontryagin Maximum Principle, then

q(c) q,,(d)= q,(d)=0,

and by its own time optimality, b3(t) 0 on (c, d). Hence, x(t) is a solution of (27)
or (28) on [c, d]. From the nature of these two equations, x"(t) is strictly monotone
on [c, d], and since x’(c)=x’(d)=O, while x"(c)> 0, it follows that x"(d) <0.

Moreover, from the Maximum Principle, there exists K-> 0 such that

K E x(i)(t)d/i(t) x"(d)d/a(d)= x"(c)a(c)
i=1

on [c, d]. We conclude d/2(d)< 0, and from the adjoint system

q(a) -q2(a)- u*3(a)o3(d) -q2(a) > o.
Consequently, q3(t)< 0 on (c, d), and x(t) is a solution of (27).

The following two theorems concerning uniqueness of solutions and uniqueness
implies existence of solutions for (1), (8), (9) and (10) are proven in [8], [11].

THEOREM 3.2. The boundary value problem (1), (10) has at most one solution on
(a, b), if and only if each of the boundary value problems (1), (8), and (1), (9) has at
most one solution on a, b ).

THEOREM 3.3. If (1), (10) has at most one solution on (a, b), then boundary value
problems for (1) satisfying (8), (9), or (10) all have unique solutions on (a, b).

We can now state the result concerning maximal length subintervals of (a, b) on
which the boundary value problems of this section have unique solutions.

THEOREM 3.4. Let h > 0 be the smallest positive number such that there is a solution
x(t) of the boundary value problem for (27) satisfying

x(O)=x’(O)--x’(h)=O,
with x(t)>0 on (0, hi, or h +oo if no such solution exists. Then each of the boundary
valueproblemsfor 1 satisfying (8), (9), or 1 O) has a unique solution, provided t3 t < h.
Moreover, this result is best possible for the class of all differential equations satisfying
the Lipschitz condition B).
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Proof We first note that since (27) is autonomous, in applying Theorem 3.1, rather
than specifying boundary conditions at a < c < d < b, it suffices to consider conditions
at 0 and h.

We show that solutions of (1) satisfying (8) or (9) are unique, when they exist,
on any subinterval of (a, b) of length less than h. Assume that y(t) and z(t) are distinct
solutions of (1) satisfying either (8) or (9) with < h. Then w(t)= y(t)- z(t) is a
nontrivial solution of the linear equation (26) for suitable u (ul(t), u2(t), u3(t)) U,
and satisfies either

(i) w(tl) w’(tl) w’(t3) 0, or
(ii) w(q) w(t3) w’(t3) 0.

Case (i) leads to a contradiction of Theorem 3.1. For case (ii), it is shown in Jackson
[12, Cor. to Thm. 8] that there is a nontrivial solution x(t) of (28) satisfying x(0)=
x’(0) x(-k) 0, for some 0<k <h. If v(t)= x(-t), then v(t) is a nontrivial solution
of (27) and satisfies v(0) v’(0) v(k) =0. By Rolle’s theorem, there exists 0< r/< k
such that

v(o)=v’(o)=v’(n)=o,
which again contradicts Theorem 3.1.

Therefore, solutions of boundary value problems for (1) satisfying (8) or (9) are
unique, when they exist. That unique solutions of (1) satisfying (8), (9), or (10) exist,
provided < h,.is immediate from Theorems 3.2 and 3.3. Since (27) is a Lipschitz
equation satisfying (B), it also follows that this result is best possible.

4. Intervals of existence, II. We now consider interval lengths of subintervals of
(a, b) on which there exist unique solutions of boundary value problems for (1)
satisfying (11), (12), or (13) (note that (11) is the same as (8)). By further restricting
our subinterval length for the above three problems, we will also consider existence
and uniqueness for problems studied by Aftabizadeh and Wiener 1 satisfying (1), (14).

THEOREM 4.1. Assume that for all vectors u U, the corresponding linear equation
(26) has only the trivial solution satisfying

X(/1) X’(tl) x’(t2) 0, a < < t2 < b.

If there is a control vector u U such that the corresponding equation (26) has a nontrivial
solution satisfying

y(tl) y’(t2) y"(t2) 0, a < t < t2 < b

and if x( t) is a time optimal solution with

x(c)=x’(d):x"(d)=O
and with d-c a minimum, then x(t) is a solution of (28) on [c, d].

Proof By the time optimality of x(t) and uniqueness of solutions of initial value
problems, x(t)O on (c, d]. Also, we may assume that x’()>0 so that x(t)>0 on
(c,d].

If q(t) is a solution of the adjoint system associated with x(t) by the Maximum
Principle, then

6(c) 63(c) 6,(d)=0
and Pl (t) 0 on c, d).

In order to apply the results of 2, we need to show that O3(t) 0 on (c, d). To
this end, let y( t) (yl( t), y( t), ya( t)) r, where yl(t)=a(t), y(t)=O_(t), and ya(t)
$1(t), so that y(t) is a solution of

(29) y’=B[u*(t)]y
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where

--u3(t -1 0

B[u(t)]= "-u2(t) 0 -1

-ul(t) 0 0

and y(c)=y.(c)=y3(d)=O. Our argument will now be concerned with showing
y,(t)=P3(t)O on (c, d).

We remark that from the optimality of x(t) and (t) and from the hypotheses,
3(d) y(d) O. For j 1, 2, 3, let

y(t) (y(t), y(t), y(t))7"

denote the solution of the initial value problem for (29) satisfying

(d) 6i, i= 1,2,3.

It follows that

y( t) C,y’( t) + C2y2( t),

for some C, C2. Moreover, since yl(d) 0, we have C1 0.
Now, it is also the case that y2(t)s 0 on (a, d). To see this, asume there exists

re (a, d) so that y(r)=0. Since y2(t) is a solution of (29), it follows that the adjoint
system @’=-A[u*(t)]t], has a solution r/(/) (/l(t), /2(t), r/3(t)) T, where r/ y, ,/2=

Y92-, 73 "-Yl2, satisfying

n(’r) n,(d)= r/3(d) 0.

This, in turn, implies there exists an optimal such solution to the adjoint equation, for
some u** U, and then by the Pontryagin Maximum Principle, there is an optimal
solution v(t) of (26), for u** U, such that

v( ,) v’( ,) v’() o,
where -=< r < -2-< d; this is a contradiction to the hypotheses of the theorem. Thus,
y2(t)#O on (a, d).

Now, if y(to) 3(to) 0, for some toe (c, d), since

W(y2(t), y(t)) [y( t)]2(y (t)/y( t))’,

(where W(.,.) denotes the Wronskian), and since y(c) =0 and y(c)SO, it follows
from Rolle’s theorem that W(y2(q),y(q))=0, for some c<t<to. But
W(y(q), y(t)) C W(y(h), y2(tl)), and since C # O, there are constants r, r2 such
that the solution

w( t) ry( t) + r2y2(t)

of (29) satisfies w(h) w2(h) wa(d) 0. This implies the adjoint system has a solution
fl(t) such that flz(q) 3(t) =/3(d) =0, where < t < d. This contradicts the optimal-
ity of d c. Therefore y(t) q3(t) 0 on (c, d).

From our assumption that x(t)> 0, it follows that x(t) is a solution of (27) or
(28) on [c, d]. It follows, in turn, from the constancy in sign of x’"(t) on [, d] and
from the boundary conditions x(c) x’(d) x"(d) =0, that x’"(t) > 0 on [c, d], so that
x(t) is a solution of (28) on [c, d].

For our remaining existence considerations, we appeal to results much like those
in the previous section. The next two theorems are proven in [8], [11].
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THEOREM 4.2. If there is at most one solution of the boundary value problem (1),
(13) on (a, b), then each of the boundary value problems (1), (11), and (1), (12) has at
most one solution on a, b ).

THEOREM 4.3. If (1), (13) has at most one solution on (a, b), then boundary value
problems for satisfying 11 ), (12), or (13) all have unique solutions on (a, b).

Although Theorem 4.2 is not the analogue ofTheorem 3.2, the converse ofTheorem
4.2 is true for linear equations.

LEMMA. Let Ly be a linear third order differential operator on an interval I. If.the
only solution of Ly- 0 satisfying either

y(tl) y’(t2) y’(t3) 0, tl t2 < t3,

or

y(t) y’(t2) y"(t3) 0, tl < t2 t3

is the trivial solution, then the only solution of Ly 0 satisfying

y(tl) y’(t2) y’(t3) 0, tl < t2 < t3

is y(t)=O.
Proof. Assume to the contrary that there is a nontrivial solution y(t) of Ly =0

satisfying y(t) y’(t2) y’(t3) 0, for some t < t2 < t3 belonging to I. By the
hypotheses, y’(tl) y"(t2) y"(t3) 0.

Now, by the hypotheses, there exists a unique solution z(t) of Ly 0 satisfying
Z(tl) z’(tl) 0 and z’(t2) + 1. Moreover, z’(t) 0, for all t2, t3]. It follows that
for some nonzero a R and - (t2, t3), the solution w(t) y(t) + cz(t) of Ly 0
satisfies w(t) w’(z) w"(-) 0; see 17]. This contradicts the hypotheses of the
lemma, and we conclude no such nontrivial solution y(t) exists.

For the case of boundary value problems (1), (11), (12), and (13), we can now
determine our optimal length subintervals on which all have unique solutions.

THEOREM 4.4. Let k min{h, r}, where h is the number obtained in Theorem 3.4,
and r > 0 is the smallest positive number such that there is a solution x(t) of the boundary
value problem for (28) satisfying

x(O)=x’(r)=x"(r)=O,

with x( t) > 0 on (0, r], or r +oo if no such solution exists. Then each of the boundary
value problems for (1) satisfying (11), (12), or (13) has a unique solution, provided
t3- tl < k. Again, this result is best possible.

Proof. We will show that solutions for (1), (13) are unique, when they exist. For
the purpose of contradiction, assume there are distinct solutions y(t) and z(t) of (1),
(13), where tl < k. Then w(t) y(t) z(t) is a nontrivial solution of linear equation
(26), for a suitable u U, and satisfies W(tl)= w’(t2)= w’(t3)--0. The above lemma
coupled with Theorem 4.2 implies (26), for u U, has a solution fl(t) satisfying either

(i) /3(z) =/3’(z) fl’(’2)=0, or
(ii) B(z)=B’(z)= B"(z2)=O

where t -< - < ’2 -< t3; consequently, there is a nontrivial optimal solution x(t) satisfying
either (27) or (28) and boundary conditions of the type respectively given in (i) or
(ii). Since t3-t < k, this is a contradiction.

Therefore, solutions of (1), (13) are unique, when they exist, and the conclusion
follows from Theorem 4.3.

We conclude this section by further restricting our above subinterval length k and
obtaining, in addition, subintervals on which there unique solutions of (1), (14). Such
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a problem was considered in [1], by first transforming the problem into a boundary
value problem for a second order integro-differential equation. Then successive
approximations were used in obtaining length bounds on intervals for existence of
unique solutions; these bounds were somewhat better than those obtained using
standard Contraction Mapping arguments. However, we will determine best length
subintervals for the existence of unique solutions of (1), (14), when the problems (1),
(11), (12), and (13) all have unique solutions.

THEOREM 4.5. Assume that for all vectors u U, the corresponding linear equation
(26) has only the trivial solution satisfying

X(tl) x’(t,) x’(t2) 0, a < t, < t2 b.

Ifthere is a control vector u U such that the corresponding equation (26) has a nontrivial
solution satisfying

y(tl) y"(tl) y’(t2) 0, a<tl<t2<b
and if x(t) is a time optimal solution with

x(c)=x"(c)=x’(d)=O

and with d-c a minimum, then x(t) is a solution of (27) on [c, d].
Proof. The proof proceeds much like those before. By optimality x’(t)#0 on

[c, d), and thus by Rolle’s theorem, x(t)#O on (c, d]. We may assume x(t)>0 on
(c, d]. Now if @(t) is the corresponding optimal solution of the adjoint system, then

2(c) 6,(d)= 03(d)=0.
Now, if 13 to) 0, for some toe [c, d), since @(d)= 3(d) 0, there is an optimal

solution z(t) of (26) satisfying

z() z’() z’() o,
for some to -< r < 7"2 d, a contradiction. Therefore, q3(t) # 0 on c, d), and x(t) is a
solution of (27) or (28).

Since x’"(t) is of constant sign on It, d], from the conditions x(c) x"(c)= x’(d)
0, we conclude x"’(t)< 0 on [c, d], and x(t) is a solution of (27) on [c, d].

For uniqueness implies existence we have the following.
LEMMA. Assume that solutions of (1), (13), and (1), (14) are unique, when they

exist on (a, b). Then boundary value problems for (1) satisfying 11 ), (12), (13), or (14)
all have unique solutions on a, b ).

Proof In light of Theorem 4.3, we need only prove the statement for (1), (14).
For this, let a < t < t2 < b and y, y2, Y3 R be given, and let y(t) be the solution of
the initial value problem for (1) satisfying

y(tl) Yl, Y’(t,) 0, y"(tl) y.

Now define

s=-{z’(t)lz(t) is a solution of (1) and Z(tl)=y(t), z"(tl)=y"(tl)}.

Using continuous dependence and the fact that solutions of (1), (11) and (1), (12)
exist, it can be shown by fairly standard arguments that S R; see [10]. Thus, by
choosing y3 E S, the corresponding solution z(t) of (1) satisfies (14).

THEOREM 4.6. Let min{k, s}, where k is the number obtained in Theorem 4.4,
and s > 0 is the smallest positive number such that there is a solution x( t) of the boundary
problem for (27) satisfying

x(O)=x"(O)=x’(s)=O,
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with x( t) > 0 on (0, s], or s +0o if no such solution exists. Then each of the boundary
value problemsfor 1 satisfying (11), (12), (13), or (14) has a unique solution, provided
t3- < L Again, this is best possible.

Proof. The proof is immediate from the last lemma and Theorem 4.4.

5. Best interval lengths for k k2 k3 1. In this section, we employ the results
of the previous sections in computing the best possible interval lengths of subintervals
of (a, b) on which the boundary value problems for (1) have unique solutions for the
case where the Lipschitz coefficients satisfy kl k2 k3 1. For some of the problems,
we compare our results with interval length bounds obtained by standard Contraction
Mapping methods. In a couple of cases, we will also compare our results with those
obtained in 1].

For each of the following cases, we let kl k --k --1.
(i) For our first case, we are concerned with solutions of conjugate boundary

value problems for (1); that is, conditions (2), (3), and (4). As a corollary to Theorem
1.1, Jackson [12] showed that the boundary value problems for (1) satisfying (2), (3),
or (4) all have unique solutions on any open subinterval of length less than h, where
x(t) is the solution of (27) satisfying the initial conditions

x(0) x’(0) 0, x"(0) 1

and h > 0 is the first positive number such that x(h) 0. In this case, Jackson obtained
the best possible result to be h 2.7353. On the other hand, from Contraction Mapping
bounds, interval lengths of only 1.1284 result.

(ii) In this case, we are concerned with right focal boundary value problems for
(1) satisfying conditions (5), (6), and (7). From Theorem 1.3, boundary value problems
for (1) satisfying (5), (6), or (7) all have unique solutions on open subintervals of
(a, b) of length less than k=min {rl, r)}, where x(t) is the solution of (27) satisfying
the initial conditions

x(0) x’(0) 0, x"(0) 1

and r > 0 is the first positive number such that x"(rl)=0, and y(t) is the solution of
(27) satisfying

y(0) 1, y’(0) y"(0) 0

and r2 > 0 is the first positive number such that y(r2)= 0. For this case, we obtain the
best subinterval length as k rl 1.03842. For comparison, using Contraction Mapping,
interval lengths are bounded by .672496, whereas Aftabizadeh and Wiener’s techniques
yielded lengths of .896861.

(iii) For this case, we consider the problems of 3. From Theorem 3.4, boundary
value problems for (1) satisfying (8), (9), or (10) have unique solutions on open
subintervals of (a, b) of length less than r/, where x(t) is the solution of (27) and satisfies

x(0) x’(0) 0, x"(0) 1,

and r/>0 is the first positive number such that x’(r/)=0. We find here that best
subinterval lengths are r/= 1.923239. Aftabizadeh and Wiener’s techniques yield interval
lengths bounded by 1.59542.

(iv) For this case, we are concerned with subinterval lengths for the problems of
4. For the case of problems (1)-(11), (12), or (13), all have unique solutions on

subintervals of (a, b) of length less than =min {l,/2}, where x(t) is the solution (27)
satisfying

x(0) x’(0) 0, x"(0) 1
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and 11 > 0 is the first number such that x(ll) 0, and y(t) is the solution of (27) satisfying

y(0) 1, y’(0) y"(0) 0

and 12 > 0 is the first positive number such that y(12)= 0 (to see this is the appropriate
initial value problem for lE, replace the solution x(t) in Theorem 4.4 by x(-t + r)).
We note that 11 r/from (iii) and 12 rE from (ii), and it follows that the best subinterval
length is lE 1.52374.

As we proved in Theorem 4.6, by restricting the subinterval lengths further, (1),
(14) also has a unique solution. In fact, for this special case of Lipschitz coefficients,
we have unique solutions of (1), (14) on intervals of length less than m, where x(t) is
the solution of (27) satisfying

x(0) x"(0) 0, x’(0) 1

and rn > 0 is the first number such that x’(rn) 0. For the best possible interval length,
m 1.10647.

Remark. For the calculations discussed in (ii)-(iv), Runge-Kutta methods were
used. However, in some cases, such as (ii), it is elementary to explicitly solve the
specified initial value problem; then applying Newton’s method to the appropriate
derivative of the solution, the optimal interval length can be determined.

REFERENCES

R. AFTABIZADEH AND J. WIENER, On the solutions of third order nonlinear boundary value problems,
in Proc. 6th International Conference on Nonlinear Analysis, V. Lakshmikantham, ed., North-
Holland, Amsterdam-New York, 1985, pp. 1-6.

[2] R. AGARWAL, Boundary value problemsfor higher order integro-differential equations, Nonlinear Anal.,
7 (1983), pp. 259-270.

[3] R. AGARWAL AND P. KRISHNAMOORTHY, On the uniqueness ofsolutions ofnonlinear boundary value
problems, J. Math. Phys. Sci., 10 (1976), pp. 17-31.

[4], Boundary value problems for nth order ordinary differential equations, Bull. Inst. Math. Acad.
Sinica, 7 (1979), pp. 211-230.

[5] P. BAILEY, L. SHAMPINE AND P. WALTMAN, Nonlinear Two Point Boundary Value Problems, Academic
Press, New York, 1968.

[6] D. BARR AND T. SHERMAN, Existence and uniqueness ofsolutions ofthree-point boundary valueproblems,
J. Differential Equations, 13 (1973), pp. 197-212.

[7] K. DAS AND B. LALLI, Boundary value problemfory" =f(x, y, y’, y"), J. Math. Anal. Appl., 81 (1981),
pp. 300-307.

[8] O. GOECKE AND J. HENDERSON, Uniqueness of solutions of right focal problems for third order

differential equations, Nonlinear Anal., 8 (1984), pp. 253-259.
[9] P. HARTMAN, On n-parameter families and interpolation problems for nonlinear ordinary differential

equations, Trans. Amer. Math. Soc., 154 (1971), pp. 201-226.
10] J. HENDERSON, Existence ofsolutions ofrightfocalpoint boundary valueproblemsfor ordinary differential

equations, Nonlinear Anal., 5 (1981), pp. 989-1002.
11 , Right (m; ml) focal boundary value problemsfor third order differential equations, J. Math.

Phys. Sci., 18 (1984), pp. 405-413.
12] L. JACKSON, Existence and uniqueness of solutions of boundary value problems for Lipschitz equations,

J. Differential Equations, 32 (1979), pp. 76-90.
13 ,Boundary valueproblemsfor Lipschitz equations, in Differential Equations, S. Ahmad, M. Keener

and A. C. Lazer, eds., Academic Press, New York, 1980, pp. 31-50.
14] G. KLAASEN, Existence theoremsfor boundary valueproblemsfor nth order ordinary differential equations,

Rocky Mountain J. Math., 3 (1973), pp. 457-472.
[15] P. KRISHNAMOORTHY, Three-point nonlinear boundary value problems, Proc. 16th Anniversary Sym-

posium, Inst. Math. Sci., Madras, 1978.
[16] E. LEE AND L. MARKUS, Foundations of Optimal Control Theory, John Wiley, New York, 1967.
17] W. LEIGHTON AND Z. NEHARI, On the oscillation ofsolutions ofself-adjoint linear differential equations

of the fourth order, Trans. Amer. Math. Soc., 89 (1958), pp. 325-37.



BVPs FOR LIPSCHITZ EQUATIONS 305

[18] Yu. MELENTSOVA AND G. MIL’SHTEIN, An optimal estimate of the interval on which a multipoint
boundary value problem possesses a solution, Differencial’nye Uravrnenija USSR, 10 (1974), pp.
1630-1641. (In Russian.) English translation in Differential Equations, 10 (1974), pp. 1257-1265.

19] Yu. MELENTSOVA, A best possible estimate of the nonoscillation intervalfor a linear differential equation
with coefficients bounded in Lr, Differencial’nye Uravrnenija USSR, 13 (1977), pp. 1776-1786. (In
Russian.) English translation in Differential Equations, 13 (1977), pp. 1236-1244.

[20] V. MOORTI AND J. GARNER, Existence and uniqueness theoremsfor three-point boundary valueproblems
for third order differential equations, J. Math. Anal. Appl., 70 (1979), pp. 370-385.



SIAM J. MATH. ANAL.
Vol. 18, No. 2, March 1987

(C) 1987 Society for Industrial and Applied Mathematics
003

ON THE RATE OF CONVERGENCE OF VISCOSITY SOLUTIONS
FOR BOUNDARY VALUE PROBLEMS*
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Abstract. A class of singularly perturbed boundary value problems is considered for viscosity tending
to zero. From compactness arguments it is known that the solutions converge to a limit function characterized
by an entropy inequality. We formulate an approximate entropy inequality (AEI) and use it to obtain the
order of convergence. The AEI is also used to obtain the order of convergence for monotone difference
schemes.
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1. Introduction. In this paper we establish a minimal rate of convergence theorem
for solutions to the singularly perturbed boundary value problem

(1.1)

d2 x-e-x2u, + f(x, u)+ b(x, u)=0,

u(O) ’o, u(O)

as the parameter e > 0 tends to zero. Throughout we impose no special conditions on
f(x, u) or b(x, u) other than that they are smooth and satisfy

0
(1.2) --b(x,u)-

Ou

02

OuOx
f(x’ u) >_-/x>O

for all (x, u)e [0, 1]x I where I is an a priori interval determined from the maximum
principle.

It is well known that for positive e, condition (1.2) implies that the boundary
value problem (1.1) has a unique smooth solution; see [8], [9] for results in this direction.

As e tends to zero, solutions to (1.1) need not converge to a continuous function.
Therefore, it is natural to seek a rate of convergence result in an integral sense. Below
we show that there exists a function BV such that for sufficiently small e

(1.3) lu t dx <= C’v/-,
where the constant Cv depends on the boundary data 3’0 and ,1 In general the rate
above is not valid unless condition (1.2) is imposed. That is to say there are examples
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1The interested reader can greatly relax the smoothness assumption we make on the coefficients of
(1.1). We consider these details uninteresting however, and we take f(x, u) and b(x, u) as smooth as the
specified number of derivatives indicate.
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of boundary value problems of theform (1.1) that violate (1.2) (they must satisfy an
estimate like (1.2) with/z =0) and satisfy

’l

u 1 dx >= const. e q

o

for any 1/2>-q > 0. Moreover, given that condition (1.2) is satisfied, the L rate result
(1.3) cannot be improved unless further conditions are imposed. That is, there are
examples that satisfy condition (1.2) and satisfy

1 dx >= const. ,/7.
o

Some examples that demonstrate the sharpness of our rate result are presented at the
end of this section.

The main contribution of this paper is to extend the techniques developed in [6],
[13] to include problems with Dirichlet boundary conditions. The notion of an
"approximate entropy inequality (AEI)," first introduced in the study of single con-
servation laws, is suitably modified to include boundary value problems of the type
studied here. Specifically, what we show is that if a parameterized family of functions,
say {/)h}h>0, satisfies the uniform estimate

var (Vh) <= const.,
together with an h-dependent AEI, then Vh satisfies (1.3) with h taking the place of
e. We have intentionally been vague about the precise definition of the family {Vh)h>0

since it is shown below that besides representing the family of solutions to (1.1) it can
also represent a family of certain numerical approximations. In the application to
numerical approximations Vh denotes an interpolation of grid values generated by a
finite difference scheme, and h denotes a measure of grid refinement.

In 2 the characterizing "entropy inequality" for the limit of solutions to (1.1) is
stated; see [2], [3], [5], [14] for a thorough development of these ideas. The "approxi-
mate entropy inequality" is also defined in this section, and solutions of (1.1) are
shown to satisfy it. The abstract rate of convergence theorem implied by the AEI is
also stated in 2. In 3 the abstract rate of convergence theorem, stated in 2, is
proved. Finally in 4 the rate of convergence theorem is applied to numerical approxi-
mations generated by certain types of finite difference schemes.

We should mention that most of the results of this paper can be routinely extended
to quasilinear Dirichlet problems in many space dimensions. This will be the topic of
future work; see [12], where somewhat parallel techniques are applied to nonlinear
problems with boundary conditions of Neumann type.

We conclude this section by constructing some nontrivial examples of the type
mentioned above. First we show that if (1.2) is violated then an arbitrarily slow L
rate of convergence is possible. To this end, consider the boundary value problem

d2 d o,
(1.4)

u(0) 0, u(1) 3,> 0,

where we take p > 1. Clearly (1.4) violates (1.2). By [8, Thm. 4] the solutions of (1.4)
tend uniformly to /on any interval [i5, 1 ], 1 > i5 > 0, as e tends to zero. Therefore, we
wish to examine

(1.5) lu TI dx.
o
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With this end in mind we first consider

(1.6)

d 2 d
e dx-- ve +-x y v, )2p o,

v(0)=0, v()=%

which can be integrated exactly, giving

(1.7) v(x)=-(x/e),

where

(w)= (v-s)-"ds.

Since v.(x)+y-v(1) is an upper solution for (1.4), it follows that this function is
-> u(x); thus

y-u(x)>= v(1)-v,(x)>-O,

which implies

(1.8) lug- 1 dx >= (v,(1)-v,(x)) dx.
o

Interchanging the order of integration and using (1.7), we have that the right-hand
side of (1.8) is given by

e P(w) dw.
dO

Finally, a simple calculation will reveal that

e (w) dw
2p-2 -1

which therefore shows that

’lU,-l-->c.(/"-),
dx

1/2p--1

+o(),

as e tends to zero.
To establish the fact, given only condition (1.2), our rate result (1.3) is the best

possible, we note that the trivial example

d2

-e
dxZ Ue + u --0,

u(0) 0, u(1) 1,

satisfies the x/L rate of convergence exactly. A less trivial example is given by

d2 d
-e dxU +-x((1-x)u)+2u =O

(1.9)
u(0) 0, u(1) 1.

To obtain the sharp / rate for example (1.9) we apply the "shooting method."
(Although this method is less general than the techniques we present in the following
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sections, it takes into account specific properties of f(x, u) and often leads to sharper
results than ours; see [4] for applications of differential inequalities.) From our results
below, we expect that limo u 0. The maximum principle together with integrating
(1.9) gives us that

(1.10) [u-0l dx=- xU(1)-xxU(0)
By applying the shooting method, it is easy to conclude that for all e > 0 sufficiently
small, we have

1 d 3
<u(1)<24-=ax =4-?

and

d
0xu(0) = 1.

Inserting these inequalities into (1.10) we finally get

__v7 o()<_- lug-01 ax=<
4

which establishes our L rate for example (1.9).

2. The approximate entropy inequality. Throughout this paper the following nota-
tion is used:

(i) BV denotes the space of functions u:[0, 1]-->R of bounded variation.
(ii) var (u) is the total variation of u e BV.
(iii) C7 denotes the space of functions b "R --> R which are infinitely ditterentiable

and nonnegative.
The sign-function is defined by

-1 if u <0,
sgn(u)= 0 if u=0,

1 if u>0,

and

u/lul forll>_- ,
sgn(u)-

u/ forlul<
denotes a Lipschitz continuous approximation to sgn (u) for > 0. We furthermore use

Ilulloo= sup {lu(x)l: O<= x<-_ l} forut[0, 1],

Ilulll lu(x)l dx for u e L110, 11.

For simplicity we assume that f(x, u)e C2([0, 1]xR) and b(x, u)e C([0, 1]xN)
although we recognize that weaker conditions are suflScient. The essential assumption
is nevertheless condition (1.2), and it will be assumed throughout.

In the next proposition we state some known results concerning the second order
boundary value problem (1.1); see [2], [9]. These facts are relevant in what follows.



310 JENS LORENZ AND RICHARD SANDERS

PROPOSITION 2.1. For all e > 0, (1.1) has a unique smooth solution u. Moreover,
there exists a constant c, not depending on e, such that

Ilull/var(u)<-c.
Finally, there exists a unique (a.e.) function fi BV such that

as e,O.
It is known that the limit t BV is the only (a.e.) BV function satisfying the

following so-called "entropy inequality":

For all kandall bC

sgn(-k) -(f(x, )-f(x, k))+ b(x, a)+ f(x, k) dx

+sgn (- k){f(1, a(-))-f(, )}()
-sgn (o- k){f(0, a(0+))-f(0, k)}4(0) N 0.

We now state what we call the approximate entropy inequality" (or AEI) for a
parameterized family of BV functions {Vh}o<h. Below the family of solutions to
(1.1) are shown to satisfy the AEI, and in 4 ceain numerical approximations are
shown to satisfy the AEI as well.

DEFINITION 2.1. A family of BV functions {Vh}o<.h is said to satisfy the AEI
if there exists nonnegative functions

R, R, ReBV, 0<hNho,

with the propeies that
A. There exists a constant c independent of 0 < h N ho and 0 N N 1 such that

A0. (s) sc(h+),

j.A. (s) sc(h+),
1-

A2. R(s) ds ch;
0

B. For all k e N, all e C and almost every , e (0, 1) we have

sgn (vh-k) -(f(x, Vh)--f(x, k))+ b(x, Vh)+ f(x, k) dx

+ sgn 1- k){f(, Vh( )) --f( 1, k)}( 1

-sgn (o-k){f(, vh())-f(O, k)}(0)

In 3 we prove the following theorem.
THEOREM 2.1. Lee {Vh} saisfy the AI and assume tha there exists a constan C

independen of 0 < h ho such that v I1 + var (Vh) C1. en, chere exiscs a constant

C independen of 0 < h ho such tha

where lim,o u.
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The result of Theorem 2.1 applies directly to the family of solutions to (1.1).
COROLLARY. Thefamily {u}>o ofsolutions to (1.1) satisfies the AEI; consequently

we have the estimate

Ilu - ll_-<

Proof. Multiply the identity

O= +-x(f(x, u)-f(x, k))+ b(x, u)+ f(x, k)

by sgn (u- k), e C, integrate over O_-<x -< 1, apply integration by pas, use the
estimate

sgn(u-k)u dxO

and let 0 to find with Lebesgue’s dominated convergence theorem that

sgn (u-k) -(f(x, u)-f(x, k))+ b(x, u)+ f(x, k) dx

+sgn(-k) /(1, )-f(1, k)-eu(1) (1)

f
-sAn (yo- k) f(0, Yo) -f(0, k)

_-<-e sgn (u-k) u dx.

(o)

Integrating the differential equation (1.1) we make it evident that the boundary terms
above can be written as

and

sAn (Yl-k) (f(fl, u(fl))-f(1, k))-e-x(fl)- b(x, u) dx 6(1),

u(a))-f(O, k))-e--x(a)+ b(x, u) dx (0).sAn (To k) ((f(a,
Inserting these identities into the inequality above we easily find that u satisfies the

R(a)=e

Rl(fl) e

AEI with

R(x)=e
d

+ Ib(x, u)l dx,

+

Using the result of Proposition 2.1 we finally conclude that R, RI and R above
satisfy properties A0, A1 and A2 of Definition 2.1 with e taking the role of h.
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3. Proof of Theorem 2.1. Let {u}>o denote the family of solutions to (1.1), and
let {Vh}h>O denote a family of functions which have uniformly bounded variation and
which satisfy the AEI. Moreover, let R, (resp. Rh), with j=O, 1,2, represent the
estimating functions of the AEI of Definition 2.1 for {u}>o, (resp. {Vh}h>O). The proof
of Theorem 2.1 is essentially a test function argument with a particular family of test
functions of the form

(x) :6
where C7 is symmetric, (x) dx= 1 and supp () (-1, 1). Now consider the
AEI of Definition 2.1 applied to u(x) with k Vh(y) and the test function replaced
by (x) (x-y) and with a y in R,j =0, 1. Integrate the resulting inequality
from y 0 to y 1. Since Vh also satisfies the AEI, the same procedure can be done
as above with the roles of vn and u reversed. Adding both resulting inequalities
together we obtain

sgn (u(x)-vh(y)) (b(x, u(x))-b(y, Vh(y)))

(3.1)

+ (xf(X, Vh(y)) --yf(y, U(X))) ) b(x y) dx dy

+ sgn ((u(x)-vh(y)){(f(x, Vh(y))--f(y, Vh(y)))

d
+(f(y, u(xll-f(x, u(xt(x-y xy+ r(, h, - ro(, h,

<- P(6)+ P’h(6)+ P(6)+ P(6)+ P’(6)+ P(6),
where

(3.2)

(3.3)

T(e, h, 6)= sgn (y- Vh(y)){f(y, u(y))--f(1, Vh(y))}qb(1 --y) dy

+ sgn (y-u(x)){f(x, Vh(X))--f(1, U(X))}(1--X) dx,
o

To(e, h, 6)= sgn (yo-vh(y)){f(y, u(y))-f(O, v(y))}4(y) dy

+ sgn (Yo-u(x)){f(x, vh(x))-f(O, u(x))} (x) dx,
o

and

(3.4) P(6) Rh(X)(x) dx,

(3.5) P(6) Rh(X)(1-- x) dx,

(3.6) P(6)= R2h(y) -xb(x-y) dxdy,

and a similar expression for P(6). The proof is divided into basically the following
four lemmas.
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LEMMA 3.1. There is a constant c independent of e > O, h > O, and t > 0 such that
we have

r.h.s.<- c +-d+ t

where r.h.s, is the right-hand side of (3.1).
LEMMA 3.2. There is another constant c as above such that we have

ro(,h,_-<c ++ -r(,h,_-<c ++
where To and T are defined in (3.2), (3.3).

LEMMA 3.3. There is a constant c independent ofpositive e, h and 5 such that

d
+(f(, u(x-f(x, u(xl4(x- ax c.

LEMMA 3.4. ere is a constant c independent ofpositive e, h, 1/2 such that

Io’
N2 sgn (u(x)-vh(y)) (b(x, u(x))-b(y, vh(y)))

Given the results above, the final result follows by first noting that, along with
condition (1.2), they imply

o

b(x,u(xl- f(x,u(x b(x,v(x-f(x,v(x ax

++
with independent of positive e, h and N . Sending e to zero, we conclude that

and choosing proves the theorem.
ProofofLemma 3.1. The terms to be estimated are given in (3.4)-(3.6). Note that

and
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where the first inequality above follows from the definition Rh(X) and (x), and the
second follows from the definition of REh(y) and the fact that

-x4.(Y-X) dx<-- 4’ dz <- C/&

Similar estimates hold for the remaining terms on the right-hand side of (3.1).
ProofofLemma 3.2. We only estimate To since -T1 can be treated similarly. Note

that To can be written as

To(e, h, )= {sgn (yo- Vh)--sgn (yo-- U)}

{(f(x, u)-f(x, yo)) + (f(x, yo)-f(x, Vh))I(X) dx

+ sgn (yo--Vh){f(x, Vh)--f(O, Vh)}(X) dx
o

+ sgn (o-u){f(x, u)-f(O, u)}4(x) dx.
o

Clearly, the second two terms above can be bounded above by C& The first term above
is bounded above by

[If(x, u)-f(x, o)1 +sgn (u-o)(f(x, u)-f(x, o))](x) dx

(3.7)
+ [f(x, Vh)--f(x, o)1 +sgn (vh--o)(f(x, vh)-f(x, o))](x) dx.

We estimate the first integral above only since the second integral can be estimated
similarly. Return now to the AEI applied to u, and set k o and suppose there we
replace the test function (x) with a test function approaching

1, X < Xo,
H(x-xo)=

O, xxo.
Doing so we find that for almost every xo e (0, 1) the AEI implies that

sgn (u(xo)-o){/(xo, u(xo))-f(xo, o)} N R(xo) + R(xo) + cxo
(3.a

e(xo.

To find an estimate for the integral in question, we note the obvious implication: If
QN e then I1+ QN2e. Therefore, applying (3.8) (and the analogous estimate for vh)
to (3.7) shows that (3.7) is bounded above by

[e(xl+e(xl]4(xx.
o

Finally, applying the simple estimates of the previous lemma completes the proof of
the present lemma.

The proof of Lemma 3.3 is routine and is left to the reader.
Proof ofLemma 3.4. The proof of this lemma can be given for fixed e > 0, h > 0,

using only condition (1.2) and the uniform estimate
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For convenience we omit the subscripts e and h. Condition (1.2) and a simple
rearrangement gives us that

(b(y, u(y))--yf(y, u(y)))- b(y, v(y))- f(y, v(y))

-<sgn (u(x)-v(y)){(b(x, u(x))-b(y, v(y)))

+ (xf(x v(y)) -yf(y, u(x))) }
+ Llx-yl + L=lu(x)- u(y)l,

where

L1 max {
L2 max { _L b(x, ,)ou

02

-xf x, u) u6/,x [0, 1]},
02

f(x, u)
OxOu

,uI,x[O, 1]}.
Furthermore, it is obvious that for all 0 =< y-< 1 and all 1/2-> 3 > 0

6(x-y) _->1/2.dx

Therefore

_0

<- 2L, Ix yl4,6(x y) dx dy + 2L2 [u(x) u(y)lch6(x y) dx dy

+ 2 sgn (u(x)- v(y))

(b(x, u(x))-b(y, v(y)))+ -xf(X, v(y))-yf(y, u(x)) dp6(x-y) dxdy.

To complete the proof we need only estimate the second term on the right-hand side
above since the other terms have been dealt with already To see that

fot fo’ lU(X) u(y),4)6(x y) dx dy <- C,

extend the smooth function u(x) to the whole real line by u(x)= u(0) for x < 0 and
u (x) u (1) for x > 1. Then for each 0 =< y <- 1 we have

lu(x)- u(y)14,(x- y) dx <-_ lu’(s)14(x- y) dx ds
o dy--6 ,dy--6

lu’(y + s)l ds.
-6
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Integrating this inequality with respect to y and interchanging the order of integration
makes the desired result obvious.

4. Application to difference schemes. In this section we give another application
of the AEI. We show that certain finite ditterence schemes yield approximations that
satisfy the AEI; hence, according to Theorem 2.1, they satisfy the x/L rate of
convergence. We begin with a few preliminaries.

Partition the interval [0, 1] into subintervals/- [xj, Xj/l], 0-<j -< J-1, with Xo 0
and xj 1, and define Axj- (xj/l-x). Define the approximate solution Vh by

J-1

v(x)= Z ux,(x),
j=O

where X is the characteristic function of the interval/j. We shall consider a class of
finite difference schemes of the form

A+F(x, u, U_l)+Ax2B(x,xj+l, u) 0, O<-_j<-J-1,
(4.1)

U--1 ’)/0, g/J-= "}/1,

where the forward difference operator A+ is defined by A+a=a+-a and
B(x, xj+, u) is given by

0 1
(4.2) B(xl, Xj+I, U)-- b(xl, u)+-xf(X, u)--x(f(xi+l, u)-f(xj, u)).

The numerical flux function F(., .,.) of (4.1) is assumed throughout to satisfy the
following properties:

F1. F(x, u, u)=f(x, u).
F2a. u---> F(x, u, v) is nonincreasing for all x [0, 1], v, u .
F2b. v--> F(x, u, v) is nondecreasing for all x [0, 1], u, v .
F3. F(x, u, v) is Lipschitz continuous in x, u, v.2

We now give three examples of numerical flux functions that satisfy the properties
above.

1) Lax-Friedrichs [7]:

F(x, u, v)=1/2{f(x, u)+f(x, v)-A(u-v)},

where h >-II(o/ou)f(x, u)ll.
2) Godunov [10]:

m__<a_<x f(x, s) if u =< v,
F(x, u, v)

| m<=}n<= f(x, s) if v =< u.

3) Engquist-Osher 1 ], 11 ].

Io’F(x, u, v) min f(x, s), 0 ds + max f(x, s), 0 ds +f(x, 0).

The following theorem is a straightforward extension of known results [1], [8].

Assumption F3 need only be valid in the a priori interval determined by the maximum principle.
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THEOREM 4.1. Under properties F1, F2, and F3, and condition (1.2) of 1, the
difference scheme (4.1) has a unique solution for every grid. Moreover, there exists a
constant c independent of the grid such that

II/ Ear (v) _<- c.

By using the results of Theorem 4.1 we next prove the following.
THEOREM 4.2. Under the conditions oftheprevious theorem, thefamily ofapproxima-

tions { Vh } satisfy the AEI consequently by Theorem 2.1 they satisfy the rate ofconvergence

where h max Axj, ti limo u andfor some constant c which does not depend on h.
Proof of Theorem 4.2. For arbitrary k R, b C and 0_-< c,/3 _-< 1, we estimate

the quantity

sgn (vh-k) -(f(x, vh)-f(x, k))4+(b(x, v)+ f(x, k))4 dx

(4.3) +sgn (fi- k){f(, Vh(fl))--f(1, k)}4(1)

-sgn (/o- k){f(, vh(o))-f(O, k)}4(0),

where vh is the piecewise constant interpolation of grid values generated by (4.1).
Using the explicit form of v and integration by parts we find that the integral term
in (4.3) is given by

Jl sgn (uj-k) -(f(x+, j)--f(Xj+l, k))(Xj+l)-t-(f(xj, j)-f(xj,
j=o

(4.4)
+ f(x, u)+ b(x, u) 4(x) x

Rearranging terms and then adding and subtracting F(Xj+l, j+l, j) and F(x, u, u_)
into this result we get that (4.4) equals

J

2 sgn (u_-k)[-(F(x, u,.u_)-f(x, k))](x)
j=l

J--1

+ sgn (u-k)[(F(x, u, u_)-f(x, k))](x)
j=0

J-1

+ sgn (u-k)[(F(X+l, U+l, u)-f(x+, u))](x+,)
(4.5)

=o
J-1

+ E sgn (.-k)[-(F(x...._.)-f(x.
j=O

+ 2 sgn (u-k) f(x, u)+b(x, u) (x) dx
j=0 ox]

I + II + III + IV+ V.

Before proceeding we give two simple lemmas.
LMMA 4.1. For any three numbers a, b, ken and xe[0, 1] we have

{sgn (b- k)-sgn (a-k)}{F(x, b, a)-f(x, k)} N 0.

Proo The quantity above can be written as

{...}{F(x, b, a)-F(x, b, k)}+{...}{F(x, b, k)-F(x, k, k)},
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where {. .} {sgn (b k) -sgn (a k)} and where we have used property F1 to write
f(x, k)- F(x, k, k). We can now bound this above by

IF(x, b, a)- F(x, b, k)[-sgn (a- k){F(x, b, a)-F(x, b, k)}

+sgn (b- k){F(x, b, k)- F(x, k, k)}+lF(x b, k)- F(x, k, k) I.
Finally, using properties F2a and F2b shows us that this quantity is equal to zero.

LEMMA 4.2. If H(x) C 1, (x) C 1, then

x

/’
H(x)6(x) dx-Ax2H(x2)6(x)

NAx2 g I(s)l ds+llnll (s) ds
xj xj

Proo The left-hand side of the inequality above can be written as

fx*’ [(H(x)- H(x))6(x) + H(x2)(6(x)- 6(x))] dx

which is bounded above by

x H I(x)l x+ IIHII () x.
xj xj

The final estimate is now obvious.
Continuing the proof of the theorem, it is clear with the result of Lemma 4.1 that

the sums of terms I and II of (4.5) is bounded above by

I + II <_- -sgn (Uj_ k){F(1, ")’1,/,/J-l) -f(1, k)}(1)
+sgn (Uo-k){F(O, Uo, 3’o)-f(O, k)}(O).

Moreover, the sum of III and IV can be rewritten as
J-1

2 sgn (uj-k){F(X+l, /’/j+l, u2)-f(xj+,, llj)}((Xj+l)--(Xj))
j=O

J-1

+ E sgn (uj-k){(F(X+l, U+l, u)-F(xj, u, Ui_l))
j=O

--(f(Xj+l, ul)-f(xj, uj))}(x2),
and using Lemma 4.2 we see that term V of (4.5) can be bounded above by

Y. sgn (uj-k) f(x2, u2)+b(x2, u2) Axj
j=O

+ h H(x, v) + IIg(x, v)ll I4,<x)l+ (x) dx,

where H(x, u)=(O/Ox)f(x, u)+ b(x, u) and h =max Ax2. Combining these estimates
and using the difference scheme (4.1) we conclude that

sgn (Vh--k) --(f(x, Vh)--f(x, k))x+(b(x, Vh)+ f(x, k)) dx
o

(4.6)
=<-sgn (u_,-k){F(1,)’1, u_,)-f(1, k)}(1)

+sgn (Uo-k){F(O, Uo, ),o)-f(O, k)}th(O)

+ ’. LlU2+l- u2l Ixl dx + h const. (11 +lCxl) dx
j=O xj
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where L is the Lipschitz constant, given by

L=sop{’F(x’u’v)-F(x’v’v)’
lu-vl

u, vI,x[O, 1]

Next we include the boundary terms of the AEI into the inequality above. Using
the fact that Lemma 4.1 implies that

-sgn (uj-1- k){F(1, Yl, uj-1)-f(1, k)} <- -sgn (Yl- k){F(1, Yl, uj-1)-f(1, k)}

and

sgn (Uo-k){F(0, Uo, To)=-f(0, k)}-<sgn (To-k){F(0, Uo, To)-f(0, k)},

we find that for a, fl (0, 1)

sgn (vh-k) -(f(x, Vh)--f(x, k))+ b(x, Vh)+ f(x, k) dx

(4.7)
+sgn (l- k){f(, vh())-f(1, k)}(1)

-sgn (o-k){f(, Vh())--f(O, k)}4(0)

is bounded above by

sgn (-k){f(, Vh())--F(1, , uj_)}(1)

-sgn (o-k){f(, vh())--F(O, uo, o)}(0)
(4.8)

1 {SO }+ L lU;+l- ul 16xl dx + h const. (161 + 161) dx
j=0 x

We estimate the first boundary term above only since the second can be estimated in
a similar way. Sum (4.1) from j =jl to J 1 where jl is chosen so that x; fl < x;+l.
Doing so, we substitute the result into the first term of (4.8) and find that

sgn (yl-k)(f(fl, Vh(fl))--F(1, y,, Uj_l)}

lux,- us,_,l+ f(x, u) I -xs,l+ E In(xs, xs+,, u)lax
=Jl

lu,-,s,_,l + const. (h+ 1-).

Now define

and note that

J-’ lUj+l- 1H(x)= E
;=o Ax; X, x

J-1

Hh(X) dx= Y lu+,-ul<=var(vh).
j=0

Inserting this and the estimate above into (4.8) we have that (4.7) is bounded above by

const. (hHh()+ 1 -)8 + h)(1)+(hHh(a)+ oz + h)(0)+ h (Hh(X)+ 1)11 dx

Note that above we have used the fact that

I@(x)l ax <-_ I@.(x)l ax + (o).
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Reading off the terms Rh(a), Rh(fl) and Rh(X) from above one easily establishes that
they satisfy properties A0, A1 and A2 of Definition 2.1. Therefore the families of
approximate solutions generated by finite difference schemes of the form (4.1) satisfy
the AEI of Definition 2.1. This completes the proof of Theorem 4.2.
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Abstract. The quasilinear singular perturbation problem ey" f(x, y)y’ + g(x, y), y(- 1, e) A, y( 1, e

B is studied under the principal assumption that f(0, y)- 0 for all y, i.e., that x- 0 is a turning point for
the function f. Under explicit conditions on f, g, A and B, solutions are shown to exhibit one of two types
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and examples are discussed in detail.

Key words, singular perturbation, quasilinear boundary value problems, turning points, differential
inequalities, spike layer behavior, nonmonotone transition layer behavior
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1. Introduction. In this paper we study the asymptotic behavior (as e->0) of
solutions of the singularly perturbed quasilinear boundary value problem

ey"=f(x, y)y’+ g(x, y), -1 < x < 1,
(P1)

y(-1, e)=A, y(1, e)=B

where e is a small parameter, f and g are smooth functions, f(0, y) 0 for all y (i.e.,
x 0 is a turning point), and A and B are prescribed. In particular, we are interested
in establishing the existence, for e sufficiently small, of a solution of problem (P1)
which exhibits spike layer behavior and a solution which exhibits nonmonotone
transition layer behavior at x-0. We say that a solution y-y(x, e) of problem (P1)
exhibits spike layer behavior at x 0 if

e)=u(x) for-l<x<O,O<x<l,
lim y(x,
-,o [ s for x 0

where u_ ui(x) is a certain solution of the reduced problem

0 =f(x, u)u’+ g(x, u), -1 < x < 1,

u(-1)=A (or u(1) B),

and s UL(0). Similarly, we say that y(x, e) exhibits nonmonotone transition layer
behavior if

UL(X) for-l<x<0,
lim y(x, e) for x 0,
-.o

[u(x) for0<x<l

where u and UR are certain solutions of the reduced problems

0 =f(x, u)u’+g(x, u), u(-1) A,
0 =f(x, u)u’+ g(x, u), u(1) B,

respectively, and s is such that s > max {ut,(O), UR(O)} or s <min {u/(O), UR(O)}.
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An example of a function exhibiting spike layer behavior is yl(X, e) sech2 (X/e).
We note that y(x, e)-0 for x 0 and yl(0, e)= 1. The function Yl is sketched in Fig. 1.

Interior nonmonotone transition layer behavior is exemplified by the function
y2(x, e) =1/2tanh (x/e)+sech (x/e). We note that y(x, e)--1/2 for x<0, y(x, e)-1/2
for x > 0, and y(0, e)= 1. The function y_ is sketched in Fig. 2.

The existence of a solution of problem (P1) exhibiting interior layer behavior
depends upon the behavior of the function f near the turning point x 0. In other
words, interior layer behavior is possible only if the function f changes its algebraic
sign in passing through zero. Howes [8] showed that this is true for shock layer
behavior, and we shall show that this is true for spike and nonmonotone transition
layer behavior. If f does not change sign across zero, then Howes has shown that
problem (P1) admits only solutions which exhibit boundary layer behavior at one or
both of the endpoints.

Physically, problem (P) may be interpreted as a model for a one-dimensional,
steady-state, reaction-diffusion-convection system. In this connection, e is a measure
of the dittusivity of the medium, the function f is a measure of convection, and the

-1

FIG. 1. Graph ofy(x)=sech (x/e).

-1
-1 0

FIG. 2. Graph ofy2(x)=1/2tanh (x/e)+sech (x/e).
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function g is a measure of the effect of reaction and of sources in the medium. Under
this interpretation, spike layer solutions of problem (P1) are reasonable. Since the
convection term is zero at x 0, the dominant mechanism of transport of substance
or heat away from x 0 is diffusion, which is a slow process since the diffusivity of
the medium is small. Hence, if there is a source or a reaction at x 0, a buildup of
substance or of heat is likely.

Problem (P1) may also be interpreted as a model for a nonlinear mass-spring
system, or, more generally, simply as a formulation of Newton’s Second Law of Motion.
In this connection, x is time, e is the mass of the object, f is a measure of the damping
effect of the medium and g is a nonlinear restoring force.

Nonmonotone transition layer behavior has been observed in some problems
arising in gas dynamics. Indeed, Zel’dovich and Raizer [16] have observed such
behavior in their studies of entropy changes across shock fronts in gases. Majda [12]
has also found such behavior in solutions of a quasilinear equation modeling dynamic
combustion in gases.

A number of authors have studied problem (P1) under various assumptions.
O’Malley 14] and Ackerberg and O’Malley 1 have provided a theory for the boundary
and shock layer behavior of solutions of problem (P1) for the case in which f is
independent of y and g is a linear function of y. Dorr [6] has extended the results of
the linear theory to quasilinear equations of the form

ey" x"F(x, y)y’, -1 < x < 1,

where n_-> 1. Most recently, Howes [8], [9] has provided a theory for the boundary
and shock layer behavior of solutions of the full quasilinear problem (P).

The only published studies ofthe spike and nonmonotone transition layer behavior
of solutions of problem (P) concern the case f(x, y)=O for all x in [-1, 1] and for
all y. In particular, O’Malley [15] has studied the autonomous problem

ey"= g(y), y(-1, e)= A, y(1, e): B,

using a phase-plane argument. In his work, O’Malley made the astonishing discovery
that this problem has solutions that exhibit spike layer behavior at each rational point
in (-1, 1). DeSanti [5] has generalized the results of O’Malley to the nonautonomous
case, i.e., g g(x, y), and has given a method for determining the location of the spike
layer as well as the height of the spike. We make extensive use of these results in this
paper.

To study the asymptotic behavior of solutions of problem (P), we use a method
based on the theory of differential inequalities. This theory is due originally to Nagumo
[13] and Brish [3], but most recently has been described by Jackson [11] and Bernfeld
and Lakshmikantham [2]. We describe the method in the next section.

2. Mathematical preliminaries. Throughout the paper we use standard asymptotic
terminology. We say that the function h(x, e) is O(e n) if lim_o h(x, e)/e exists. In
other words, h(x, e) is O(e ") if h behaves like e as e 0. We say that the function
h(x, e) is transcendentally small if h(x, e) is O(e) for every n. Thus a transcendentally
small term (abbreviated T.S.T.) behaves like exp (-k/e ’) for some k, v > 0 as e-0.
Finally, we say that a function h(x, e) approaches zero exponentially as e0 if
[h(x, e) < M exp (-r/(x, e)) where M is a positive constant and lim_.o r/(x, e)= +oo.
In a region in which r/ is bounded away from zero, a term that decays exponentially
to zero as e 0 is also a transcendentally small term.
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The basic mathematical tool we use in our study of problem (P1) is a theorem
due to Nagumo [13] concerning the boundary value problem

y" =f(x, y)y’+ g(x, y), a < x < b,
(P)

y(a)=A, y(b)--B,

and generalizations of this problem.
THEOREM 2.1 (Nagumo [13]). Letfand g be of class C) on (-1, 1)x R. Suppose

that there exist functions a a(x) and (x) of class C on (a, b) such that

ce">=f(x,a)a’+g(x, ce), a<x<b,

a(a)<-a, a(b)<-,

fl"-<-f(x, fl fl’ + g(x, fl ), a < x < b,

(a)>-a, (b)>-,

a(x)<=(x), a<-x<-_b.

Then there exists a solution y y(x) of (P) such that a(x) <= y(x) <= (x) for a <= x <- b.
Theorem 2.1 is valid if a and/3 are not differentiable at a finite number of points

in (a, b), provided that a and/3 behave appropriately near these points. The behavior
required at a point Xo of nondifferentiability is that the inequalities Da(Xo) <= Dra(Xo)
and D(Xo) > D(Xo) are satisfied, where D and D denote differentiation on the
left and right, respectively. It is this stronger version of Nagumo’s Theorem, proved
in Jackson 11 and in Bernfeld and Lakshmikantham [2], that we use in the following
sections.

3. Spike layer theory. In this section we use the method of differential inequalities
described in the previous section to deduce the existence of a spike layer solution of
the problem

ey" =f(x, y)y’+ g(x, y),

y(-1, e) =A, y(1, e)=B

when f has a certain type of turning point at x O. Our method allows the asymptotic
determination of the spike height as well as the construction of O(e)approximate
solutions that serve as upper and lower bounds on the exact solutions of problem (P).
The principal result is the following.

THEOREM 3.1. Assume
(a) the functions f and g are of class C) on [-1, 1]xR, and f(O, y)=O for all y;
(b) there exists a function u= u(x) ofclass C2) on [-1, 1] satisfying the reduced

problem

0 =f(x, u)u’+ g(x, u),

u(-1) A, u(-1)> B;

(c) fy(x, u(x))u’(x) + g(x, u(x)) > Ka > 0 for some K > 0 and for all x in
(-1, 1);

(d) g(0, u(0)) 0;
(e) there exists a number s uc(O) such that [s u(0)]g(0, s) < 0, J(s) 0 and

Is uc(O)]J(z) > 0 for u(O) < z < s or s < z < u(O), where Jc(z) o) g(O, u) du;
(f) fy(1, y)u’(1)+gy(1, y)> K:for some K>0 and for B<= y<-u,(1);
(g) f(0, y) < 0 for urn(O) <= y <= s or s <= y <= u(0);
(h) f(1, y)<O for B<= y<=uc(1).
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Then, there exists a solution y= y(x, e) of problem (P1) for e sufficiently small, say
0< e -<_ el, that exhibits spike layer behavior at x =0. More precisely, y(x, e)-> uL(x) for
x in (- 1, 1) {0} as e -> 0 and y(O, e) -> s as e --> O.

Proof. We consider only the case uL(0)< s. The proof for the case u(0)> s is
similar.

To prove the theorem, we construct lower and upper solutions a and/3, respec-
tively, as in Theorem 2.1. These functions are taken to be straightforward modifications
of the solution uL of the reduced problem.

We define a and/3 as follows:

(x, )=u,(x)+v,(x, )+.v(x, )-,e,

13(x, e)=u,(x)+v(x, )+ ,,
where 3’ is such that y min {K1, K2}>max_l__<,__< lu(x)[, and where vl, v2 and Vb
satisfy, respectively,

ev> g(O, uL(O)+v,)in (-1, 1),

v(0, e) s- u(0),

v > 0 for all x in (-1, 1),

(c,) v(O, )=0,

v>0 for x<0, v’<0forx>0,

v(x, e)=(x/x/)p(x, e), where p0 exponentially as e0 for xS0,

vl 0 exponentially as e 0 for x s 0,

ev < g(O, u(O)+v2) in (-1, 1)-{0},

v(0, ) u(0),

(C2) v2 > 0 for all x in (-1, 1),

v>0 for x<0, v<0 for x>0,

v2 0 exponentially as e 0 for x 0,

,ev’[,>f(1, U(1)+Vb)V’b in (-1, 1),

Vb(1, e) B- u(1),

(Cb) Vb <0 for all x in (-1, 1),

v,<0 for x<l,

Vb 0 exponentially as e 0 for x 1.

The existence of a function Vl satisfying conditions (C) has been proved by DeSanti
[5] under hypotheses (d) and (e). The existence of a piece-wise smooth function v2
satisfying conditions (C2) has been established by Fife [7]. Finally, the existence of a
function Vb satisfying conditions (Cb) has been proved by Howes [10] using a result
of Coddington and Levinson [4] and hypothesis (h). The functions a and /3 are
sketched in Fig. 3.

We consider first the proof that a is a lower solution on the interval (-1, 1). The
proof is divided into three stages. First we verify that a is a lower solution for x near
1, then for x near 0, and finally for x bounded away from 0 and 1.
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FIG. 3. Graphs of the lower solution t and the upper solution ft.

Let us first examine the behavior of a in the vicinity of x 1. From the Mean
Value theorem we have

ea"-f(x, )a’- g(x, cr ev’ f(x, urn(x) + Vb + Te
(,)

[L(X, UL(X)’-]" Ol(X))UtI_." gy(X, UL(X)"t- 02(X))]l)b
where uL(x) <-_ 01, 02<v,(x, e)+ye. From conditions Cb and hypotheses (c) and (f),
we see that for x near 1, say in the interval (1- p, 1), where p is a sufficiently small
positive number, the right-hand side of equation (.) is positive for e sufficiently small.
Thus, a is a lower solution on the interval (1- p, 1).

We turn now to an examination of a in the vicinity of x =0. Let S(e) denote the
set

{x" x 6e , for all 6 such that 1 _-< 8 =< 1, and for some u, ] < u < 1/2}.
The set S(e) is an O(e)-neighborhood of x 0. Taylor expanding about x 0, and
making use of the fact that v =(x/x/-)p(x, e), where p-0 exponentially as e-0, we
have, for x in S(e),

ea"-f(x, ce)a’- g(x, ce) ev’ g(O, uL(O) + v,) + 0(e2-’/2).
By virtue of the nature of vl, the right-hand side of this equation is positive for e

sufficiently small. Thus, a is a lower solution for x in S(e).
Let us finally consider the region

I= (-1, 1)-S(e)-(1-p, 1).

In this region, vl and vb are both transcendentally small terms (T.S.T.). Thus, for x in
I, we have

eoz"-f(x, a)a’-g(x, oz)

e[u(x)+ y(fy(x, u.(x))u(x)+ gy(x, uL(x))] + T.S.T.
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For e sufficiently small the right-hand side of this inequality is positive by virtue of
the definition of y. Thus, a is a lower solution for x in the region I. We conclude
that a is a lower solution in the sense of Theorem 2.1 on all of the interval (-1, 1).

We consider now the proof that fl is an upper solution on the interval (-1, 1).
We note first of all that /3 is not differentiable at x-0. However, since v2(0, e)-
s u/(0), v > 0 for x < 0 and v < 0 for x > 0, and since v2--> 0 exponentially as e -> 0
for x 0, it follows that

lim DIV2(0, e)-- q-cx3 and lim DRY2(0,
e-0 e0

Thus, for e sufficiently small we must have

D,fl(O, e)= u(O) + Dtv2(O, e)>= DriP(O, e)-- u(O) + Drv2(O, e).

We see that the behavior of fl at x- 0 is correct in view of the extended version of
Theorem 2.1.

Let us now consider the verification that fl is an upper solution in the vicinity of
x=0. Recalling that ev’ < g(0, UL(0)-]- V2) it follows that eft"< g(x,
g(x,/3) for e sufficiently small and for x sufficiently close to zero, say x in the interval
(-d, d) for some d > 0. Thus, we have, for x in (-d, d),

efl"-f(x, fl )fl’- g(x, fl
e[3"- g(x, [3) -f(x, [3)u’(x) -f(x, [3)v. + O(e)

efl"-g(x, )-f(x, fl)v+ O(d)

where we have made use of the fact that f(0, y)= 0 for all y to assert that the term
f(x, )u(x) is O(d) for x in (-d, d). Since f(x, y)>0 for x <0 and f(x, y)<0 for
x>0, and since v>0 for x<0 and v<0 for x>0, it follows thatf(x,)v>-O for
all x near zero. Hence, the right-hand side of equation (**) is negative for e and d
sufficiently small. We conclude that/3 is an upper solution on the interval (-d, d).

In the region (-1, 1)-(-d, d), the verification that/3 is an upper solution proceeds
much like the verification that a is a lower solution. In this region, v2 and Vb are both
transcendentally small terms (T.S.T.), so that

efl"-f(x, fl )fl’- g(x, fl e[u’- y(fy(X, UL)U+ gy(x, UL))] + T.S.T.

<= e[ u’- yK,].

The right-hand side of this inequality is negative by virtue of the definition of 3’. Thus,
fl is an upper solution for x in the region (-1, 1)- (-d, d). Putting everything together,
we see that fl is an upper solution in the sense of Theorem 2.1 on all of the interval
(-1, 1).

We have thus far shown that a and fl satisfy the appropriate differential inequalities
of Theorem 2.1. Since V and v2 are transcendentally small terms for x--1.and x- 1,
and since Vb 0, it follows that for e sufficiently small we have c(-1, e)_-< A-<_ fl(1, e)
and a(1, e)<=fl<-(1, e). Furthermore, since a(O,e)<fl(O,e) and since vl and V2,

both converge to zero exponentially (meaning that vl and v2 are transcendentally small
terms for x away from zero), it follows that a(x, e)<-_(x, e) on all of (-1, 1). Thus
we see that a and/3 satisfy all the conditions of Theorem 2.1. We conclude, therefore,
that there is a solution y y(x, e) of problem (P1) such that a(x, e) <- y(x, e) <- fl(x, e)
for all x in [-1, 1]. Since a and fl both converge to uL for x in (-1, 1)-{0} and to s
for x =0, the solution y(x, e) must behave in the same way. This completes the proof
of Theorem 3.1.
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Remark 3.1.1. The conclusion of Theorem 3.1 obviously remains valid iff g, A
and B are allowed to depend smoothly on e.

Remark 3.1.2. The reduced solution uL of condition (b) could be replaced by the
solution UR of the problem

0 =f(x, u)u’+ g(x, u), u(1) B.

In this case we would require u(-1) > A and f(-1, y) > 0 for A-< y -<_ Ua(-1). All other
conditions of the theorem remain unchanged.

4. Nonmonotone transition layer theory. In this section we again consider the
singularly perturbed boundary value problem

ey"=f(x,y)y’/g(x,y),
(P1)

y(-1, e)=A, y(1, e)=B.

Our principal goal is to deduce the existence of a solution of (P) that exhibits interior
nonmonotone transition layer behavior at the turning point x--0. We make extensive
use of the results of the previous sections. Our principal result is the following:

THEOREM 4.1. Assume
(a) the functions f and g are of class c<1) on [-1, 1]x R, and f(O, y)=-O for all y;
(b) there existfunctions uL u(x) and UR UR(X) ofclass C<2) on [-1, 1 satisfying,

respectively, the reduced problems

O=f(x, u)u’+g(x, u), u(-1) A,

0 =f(x, u)u’+ g(x, u), u(1) B;

(c) fy(X, u)u’+gy(x, u)> KforsomeK>O, foru=ul, UR, andforallxin (-1, 1);
(d) g(O, UL(O)) O;
(e) UL(0 < UR(0 and either

(i) there exists a number s > UR(O) such that g(O, s) <0, J(s).= 0, J(z) >
O foru.(O)<-z<s, andJR(z)>O foruR(O)<z<--_s, or

(ii) there exists a numbers < u(0) such that g(0, s)>0, J(s)= 0, JR(Z)<
Ofor s < z < ua(O), andJ(z) < Ofor s <-z < UR(O), whereJ(z)= L<o)g(0, u) du
and JR(Z)= ,o g(O, u) du;

(f) fx(0, y) < 0 for uL(0) <- y <- s or s <- y <- ua(0).
Then, there exists a solution y y(x, e) of (P) for e sufficiently small, say 0< e <-e2,
that exhibits interior nonmonotone transition layer behavior at x--O. More precisely,
y(x, e)-> urn(x) for x in (-1, 0), y(x, e)-> UR(X) for x in (0, 1), and y(O, e)-> s as e ->0.

Proof. We consider only the case s > ua(0). The proof for the remaining case is
similar.

As in the proof of Theorem 3.1, the proof of this theorem inolves the construction
of lower and upper solutions which satisfy the conditions of Theorem 2.1. In this
construction, we make extensive use of the lower and upper solutions a and fl
constructed in the previous section.

We define new lower and upper solutions 6 and fl as follows:

a(x, e) for x in [-1,0],
’(x’e)

(max {a(x, e), UR(X)--Ae} for x in (0, 1].

fl(x, e) for x in [-1, 0],
)

UR(X)+ (X, e)+ Ae for x in (0, 1],
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where h is such that AK max-l_<_x_<_l lu (x)l, and where the function fi satisfies

eY’< g(0, Ug(0) + ),

3>0, Y<0 for x in [0, 1],
(c)

(0, ) s- u(0),

5 0 exponentially as e - 0+ for x 0.

The existence of a function 5 satisfying conditions (C) follows from hypotheses (d)
and (e) and Lemma 2.1 of Fife [7]. The functions c and/3 are sketched in Fig. 4.

-S

-B

A- u

-1

FIG. 4. Graphs of the lower solution # and the upper solution

That t and/3 are lower and upper solutions, respectively, on the interval [-1, 0]
is a consequence of the proof of Theorem 3.1. Moreover, if we simply replace uL with

UR in the proof of Theorem 3.1, then it is clear that UR(X)- he is a lower solution on
(0, 1] and that fl(x, e)=UR(X)+6(X, e)+he is a lower solution on (0, 1]. At the point
of intersection : of a(x, e) and UR(X) he, the function c is not differentiable. However,

’(, e) -oo we havesince lime_o v
Did(o/, e)= a (0/, e) u() +/)1(’, 8) < Dr(, e)

for e sufficiently small. Thus, c and/3 satisfy all the appropriate differential inequalities
in the extended version of Theorem 2.1.

From the construction of c and /3 it is clear that c(-1, e)_-< A-</3(-1, e) and
6:(1, e)<=fl<-fl(1, e). Moreover, since a(x,e)<-fl(1, e) and O(x,e)>0, we have
(x, e)<-fl(x, e) for all x in [-1, 1]. Thus, c and/3 satisfy all the conditions of the
extended version of Theorem 2.1. We conclude, therefore, that there exists a solution
y(x, e) of problem (P) such that (x, e)<=y(x, e)<=(x, e). Since c and /3 both
converge to u/ for x in (-1, 0), to UR for x in (0, 1), and to s for x 0 as e 0, the
function y must behave in the same way. This completes the proof of Theorem 4.1.
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Remark 4.1.1. In condition (e) of Theorem 4.1 we could have uL(0)> UR(O). In
this case, Theorem 4.1 remains valid with u. replaced by UR and JL by JR.

Remark 4.1.2. As in Theorem 3.1, Theorem 4.1 remains valid if f, g, A and B are
allowed to depend smoothly on e.

Remark 4.1.3. Majda [12] has considered a time-dependent version of problem
(P1) as a model for dynamic combustion in gases. A simplified version ofthis combustion
model is

(P3) p.(e)ut eu,,,-f(x, t, u)u,,-g(x, t, u),
where e is a lumped parameter representing the effects of diffusion and heat conduction,
and where/z is a measure of combustion speed. This simplified model is appropriate
for the case in which the mass fraction of unburnt gas in the system is constant, or is
at least a slowly varying function of time.

The nonmonotone interior layer Theorem 4.1 is applicable to problem (P3) pro-
vided that/x(e)- 0 as e -0. Let c 6(x, t, e) and fl fl(x, t, e) be functions analogous
to those given in the proof of Theorem 4.1; i.e., suppose that

eSx>f(x, t, 5)Sx+g(x, t, ),
and

eflxx <f(x, t, fl)flx+ g(x, t, ),
wheref and g satisfy the conditions ofTheorem 4.1 with considered to be a parameter.
Then, because the inequalities are sharp, they hold if the terms/xdt and/xflt are added
to the appropriate sides of the inequalities, provided that e is sufficiently small. Thus,
in agreement with the qualitative theory of Majda, nonmonotone interior layer behavior
is possible for solutions of problem (P3).

5. Examples. In this section we give some examples ofthe application ofTheorems
3.1 and 4.1.

Example 5.1. Consider the problem

ey"= -xy’+y(1-y), x in (-1 1),
(El)

y(-1, e) =0, y(1, e)=-l.

The reduced problem is

O=-xu’+u(1-u), u(-1) =0.

This reduced problem has the solution ui(x) 0. Now, fy(X, u)u’+ gy(X, u)
-u-u+l=l>0 and fy(1, y)u’+gy(1, y)=-y2-y+l>O for -l=<y=<0 since
min_l<=y<__o[-y2-y+ 1]= 1. Moreover, JL(z)= z2(1/2-1/2z). The unique positive zero of
J is s - > u(0) 0. We note that g(0, ) < 0 and z2(1/2-z) > 0 for 0-< z =< s. Finally,
we have f,(0, y)=-1 <0 and f(1, y)=-1 <0. Thus, all the conditions of Theorem 3.1
are satisfied. We conclude that the boundary value problem (El) has a solution
y=y(x, e), for e sufficiently small, such that y(x, e) Ul(X)=O for x in (-1, 1)-{0}
and y(O, e)s= as eO.

Example 5.2. Consider now the problem

ey"= -xy’-y(y2-1)(2-y), x in (-1, 1),
(E2)

y(-1, e)=-1, y(1, e)= 1.

The reduced problems are

O=-xu’-u(uZ-1)(2-u),
O=-xu’-u(u2-1)(2-u),

u(-1) -1,

u(1)= 1.
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These problems have the solutions u/(x)---1 and UR(X)=--I respectively. We
have uL(0) < UR(O), fy(X, UI)U’+ gy(X, U) 6 > 0 and fy(X, UR)U’R + gy(X, UR) 2 > O.
Furthermore, we have JL(z)=6[-12zS+lSz4+20za-60z2+53] and JR(Z)=
0[--12Z5+ 15Z4+20za--60Z2+77]. The polynomial J(z) has a unique zero at a point
s > 1 in the interval (-1, 2). Moreover, JR(Z) > 0 for UR(O) 1 < Z < S. Finally, we note
that g(0, s) < 0 since s > I andf(0, y) -1 < 0 for all y. Thus, all conditions ofTheorem
4.1 are satisfied. We conclude that (E2) has a solution y=y(x, e), for e sufficiently
small, such that y(x, e)- uL(x)=-1 for x in (-1, 0), y(x, e)- UR(X)= 1 for x in (0, 1),
and y(0, e)- s> 1 as e-0, where, again, s is the unique root of the polynomial
equation J/(z)= 0 in the interval -1 <z<2.

Acknowledgment. The author would like to thank the referee for pointing out the
work of A. Majda.
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THE EXISTENCE OF BOUNDED SOLUTIONS OF A SEMILINEAR
HEAT EQUATION*

WILLIAM C. TROY?

Abstract. We investigate the existence ofbounded solutions of Aw y" V w/2 / p ))v + [w[p- w
0, y R N, for N> 2 and p>(N+2)/(N-2). We show that if N=3 and 6-<-p =<.12 then there are infinitely
many positive, bounded, radially symmetric solutions w(r), lYl, such that limr_ w(r)= 0.

Key words, backward self-similar solutions, radially symmetric solutions, globally bounded solutions

Introduction. We investigate the existence of nonconstant, bounded solutions of
the equation

(1) Aw-y. Vw/2+lwl-’w-w/(p-1)-o

in R N, N>2, where p>(N+2)/(N-2), and y.V=-.,y.O/Oy. Equation (1) is
derived from the semilinear heat equation

Weissler [7] has shown that (2) has solutions which blow up at (x, t)= (0, 0). Giga
and Kohn [5] prove that the asymptotic behavior near the blow up time is described
by special solutions of (2) called "backward self-similar solutions," i.e., solutions of
the form

(3) u(x, t) (-t) x/(l-P)w(y)

where y=x/(-t)/2 and t<0. Substitution of (3) into (2) yields (1). Their analysis
demonstrates that (1) has no globally bounded solution for N 1 and 2, nor for N > 2
and p-< (N+ 2)/(N-2). However, Giga [4] has recently shown that (1) does have
radially symmetric, bounded solutions if the term w/(p-1) is replaced by aw, a >
l/p-l, N>2 and p<(N+2)/(N-2). In addition, he shows that if a=l/(p-1)
and p < (N + 2)/(N- 2) then there are no radially symmetric solutions.

In this paper we consider the parameter range N > 2 and p > (N+ 2)/(N- 2),
and investigate (1) for the existence of nonconstant, globally bounded solutions. For
simplicity we restrict our attention to the case N 3 and therefore p > 5. We look for
radially symmetric solutions w w(r), r ]yl so (1) becomes

(4) w"+ w’+lwl"- w (p_l)--0.
A bounded solution of (4) must satisfy

(5) w(O)=aR, w’(0) 0.

We can assume throughout that on each compact interval [0, L] __G_ [0, o], the solution
of (4)-(5) exists, is unique and depends continuously on initial values (see, for example,
Haraux and Weissler [6, Thm. 1]). Our main result is:

* Received by the editors January 27, 1986; accepted for publication (in revised form) June 3, 1986.
This work was supported in part by National Science Foundation grant MCS-83-01085.

? Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
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THEOREM. Let N 3 and 6 <- p <-12. There is an unbounded, increasing, positive
sequence {aL}L>__rv such thatfor each L, ifw(O)= aL and w’(O)=0 then w(r) >O for every
r > 0 and limr- w r 0. Furthermore, 0 < w(r) 2p 6)/ p 1 2] p- r-2/( , for
all large r.

Remarks. 1) It will become clear during the course of our proof that the theorem
can be extended to a larger range of parameters than N 3 and 6 <- p <- 12. However,
the details become more complicated. Thus, for the sake of simplicity we restrict our
attention to the values given.

2) Results similar to those stated above have recently been given for a combustion
model similar to (2), namely

u,-Au-e"=O.

Solutions of this equation also blow up at (x, t)= (0, 0). Again, a similarity form of
solution and the assumption of radial symmetry lead to an equation like (4),

(6) w"+ + 1 0.
r

The appropriate boundary conditions are

W
(7) w(0)R, w’(0)=0 and lim=-l.

r-oo 2 In (r)

For N 1 Bebernes and Troy [1] have shown that there are no solutions of (6)-(7).
Subsequently, Eberly [2] proved that (6)-(7) has no solution if N 2. However, if
N (2, 9), Eberly and Troy [3] proved that the problem (6)-(7) has an infinite number
of solutions.

Outline of Proof. The proof of our theorem uses a shooting argument. First, we
note that (4) has two particular solutions. One of these is the constant solution w fl
where/3 1/(p- 1). The other, a nonconstant solution, is given by

wo(r) [(2p -6)/(p 1 )2] 1/(p-l)r-2/(p-1).

Define the auxiliary function h W-Wo where w solves (4)-(5). We prove that if
a-fl> 0 is small then h has at most two zeros before w 0. Also, for any given
integer L_-> 1, if a is sufficiently large then h has at least 2L+2 zeros before w =0.
This leads us to define the set

(8) A2L={a> fl[h has at least 2L+2 zeros before w=0}.

We show that for each L> 0, the set A2L is open, nonempty and unbounded above.
The remainder of the proof is devoted to showing that there exists aL (fl, inf AEL
such that if w(0) a/ and w’(0) 0 then h has exactly 2L zeros and w(r) > 0 on (0,
with lim_ w(r) 0.

Proof of Theorem. We assume that a > 0. Thus, for r > 0, as long as w > 0 we
observe that w satisfies

(9) w"+ (-)w’+ wp-w
(p-l)

=0

with initial values

(10) w(0) a, w’(0) 0.
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The first step of our proof is to show that h has at most two zeros before w 0
if a-/313> 0 is sufficiently small. This is done in Lemma 3. However, we first need
two technical lemmas before proceeding with the proof of Lemma 3.

LEMMA 1. For each p > 5, w" < 0 for r > 0 as long as w( r) <-_ wo( r).
Proof. If there is a first > 0 for which w"()= 0 then

(11) w’"(g) _-> 0.

Suppose that w(f)< Wo(). Then (9) and the definition of wo(r) lead to w’"(g)<
w’()(2p + 2)/(p- 1)22 < 0, contradicting (11).

Next, recall that h--w- Wo.
LEMMA 2. For each a > fl3 there is a first rl rl(a)> 0 for which h(rl) =0, and

(12) 0< rl(a)<[(2p-6)/(p- 1)2]1/2[(p + 1)/(a(p- 1))] (p-1)/-.

Proof. If there were an a > fl13 for which rl(a) does not exist, then, by Lemma
1, w"<0 and w’<0 until w(a)=f113 at some a(0, ((2p-6)/(p-1))I/2). But then it
follows from (9) that w"(a)>O, a contradiction. Thus rl(a) exists for every a> fl13.
Further, from Lemma 1, w"<O on [0, r(a)] and therefore w(rl)<Aw/Ar=
(wo(rl)-a)/rl. Since W’o(r)=-2wo(rl)/(p-1)rl this becomes (-2/(p-1))x
(wo(r)/r) < (wo(rl) a )/rl and (12) follows.

LEMMA 3. Ira [313 > 0 is sufficiently small then h has at most two zeros before w O.
Proof. The function h satisfies

(13) h"= h’+h
(p-l)

g(r)

where

(14)

We observe that

(15)

g(r) =-- wp-1 + wp-2wo+ Wp-3 W)-- 4g- wt-1,

_1 pw(oP-1)>O for r>rp =--- (p(2p-6)) 1/2.
p-1 p-1

Since w-=/313 satisfies (9) it follows from continuity that if a-/313> 0 is sufficiently
small then rl(a) is the only zero of h on (0, rp + 1), and W(rp + 1) > wo(rp + 1). If h has
another zero, r(a), on (rp + 1, c) then h’(r2) < 0 and h"(r2) < 0. For r > r, as long as

0<W<Wo then g(r)<pw-1 and it follows from (13) and (15) that h"<0 and h’<0
at least until w =< 0. This completes the proof of Lemma 3.

The following lemma plays a key role in our shooting method.
LEMMA 4. Let L > 1. Then A2L is nonempty, open and unbounded.
Proof Continuity and uniqueness imply that A2L is open. To prove that A2L

we use a comparison method. First, let v hr e-r2/8. Then (13) becomes

v"+f(r)v =0(16)

where

(17) f(r) ------ g(r) q
3 1 r2

4 p-1 16

Next, consider the auxiliary equation

(18a)
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and define

g -min ((2(p- 5)/(p- 1)) 1/2, (2p- 6)/(p- 1)3) 1/2, 4(- 1/(p- 1))1/2).
It is well known that (18a) has a solution uo(r) which has an infinite number of zeros
accumulating at r-0. Since lim_ r(a)-0, we choose a*> 8 such that for all
a a*, uo(r) has at least 2L+4 zeros in (rl(a), R). With a a*, it follows from the
Sturm Comparison Theorem (see Simmons [3]) that iff( r) >= .26/ r2 on (rl(a), R), then
v(r) and h(r) have at least 2L+ 2 zeros in (r(a), R). Since -(1/(p-1))-(r2/16) 0
for all p>_-5 and re[0, R], it suffices to show that g( r) >- .26/ r2 on [rl(a), R] for each
a >- a *. We note that w(r) >- wo(r) whenever h(r) >-_ O and therefore g(r) >-
2p(p-3)/(r2(p-1)2)>-_1/r2, p>-5. Thus it remains to determine a lower bound on
g(r) when h < 0. For this we make the transformation w SWo and z In (r). Then (9)
becomes

(18b) k’+
p 5 g+ -s) 0
-1 (p-l)2’

where g-= ds/dz. Let z In (rl) and ZR In (R). The definition of R implies that

(19)
p-5 e2Z>o VZ(Zl,ZR).
p--1 2

Lemma 1 that w’(r)<O; hence h’(r)<-_-w(rl)=Further, it follows from
2wo(rl)/(p 1) r. Therefore

(20) i(z,)-<_

Next, we multiply both sides of (18b) by g, integrate and obtain

(21) -------< (p- 1)---i+ (p- 1)2\p+ 1 2 2 /]]’
Z[Z1, ZR]. it follows from (21) that the right-hand side of (21) is negative if

(22) 6-<p-<7 and s<-.21

or

(23) 7-<p-<13.8 and s<-.
Thus, s > .2 on [z, ZR] for 6 _-< p _-< 7, and s > .5 on [z, ZR] if7 <= p _-< 13.8. Consequently,
if 6 <- p _-< 7 then it follows that

g(r) >__ (1-.2P)( 2p-6 l .27
.80 \(p-1)5] ->- for allr[r,R].

Similarly, from (23), g( r) >- .26/ r2 for all re [rl, R] if 7-<p =< 12.6. Thus, from this
analysis and the Sturm Comparison Theorem it follows that w > 0 on [rl, R l, and h
has at least 2L+ 2 zeros on rl, R].

Remark. It is clear from the proof that we can vastly expand the range of values
of p for which the appropriate estimates hold. For the sake of brevity and simplicity
we have chosen not to do so.

For each L-> 1 it follows from Lemmas 3 and 4 that the set A2L is bounded below
with

(24) yL infA2 > fie.
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We fix L_-> 1 and consider the solution of (9) with w(0) YL and w’(0) =0. If h w- Wo
has exactly 2L zeros and w > 0 on (0, ) with limr_, w(r)= 0 then aL YL and the
proof of the theorem is complete. Otherwise there are several cases to consider:

(i) h has at least 2L+ 2 zeros before w 0. Then continuity implies the same is
true if yL-a > 0 is sufficiently small, contradicting the definition of "r’L.
Therefore h has at most 2L+ 1 zeros before w 0;

(ii) h has at most 2L+ 1 zeros followed by a finite value of r for which h =0.
Again, continuity implies the same is true if a- YL > 0 is sufficiently small,
contradicting the definition of YL;

(iii) h has less than 2L zeros and w>0 on (0, ). Continuity implies that if
a-yL> 0 is sufficiently small then h has at most 2L-1 zeros on (0, rp + 1)
as well as at least three more, say at al, a2, a3 on (rp + 1, oo) before w =0.
Thus, either h’(al)<0 or h’(a2)<0. It suffices to consider the case that
h’(al)<0. Then h"(al)<0 since a> rp and it follows as in the proof of
Lemma 3 that h"<0 for r> a2 until w =0 at some finite value of r. This
contradicts the assumption that h has at least 2L+ 2 zeros before w 0 for
a- /L > 0 sufficiently small. We conclude from (i)-(iii) that h has at least
2L zeros and w > 0 for every r > 0. If h has exactly 2L zeros then 0 < w < Wo
for all r > r2L; hence limr_o w(r)= 0 and the theorem is proved for aL yL.
It remains to consider the possibility that h has exactly 2L+ 1 zeros with
w > 0 for every r > 0. We define the set B2L+I {t < )’LI if < a < YL then h
has exactly 2L+ 1 zeros. If yL-a > 0 is sufficiently small then continuity and
the definition of yL imply that h has exactly 2L+ 1 zeros. Thus, by Lemma
3, BL+ is bounded below with yL+ =- inf B_L+ >/3t. We consider the
solution with w(0)= Y_L+a, W’(0)=0. There are several possibilities;

(iv) h has 2L+ 1 zeros before w 0, or
(v) h has at most 2L zeros followed by a finite value of r where h 0, or
(vi) h has fewer than 2L zeros and w > 0 on (0, ). These three possibilities are

eliminated in the same way as in (i)-(iii) above. We conclude-that h has
exactly 2L zeros and w > 0 on 0< r < o. This implies that 0< w < Wo for
every r> r2L and limr_o w(r)=0. Thus aL--- "/2L+l and the theorem is proved.

REFERENCES

1] J. BEBERNES AND W. C. TROY, Nonexistencefor the Kassoy Problem, this Journal, 18 (1987), to appear.
[2] D. EBERLY, Nonexistence for the Kassoy Problem for Dimensions and 2, preprint.
[3 D. EBERLY AND W. C. TROY, Existence oflogarithmic-type solutions to the Kassoy Problem in dimensions

2 < N < 10, J. Differential Equations, 1986, to appear.
[4] Y. GIGA, On elliptic equations related to self-seimilar solutionsfor nonlinear heat equations, 1985, preprint.
[5] Y. GIGA AND R. V. KOHN, Asymptotically self-similar blow-up of semilinear heat equations, Comm.

Pure Appl. Math., 38 (1985), pp. 297-319.
[6] A. HARAUX AND F. B. WEISSLER, Non-uniquenessfor a semilinear initial value problem, Indiana Univ.

Math. J., 31 (1982), pp. 167-189.
[7] F. WEISSLER, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ.

Math. J., 29 (1980), pp. 79-102.



SIAM J. MATH. ANAL.
Vol. 18, No. 2, March 1987

1987 Society for Industrial and Applied Mathematics
006

THE DRAWING AND WHIRLING OF STRINGS:
SINGULAR GLOBAL MULTIPARAMETER BIFURCATION PROBLEMS*
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Abstract. This paper treats the steady motion under gravity of both inextensible and elastic strings that
are simultaneously whirled and drawn. The motion is governed by a quasilinear system of singular ordinary
differential equations that depend on the two parameters to and y, which are the rates of whirling and
drawing. The singular nonlinear problem is approximated by a sequence of regular problems to which global
multiparameter bifurcation theory is applied. It is then shown that the sequence of solution sheets for the
approximating problems converges to solution sheets of the actual problem. All these solution sheets, infinite
in number, are shown to bifurcate from the to- and y-axes, which form the boundaries of the continuous
spectra for the problem linearized about the trivial solution. (These linearized problems have no eigenvalues.)
Nevertheless, each bifurcating sheet is characterized by a novel and distinctive nodal pattern. The nature
of steady shocks in elastic strings is briefly discussed.

Key words, steady motions of strings, global multiparameter bifurcation theory, singular differential
equations, nodal properties, steady shocks
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1. Introduction. Global studies of the steady whirling of strings began with the
work of Kolodner [17]. Such problems have stimulated many advances in global
bifurcation theory. (A comprehensive bibliography is given by Alexander, Antman and
Deng [3].) Of special relevance for our present investigation is the work of Stuart [28].
His model for a process by which fibers are spun is that of an inextensible string having
a fixed configuration in a vertical plane rotating with constant angular speed about
the vertical axis. The string is subjected to unusual boundary conditions. Stuart’s
beautiful analysis represents the first application of the global bifurcation theory of
Crandall and Rabinowitz [10], [11] and Rabinowitz [23], [24] to a concrete problem
from physics.

Although he described the manufacturing process as one in which fibers are both
whirled and drawn, Stuart in fact ignored the longitudinal motion. As we shall show,
the presence of both longitudinal and rotational motions results in a Coriolis acceler-
ation, which prevents the fiber from remaining in a rotating plane, as Stuart required.
Moreover, shocks can form in an elastic string that is being drawn. Thus the more
realistic model we shall present introduces several qualitatively new and interesting
phenomena.

The actual formulation of our problem, carried out in 2, requires care because
the material particles forming the fiber under study change with time. The problem
has two basic parameters: the speed of drawing 3’ and the angular rotation speed

In 3 we work out the full bifurcation analysis for a special elastic string for
which the boundary value problem admits a closed-form solution. This example shows
that bifurcating sheets of solutions exhibit remarkable nodal properties characteristic
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of solution sets for all kinds of strings. Other features of its solutions are not typical,
however, as we show in the subsequent analysis.

In 4 we carry out an analysis of the regularity of solutions, which enables us to
reformulate the problem in a more tractable form. In 5 we give a careful formulation
of the equations for inextensible strings. This formulation supports the global bifurca-
tion analysis of 6, the heart of the paper. Here we employ a delicate regularization
procedure to handle the troublesome singularities of the governing equations. We
ultimately obtain the remarkable bifurcation diagram of Fig. 6.63. It shows that all
bifurcating sheets of solutions bifurcate from the to and 3’ axes (which are the
boundaries of the continuous spectra for the linearization). Associated with each
bifurcating sheet is a distinctive nodal pattern. This nodal pattern obviously cannot
be inherited from that of the linearized problem, because the solutions of the linearized
problem have no nodal pattern. In 7 we examine some aspects of the behavior of
elastic strings.

We denote ordinary derivatives by primes and partial derivatives by subscripts.
Thus the partial derivative of (a, fl, t)--f(a, fl, t) with respect to at (a,/, t) is denoted
f(a,/3, t). The partial derivative of (a, t)--f(a, b(t), t) with respect to at (a, t) is
denoted (O/Ot)f(a, b(t), t)=f3(a, b(t), t)b’(t)+f(a, b(t), t). We occasionally use the
summation convention for twice repeated Latin indices ranging over 1, 2, 3.

2. Formulation of the governing equations. Let {i, j, k} represent a fixed right-
handed orthonormal basis for Euclidean 3-space :3. Let a _>-0. We study the whirling
motion under gravity of that part of a string lying between 0 and ak when it is being
fed through an inlet at 0 and is being withdrawn through an outlet at ak. Gravity is
taken to act in either the k or -k direction.

Let " parametrize an unstressed reference configuration of the string. " identifies
a typical material point of the string. Let :(z) and 1() be the material points of the
string that respectively pass through 0 and ak at time . Let l(’, t) be the position of
material point " at time t. Then by definition of : and r/we have

(2.1) p(:(t), t)=0, p(r/(t), t)= ak.

We assume that p(., t) is absolutely continuous so that it has a derivative almost
everywhere and has a well defined length. The stretch at (’, t), which is the local ratio
of deformed to reference length at (, t), is

(2.2) 8(’, t)--IPc(, t)l.

The" string is inextensible if 8 is constrained to equal 1, no matter what system of forces
acts on the string. The arc length of the curve p(., t) between p(a, t) and p(fl, t) is

(2.3) tr(a, fl, t)= f 8(’, t) dsr.

From (2.1) we find that the arc length of p(.,t) between 0 and p(:(-),t) is
o-(:(t), :(-), t).

We now seek steady motions of the string in which it is fed in at 0 and withdrawn
at ak at a constant rate and in which the configuration of the active part of the string,
i.e., the part between 0 and ak, occupies a rigid space curve that is rotating about the
k-axis with a constant angular velocity to. We now translate these requirements into
precise analytic forms. We assume that

(2.4) sc’(’r) ’O’(’r) -’)’ < 0
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so that

(.5) () (0)- r, n() n(0)-

Thus

(2.6) l-- r/(-) :(z) r/(0) so(0)

is independent of z. (The prescription of for uniform strings, which are defined below,
is equivalent to the prescription of the amount of material in the active part of the
string.) Let us set

(2.7) s= y(t- z) s(’)- so(t).

Note that if (t) =< (z) r/(t), then s [0, I]. We require that the string lie on a rotating
rigid space curve r(., t), which (without loss of generality) must have the form

(2.8)

(2.9)

by setting

(2.10)

r(s, t) Xm(S)em(t) for s E [0, l],

el( t) =-- cos wti + sin totj, e2( t) k X el( t), ea(t)-=k,

p(s(’), t) =- p(s( t) + s, t) r(s, t)= r(y(t-’), t).

The absolute continuity of p(., t) ensures that of r(., t). We are actually requiring that
the motion of the string be a travelling wave with s representing the fixed phase.

Under these conditions we have

(2.11a) p(:(r), t)= rs(s, t),

so that (2.2) and (2.10) imply that

(2.11b) 8(so(z), t)= Ir(s, t)]-- u(s)

since Its(s, t)l does not depend explicitly on t. Moreover, the equality of the extremes
of (2.10) implies that

(2.12) p,(s(r), t)= vr(s, t)+tokx r(s, t),

(2.13) Ptt(:(7"), t)= y2r(s, t)+2toykrs-to2[xl(S)el(t)+x2(s)e2(t)]

whenever r(., t) is twice continuously ditterentiable. Note that the speeds at 0 and ak
of the material points occupying them are

(2.14) Ipt(s(t), t) yu(0), Ip,(r/(t), t)l yu(l).

These are not necessarily equal. For a uniform string, (2.4) can be interpreted as a
requirement that the mass fluxes at 0 and ak be equal. This requirement, rather than
the equality of the entrance and exit speeds (given by (2.14)), is essential for steady
motions.

We could have alternatively chosen to parametrize r by the arc length
tr(:(t), so(z), t) from 0 to p(sC(z), t). We should then have to require that

(2.15a) o’(sc(t+ h), (z+h), t+h)= tr(sc(t), so(z), t)

We would therefore obtain from (2.5) and (2.15a) that

(2.15b) trt(sc(t), sc(-), t)= y[6(sc(-), t)-8(so(t), t)].

In this case the resulting equations would be cluttered with 8’s.
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Having described the kinematics of the steady motion of our string, we now turn
to the mechanics. To ensure that the string admits motion (2.10) solely under the action
of gravity, we require that the string be uniform, i.e., that its mass density pA per unit
natural length be a positive constant and that its constitutive functions be independent
of sr. Otherwise (2.10) would represent a constraint, which would have to be maintained
by artificial (time-varying) constraint forces. Since pA is constant, equation (2.6) implies
that the total mass of the active part of the string is independent of t.

Let n(r, t) be the resultant contact force exerted by the material of {X: X > ’} on
that of {X: X -< r} at time t. The defining property of a string is that n(’, t) be tangent
to the curve p(., t) at p(’, t), i.e., that n have the form

(2.16) n(’, t)= r(sr, t)p(’, t)/6(, t).

r(, t) is the tension at (sr, t). The string is in tension at (r, t) if r(’, t)>0 and in
compression at (sr, t) if ri (’, t) < 0.

The string is elastic (and uniform) if there is a function (0, ) u--> N(v) such
that

(2.17) (’, t)= N(6(sr, t)).

We assume that N is continuously diiterentiable and that

(2.18) S’(v)>0, N(1)=0, S(v)->c as v-->, N(v)-->- as v-->0.

For the steady motions we study, we set

(2.19) r(:(r), t) r(s + :(0) yt, t) =-- n(s, t)

(cf. (2.5), (2.7)). In this case (2.11) implies that (2.17) reduces to

(2.20) n(s, t)= N(v(s))

so that n is independent of for elastic strings. We henceforth drop the argument
of n.

The string is inextensible if

(2.21) ,(s) s [0, l]

no matter what tension field is acting. For an inextensible string, the constraint force
n is retained as a fundamental unknown of the problem. (It is the Lagrange multiplier
maintaining the constraint of inextensibility.) We shall seek solutions for which n is
locally integrable. As part of our definition of steady motion for such strings we require
that n be independent of t.

Since we expect that the string might sustain shocks we formulate its equations
of motion in the weakest possible form as impulse-momentum laws (cf. [5]). Let g
denote the acceleration of gravity. If the only forces acting on the active part of the
string executing the motion described above are its weight acting in the k or -k
direction and the forces acting on its ends, then the impulse-momentum law for each
material segment (sc(-), sc(’)) in ((t), r/(t)) and for each time interval (q, t) is

(2.22a)
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where e + 1. We now use (2.5), (2.7), (2.11), (2.12) to convert (2.22a) to the following
form

t2 n(y(t-r))rs(’y(t-r), t) =2
dt egy( r2 r)( t2 h)k

(’r2) t-----

(2.22b) yrs(’- so(0) + yt, t) + cok x r(sr so(0) + yt, t)] d"

Y(t2---r2
yrs (s, t2) + (-0 k r(s, t2) ds

Y(t2--’l)

3/(tl--.r2
[rr(s, tl)+cok r(s, tl)] ds.

y(t--r)

Since r(., t) is absolutely continuous and since r(s,. is analytic, we can differentiate
(2.22) with respect to t: almost everywhere, obtaining

p--vi T rs(s, t) + eg(s2-- S1)k

(2.23)
S2 IS22coyk x r(s, t) + (.0

2 k x [k x r(s, t)] ds
S1

where we have set s2 y(t2-r2), Sl 3/(t2-rl) and have replaced t2 by t.
Let us now set

(2.24a) m(s, 3’) =-n(s) 72, M(v, 3’) _--N(v) 2’2pAy(s) pAy

(so that

(2.24b)

for elastic strings),

(2.25a)

m(s, 3,) M(v(s), 3/)

U(S)-" XI(S -- ix2(s), Z(S)-- X3(S
where is the imaginary unit. Thus

(2.25b) v2 [u’[ 2 + (z’)2.
Then we can write (2.23) and the boundary conditions corresponding to (2.4) as

(2.26) m(y, y)u’(y) 2icoyu(y) -(-0
2 u(y) dy,

(2.27) u(O)=O=u(l),

(2.28) re(s, y)z’(s) eg(b s),

where b is a constant of integration,

(2.29) z(0) 0, z(l) a.

Equations (2.26) and (2.28) are to hold for all [c, s]c [0, l].
If (2.26)-(2.29) has a solution with u absolutely continuous, then mu’ is absolutely

continuous and mz’ is an affine function of s. We can therefore differentiate (2.26) and
(2.28) with respect to s almost everywhere to obtain

(2.30) mu’)’- 2icoyu’ + co2u O,

(2.31) (mz’)’ + eg O.
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If the configuration of the string is confined to a vertical plane through k rotating
about k with angular velocity to, then we can always take u to be real. In this case
(2.26) and (2.27) imply that toyu 0. If y > 0, then either the solution is trivial: u 0,
or else to 0. In the latter case (2.26) implies that

(2.32) mu’= c (real const.).

Now (2.28) and (2.32) imply that m2u2= c2+g2(b-s)2. We require that u>0. Thus
if m should vanish on [0, l], it could do so only at s b provided b [0, l]. In this
case (2.32) would imply that c =0 and therefore u’=0. Conditions (2.27) would then
imply that u 0. If m vanishes nowhere, then (2.32) and (2.37) imply that c 0. Thus

if 3’ > O, then the only planar solution of boundary value problem (2.26)-(2.29) is the
trivial solution.

The equations for an elastic string are obtained by supplementing (2.26)-(2.29)
with the constitutive equation (2.24b). The equations for an inextensible string are
obtained by retaining n or m as a fundamental variable in (2.23) and by setting v 1,
so that

(2.33) (z’)=- 1-1u’l=
In principle, we can determine m from (2.28), (2.29), (2.33) in terms of lu’l =. (Note
that m does not now depend on the u’ or z’ through a composition of M with .)
Solutions for m can be substituted into (2.26) to obtain a system for u alone. We shall
discuss the details of this procedure in 5.

3. Example. If Vo > 1, then a conceivable form for the restriction of N to Uo, c)
is

(3.1) N(u) ot2pAp for , _-> Uo

where a 2 is a positive constant. The substitution of (3.1) into (2.30), (2.27)-(2.29)
reduces them to

(3.2) (a-y)u"-2itoyu’+wZu=O, u(O)=O=u(l),

(3.3) (a2-3’)z’= eg(b-s), z(0)=0, z(1): a.
2 O2 2,3’ cannot equal if (3.3) is to have a solution. If 3’2 a then the solution of (3.3)

is

egs(b-s/2) as egs(l-s)
(3.4a) z 2 3,2 =--+ 2a 2(a -3’2)
with

(3.4b) b
e(a- 3’2)a

2 gl

Problem (3.2) has a nontrivial solution if and only if

(3.5) o =-(a- r), k +/- , +2,...

If is fixed, (3.5) defines a countable family ofparabolic eigencurves in the (to, 3’)-plane.
If is variable, then (3.5) defines a countable family of eigensurfaces in (to, 3’,/)-space.
Corresponding to (3.5) are the nontrivial solutions

(3.6) u= B sin-- exp i\ /.
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Let us now check that u-> Uo. From (3.4) and (3.6) we obtain

(3.7) u2 (a eg(l-2s).2 B-I- (_k)()2 (ks)))+2(a3-- + cs2 + sin2

We can ensure that u-> Vo for all B by taking

(3.8)
a eg(l-2s)
-+ 3. >-- Vo,

2(a 3,2)
i.e., by taking

(3.9)
a gl 21

gl
> Uo or equivalently ly2

21a 2 721
-a =>

2(a vol)"

Since Uo> 1, the first form of (3.9) requires that all> Vo> 1. This means that the
distance a between inlet and outlet exceeds the natural length of the string. When
(3.9) holds, (3.4b)yields

(3.10) b- >-- a-vl >-2
Thus b [0, l] so that (3.3) implies that z is strictly increasing along the length of the
curve.

In the space of (to, y, u) the solution pairs are represented by cylindrical surfaces
above the eigencurves (3.5) with the points at which v-< Vo excluded. (Thus the planes
y +a are excluded.) We sketch the curves (3.5) in Fig. 3.11. On the kth sheet ]ukl
has exactly (k-1) interior zeros (which are simple), but the number of zeros of xk

and x2
k varies markedly with y along the sheet. The shape of the string for k 3 and

y/a 6 is sketched in Fig. 3.12. (The virtues of (3.1) for other "nonlinear" problems
for strings were recognized by Keller 16].)

FIG. 3.11
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FIG. 3.12

Our goal in the remainder of this paper is to determine which properties of this
example are typical of all materials.

4. Regularity of solutions. A solution of the boundary value problem (2.26)-(2.29)
is trivial if u 0 and nontrivial otherwise. We seek nontrivial solutions of our boundary
value problem for which u and z are absolutely continuous. Throughout this section
we suppose that (2.26)-(2.29) has such solutions. Our results apply to them. Below
we show that such solutions actually exist.

Equations (2.26) and (2.28) imply that mu’ and mz’ are absolutely continuous.
Thus ml is absolutely continuous. But this fact does not imply that my itself is
continuous. It can be shown that if my is allowed to be discontinuous, then the
governing equations admit an uncountable collection of pathological solutions.
(Indeed, the methods of Reeken [25], [26] show that for an elastic string there are
solutions of (2.26)-(2.29) with my nowhere negative on an arbitrarily prescribed
measurable subset of [0, l] and negative on its complement.) Such kinky solutions
correspond to certain kinds of travelling shocks. These cannot exist when the string
has some bending stiffness. But the presence of bending stiffness would also exclude
other effects that are quite reasonable for our model. (For example, a stiff string
supported at two nearby points on the same vertical line could not have a folded
pendant equilibrium configuration confined to the line beneath the supports. Such a
configuration is a reasonable approximation to the actual one.) To avoid discussions
on the physical admissibility of kinky solutions, we choose to preclude them from
consideration by seeking solutions for which mu is continuous.

Note that the continuity of Imvl and the properties of N given in (2.18) ensure
that v has a positive lower bound for any solution of the boundary value problem for
elastic strings. For inextensible strings v is constrained to be 1.

If the string is inextensible, the requirement that my be continuous reduces to the
requirement that m be continuous. If we compute m2 from (2.26), (2.28) we find that
m could only vanish on [0, l] at b, provided b [0, l]. It then follows from (2.26) and
(2.28) that u and z are continuously differentiable on [0,/]\{b}.

The corresponding results for elastic strings are more delicate. Set

(4.1) y inf N’(v._.__).
pA
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Then (2.18) implies that if y2< 3,02, then v-M(v, 3,)v is strictly increasing on (0, c)
and has a continuously ditterentiable inverse. The continuity of sM(v(s), y)v(s)
then implies that of v when y< yo2. For 3,22 3,02 we cannot in general exclude the
possibility of discontinuities in v (density shocks). (3,o is the smallest longitudinal wave
speed. For special N’s, however, a priori estimates could restrict v to an interval on
which sM(v(s), 3,) v(s) is invertible so that v would be continuous.) The continuity
of v implies that u’ and z’ are bounded. It follows from (2.28) that rn could have at
most one zero on [0, I], at b, provided b [0, 1]. From (2.26) and (2.28) we then find
that u and z are continuously ditterentiable on [0, l]\{b} when 3,2< 3,02, or more
generally, when the parameters are such that v is continuous. Henceforth, without
further comment, we shall restrict our attention to parameter ranges for elastic strings
for which v is continuous.

Equation (2.26) now implies that s m(s, 3,)u’(s) is continuously ditterentiable
on [0, l]\{b} so that (2.30) and (2.31) hold on this set in the classical sense. This fact
does not, by itself, imply that u is twice continuously ditterentiable here. But if we
compute m2v2 as before, we find that it is continuously ditterentiable on [0, l]\{b}.
Thus my is continuously ditterentiable because it cannot vanish here. For the inexten-
sible string, rn itself is continuously ditierentiable and does not vanish on [0, l]\{b}.
From (2.26) and (2.28) we find that u’ and z’ are continuously ditterentiable here. For
elastic strings we proceed as before to show that v is continuously ditferentiable (where
it is continuous). Since v does not vanish, rn itself is continuously ditterentiable on
[0, l]\{b} and we again find that u and z C/([0, 1]\{b}). Now suppose that the
complex-valued function u has a double zero at a point So[O, l]\{b}. Since rn does
not vanish on [0, l]\{b}, the initial value problem for (2.30) on the connected component
of [0,/]\{b} containing So with initial conditions U(So)=O=u’(so) has the unique
solution u 0 on this connected component. Thus we conclude that on each connected
component of [0, 1]\(b} either u 0 or else all the zeros of u are simple. By the same
token we find that if u is not the zero function on [0, b] with b (0, 1], then the only
place its zeros on [0, b] could accumulate is at b. An analogous result holds for u
nonzero on [b, l].

Let u be a nontrivial solution and let

[0, b] ifu(s)=O fors[0, b],
(4.2) E={s(O,l)\{b}" u(s)O}, F=

[b,l] ifu(s)--0 fors[b,l].
Since u is continuous, E is open and can therefore be expressed as a countable union
of disjoint open intervals. We now define real-valued functions v and b on E t_J F
such that

(4.3) u(s)-- V(s)e i4(s).

We do not require v to be positive. Clearly v(s)= +[u(s)[. On each component open
interval of E, b is determined by (4.3) to within an integral multiple of 7r. Representation
(4.3) does not restrict b on F.

Suppose that b > 0 and that u is not the zero function on [0, b]. Since the zeros
of u could accumulate only at b, we can number the intervals of E starting with that
having 0 as an end point. Let 0---So < Sl < s2 <’’’ denote the zeros of u that are less
than b. On (Sk, Sk+l) we set v=(--1)klu],k=O, 1,’’.. Since u is twice continuously
differentiable on [0, b], it follows that v is Lipschitz continuous on I-0, b) and twice
continuously differentiable on each interval (Sk, Sk+). On [0, s), we take

(4.4) b(s) arg u’(0)+ 1- Xl O’)X( O’) X2(O’)X O’)
do
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where arg u’(0) is well defined by the requirement that it lie in [0, 27r) (since u’(0) 0).
We now show that b is defined at sl. Since u C2([0, b)), we have

(4.5) u(s) (s s)u’(s) + o(s- s), Ut(S) Ut(Sl) - O(S S1).

The use of (4.5) in (4.4) shows not only that the integral converges when the upper
limit is Sl, but also that b’(sl)=0. We can extend this argument to all the component
open intervals of [0, b). Thus (4.4) defines a continuously differentiable function on
[0, b) that is twice continuously differentiable on E 0 [0, b). If b >- 1, then v and th are
completely defined. If b (0, l), then we use a similar process to define v and b on
(b, l] when u is not identically zero here. If u is identically zero here, then we set v 0
here. The remaining cases are treated similarly. We now substitute (4.3) into (2.30) to
obtain

(4.6a) (my’)’- mv(qb’)2 + 2to3/vb’ + to
2v O,

(4.6b) mdp ’)’v + 2md’v’ 2to3,v’ 0,

which hold in the classical sense on each component open interval of E. We multiply
(4.6b) by v and integrate the resulting expression to obtain

(4.7) mch’v2 wv2 + c,, on E,

where E, is a component open interval of E and c, is a constant. But since v(s) 0
as s approaches an end point of E, (which is not b), the constant c, must be 0 (since
mb’ is continuous on E\{b}). Since v(s) 0 for s E, we obtain from (4.7) that

(4.8) mb’ to3/

on E. Since mb’ is continuous on E\{b} it follows that (4.8) holds on E\{b}, the
superposed bar denoting the closure. We now substitute (4.8) into (4.6a) and use
(2.24a) to obtain

(4.9) (my’)’+ to2m-l(rn + y2)v 0

on/\{b}. (Note that rn + y2= n/pat,.)
There are still a few loose ends to tie up. We shall show that if u has a double

zero on [0, l], then u 0. This result would imply that (4.9) holds on all of [0, l]. To
prove these results we first obtain a proposition of some intrinsic interest.

PROPOSITION 4.10. Let rn and t, be continuous and let (u, z) be a nontrivial absolutely
continuous solution of (2.26)-(2.29) for toy O. If b [0, 1], then m(b, y) O.

Proof We restrict our attention to independent variables s lying in E\{b}. From
(2.25b) and (4.3) we obtain

(4.11) u2=(v’)Z+vZ(qb’)Z+(z’)2.
Thus

(4.12) m2t,2 => m2(/9’)2 --> 0.

From (4.11) and (4.8) we get

(4.13) m2b’2 >-- 0)23/2/92 --> 0.

From (4.11) and (2.28) we get

(4.14) im(s 3/)[-1 g-lib sl-1/(s) for s # b.

Let us assume for contradiction that m(b, 3/)=0. Since v is continuous on [0, I], (4.13)
implies that

(4.15) /9(b) =0
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and since my’ is continuous on E\{b}, (4.12) implies that

(4.16) m(s, y)v’(s)O as s- b.

The integration of (4.9) from b to s and the use of (4.16) yields

(4.17) m(s, y)v’(s)=-oo 2 [1 + y2m(r, y)-]v(r) &r.

We now multiply (4.17) by re(s, y)-v(s), integrate the resulting expression from b to
s, and use (4.15) to get

(4.18)
2

--w 1+ v(r) drd.
m(, y) m(z, y)

Next we divide (4.18) by m(s)2 and integrate the resulting expression from b to s to get

lI v() d=_I 1 Ib V(,) f’[ y2 ](4.19)
m(, y)2 m(, y)2 re(r, y)

1 +m(x, y)
v(X) dxdrd.

The integral on the left of (4.19) converges despite the singularity of m(, y)- at b
because (4.13) implies that [vm-l uwyl-. This same inequality also implies that the
double integral with respect to X and r on the right side of (4.19) behaves like (- b)2.
Thus (4.14) implies that the entire integral on the right side of (4.19) also converges.

Let us set w vm- and observe that

(4.20) 2 w(r) w(x) dx dr w(r) d
b b

It then follows from (4.19) that

_1 w() d -w2 m(, y)-2 w(,) m(x, y)w(x) dX drd
2

(4.21) w2 m(, y)-z w(r) dr re(X, y) dx w(x) dx d
b

M(s, b),

(4.22) M(s, b) m( 7)-21 bl 1/2 m(x, y)2 dx d

the last two inequalities of (4.21) coming from two applications of the Cauchy-
Bunyakovskii-Schwarz inequality.

We now show that w must vanish near b by showing that M(s, b) can be made
arbitrarily small by taking ]s b] sufficiently small. Thus we must show that the integrand
of (4.22) is integrable.

Let us define the set

{ fo m(,y d <}A > 0:
b

where So b is some fixed number (in {b}). Since m is continuous, (0, ) = A. Since
u has a positive lower bound, (4.14) implies that [,)A, the complement of A.
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Let fl sup A. Thus 1/2 <_- fl <_- and

lr-bl-(-)m(r / &r <oo,(4.24) )2

’- bl-2t3+)m(’, 2’ do" oo(4.25) )2

for all e > 0. Condition (4.25) implies that the reciprocal of its integrand is bounded:

(4.26) m(s, y)-2__< CIs_ bl-2(0+) for s between b and So.

Here and below C denotes a positive constant.
Combining (4.26) with (4.14) we have

2 iffl_-> 1,
(4.27) m(s,)-=<-Cls-bl-’ where/z--

2(fl+e) if/3<l,

for s between b and So. Using (4.27) and the inequality

(4.28) m(x, ,)/)2 d, Io’- bl" m(x, y)2
Ix- bl dx

M(s, b) <= itr_ bl(,/_,+_ m(x, y)2 1/2

Ix- b[(- dx dr

(4.29)
< C [or-b[(1/2)-"+/3- dcr.

The definition of/z in (4.27) shows that for sufficiently small e, the exponent 1/2-/z +/3
e, appearing in (4.29), exceeds -1. Thus (4.21) implies that w and therefore v and u
must vanish on a neighborhood of b. By the argument preceding (4.2) this fact ensures
that u =0 on [0, l].

By reproducing our earlier arguments we immediately obtain the following.
COROLLARY 4.30. Let m and , be continuous. Then absolutely continuous solutions

(u, z) of (2.26)-(2.29) with toy # 0 are continuously differentiable on [0, 1] and therefore
twice continuously differentiable solutions of (2.30), (2.31).

COROLLARY 4.31. Let m and v be continuous. If (u, z) is a nontrivial absolutely
continuous solution of (2.26)-(2.29) with toy#O, then all the zeros of u are simple.
Moreover, qb is continuously differentiable on [0, l] and v is a twice continuously differenti-
able solution of (4.9) on [0, l].

5. Inextensilfle strings. We begin our study of inextensible strings, for which v is
constrained to equal 1, by examining the consequences of (2.28), (2.29), (2.33).
Throughout this and the following section we tacitly consider only solutions for which
(u, z) is absolutely continuous and m is continuous.

CASE 1. If z’ has but one sign on [0, l], which must be positive to accommodate
(2.29), then

]2 eg( b s)
(5.1a, b, c) z’= /1 -lu’l 2, x/1 -[u’ ds a, m

x/1 -lu’l=

with a b e, we obtain



DRAWING AND WHIRLING OF STRINGS 349

CASE 2. If b (0, l) and z’ > 0 on [0, b), z’ < 0 on (b, 1], then

(5.2a, b, c)
z’(s) sign (b s)/1 -lu’l =,
-i

sign (b s)41 -lu’l= as a,
o

CASE 3. If b (0, 1) and z’ < 0 on [0, b), z’> 0 on (b, I], then

(5.3a, b, c)
z’ -sign b s)/l -lu’l 2,

sign (b s)41 -lu’l = as a, rn
-eglb-sl

For inextensible strings we necessarily restrict our attention to problems in which
(0=<) a <- I. If a l, then (5.2b) and (5.3b) cannot be satisfied, while (5.1b) implies that
the solution is trivial. Unless there is a statement to the contrary we assume throughout
this section that a </. For similar reasons we also assume that o0y # 0.

Using (4.3) and (4.8) we obtain from (5.1c), (5.2c), (5.3c) that

(5.4) m2 glb sl + o2y2v
(v’):

from which we can get explicit forms for m in each case. Now we convert (4.9) into
a system by setting

(5.5a, b) y o0yv, wyw y’rn

so that (5.4) yields

(5.5c) yw m ,)2[ - -I- W2],to (y’): (y g2lb- sl 2 y:
In Cases 1, 2 and 3, we then have

(5.6a) m(s) e sign (b-s)lm(s)l, m elml, m =-elml,

respectively. Here we take

(5.6b) Im(s)l =,/gZlb-sl2+y(s)Z+ w(s)2.

Then (4.9) reduces to each of the equivalent systems:

W
(5.7a) v’

m
w’= -o0z(1 + y2/m)v,

o0yw
(5.7b) y’- w’=(l+yZ/m)y.

rn

In (5.7b) rn has the form (5.6) and, in (5.7a), rn has the same form, but with y expressed
in terms of v by (5.5a). In (5.7b) rn does not depend upon the eigenvalue parameters
o0 and y, but the value of y--0 is singular. This formulation is useful for comparison
theorems, but the problem in which 3’ 0 cannot be readily treated in this setting. In
(5.7a), the right sides of the equations are regular in the parameters, but the dependence
is complicated because rn also depends on o03,. In view of (4.3), equation (5.7) has the
boundary conditions

(S.8) y(O)=O= y(l).
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Note that Proposition 4.10 and (5.1c) imply that if there is a nontrivial solution
corresponding to Case 1, then b [0, l]. We can now consolidate the nontrivial cases
of our problem. Let

1 in Caselwhenb>_-I and in Case 2,
(5.9) r/=

_1 in Caselwhenb-<0 and in Case 3.

Then (5.6) reduces to

(5.10) m=enlml
while (5.1a), (5.2a), (5.3a) yield

(5.11) z’(s) r/sign (b-s)4i-lu’(s)l- ng(b-s)/Iml.

Let us set

(5.12) r x/ye + we.
Thus (5.1b), (5.2b), (5.3b) have the form

(5.13) A[b,r]=- g [(b--s)/Iml] ds ha.

For r 0, we readily find that

(5.14) A[b, r] +l as b +o, Ab[b, r]= g relm ds.

This means that if a < l, we can solve (5.18) uniquely for b in terms of r and
whenever r0. We denote the solution as b flit]. The classical implicit function
theorem in Banach space implies that/3 is continuously ditterentiable on C\{0}. For
trivial solutions, we find that 2b 2/3[0] + r/a if a < l, but that b is not defined if
a l, in which case b can assume any value in \(0, l). In this case, however, z’= 1
and the configuration is well defined, but

(5.15) m(s)=englb-sl.

Thus there is a whole family of compatible tensions when a I. For a < l, m is uniquely
determined from b by (5.15).

At this stage it is convenient to obtain some estimates for A[b, r]. Suppose that
R is a positive number with R _-> r. We have the following inequalities:

If b-<0,

(5.16a)

if b (0, l),

(5.16b)

-l= A[b, 0]_-< A[b, r]<=A[b, R]

x/be + Re/ge-4(l b) + Re/ge,

b s) dsx/be+RE/ge-R/g-(l-b)=g x/g_(b_:s:)Re
b s ds

g
x/g2( b s)e W r2

Ib-sl ds
=- A[b, r] <- b g x/.gel b sle + Re

b+ R/g-/(l- b)2+ R2/ge,
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if b>=l,

(5.16c) /b2+R2/g2-/(b-l)2+R2/g2=A[b,R]<=A[b,r]<=A[b,O]=l.

We consolidate these inequalities into

(5.16d) A-(b, R) <- A[b, r] <= A+(b, R)

where A-(b, R) is defined by the leftmost terms of (5.16a, b, c) and A+(b, R) by the
rightmost terms. We illustrate (5.16) in Fig. 5.17.

Equation (5.10) allows us to write (5.7a) as

enw w’ o(1 +(5.18) v

where Im] is given by (5.6b) with b=/3[r], r2=e92T2o24-w2. Equation (5.18) is
equivalent to

(5.19) (Imlv’)’+ ,o 2[ eW + ",//I ml]v o.

The conversion of (5.7b) is analogous. Indeed, v satisfies (5.19) with the appropriate
form of Iml.

(O,f) (f,f) +(b,R)
A[b,O]

(0,0)
(t,o)

(b,R)

[b,r]

FIG. 5.17

The formal linearization of (5.19) is obtained by replacing Iml in (5.10) with
g[s-(l+ qa)/21. In this case (5.19) reduces to the singular Sturm-Liouville equation

(5.20) g([s-(l+a)/Zlv’)’+w[ey+TZg-’ls-(l+na)/21-’]v=O.

Independent solutions of (5.20) on either ofthe intervals (0, + r/a / 2) or + r/a / 2, l)
are the Bessel functions

(5.21)

The power series

(5.22)

J+2,/(2[ emo2g-’l s (I + na)/2l]’/2).

J(z)= Y’,
(-1)’(z/2)+2"

,,=o m!F(u+m+l)
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shows that (5.21) is bounded near s=(l+rla)/2. Indeed, when er/= 1, the leading
term of (5.21) about this point is

F(1 +2koy/g)-1 cos In
(l + rla)

+ sin In -- (l+ rla)

which is discontinuous at s (1 + qa)/2. Analogous results hold for er/=-1. Since the
solutions of (5.20), (5.8) must be real combinations of the functions of (5.21), this
problem can have no nontrivial continuous solutions. This disturbing observation is a
manifestation of the failure of the integral operator corresponding to (5.18), (5.8), say,
to be Fr6chet ditterentiable on all of Cx C.

Remarks. (i) That solutions of our boundary value problems should be continuous
is a consequence of the underlying physics. The problem (5.20), (5.8) can be given a
very complete spectral analysis in weighted L2-spaces by the Weyl theory and its
refinements (cf. Coddington and Levinson [8], Dunford and Schwartz 13] and Naimark
[22]). But the results of such an analysis are largely irrelevant for our problem. One
inkling of the difficulty we face is that nontrivial solutions of (5.20), (5.8) in the
appropriate Hilbert space have no discernible nodal structure.

(ii) Tabulations of the properties of Bessel functions of complex order are sparse
(apparently because they were once wrongly deemed to be of little use in applications).
The following references, kindly provided to us by F. W. J. Olver, may be consulted:
Buckens [7], Luke and Weissman [20], Morgan [21].

(iii) For 3,=0, independent solutions of (5.20) are the Bessel functions Jo and
No of the argument shown in (5.21). Since No is singular when its argument vanishes,
its coefficient in the general solution must vanish. The remaining coefficient is generally
insufficient to handle the two boundary conditions. A strategy for obtaining physically
meaningful results in this case, which relies on the introduction of a or b as a second
bifurcation parameter, is described in [3].

6. Global bifurcation theory for inextensible strings. To circumvent the difficulties
portended by the singularities of (5.20), we let k denote a positive integer and replace
(5.13) with the regularized problem

(b- s) ds
(6.1) A[b,r]=A[b,/r2+k-2]=g /g2lb_sl2+r(s)2+k_2=la.
For each k, considerations like those discussed in the treatment of (5.13) show that
(6.1) has a unique solution for b, which we denote by b k[r]. The functional /3k is
continuously Fr6chet ditterentiable on C. Next we set

(6.2) mk(S) en,/g=l[r]-- sl2 + r(s)= + k-2.
We now study the regularized version of (5.18), (5.8)

(6.3) v’= W/mk, W’= --tO2(1 -t- T2/mk)l), v(O) 0 v(l)

and the associated integral equations

(6.4) v(s) mk( t)-’w( t) dt,

]- Io io(6.5) w(s)=to2 mk(t)-1 dt mk(t)-1 [l+r:m,(z)-]v(z) drdt
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to 1 + T2mk(t)-’]v(t) dt.

We abbreviate (6.4), (6.5) as

(6.6) (v, w)= Tk(to, T, v, w).

Since the right sides of (6.4) and (6.5) are innocuous, a simple application of the
Ascoli-Arzelh theorem shows that Tk is a compact and continuous mapping from
R x [R\{0}] x Cx CO to Cx C. The linearization of (6.6) about the trivial solution,
which we denote by

(6.7) (v, w)= Lk(to, y)(v, w),

corresponds to integral equations obtained by replacing mk in (6.4), (6.5) with

(6.8) mk(S) en,/gl/3,[O] sl + k-where

(6.9) 2flk[0] 2/3[ k-1 + r/ax/1 + 4[ k2g2(l2 aa)]-1.
These integral equations in turn correspond to the regular Sturm-Liouville problem
(5.19), (5.8) with m(s) replaced by (6.8). In the formal limit as k --> , these regularized
problems reduce to the actual problems of 5. Our goal is to justify this limit process.

Remark. Had we replaced the radical of (6.1) with /g21b-sl=+ r(s)2+k-1 and
made analogous changes elsewhere, then we would not have obtained the resulting
solution b ilk[0] of the equation Ak[b, 0] a in closed form. On the other hand, the
boundary value problem corresponding to (6.7) could be solved explicitly in terms of
Bessel functions of imaginary order.

To carry out the analysis we shall require the following results from the Sturmian
theory for the boundary value problem

(6.10) [p(s,A)u’]’+q(s,A)u=O, u(O)=O=u(l).

The Priifer transformation

(6.11) u p sin 0, pu’= p cos 0

takes (6.10) into the system

(6.12) p’= p[p(s, A )-1_ q(s, A )] sin 0 cos O,

(6.13) O’=p(s,A)-1 cosa O+q(s,Z)sin2 O,

(6.14a, b) 0(0) O, O(l)=(j+l)Tr

where j is an integer. (Note that (6.13) can be solved in closed form when p and q
are independent of s.)

THEOREM 6.15. Let q be continuous and let p be continuous and positive on [0, l] x
[0, ). Let the solution of (6.13), (6.14a) (known to exist on [0, l] for each A [0, ))
be denoted by 0(., A ). If
(6.16) O(/,O)-<_Tr and O(/,A)-->c asA->,

then (6.10) has a countable infinity of collections e, j O, 1,..., of eigenvalues with the
following properties" ej is a compact subset of (0, o),

0 < min eo < min el " ",

0 < max eo < max e <S

min e--> asj-->o,
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the eigenspace corresponding to any eigenvalue is one-dimensional, an eigenfunction
corresponding to any eigenvalue in ej has exactly j + 2 zeros on [0, l] each of which is
simple. If
(6.17) 0 (l, h strictly increases to o as h o,
then each ej consists of but a single eigenvalue h.

Let P and Q be continuous on [0, l] x [0, ) and satisfy

(6.18) p(s, h <= P(s, h ), q(s, A >= Q(s, h ).
Let 0(., h denote the solution ofthe modification of (6.13), (6.14a) obtained by replacing
p and q by P and Q. (Then 6)(s, A) <= O(s, h).) Let 0(., A) and 0(., A) each satisfy
(6.16). Let {E} represent the collections ofeigenvaluesfor the problem with Pand Q. Then

(6.19) min e =< min E, max ej =< max E, j 0, 1,. .
THEOREM 6.20. Let p(s, h) p(s), q(s, h) hh(s)- k(s) where p, h, k are con-

tinuous on [0, 1], p is positive on [0, l], and h and k are positive on (0, l). (In this case
0 satisfies (6.16) and (6.17).) Then the eigenvalues h of (6.10) are characterized by

/0 [P(/)t)2 _}_ kv] ds
(6.21) Zj max min

where S is the class of all j-dimensional subspaces of the Sobolev space H and E is
the orthogonal complement ofE with respect to the inner product (Vl, v2)Io hVl va ds.
Aj and its suitably normalized eigenfunction depend analytically on p, h, k in the topology
of CO x CO x C.

Theorem 6.15 is a generalized version of standard results. Its proof relies on the
simple observation that A e if and only if O(b,A)=(j+ 1)Tr. (Cf. (6.14b).) Since it
is a straightforward exercise (cf. Hille [14], e.g.) to verify that (6.16) and (6.17) hold
for our problems, we shall not pause to give the details. Equation (6.21) is derived in
[9, Chap. VI], e.g., it has various generalizations. When the hypotheses of Theorem
6.20 hold, the specialization of (6.19) is readily proved by means of (6.21). The last
statement of Theorem 6.20 is based on Kato [15, Thm. 11.5.16 and IV.3.57].

We set

(6.22) X ((0)2, ,)/2), (/), w)).

We define the norm I1" on cx c by

(6.23) I1(, w)ll- max x/V(S)2+ w(s)2.
s[o,/]

We are now ready to use Theorems 6.15 and 6.20 to study (6.7). Our analysis is based
on the observation that if X satisfies (6.7), then (0)2, ,2, v) satisfies (5.19), (5.8) with
m (s) replaced by (6.8).

THEOREM 6.24. Let eq 1. Then (6.7) has a countable infinity ofanalytic eigencurves
G; {(0) 2, ’y2) [0, 00] X [0, 00]" 0)2 ’;(’y2)}, j--0, 1, 2,’’" such that

(6.25) 0 ( -ok(3/2) ( " lk( 3/2) (’" ",

(6.26) fy(

(6.27) fy(y2) max min
o Iml(v’)2 ds

.s [.0 (-- + Y2/lml)v2 ds’ erl 1,

(6.28) O(y2) 0 as 3,
2 c,

(6.29) I(’),2)’xaO as k-oo.
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(Sj is defined as in (6.21).) The eigenfunction V(., y2) corresponding to the eigenvalue
(f(y2), y2) on G has exactly j + 2 zeros on [0, l], each of which is simple. V depends
analytically on

Proof All the statements of this theorem save (6.28) and (6.29) follow immediately
from Theorems 6.15 and 6.20. Limits (6.28) and (6.29) are consequences of (6.27), the
proof of the latter requiring the observation that if v does not vanish near (l+ a)/2
then the denominator of the Rayleigh quotient in (6.27) becomes infinite with k. (For
k sufficiently large, (6.9) implies that ilk[0] E (0, 1).) These results can also be established
on the basis of (6.19) by means of a suitable comparison problem.

In a similar way we obtain the following.
THEOREM 6.30. Let’erl =-1. Then (6.7) has a countable infinity of analytic eigen-

curves G) {(to E, 2,2) E [0, o) x [0, o). y2: F;(to2)}, j =0, 1, 2,’’" such that

(6.31) 0< < <

(6.32) F;(to 2) - c asj - o,

(6.33) F(w) max mi
[w-Zlrnkl(V’)-+v] ds

(6.34) I(to2)/o0 as

(6.35) F(wz)0 asko.

Suppose now that e7 1 and that 3,
2 is a fixed positive number. The coefficient

of ooZv in the second-order version of (6.7) is

(6.36) -1 -k- T2[g2[flk[O] S[ 2 h- k-2]-/2.
For k sufficiently large there is a neighborhood around ilk[0], in fact, around (1 + r/a)/2,
on which (6.36) is positive. In this case we can conclude from Theorem 6.15 that (6.7)
has a countable infinity of eigenvalues l(y2) satisfying (6.25) and (6.26). In particular,
if

(6.37) 3/4>- g212 d- 1,

then (6.36) is nonnegative on [0, 1], whence it follows that (6.27)-(6.29) also hold. On
the other hand, if

(6.38) 3/2< g(l+ a)/2,

then (6.36) is negative on an open subset of (0, I). In this case (6.7) also has a countable
infinity of negative eigenvalues w2, which we ignore because to

2 is confined to [0, c)
on physical grounds.

All these considerations show that the eigencurves of (6.7) have the forms shown
in Fig. 6.39. When er/=-1 we take 12 to be the inverse of F.

The simplicity of the eigenvalues, the nodal properties of the corresponding
eigenfunctions, the Fr6chet ditterentiability of Tk, and the compactness and continuity
of Tk and Lk enable us to apply the global multiparameter bifurcation theory of
Alexander and Antman [2] to conclude the following.

THEOREM 6.40. Bifurcatingfrom each eigencurve G of (6.7) is a connectedfamily
K of nontrivial solution pairs X of (6.6), each point of which has Lebesgue dimension
at least 2. The intersection ofK with a plane of the form 3/2= 3/ohas at least one of the
following properties: (i) K is unbounded in (0, o) x (0, o) C C, (ii) there is an
j such that K connects ((11(3/), 3/z), (0, 0)) to ((1"k(3/2), 3/2), (0, 0)). Moreover, if

and II( , w)ll is sufficiently small, then v has exactly j+2 zeros on [0, l], each
of which is simple.
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FIG. 6.39. Eigencurves of (6.7).

Corollaries 4.30 and 4.31 for our regularized problem and the last statement of
Theorem 6.40 allow us to imitate a now standard argument of Crandall and Rabinowitz
[10] (cf. e.g. [23], [3]) to deduce the following.

THEOREM 6.41. Everywhere on K, v has exactlyj + 2 zeros, each ofwhich is simple.
For each 3,20, K f’) {X" 3,2 3,} is unbounded in (0, o) x (0, o) x CO x C, does not satisfy
property (ii) of Theorem 6.40, and does not meet K for j.

We now study the behavior of K as k o. For this purpose we need estimates,
such as those of Proposition 6.51, that are uniform in k. Unless there is a statement
to the contrary, we assume that to3,0. Now (5.18) implies that Iv’l_-< 1. From this
inequality and from (2.29), or more simply from the underlying geometry, we find that

(6.42a) 4v2 =< 12- a2.

If we use this inequality together with the inequality Iw3,v/ml-< 1 in (6.5) we obtain

(6.42b) wl =< 212092[ 0)2(12- a2)/4 + 3,2],
whence

(6.42c) r2 =< 092{[ T2 + 2120)2]( 12- a2)/4 + 2123,2}.
Thus v and w are bounded when w and 3, are bounded.

We now construct related bounds, which are sharper for small II(v, w)ll. Set

(6.43a) B(R) {(v, w): II(v, w)ll -< R}.

If

(6.43b) X E {[0, o) x [0, o) x B(R)} r’l K,
then

(6.44) r2-<;- (0923,2 + 1)R2 62 1

and

(6.45) A-(b, 6) <= a[b, r] =- A[b, .,/r2 + k-2] -< a+(b, 6).

It follows from Fig. 5.17 that

(6.46) -(6, rta) [r]<=+(6, rta)
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where b =/3:(6, 7a) is the solution of A+(b, 6) qa. Indeed, we find from (5.16) that

2/3+(6,a) (l+a)
[l+a+26/g]

(O, 1)
[l + qa + 6/g]

(6.47a)
when 2q6 < g( 2 a2)/ a,

2fl+(6, a)= l+Tav/l +462g-2(12-a2)-I [/,o)
(6.47b)

when q 1, 26 >= g( 2- a2)/a.
Now from Fig. 5.17 we find that

(6.48a) 0</3-(6, a) </3+(6, a),

(6.48b) I/3-(6, a) _-</3+(6, a).

Thus (6.46)-(6.48) imply that

(6.49) 21[r]l =< + a X/1 +
Inequalities (6.44) and (6.49) imply that

g2(12-a2)"

(3a2- 2

(6.50a) Imk12<--_2g2(lk12+12)+r2<=g-(312+a2)+ 12-.-a- 62-1,

(6.50b)
3a + 12

Imkl<----gx/312+a2+ 12_a2 [to7R+/R2+l]=to7R+d/(e)

We now study the case in which e7 1. Since (6.43) is still in force, X is a solution
pair of the regularized version of (5.19), which we regard as a linear equation for v
with coefficients known. We can compare the eigenvalues to2 of this nonlinear equation
with those of the linear equation obtained by replacing the coefficient Iml of v’ with
the right side of (6.50b) and replacing the coefficient o9211 +.,/Iml] with 0) 2. Since
the resulting comparison problem has constant coefficients, we find from Theorem 6.15
the following result.

PROPOSITION 6.51. Let eB and let (6.44) hold. Then

(6.52a) O < to. <- l)f y2, R)
where

(6.52b) 212/ff y2, R) ==-j27r2yR + [(j27r2sCyR)2 + 412j2rr2O(R )]1/2.
(The comparison problem has two eigenvalues to for each j. We called the larger

(f(72, R))1/2 because its square is also the larger, in consonance with Theorem 6.15.)
From Theorem 6.41, inequalities (6.42), and Proposition 6.51, we deduce the

following.
THEOREM 6.53. Let eq 1 and let 72 be fixed. Then w is unbounded and 0)

2 is

positive and unbounded on K.
We now fix j, fix a number F > 0, and set

(6.54) a(r’) {X I-0, oo) x I0, r] x cx co. ,o__< sa)-(,:, II(v, w)ll)} u {oo}.

We define the topology of Aj (which is like a one-point compactification) by taking a
neighborhood basis of to be

(6.55) {x: II(v, w)ll => h, h 1, 2,...}.
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Let

(6.56) /-/ (F) {X: v 0 w} fl Aj(F),
(6.57) /(F) -= [K U/-/(F) U {}] f’l Aj (F).
Then /(F) is compact in A(F) and Theorem 6.53 says that/-/(F) is not separated
from {oe} in/(r). We define

(6.58) K(F) {X e A(F): X satisfies (6.6); v has exactlyj + 2
zeros on [0, l], which are simple},

(6.59) K(F) Kj(F) U/-/(F) U {ooI.

It is conceivable that K(F) is empty. Our basic result, which among other things asserts
that it is not, is the following.

THEOREM 6.60. Let er/= 1. (i) /-/(F) and {o0} are not separated in K(F). Thus
K(F) contains a connected subset C(F) bifurcating from the jth eigencurve
{((to2, y2), (0, 0))" w2:flj(y2), y2e[0, F]I and containing solution pairs with Ilwl[ and

2oo unbounded. (ii) K(F)f-)Ki(F)= for j. (iii) C(F) has Lebesgue dimension at
least 2 at each of its points.

Proof. We hold j fixed. Property (ii) is a consequence of Corollary 4.31. To prove
property (i) we appeal to Alexander’s 1 generalization and unification of connectivity
results of the sort treated by Kuratowski [18, Chap. V] and Whyburn [30, Chap. I].
The theory of Alexander shows that the following two properties suffice to establish
property (i)" (a) Let {k} be any subsequence of the positive integers. If X /(F),
then {X} has a subsequence converging in the topology of A(F). (b) If X e/((F)
and if x’k-- X in A(F) as k-oo, then Xje/(F). We first prove (a). If an infinite
number of the points X .k equal oo, or if w is unbounded, then {X} has a subsequence
converging to oe and (a) holds. If an infinite number of X .k lie in./-/(F), then the
Bolzano-Weierstrass theorem ensures that (a) holds. Otherwise we may suppose that
there is an R>0 such that (0,0)(v, w)eB(R). Since elements of K(F)f3
[Nxn(R)] are nontrivial solution pairs X of (6.6) with (y2)e[0, F] and
satisfying (6.52a), it suffices to show that UkTk(A(F)f3{NxB(R)})=-D(F,R) is
precompact. But the inequalities Iwm-11, lym-11-< 1 allow us to deduce from (6.4), (6.5)
that D(F, R) is uniformly bounded and equicontinuous, and, by virtue of the Ascoli-
Arzel theorem, is precompact.

We now prove (b), assuming that its hypotheses hold. As before, we can restrict
our attention to the case that R-<- wll < R with R > 1. Since xk satisfies (6.6) (i.e.,
(6.4) and (6.5)), we let k-oo. The Lebesgue Dominated Convergence theorem allows
us to interchange the order of limit and integration to show that X is a nontrivial
solution pair of the limiting form of (6.6), which is equivalent to the boundary value
problem posed in 5. We need only show that v has exactly j + 2 zeros on [0,/], which
are simple. If not, (v, w)j would be approximated in Cx CO by functions (v, w) with
this nodal pattern. Thus (v, w) would vanish at some point in [0,/], whence (v, w) 0
by Corollary 4.31, a contradiction. Thus (b) also holds, so that property (i) holds.

To prove property (iii) we observe that the statement that each point of K(F)
has Lebesgue dimension at least 2 is proved by computing lech cohomology (cf, [2]).
But (2ech cohomology is continuous under the limit processes we have just carried
out (cf. [1]). Thus the dimensionality properties of K(F) are inherited from those of
K(F). E!

We now study the behavior of K or Cj as I1( , w)II-" 0. We assume that (w
lies in a compact subset of [0, ) (0, ). Then (5.6) implies that

(6.61) Im(s)l<=,/g21[r]-sl+21[rll2 where sr2=max (o2y2+ 1" (w
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Now the analysis supporting Fig. 5.17 shows that fl[r] (0, l) if IIr[I is sufficiently small.
Thus we can imitate the proof leading to (6.29) to obtain

THEOREM 6.62 Let e,/= 1. Let xjKj[Ex{(v, w)" II( , w)ll-<-p}], rhe 
as p-O.

We do not pause to refine our picture of Cj by the use of Theorems 6.15 and 6.20
buttressed by sharper estimates. We illustrate the appearance of C in Figs. 6.63 and
6.64. For fixed T> 0, a countable infinity of nontrivial solution branches bifurcate
from o 0 (v, w). o 0 is the boundary ofthe continuous spectrum ofthe linearized
problem. All the sheets of solutions we have treated bifurcate from the lines o2= 0
and , 0.

The treatment of the problem for er/=-1 is much easier than that for er/= 1,
paradoxically because the singular behavior as ,- 0 of the former is worse than that
of the latter. One manifestation of this singular behavior is that the eigencurves of the
regularized problem with er/--1, which are shown in Fig. 6.39, do not intersect the
o-axis. The presence of such intersections for er/= 1 meant that we had to treat the
behavior for small , with great care in the analysis beginning with (6.42). Since no
such phenomena occur for er/=-1, no such care is required. Consequently we can
formulate the problem for er/=-1 in terms of the variables y and w (cf. (5.5), (5.7)).

The integral equations for (y, w) corresponding to (6.4)-(6.6) are singular for
Te=0, as is evident from (5.7). We set

(6.65) = ((o -, 3,), (y, w)),

(6.66) / {’X K}
where y is related to v by (5.5a). Then clearly Theorem 6.40 holds with X and

Co CI C2

2

2

FIG. 6.63. Schematic illustration of the bifurcating sheets Cj for erl 1.
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FIG. 6.64. Schematic diagram of the level surfaces Cj (3 {X: II( v, w)ll--} for different values of p. The
solid lines correspond to C and the dashed lines to C.

replaced with and/ and with (6.6) interpreted as the equivalent equation for .
Theorem 6.41 holds with these substitutions together with the replacement of v by y.

Next we set

(6.67)

If

/(R) {(y, w): II(y, w)ll R}.

? ([0, ) (0, ) ()) rq/’,(6.68)

then

(6.69) rZ<=R2,
which is a great simplication over (6.44). It follows that (6.45)-(6.50) hold with

(6.70) (2= R2+ 1.

In analogy with Proposition 6.51 we have the following.
PROr’OSITON 6.71. Let el =-1 and let (6.68) hold. Then

(6.72) 0< r_-< r;(,o, R) I1/
where ia. lOg-lZ+ aZ(R+ 1).

(The estimates leading to (6.72) are painless.)
We now fix j, fix a number > 1 and set

(6.73) () {: w [-, ], YF(w, II(Y, w)ll)} U {},

defining its topology just as we did for (F). We set

() { (). satisfies its equivalent version of (6.6),
(6.74)

y has exactly j + 2 zeros on [0, l], which are simple.}

Then we can duplicate the proof of Theorem 6.60 to obtain the following
THOZM 6.75. Let e =-1. en () contains a connected subset Q(O) bifur-

catingfrom thejth eigencurve {((w, y), (0, 0))" y= F(z), w [O-a, ]} and contain-. otton par wth (Y, w)ll unbounded. () K,() for j. () ha
Lebesgue dimension at least two at each of its points.
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Further analysis shows that the level curves on which II(y, w)l[- R resemble
hyperbolas and that the bifurcation diagram corresponding to Fig. 6.63 looks like a
quarter of a saddle surface. All the solution sheets bifurcate from the lines co2= 0,
72=0. (Incidentally, the use of (6.65) promotes the further analysis of the problem
for which er/= 1.)

From (4.8) we see that b’ depends on coy. Hence the number of zeros of xl and
x2, although not the number of zeros of v, on any sheet changes with co and 3’. To
study this dependence, we use (6.50a) with 62-1 taken to be the right side of (6.42c).
We thus obtain

coy
(6.76) I’1 Aco 2 + Bcoy + C

where A, B, C are positive constants that depend on and a. Contrast this behavior
with that of 3. The Priifer transformation co r cos 0, y r sin 0 converts (5.7b) to
a system for which

(6.77) r(s)= r(so) exp -- sin 0(t) cos O(t) de soe[0, l].

From (6.77), (4.8), (5.6b), (5.12) we then get

(6.78) r(s) r(so)e-/,

(6.79) 16’l(r V(o) + W(o)"
We finally observe that when r2> 0, the differential equation (5.18) involves only

analytic functions. For one-parameter bifurcation problems of the form f(x, )= 0
where x is in a Banach space, h is real, and f is real-analytic, Dancer [12] has shown
that where the set of solution pairs is compact, it consists of a locally finite union of
finite-dimensional analytic manifolds. That is a scalar is irrelevant to Dancer’s proof.
Thus his theorem is applicable to our problem away from the bifurcation points.
Moreover, the theorem of Alexander and Antman [2] shows that the set of nontrivial
solution pairs contains a minimal set each point of which has dimension at least two.
The combination of these two results shows that the set of nontrivial solution pairs
for our problem contains a locally finite union of analytic manifolds of dimension ,at

least two.
Several authors ([3], [4], [27], [29]) have developed methods to handle lack of

compactness in one-parameter problems. See [29] for an extensive bibliography on
this matter.

7. Elastic strings. Here we indicate the extent to which our results for inextensible
strings are typical of those for elastic strings. We begin by observing that the bifurcation
diagram (Fig. 6.63) bears absolutely no resemblance to that corresponding to Fig. 3.11,
because the singularities arising in the problem for the inextensible string reflect the
fact that the trivial state must be folded at b (0, l) for the problem to have meaning.
The conditions under which Fig. 3.11 is valid ensure that b [0, l] so that the trivial
state is not folded and so that z’> 0 for any steady state. Solutions for elastic strings
can be expected to exhibit the properties of those for inextensible strings when > a.
But there are other pathologies that can arise. We now examine the simplest manifes-
tation of these.
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We seek a trivial solution of the problem for elastic strings, i.e., we seek an
absolutely continuous function z and a real number b satisfying (2.28), (2.29):

(7.1) N(Iz’(s)l)-=AIz’(s)l epAg(b-s) signz’(s), z(0)=0, z(1)=a.

To be specific let us assume that e 1, that 3’ is given, and that N is concave. Then
vN(u)-3"2pAu has the form shown in Fig. 7.2./z(3’) denotes the maximum value
of this function. (It decreases with increasing [3’[.)

N(u)-),2pA/

FIG. 7.2

We examine whether (7.1) admits a solution with z’ continuous and positive. In
this case (7.1) reduces to

(7.3a, b,c) N(z’(s))-3"2pAz’(s)=pAg(b-s) for s 6 [0, /], z(0)=0, z(l)=a.

Equation (7.3a) has no solutions for z’ if there is an s in [0, 1] such that pAg(b s) >
/z(3’) and hence no solutions if pAgb> tz(3"). Equation (7.3a) has two continuous
solutions for z".’if pAg(b s) <- tx(3") for all s [0, l], i.e., if pAgb <- tx(3"). We denote
the two continuous functions whose graphs form the inverse of that of Fig. 7.2 by
v-(., 3’) and v+( ., 3’) with v-(C, 3’) < v+(sc, y) for :</x(3’). We set

(7.4) +/-(gpAb, 3")=- ,+/-(gpA(b-s), 3") ds when gpAb<-tx(3").

-(., 3’) strictly increases from 0 at b
while +(., 3’) strictly decreases from ee at b=-oo to IIo ,+(tz(3")-gpAs, 3")ds at
gpAb=(3"). Hence +(/x(3’), 3’)>-(/x(3’), 3’). The graphs of + are shown in
Fig. 7.5.

From Fig. 7.5 we immediately see that (7.3) has a continuous solution with
z’- u+(pAg(b-s))when a

_
(cI)-(/x(3’), 3’), +(/x(3’), 3’)), forthen one ofthe equations

+(gpAb, 3") a has a unique solution for b in terms of a, these equations corresponding
to the condition that z(l)- z(O)- a.

We do not get a solution with z’ continuous if a 6 (-(/x(3’), 3’), +(/x(3’), 3’)).
In this case we can construct a discontinuous z’ (nonuniquely) to satisfy (7.3). Now,



DRAWING AND WHIRLING OF STRINGS 363

FIG. 7.5

gpAb

since N(v)- oe as v- oo, we can make/x(3,) as large as we like by taking yl small
enough. Suppose that la,(y)>-_gpAl. Then -(/z(y), y)>lv-(la.-gpAl)>=l. Thus we
fail to get a continuous solution for a range of a’s exceeding 1. In this range the average
stretch a of the string exceeds one, yet the only possible steady motion is a standing
shock.

We can similarly treat other eases under the requirement, introduced at the end
of 4, that my be continuous. Since the left side of (7.1) is just my for the class of
trivial solutions under consideration, the continuity of my requires that z’ could only
change sign in (0, 1) at b, when b E (0, 1).

The same difficulties arise for the full problem. Figure 7.2 represents a typical
graph for my. Other such graphs may have several local maxima and minima with my

approaching o as v- o if N is asymptotically superlinear and approaching -c as
v- o if N is asymptotically sublinear. The requirement that my be continuous allows
many possible jumps in v. An entropy condition is needed to eliminate solutions that
are not physically realistic. Unfortunately the concept of being physically realistic is
not mathematically precise. Admissibility conditions such as those of Liu [19] are
based on the interpretation of the original hyperbolic system as a singular limit of a
parabolic system with a mechanism for viscous dissipation. Such mechanisms are
appropriate for treating shocks in fluids, but their suitability for solids is not so well
established (cf. [6]). For our problem thejump conditions they provide are incompatible
with those based on criteria such as Maxwell’s equal area rule, which has a more
purely thermodynamical motivation. Neither kind of jump condition can be relied
upon to pick out a unique system of shocks for the steady motions we study. Our
preliminary studies of shock conditions also show that they are very sensitive to an
interpretation of the equations of motion for strings as singular limits of those for
rods, which have flexural and torsional stiffness.

Even if we could confidently adopt an entropy condition as realistic, we have no
assurance that the resulting operator equations admit a global bifurcation theory. (If
they do, then a proof of that fact would likely require an analysis based on a
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regularization argument like that of 6.) Nevertheless, we can still get useful global
information about nontrivial solutions for elastic strings by exploiting the techniques
of 6 when b (0, l) and by less drastic techniques otherwise:

THEOREM 7.6. The number of (necessarily simple) zeros of v on [0, l] is constant
on any connected set of nontrivial shock-free solution pairs. (The topology of solution-
parameter space is that of 6.) Let D be a region of (to 2, y2)-space for which the trivial
solutions are shock-free. If the bfor the trivial state lies outside [0, l] for all (to 2, 3,2) D,
then there is a neighborhood of D in solution-parameter space in which the bifurcation
diagram resembles that corresponding to Fig. 3.11 with the bifurcating sheets inheriting
their nodal properties from those of the eigenfunctions of the linearized problem. Let
Dc {(to 2, y2): to2 50, ),2 0 and letD f. If the b for the trivial state lies inside (0, l)
for all (to 2, y2) D, then there is a neighborhood of D in solution-parameter space in
which the bifurcation diagram resembles those of 6.

Note that all these conclusions hold for y2< yo, where yoz is defined in (4.1).
Finally we may comment briefly on the limit as an elastic string becomes inexten-

sible. Let u* be the inverse of N and let n N(u). Then (2.24) yields

(7.7) n pA(m + y2) u*(n).

If u* is sufficiently "flat," e.g., if u* is concave on (0, az), then (7.7) has a unique
solution n --.t(m, y) for n in terms of m. In the limit that the string becomes inextensible,
i.e., as u*(n) 1 for all n, this solution is obviously (m, y)=pA(m+y2). We now
replace (2.33) with

(7.8) (z’)

We may then follow the approach of 5 and 6, observing than an equation such as
(5.1c) becomes an implicit equation for m. It appears from our preliminary analysis
of this question that the resulting bifurcation diagrams for slightly extensible strings
converge nonuniformly to those for inextensible strings, the nonuniformity occurring
for large values of T2. Note that the special material used in 3 does not admit a
natural limit process allowing the extensibility to go to zero.

Acknowledgments. We are indebted to J. C. Alexander, E. N. Dancer, and
F. W. J. Olver for their very helpful comments on parts of this paper.
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CONVOLUTION OPERATORS IN A FADING MEMORY SPACE:
THE CRITICAL CASE*

G. S. JORDAN,, OLOF J. STAFFANSt AND ROBERT L. WHEELER

Abstract. We study the linear system of convolution equations

x(t) x’(t) +/x * x(t) =f(t), (-co, ),

where x, f are n-dimensional column vectors and/z is an n x n matrix-valued measure which is finite with

respect to a suitable weight function. We describe the null space and the range of the operator in a fading
memory space. Our results include the previously untreated critical case when there may be a finite number
of eigenvalues of the Laplace transform/,(z) zI + IS, (z) of on the boundary of the strip of convergence
of/2. Our description is given in terms of the Jordan chains at the eigenvalues of the locally analytic
matrix-valued function /,(z). We prove a new Smith factorization theorem for locally analytic matrix
functions. At the eigenvalues on the boundary of the strip of convergence, sufficient conditions for the
existence of such a factorization are given in terms of the Banach algebra concept of the order of smoothness
of a locally analytic matrix function and the structure of the Smith factorization. The authors have previously
developed such Banach algebra methods to analyze scalar locally analytic functions.

Key words, convolution equation, locally analytic matrix function, Smith factorization, null space, range,
fading memory

AMS(MOS) subject classifications. 45F05, 45Mxx, 34K20

I. Introduction. We study the linear system of convolution equations

(1.1) ’x(t) ------ x’(t) + IX * x(t) =f(t), R --- (-, c),

where x, f are n-dimensional column vectors and IX is an n n matrix-valued measure
which is finite with respect to a suitable weight function. As usual Ix. x denotes the
convolution

tx * x( t) I/ dix(s)x( s).

We describe the null space and the range of the operator in a fading memory space
in the critical case when there may be a finite number of eigenvalues of the Laplace
transform f(z)= zI+12(z) of (that is, zeros of the determinant of (z)) on the
boundary of the strip of convergence of/2. Our descriptions^are in terms of Jordan
chains of vectors at the eigenvalues of the Laplace transform L of , and they depend
on a Smith factorization theorem which we prove for locally analytic matrix functions.

Conditions sufficient to guarantee the existence of local and global Smith factoriza-
tions of locally analytic matrix functions are given in 3. These results are central to
the subsequent analysis and are the most difficult theorems of the paper. The global
Smith factorization theorem, Theorem 3.2, is the matrix analogue of the Ll-quotient
theorem for scalar locally analytic functions [7, Thm. 3.4]. Since we are primarily
concerned with permitting eigenvalues on the boundary of the strip of convergence of
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24061-4097. The work of this author was partially supported by the National Science Foundation under
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locally analytic matrix functions, the development of these theorems is, of necessity,
rather technical. For eigenvalues on the boundary of this strip, these theorems require
that the components of the locally analytic matrix function satisfy certain smoothness
hypotheses with the required order of smoothness being determined by the maximal
partial multiplicity of the factored matrix. In the interior of the strip of convergence,
the locally analytic matrix function is analytic and these smoothness assumptions hold
automatically.

In 2 we describe the weighted measure spaces in which we work, and review
the concepts of local analyticity and smoothness of scalar locally analytic functions
as developed in [7]. We remark that in [7, Lemma 4.3] we gave conditions on the
components of the measure /z(t) that are necessary and sufficient to guarantee that
the components of/2(z), and hence of (z), are smooth of a prescribed order. We
conclude 2 with a discussion of the fading memory spaces on which the operator
in (1.1) acts.

We describe the null space and the range of the operator in (1.1) in 5 and
6, respectively. The results established here are in the same spirit as those of [12].
However, they are more general because the eigenvalues of L(z) are not restricted to
the interior of the strip of convergence of/2 as was the case in [12]. The results here
also sharpen those in 12] since, roughly, our descriptions take account of polynomial
rates of growth (or decay), whereas the descriptions in [12] only distinguish growth
(or decay) rates that are exponentially separated. The methods of proof in [12] do not
apply in the present situation; instead we must use the factorization theorems that we
develop in 3. Our description relates the null space and range of to the Jordan
chains of L(z). The notion of Jordan chains of vectors at the eigenvalues of a locally
analytic matrix function and some of their elementary properties are described in 4.

The principal application which motivates the results given here is the same as
in [12] and [11], i.e., a study of the asymptotic behavior of the linear, infinite delay,
autonomous system of functional differential equations

x’(t) +/x x(t) =f(t), 6 R* [0, c),

x( t) qb( t), 6 R--= (-c, 0],

where/x(t) is supported on R/. We analyze (1.2) in the sequel paper [8]. Again the
results in [8] improve those in [12] and [11] since in [8] we study the critical case
where the components of the solution of (1.2) are not exponentially separated as well
as the noncritical case studied in [12] and [11].

In addition to the description of the null and range spaces of the Fredholm
convolution operator (1.1) given in 5 and 6, the analysis of the functional differential
equation (1.2) in [8] requires us to study the singular part expansion of the inverse of
a locally analytic matrix function at its eigenvalues. Conditions necessary to ensure
the existence of such a singular part expansion follow from the Smith factorization
theorems proved here. Since this expansion is not used in our study of (1.1), we
postpone its development to [8]. Kappel and Wimmer [9] have used similar factoriza-
tion and singular part expansions to decompose the null space of a system of linear
functional differential equations with finite delay. However, in the case of finite delay
equations, the characteristic equation zI+t2(z) is entire, so the analytic difficulties
that we encounter at the boundary of the strip of convergence do not arise.

Finally, we remark that the scalar Ll-quotient theorem as well as less precise
results concerning singular part expansions have been used to study the asymptotic
behavior of both scalar and system versions of Volterra integrodifferential equations
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of convolution type whose eigenvalues lie on the boundary of the half-plane of
convergence of the Laplace transform of the kernel [7, Props. 5.1, 5.2, 5.3], [4], [5],
[6], [10] (both in weighted and nonweighted Ll-spaces). The Smith factorization
theorem for locally analytic matrix functions obtained here as well as the related results
concerning singular part expansions given in [8] can be applied to sharpen and extend
these earlier results for systems of integrodiiterential equations.

2. Weighted measures and fading memory spaces. Let us begin with a short pre-
sentation of weighted Ll-spaces and locally analytic functions. For more details see,
e.g., [7], [11] and [12].

We call the function p a weightfunction, if p is a Borel measurable, strictly positive
function on R, p and p-1 are locally bounded, and p is submultiplicative, i.e.,

p(s / t) <-- p(s)p( t), s, R.

Without loss of generality one may always take .p(0)- 1. A typical weight function to
keep in mind is

y e-at(1 + Itl), g-,
P( t) e-bt(1 + t) v, R+,

where (3, y => 0 and -< b -< a <.
The space LI(c; p) consists of all complex measurable functions x on R for which

For x, y L(C; p), define the convolution of x and y by

x*y(t)= IR x(t--s)y(s) ds.

Then LI(C; p) becomes a commutative normed ring with convolution multiplication.
We let V(C; p) denote the ring one obtains from LI(c; p) by adjoining a unit.

Both L(C; p) and V(C; p) are closed subrings of M(C;p), the space of locally
finite complex Borel measures/.t on R satisfying

liP’ f P(t) dll(t) < c,
3R

where I/z[ is the total variation measure of/x. The convolution of a LI(c; p) and
/x M(C; p) is defined by

tz*a(t)=a*tz(t)= f a(t-s) dtz(s).

Define

(2.1)

log p(t) log p(t)
-sup lim

t<0 t--

log p(t) log p(t)
to -inf -lim

t>o t-+

(in [7] these numbers were denoted by p* and p,, respectively). Then -c < to _<_ a <,
and the maximal ideal space of V(C; p) can be identified with II H t_J {}, where

H-={z C[to =< Re z<=a}.
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For the example of a weight function given earlier, to b and a a. We note that for
the special case/9(t) 1, to a 0 and II is the imaginary axis.

The bilateral Laplace transforms defined by

(Z) IR e-zta( t) dt, a LI(c;/9),

12(z) fR e-z’ dtz(t), tx e M(C; p)

converge absolutely for z e II.
We let C stand for the space of n x n complex-valued matrices, and define

LI(C""; p), V(C""; t9) and M(C""; t9) as above, but with complex-valued functions
and measures replaced by C"-valued functions and measures. Also these are normed
rings, if one defines the convolutions componentwise in the obvious way, but they are
no longer commutative due to the fact that matrix multiplication is not commutative.
One can define the bilateral Laplace transforms d(z) and /2(z) of a function a
Ll(CnXn; p) and a measure txM(C""; p), e.g., componentwise, and these too
converge for all z II.

We use the same concept of "local analyticity" as in [7], and call a complex
function b locally analytic at a point Zo H, if there exist measures /Zo,’",/Xk in
M(C; p) and a function 4,(z, :1, , :k) analytic at (Zo,/2(Zo),’’’, lk(Zo)) such that

(z): q,(, ,(z),..., (z))
in a neighborhood of Zo. We say that b is locally analytic at infinity if there exist
functions a,..., a,, in L(C; p), measures/x,.-.,/Zg in M(C; p), and a function
q(z, r/l,. , r/,,, sc, fig) analytic at (0, 0,..., 0) such that

4(z) q,(z-’, ,(z), (z), ,(z)/z, (z)/z)
in a neighborhood of infinity. Throughout, the word "neighborhood" means an open
subset of H rather than an open subset of the compactified plane. Finally, we call b
locally analytic if it is locally analytic at each point of II.

The "smoothness" concept which we use is also the same as in [7]. We say that
a complex function b has a zero of order at least m at Zo e H if

lim sup I(z- Zo)-’4(z) < o.
Z-Zo, z6H

The point Zoe II is a zero oforder m of b if limz_zo (z-Zo)-mc(z) exists and is nonzero.
A very important subclass of zeros consists of those which are locally analytic;
specifically, Zo is a locally analytic zero of order (at least) m of b if it is a zero of order
(at least) m and (Z-Zo)-’d(z) is locally analytic at Zo. Finally, we define a complex
locally analytic function to be smooth oforder m at Zo [7, Def. 3.5] if b(z) q(z) + ’(z)
near Zo where q is analytic at Zo and " is locally analytic at Zo with a locally analytic
zero of order at least m at Zo. Observe that a complex locally analytic function b has
a locally analytic zero of order (at least) m at Zo if and only if it has a zero of order
(at least) m at Zo and is smooth of order m at Zo.

The scalar concepts listed above carry over to vector and matrix functions in an
obvious way. We say that a vector or matrix function is locally analytic (at a point),
has a zero of order at least m, has a locally analytic zero of order at least m, or is
smooth of order m, if each component has the same scalar property.

In the following lemmas we list some elementary properties of the preceding
definitions. They apply to scalar, vector and matrix functions, except when stated
otherwise.
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LEMMA 2.1. A function b is smooth of order m at Zo if and only if it is of the form
b p + , where p is a polynomial of degree at most m 1, and has a locally analytic
zero of order at least m at Zo. The functions p and in this decomposition are uniquely
determined.

Proof. Clearly, if b =p / , with p and " as above, then b is smooth of order m
at Zo. Also, if we have two decompositions b Pl + 1 P2 / 2, then Pl --P:2 has a zero
of order at least m at Zo; hence it vanishes identically. This proves the uniqueness of
the decomposition.

To prove the existence of the decomposition, one first writes b in the form
(--if// 1, where " is analytic at Zo and st1 has a zero of order at least m at Zo, and
then uses the Taylor series for at Zo to get

where p is a polynomial of degree at most m- 1, ’ is the remainder of order m in the
Taylor series, and ’1 + sr2 has a zero of order at least m at Zo.

If b is smooth of order m at Zo, then we can define the generalized derivatives
b’(Zo),’’’, b<m-1)(Zo) of b at the point Zo to be

where

b(i)(Zo) =p(i)(Zo)= i!pi, l<=i<=m-1

m-1

p(z) E p,(- Zo)’,
i=0

is the polynomial in the decomposition in Lemma 2.1. The generalized derivative
b<")(Zo) can be defined analogously by

4<’)(Zo) lim (z- Zo)-’rl(z),
ZZo, zII

where r/ is the remainder in the decomposition in Lemma 2.1. If sr is rn times
continuously differentiable, then the generalized derivatives defined above coincide
with the ordinary derivatives of b at Zo. If both b and q are smooth of order m at
Zo, then so is b (cf. Lemma 2.2 below), and the generalized derivatives (bq)(J)(Zo), 0
j =< m, of bq at Zo satisfy the same conditions as ordinary derivatives do, i.e.,

DEFiNiTiON 2.1. A scalar, vector or matrix quasipolynomial is an expression of
the form A(z-c)-, where the A are scalars, vectors or n x n matrices. Herek=0

c < o is a fixed real number.
Note that a quasipolynomial may be expressed in the alternative form =o B((z-

zo)/(z-c)) where zo c can be chosen arbitrarily, and each B is a scalar, vector or
n x n matrix.
La 2.2. Let d and be functions which are locally analytic at zo.
(i) .If both 4) and q are smooth of order at zo, then each of 4) + is smooth of

order at zo.
(ii) If 4) has a zero of order at least m and is smooth of order

is smooth of order l-m and has a zero of order at least r <-_ l-m at zo, then 40 and 04)
are smooth of order and have a zero of order at least m + r at

(iii) If 4) has a zero of order at least r at zo, is scalar-valued and has a zero of
order m at zo and 4) and are smooth of order at zo, where m <-r <-l, then 4)/ is
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smooth of order l-m and has a zero of order at least r-m at Zo. Moreover, there is a
quasipolynomial p such that ck-pt has a zero of order at least at Zo.

Proof. The proofs of (i) and (ii) are obvious and will not be given. To prove (iii),
first expr.ess 4 and ff in the form b(z)- (z-Zo)r(z) and d/(z)= (z-zo)m(z), where
4 and g, are smooth of order l-r and 1-m, respectively. Since (Zo)# 0, 1/ is
smooth of order l-m at Zo by [7, Lemma 4.2]. Now (ii) implies 4/ff is smooth of
order l-r, and thus d(z)/(z)= (Z-Zo)r-m(z)/(z) is smooth of order l-m, and
has a zero of order at least r-m at Zo.

As 4/ff is smooth of order l-m, we can use Lemma 2.1 to write 4/ =Pl / 1
where Pl is a polynomial of degree at most l- m- 1 and ’1 has a zero of order at least
1-m at Zo. If p is a quasipolynomial whose Taylor series expansion at Zo up to order
l- m 1 equals pl, then also sr oh/ff -P Pl -P / ’1 has a zero of order at least m
at Zo. By Lemma 2.2(ii), 4-P- srg has a zero of order at least at Zo. 13

Every measure IM(C"n; p) induces a continuous operator /* on certain
spaces of (fading) memory type. These spaces are defined as follows (for more details,
see [11] or [12]).

We call / an influence function dominated by p if /is Borel measurable, strictly
positive, 7(0)= 1, and

rl(s / t) <- rl(s)p( t), s, R

(in [12] both p and ,/ were supposed to be continuous, but that assumption was not
important). In particular, p is an influence function dominated by itself. For each
influence function we define the adjoint influence function l by

(2.3) l(t)=[q(-t)]-’, tR.

If 7 is dominated by p, then so is . Moreover, every influence function dominated
by p must satisfy

(2.4) fi(t) =< r/(t) <= p(t), R,

so fi and p, respectively, are the smallest and largest influence functions dominated
by p. We point out, however, that not every / satisfying (2.4) is an influence function
dominated by p. For example, if p(t) (1 + [tl)p and

(l+ltl) q-, tR-,
r/(t)

(1 / t)q+, tR+
with p, q_ and q+ nonnegative, then it is easy to check that is dominated by p if
and only if q_ + q+ -< p.

Every influence / induces a number of (fading) memory spaces. We let
LP(C n’, /), 1 <__p__< o, be the space of measurable functions x: R-> C, with norm

[, (t)llx(t)ll]
Ilxll ess sup r/(t)llx(t)ll,

tR

1 <-poo,

We let the space BUC(Cn; 1) consist of those continuous functions x L(C"; *1)
which satisfy IItx-xll->O as t->0, where ’t is the translation operator -tx(s)=
x(t / s), s, R. An important subclass of BUC(C"; q) is BCo(C"; *1), which is made
up of those functions x in BUC(C"; 1) which satisfy

lim ess sup /(t)llx(t)ll- 0.
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We use the notation (C"; r/) to represent any one of the preceding spaces, i.e., all
results which are formulated in terms of (C"; r/) remain true when (C"; r/) is
replaced by LP(Cn; r/), l<-p<-c, BUC(C"; ), and BCo(C"; 7). Finally, we define
m C to be the space of all functions x C; r/) whose distribution derivatives
up to order m also belong to (C"; r/). In particular, (C"; 7) is the same as
(c"; n).

The convolution of a measure/z M(C""; p) and a function x ’(C"; r/) is
defined by

tx * x( t) IR d/x(s)x( s).

In the case when m =0 and "(C"; rt) LP(C"; rt) this convolution is well defined
only a.e., but in the other cases it is defined for all R. The convolution operator/z*
maps each Y3 (C"; r/), rn => 0, continuously back into itself 11, Lemma 2.1].

3. Factorization of locally analytic matrix functions. In this section we obtain local
and global Smith factorizations for locally analytic matrix functions. Theorem 3.2,
giving the global Smith factorization, is the matrix analogue of [7, Thm. 3.4]. Our
development relies on the theory for matrix polynomials as developed in [2] (see also
[3] for the Smith form for analytic matrix functions).

DEFINITION 3.1. Let the matrix function M be locally analytic at Zo II. We say
that M has a local Smith factorization at Zo if it has a right local Smith factorization

(3.1) M(z): R(z)Dl(Z)Pl(Z)

and a left local Smith factorization

(3.2) M(z) P2(z)D2(z)R2(z

in a neighborhood of Zo. Here P are unimodular (determinant identically one)
quasipolynomials, R and Rz are locally analytic at Zo with det Rl(ZO) 0 det Rz(zo),
and D1 and D: are diagonal quasipolynomials with diagonal entries of the form
((z- Zo)/(z- ))k, where the exponents are nonnegative integers which are nondecreas-
ing as one moves down the diagonal of each of D and D2.

Trivially, if M(zo) is invertible, then M has a local Smith factorization at Zo (take
Ol(Z) PI(Z) D2(z) =- Pa(z) I). The interesting case is when M(zo) is not invertible.
In this case we follow [2] and [3] and call Zo an eigenvalue of M at Zo. (In our
terminology, the constant function M(z) A, where A is invertible, has no eigenvalues.
To get the "ordinary" eigenvalues of A, one has to study the analytic function zI- A
instead of the function M(z)= A.)

The following lemma implies that the two diagonal matrices D1 and D in
Definition 3.1 must be the same:

LEMMA 3.1. Let Zo II, and let the matrix functions A and B be locally analytic at

Zo with det A(zo) 0 # det B(zo). If D1 and D2 are diagonal quasipolynomials having
the structure of the diagonal quasipolynomials of Definition 3.1, and if
(3.3) D2(z) A(z)DI(z)B(z)

in a neighborhood of Zo, then D1 D.
It follows immediately from Lemma 3.1 that if M has a local Smith factorization

at Zo, then the diagonal quasipolynomials D and D occurring in the left and right
local Smith factorizations of M are uniquely determined and equal. We denote this
diagonal quasipolynomial by D. Also, the nonnegative integral powers kl -< k2 -< -<

k, which occur in D are called the partial multiplicities of M at Zo. The partial
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multiplicity k, is called the maximal partial multiplicity of M at Zo, and the sum
k i--1 ki is called the algebraic order of M at Zo (Zo is an eigenvalue of M if and
only if the algebraic order of M at Zo is positive). Alternative characterizations of
and k will be given in Theorem 3.1.

Proof of Lemma 3.1. For i= 1, 2 we have

((D (Z) diag
z Zo
\z-c/ z-c/

where the nonnegative integers kj satisfy kl =< k2 =< -<- k,, 1, 2. Since the entries
aij and bii of A and B are continuous at Zo (in the relative topology of II), a standard
argument (see 1, Vol. I, VI 3]), which uses the Binet-Cauchy formula to expand the
right-hand side of (3.3), yields that

kl+" +k2 -> kll+’" +kl, 1 =<j- n.

The reverse inequality is obtained by applying the same argument to D1 A-1D_B-1,
and Lemma 3.1 follows immediately.

We continue with another preliminary lemma:
LEMMA 3.2. Suppose M is a locally analytic matrixfunction which is smooth oforder

at Zo II, det M has a zero of integral order k >= 0 at Zo, and all minors A ofM oforder
n- 1 satisfy

(3.4) A(z)=O((z--zo)k-l), z-->Zo, zeII.

Then in each row and each column ofM there is at least one element which has a locally
analytic zero of integral order at most at Zo.

Proof. We prove the result for rows only, since the proof for columns is completely
analogous.

Develop det M along an arbitrary row to obtain

(3.5) det M (- 1) ’+j m..A..
j=l

where m0 is the (i, j)-element of M and A0 is the corresponding minor of M of order
n 1. If each m0, 1 _-<j_-< n, satisfies mj(z) o((z- zo)l), z-> Zo, z II, then by (3.4),
(3.5) det M(z)= O((Z--Zo)k), Z--> Zo, Z II. This estimate contradicts the assumption
that det M has a zero of order exactly k at Zo. Thus, some element m0 does not satisfy
mo(z o((z- Zo)l), z --> Zo, z II, and, being smooth of order l, it must have a locally
analytic zero of order q =< l, q being an integer, possibly zero. l-]

We now can establish a sufficient condition for a matrix to have a local Smith
factorization at Zo.

THEOREM 3.1. Let the n n matrix function M (mo) be locally analytic at Zo II
and assume that det M has a zero of integral order k >-0 at Zo. If n > 1, let tr tr(M)
be the smallest nonnegative integer such that every minor A of M of order n- 1 has a
zero of order at least k-tr at Zo; in the scalar case n 1 set tr k. If M is smooth of
order tr at Zo, then M has a local Smith factorization at Zo. In addition, the maximal
partial multiplicity ofM at Zo equals tr, and the algebraic order ofM at Zo equals k.

Note that Zo is not assumed to be a locally analytic zero of order k of det M. That
this is, in fact, the case follows from the conclusion of Theorem 3.1 since M satisfies
(3.1) and (3.2) with

Dl(z)=D2(z)=diag((Z-z)k’, (z-z kn)\z-c/ z-c/

and kl + k2 d- -t- kn k.
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The smoothness assumption on M in Theorem 3.1 is far from necessary for M
to have a local Smith factorization at Zo. For example, if bl and t2 are scalar locally
analytic functions with bl(zo)0 b2(Zo), then the matrix function diag [bl(Z), (z-
Zo)b2(z)] has a Smith factorization at Z’o with maximal partial multiplicity one, but it
is not smooth of order one unless bl is smooth of order one at Zo. It is also evident
from the proof given below that not all the elements of M need be smooth of order
tr for the construction to go through.

Proof of Theorem 3.1. We construct only a right local Smith factorization for M
since the construction of a left local Smith factorization is completely analogous.

By multiplying M from the left and from the right by (unimodular) permutation
matrices (i.e., n x n matrices Q (qt) which for some distinct and j, 1 =< i,j <= n, satisfy
q 1 if s # i, j, q0 q 1, qt 0, otherwise), we may assume that the order kl --> 0
of the zero at Zo of the element in the position (1, 1) is the minimum of the orders of
the zeros at Zo of all elements of M. Let us denote this rearranged matrix by M
It follows from Lemma 3.2 that kl-<-r. By Lemma 2.2(iii), the quotients
1 <=i<= n, are locally analytic and smooth of order r-kl. This means that we may
successively left-multiply M by unimodular~ locally analytic, matrices to add the product
of-rfii/r and the first row of M to the ith row of M, where 2-<i-< n; for fixed
i, 2=< i<=n, the required matrix has the form R--(rst), where r= 1, 1 <-s<=n, r
-rfil/rfi and rt =0, otherwise. The result of these multiplications is a matrix M
(mij(1)), where ml)--. 0 for 2 < <= n. As our elimination matrices are smooth of order
r-kl, and each of the elements of M has a zero of order at least kl, it follows from
Lemma 2.2 that each element of M is smooth of order tr, and has a zero of order at
least kl. Also, the Binet-Cauchy formula shows that r(M1), defined analogously to
tr(M), satisfies o-(M1) r(M) r.

The first stage of the construction of a right local Smith factorization for M is
now compl6te. In the next stage a similar sequence of steps will be used to place in
the (2, 2) position an element with a zero at Zo satisfying a certain minimality condition,
and to assure that all off-diagonal elements in the second column vanish. Attaining
the latter property requires an additional step to treat the elements above the diagonal;
we begin with this step.

By Lemma 2.2(iii), there is a quasipolynomial Pl for each j, 2_-<j_<-n, such that
m(1)lj -Prn has a zero of order at least tr at Zo. Thus, we may successively right-
multiply M by unimodular quasipolynomial matrices to add the product of-Pl and
the first column of M to the jth column of M1, where 2 =<j_-< n; for fixed j, 2_<-j_-< n,
the required matrix has the form U (ust) where us 1, 1 -< s _<- n, u -p and ut 0,
otherwise. The effect of these multiplications is to replace each element m11 ,j_->2, of
M with a locally analytic function which has a zero of order at least tr at Zo. Let us
denote the new matrix by/Q (r).

Now left- and right-multiply M1 by permutation matrices to rearrange the (n 1) x
(n 1) submatrix m o ), 2 <-_ i,j <-_ n, so that its element which minimizes the order of
the zero at Zo is in its upper left-hand corner; by Lemma 3.2, if k2 is the order of the
zero at Zo of the minimizing element, then kl <_-k2<_-tr. Observe that even after the
permutations, all the elements in the first column except for the first vanish, and all
the elements in the top row except for the first have a zero of order at least tr. As
before, we may left-multiply the resulting matrix by unimodular locally analytic matrices
to replace all the off-diagonal elements in the second column with identically zero

(2)functions. We get a matrix M2 (m 0 with the following properties" Each element of
2 " has a zero at Zo of2) 2)---0, i2 m ,,,M2 is smooth of order r, rnl -= O, iS 1, m2

(2)order k >=0, m22(2) has a zero at Zo of order k2 with kl <= k2<o-,= each element rnk,
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3 < k--< n, has a zero at Zo of order at least or, and each element m (2)ij 2<=i,j<-n, has a
zero at Zo of order at least k2. Moreover, tr(M2)= or(M1)= or(M)=

Continue this process of right-multiplying by unimodular quasipolynomial
matrices, multiplying by permutation matrices and then left-multiplying by unimodular
locally analytic matrices to construct, successively, matrices M3, M4," ’’, M. such

(’) O for 1 <i,j <l, i#j, mthat the elements m of MI are smooth of order r, m ij

has a zero at Zo of order ki, 1 -<_ -< l, with 0 _-< kl -<- k2 -< -<- k _<- er, and, if < n, each
element m]! for l -<_i_-< l-1, 1+1 _-<j <_- n, has a zero at Zo of order at least er and each

for < < =j < n has a zero at Zo of order at least kl. In addition,element m q =n,l+l <
r(Ml) r, l<=l<-n.

Clearly, each element ml/"), 1 < <= n, of the diagonal matrix Mn may be written
in the form

k

m l’)(z ( z z rill[’),
\z-c/

where r (n). is locally analytic at Zo and rI/)(Zo) O. Thus, we may left-multiply M
by the invertible locally analytic matrix diag 1/,,,11’ (1),... ,1/r (,)) to obtain the diagonal
matrix

D(z):diag((z-zk’’’ "’(’zk")"\z-c/

To complete the right local Smith factorization we now simply invert all the different
left-factors which we have obtained and combine them into one locally analytic factor
R1 with det Rl(zo) O, and likewise we invert all the different right-factors and combine
them into one unimodular quasipolynomial factor

Finally, it was observed earlier that Y.i=l k k, i.e., that the algebraic order of M
at Zo equals k. We also note that because of the nature of the diagonal elements of

,-1

k Thus, the maximal partial multiplicityand because o-(M,) r, we have k o- Y i=

k, of M at Zo is given by k, r. This completes the proof of Theorem 3.1.
As an immediate consequence of Theorem 3.1 we have the following.
COROLLARY 3.1. Let M have a local Smith factorization at Zoe II with diagonal

quasipolynomial D and with maximal partial multiplicity o-. Suppose that the locally
analytic matrix function Q is smooth of order er at Zo, and that det Q(Zo)# 0. Then MQ
and QM have local Smith factorizations at Zo with the same diagonal quasipolynomial D.

Proof We prove the result for MQ; the proof for QM is completely analogous.
The left factorization of MQ clearly holds with R2 from (3.2) replaced by R2Q.

To obtain the right factorization from (3.1) we must rewrite DP1Q. By Theorem 3.1
we rn.ay rewrite this expression as DPIQ RDP, where R is locally analytic at Zo with
det R(zo) 0 and P is a unimodular quasipolynomial matrix. By Lemma 3.1 we still
have the same diagonal quasipolynomial D on the right-hand side; thus, substituting
this new expression for DPQ into (3.1) one gets the desired result for MQ.

We conclude this section by giving conditions which ensure the existence of a
"global Smith factorization" on II of a locally analytic matrix function M that has
only a finite number of eigenvalues, each of which is in II and admits a local Smith
factorization. This result is the matrix analogue of the scalar L-quotient theorem
[7, Thm. 3.4].

THEOREM 3.2. Let the n-by-n matrix function M be locally analytic on II, assume
that det M(z)0 except on a finite set Z {z,..., zv}c II, and let M have a local
Smith factorization at each Zl Z. Then M has a global Smith factorization on 1I, i.e., a
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right global Smith factorization
(3.6) M(z) gl(Z)D(z)Pl(z), z H,
and a left global Smith factorization
(3.7) M(z) Pz(z)D(z)gz(z), z I.
Here PI and P2 are unimodular quasipolynomials, R and R2 are locally analytic on II
with det R(z) 0, 1, 2, for all z H, and D is the diagonal quasipolynomial

N

(3.8) D= I] Dr,
1=1

where, for 1 <= N, Dt is the diagonal quasipolynomial occurring in the local Smith

factorization ofM at zt.
Proof Once again we construct only the right factorization since the construction

of the left one is completely analogous.
The matrix M has the local Smith factorization

(3.9) M(z) Rl(Z)O(z)P(z)
in a neighborhood of zl. Since D1 and P have analytic inverses in H\{Zl}, we may
solve (3.9) for R in a neighborhood of z and extend RI to a locally analytic matrix
defined on all of H in such a way that (3.9) holds on II. By Corollary 3.1, this extended
R has a right local Smith factorization Rl(Z)= R2(z)D(z)P2(z) at z2 with D2 being
the diagonal quasipolynomial in the factorization of M at z2. Substituting this
expression for RI in (3.9), one gets a factorization for M in a neighborhood of z2.

Clearly, we may solve for R2 in a neighborhood of z2 and then extend its domain
to all of II in the same way that the domain of R was extended. Continuing the
argument above and then repeating it until all the eigenvalues z, , zu are included,
one arrives at a decomposition of M on II of the form

(3.10) M RuIDuPuDu_Pu_,... DIPI.
Here Rt Rt+.ID+P+,, =< =< N- 1, and each D is the diagpnal quasipolynomial
from the local Smith factorization of M at z.

The product Q= DuPuDu_Pu_,I... DP is a quasipolynomial, i.e., a poly-
nomial in w=-(z-c)-; hence, by [2, Thn. SI.1], Q has a global Smith factorization
Q RDPI where P is a unimodular quasipolynomial, R is a quasipolynomial with
constant nonzero determinant, D diag (all,’" ", d,) and each d is a monic scalar
quasipolynomial. Because of the form of Q it is easy to express the minors of Q in
terms of the minors of the factors of Q (cf. [1, p. 12]) and then to use [2, Thms. S1.2
and S1.4] to determine the d and to establish (3.8). Thus, substituting the global Smith
factorization of Q in (3.10) and letting R RrqlR, we obtain the right global Smith
factorization (3.6).

4. Jordan chains. In order to describe the null space and the range of the convo-
lution operator 5f defined in the introduction we have to introduce the concept of
Jordan chains of a locally analytic matrix function with a Smith factoriZation. The
easiest way to do this seems to be via the concept of root functions.

DEFINITION 4.1. Let q be a positive integer, and let the matrix function M be
locally analytic at Zo II. We say that a (column) vector-valued function r is a right
root function of M of order at least q at Zo if r is locally analytic and smooth of order
q at Zo, r(zo) 0, and Mr has a zero of order at least q at Zo. Define

1 r((4.1) ri =. ’)(Zo), 0_-< iN q- 1,
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where r(i)(Zo) is the generalized derivative of order of r at Zo. For any p, 0-<_p _-< q- 1,
we call the vector sequence ro," ", rp a right Jordan chain of length p + 1 of M at Zo;
the vector r(zo) ro is said to be a right eigenvector corresponding to the eigenvalue Zo.

If M is smooth of order p at Zo, then so is Mr, and it follows from (2.2) and (4.1)
that

(4.2)
1 M( =0, O<=j<p,

where M(i)(Zo) is the generalized derivative of order of M at Zo. This means that our
definition of a right Jordan chain of length p + 1 agrees with, e.g., the definition given
in [3, p. 91]. Observe that ro, rl," ", rp is a right Jordan chain of M at Zo if and only
if the polynomial Pi=o r(z-zo) is a right root function of order at least p+ 1 of M
at Zo.

LEMMA 4.1. Let Mand The n x n matrixfunctions that are locally analytic at Zo H,
and assume that det T(zo) # O. Then r is a right root function ofM of order at least q
at Zo if and only if r is a right root function of TM oforder at least q at Zo. In particular,
ifM has a local Smith factorization RIDPa at Zo, then the right root functions and right
Jordan chains ofM are identical with those of the right factor DP at Zo.

Proof If r is a right root function of M of order at least q at Zo, then

lim sup I(z- Zo)-qT(z)M(z)r(z)[ <-_ T(zo)[ lim sup [(z Zo)-qM(z)r(z)l <
Zo, zrI zo zl-I

Conversely, if r is a right root function of TM of order at least q at Zo, it follows that

lim sup [(z- Zo)-qM(z)r(z)[ <-_ IT(zo)-l lim sup I(z- Zo)-qT(z)M(z)r(z)[ < o,
Zo, I Zo, I]

and Lemma 4.1 is proved.
We emphasize that the right root functions and right Jordan chains of a locally

analytic matrix function M having a local Smith factorization at Zo do not depend on
the particular factorization chosen; moreover, since they are determined by the
quasipolynomial right factor DP at Zo, the theory of right root functions and right
Jordan chains for analytic matrix functions as developed in [3] (see also [2]) can be
directly applied in this setting. In particular, the length of a right Jordan chain at a
point cannot exceed the maximal partial multiplicity of M at that point.

If we multiply a matrix function M from the right by a sufficiently smooth matrix
with nonvanishing determinant, then the right Jordan chains change in the same way
as in the analytic case:

LEMMA 4.2. Let the matrix function M have a local Smith factorization at Zo II
with maximal partial multiplicity
at Zo, and satisfy det T(zo) # O. Then ro, , rp is a right Jordan chain of length p + 1

ofMT at Zo if and only if

(4.3) s T()(Zo)t)_, O<-_j <-p
i=0

is a right Jordan chain ofM at Zo.
The proof is essentially the same as the proof of, e.g., [3, p. 93] and [2, Prop. 1.11].

It is a consequence of the fact that the polynomial r(z) PY=o ri(z-Zo) is a right root
function of MT of order at least p + 1 at Zo if and only if Tr is a right root function
ofM oforder at least p + 1 at Zo, and that the polynomial part of Tr in the decomposition
in Lemma 2.1 equals P2,=0 s,(z- Zo)
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Lemma 4.1 allows us to immediately transfer the concept of a canonical set of
right Jordan chains as developed for matrix analytic functions [3] (see also [2, p. 32])
to the present setting.

DEFINITION 4.2. Let the n x n matrix function M be locally analytic and have a
local Smith factorization at Zo H, and assume that det M has a zero of positive integer
order k at Zo. Let k ’’" - ks, s n, be positive integers, and let

(4.4) rio, ri, ki-1, 1 <--_ <--_ S,

be a set of right Jordan chains of M at Zo. The set of sequences (4.4) is said to be a
canonical set of right Jordan chains of M at Zo if the vectors rio rso are linearly
independent, and kl + + ks k.

We note that since the right Jordan chains of M R1DP1 are determined by the
quasipolynomial right factor DPI, the existence of a canonical set of right Jordan
chains of M at Zo is guaranteed by [3, pp. 92-93], and the properties of canonical sets
of right Jordan chains are exactly those for analytic matrices as developed in [3]. In
particular, the positive integers kg, 1 _-<j <_- s, are exactly the nonzero partial multiplicities
k,_s+ -<- -<_ k, of M at Zo [3]. The number s in Definition 4.2 equals the dimension
of the null space (eigenspace) of M(zo), and it is often called the geometric order of
M at Zo.

The importance of a canonical set of right Jordan chains of M at Zo derives from
the fact that its elements can be used to generate a basis for the set of all right Jordan
chains of M at Zo. More precisely, let tr be the maximal partial multiplicity of the
zero of M at Zo, and let V be the subspace of C consisting of all sequences of the
form (0, O, , O, to, , rp), where to," , rp is a right Jordan chain of M at Zo, and
the total number of vectors is r. Then it follows [2, Prop. 1.15] that the set of sequences
(4.4) is a canonical set of right Jordan chains ofM at Zo if and only if the set of sequences

/jp O, O, rjo, rjp), O <- p <- kj -1, l <--j <= s,

where the number of zero vectors preceding rjo in /gp is tr- (p + 1), forms a basis for
2’. Observe that the total number of sequences /jp above equals the algebraic order of
the zero of M at zo. In other words, the dimension of A; is the same as the algebraic
order of M at Zo.

The notions of left root function and left Jordan chain of a locally analytic matrix
M are defined analogously to the corresponding notions of right root function and
right Jordan chain except that column vectors are replaced by row vectors and left
multiplications are replaced by right multiplications throughout. The results concerning
left root functions and left Jordan chains are completely analogous to the corresponding
results for right root functions and right Jordan chains. In particular, if M has a left
global Smith factorization P2DR2, then the left root functions and left Jordan chains
of M at Zo are identical with those of the left factor P2D. A canonical set of left Jordan
chains is defined analogously to a canonical set of right Jordan chains.

5. The null space of.. In this section we describe the null space ofthe convolution
operator

(5.1) x(t) x’(t) + p, * x(t)

in a space of fading memory type. Here / M(C’"; p). A similar description has
been given in [12], but that one is not as general as the one given here (in [12] it is
assumed that all the critical points belong to the interior of H), and also is less precise
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(no connection between the null space of and the right Jordan chains of/, is made
in 12]).

Formally, the Laplace transform of is the function

(5.2) ()-- +(), n,
which is locally analytic in II. We assume that L has only a finite set Z {z,. , zN}
of eigenvalues. Moreover, we assume that L has a local Smith factorization at each
point z of Z. Of course, this assumption is automatically satisfied at points of Z in
the interior of II. The function L is unbounded at infinity, and cannot therefore be
locally analytic there. However, if we define

(5.3) M(z) (Z C)--I/-(Z) (Z-- C)--I(z "- L (Z)), Z fi,

where as before c < to, then M is locally analytic on all of II. It also has a local Smith
factorization at each point z of Z. By Theorem 3.2, M has a right global Smith
factorization

(5.4) M(z) R,(z)D(z)P,(z), z II.

Substituting this factorization into (5.2), we get the factorization

(5.5) L(z) (z- C)Rl(z)D(z)Pl(Z), z II,

for L itself. This factorization is the main tool which we use to determine the nullspace
of in "+(C";

To see how the factorization (5,.5) can be used, note that since det R(z) O, z H,
the locally analytic matrix function R is the transform of an invertible element

V(C""" p). Also the quasipolynomial Q(z)=-D(z)P(z)=Z A(z-c)- Aoi=0

invertible, is the transform of the element tq Yq A e* in V(C""" p). Herei=0

e(t)=exp(ct)I, t>=O, e(t)=0, t<0,

e*= 61 with I the unit point mass at zero, and e*, 1, 2,. ., denotes the /-fold
convolution e e e.

LEMMA 5.1. The operator " 3"+1 C"; rl) --> C"; rl) has the same null space
as the operator " "+ C"; ) --> m+( C"; q) defined by

(5.6) olX K /J1 $ X.

Proof Since :l is invertible in V(C""; p), Lemma 5.1 of [12] gives that the
operator (d/dt-C){l*maps ’+(C"; r/) one-to-one and onto "(C"; r/). Thus,
since maps "+l(c"; rt) into ’+l(c"; r/) and x= (d/dt-C){l*(x), the proof
of Lemma 5.1 is complete.

The null space of in m+(C"; r/) is easy to compute. To do this, we follow
the procedure in 11 and for a _-> b let p,, denote the weight function

e t<-0,
p,,(t) e_, t>0.

Choose al and wl so that c < to1 < w <= a < a < oo. Then , V(C""; p,,,o,). Also, by
(2.1), (2.3) and (2.4), there exists a T>0 such that

fi,.,o,( t) <= fi( t) <= "q( t), Itl >= T;

hence, ’m+l( cn;
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Now when Re z al or Re z o)1, det Ql(Z) 0, SO Lemmas 4.1 and 4.3 of [12]
tell us that all solutions of

-c lx(t) 0

in m+l(Cn; pal,tO, are of the form

N

(5.7) x(t) pl(t) e z’’,
/=1

where the Pl are (column) vector polynomials in of degree at most one less than the
order of the zero of det Q1 at Zl. Since (d/dt-c) maps "+l(Cn; t;l,o,) one-to-one
onto ’(Cn; p’,,o,) (use [12, Lemma 3.1]), formula (5.7) characterizes the form of
all functions x in the null space of 1 in "+I(c"; t;,o). As "+I(c; r/)c
,,+l(Cn; P’,o,1), it also characterizes the form of all functions x in the null space of
1 in 3m+l(c"; r/), and by Lemma 5.1, the form of all functions x in the null space
of in ,,+l(C,; r/).

Formula (5.7) gives the form of all functions in the null space of 1, but not all
functions of the form (5.7) actually do belong to the null space. To identify exactly
the null space of 1 in 3m+1(C"; ;l,’l), we need the notion of right Jordan chains,
developed in 4.

LEMMA 5.2. Let M(C""; p,,o,), and let x be of the form
p

eZo(5.8) x(t) rp_,
i=0

with ro#O and al<Rezo<tol. Then 9,x=O if and only if ro, rl,...,rp is a right
Jordan chain of at Zo.

Proof First use the binomial theorem, then interchange the order of the summa-
tion, and finally make a change of summation variables to get

P f (t- s)
v*x(t) E dv(s) rp_i

i=0 JR

e’ j=o2 (/_--)! i=o (-s) e-s du(s) )-i.

By elementary Laplace transform theory,

(-s) e-z* dr(s)= (i(zo)
R

so we have

P p-j 1
u*x(t)=eZ’ 2 o

Clearly, this implies that u, x 0 if and only if

1
?., O,

i----0

O<--j<--p,
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and since 9 is analytic at Zo this condition is equivalent to to, rl," ", rp being a right
Jordan chain of 9 at To. [3

Combining Lemmas 5.1 and 5.2 with Lemma 4.1, we get the following.
COROLLARY 5.1. A function x m+l(Cn. ’1) of the form (5.8) with ro # 0 and

Zo II belongs to the null space of if and only if to, rl, ", rp is a right Jordan chain

of L at To.
Observe in particular the requirement that x 3"+1(C"; r/). This may or may not

restrict the growth of x in (5.8) at plus or minus infinity in such a way that only those
right Jordan chains whose length does not exceed a fixed number generate functions
in the null space of . In the two settings discussed in [12, 5 and 6], either all right
Jordan chains at Zo generate functions in the null space of , or none of them does.

By combining Corollary 5.1 with the discussion preceding Lemma 5.2, we can
give a complete description of the null space r/() of in ’+I(c"; r/).

THEOREM 5.1. Let be the operator in (5.1) acting on m+l(cn; r/). Assume that
L has only a finite set Z {zl,’", ZN} of eigenvalues, and that L has a local Smith

factorization at each point of Z. Then the null space Ar(L) is the direct sum

(5.9)

where each Cl is the set offunctions x v() in Corollary 5.1 with Zo replaced by Zl Z,
plus the zero function.

6. The range of . Here we describe the range of the convolution operator
defined in (5.1) as a mapping from ’+l(Cn; r/) into "(C"; r/). The setting is exactly
the same as in 5. Namely, / defined in (5.2) has only a finite set Z {Zl,’" ", ZN}
of eigenvalues, and L has a local Smith factorization at each point Z of Z. By Theorem
3.2, the locally analytic matrix M defined in (5.3) has a left global Smith factorization;
substituting this factorization into (5.2), we get the factorization

(6.1) L(z)=(z-c)P2(z)D(z)g2(z), zH.

This factorization is the tool which we use to determine the image of in lm(cn’ 7).
In analogy with 5, we use the fact that det R2(z) # 0, z II, to see that R2 is the

transform of an invertible element :2 V(C"; p). Also, the quasipolynomial Q2 P2D
is the transform of the element

q

u_ Q2(e) E Bi e i,

i=0

in V(C""; p).
LEMMA 6.1. The operator " 3’+1(C"; /)--> 3"(C"; /) has the same range as

the operator 2" 9 (C"; l) --> Yd (C" q) defined by

(6.2) 2x u2* x.

Proof Using Lemma 3.5 of 11], we get

when x 3"+(C"; ,/). Now as in the proof of Lemma 5.1, we use the fact that
(d/ dt c)2 * maps ’+ Cn; /) one-to-one onto (C"; /) to complete the proof
of Lemma 6.1. [3
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Our description of the range of w is given in terms of the left Jordan chains of
(which, by the analogue of Lemma 4.1 for left Jordan chains, are the same as the

left Jordan chains of P2D), and the concept of (left) Jordan chains of functions in
’(Cn; r/), which can be defined in the following way:

DEFINITION 6.1. The row vectors Vo,’’’, Vp with Vo 0 form a Jordan chain of
length p+ 1 off m(c"; q) at zoH if there exist scalar functions F1,’’’,Fp+IG
,,+1(C; r/) satisfying

(6.3) (fit) (d ) F+ F + vf l<-j<p.--Z0 Fl=VOf -Zo
In the case when r/=p and N L one could also use an obvious modification

of Definition 4.1 and define the notion of a left Jordan chain of f at a point Zo e II.
The connection between these two type,,s of Jordan chains is very simple; the vectors
Vo," , Vp form a left Jordan chain of f at Zo if and only if they form a Jordan chain
of f at Zo in the sense of Definition 6.1 (a proof of one direction of this claim is
contained in the proof of Lemma 6.2 below; see, in particular, (6.4)). In other words,
one should regard the notion of a Jordan chain of a function f ’(C"; r/) defined
above as a generalization of the notion of a left Jordan chain of f (Definition 6.1
makes sense even when f does not exist).

TI-IEOREM 6.1. Let be the operator (5.1) acting on ’/I(c"; r/). Assume that
has only a finite set Z= {Zl,’", zN} of eigenvalues, and that L has a local Smith
factorization at each point of Z. Then f in m(c,; ) belongs to the range of if and
only if, for every Zl Z, every left Jordan chain ofL at Zl is also a Jordan chain off at Zl.

In a way this result is very natural. Thinking of the interpretation of a Jordan
chain off as a left Jordan chain off, one could interpret Theorem 6.1 as a factorization
result. It generali,,zes the statement that is a Aleft divisor of f if and only if every left
Jordan chain of L is also a left Jordan chain off In the setting of analytic matrix-valued
functions this is a well-known result (see e.g., [3, Thm. 1.4]).

In [12] the range of was characterized in two different cases. In [12, 5] the
influence function r/ is "small" at infinity, and w is a surjection, i.e., the range of
is all of m(c"; 7). The same result can be deduced from Theorem 6.1 because it is
not difficult to show that, under the assumption in [12, 5], for everyf "(Cn;
every sequence Vo," ", Vp of vectors with Vo 0 is a Jordan chain off at those points
Zl allowed in [12]. On the other hand, in [12, 6], the influence function is "large" at
infinity, and that forces the Laplace transform of f to converge and be analytic in a
neighborhood of every eigenvalue Zl allowed in [,,12]. In that situation one could equally
well work with the notion of Jordan chains of f mentioned above. Much more can be
said about the significance of Theorem 6.1, and we shall discuss this question in a
forthcoming paper.

We begin the proof of Theorem 6.1 by first proving the necessity of the Jordan
chain condition in Theorem 6.1:

LEMMA 6.2. Let v M(C""; p), let Zo 1-I be an eigenvalue of , and assume that
is smooth oforder q at Zo. Suppose thatf , x, where x C q ). If 0 <-- p <--__ q 1,

then every left Jordan chain of length p + 1 of at Zo is also a Jordan chain off at Zo.
We remark that Lemma 6.2 ves a necessary condition for f to belong to the

range of even in the case when L has an infinite number of eigenvalues. This is true
because the factorization (6.1) is not used to prove the necessity of the condition in
Theorem 6.1; all that is required is that be suitably smooth at each of its eigenvalues.
We also remark that we can apply Lemma 6.2 to the measure ’2 Q2(e) obtained from
the factorization (6.1) since 2 is analytic on all of II.
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Proof of Lemma 6.2. Let Vo,’’’, Vp, with Vo # 0, be a left Jordan chain of P at
Zo, where 0_-< p _-< q 1. Define

p

viz) E v,(- Zo) ’,
i=0

and note that
p

v(z)(z) E v,(z)(z- Zo)’
i=0

has a locally analytic zero of order at least p + 1 at Zo. In particular, the partial sum

2 v,(z)(z- Zo)’
i=0

has a locally analytic zero of order at least j + at Zo for each j, 0-<j _-< p. Hence, if we
define dj, 1 <=j =< p + 1, inductively by

(Z-Zo)l(Z)=Vo(Z), (Z-Zo)j+l(z)=(z)+v(z), l <=j<=p,

then each is the Laplace transform of a function a LI(C"; p) (see [7, Prop. 2.3]).
Using Lemma 3.1 of [11], we find that the functions aj satisfy ai M(C"; p) (where
prime denotes a distribution derivative), and

(6.4) a zoal roy, a+l zoa+l a + vv, 1 <j < p.

V’X, SODefine Fj aj.x for <_-j <p+ 1. Then by [11, Lemma 3.6], F a a
Fj +1(C; r/). Moreover, by (6.4),

Zo F vov * x vof,

and

-zo F/=a,x+v,,x= f+vf

for 1 _-<j-< p. Hence vo," ", Vp is a Jordan chain off at zo.
By Lemma 6.1, f is in the range of if and only if it is in the range of the operator

R2 corresponding to the quasipolynomial left factor P2D. The next lemma describes
the action of the invertible operator corresponding to the unitary quasipolynomial P,
and thereby further reduces the problem to an examination of the range of the operator
corresponding to the diagonal quasipolynomial D.

LEMMA 6.3. Let v and v-1 both belong to M(C""; Pl,,O,) and let Zo satisfy
c < Re Zo < wl. Iff Y3 C"; q ), then Vo, , Vp is a Jordan chain of v .f at Zo if and
only if

1 ( <=j=p,(6.5) w= Vj_ i)(Zo) 0
i=0

is a Jordan chain off at Zo.
The proof given below is very similar to the proof of Lemma 6.2.
Proof First, observe that it suffices to prove Lemma 6.3 in one direction only

since if g t,.f, then f= v-l. g, and, by a Taylor series argument (cf. Lemma 4.2),
(6.5) is equivalent to

-<j --/9.
1

v= .w_,(-)’^(’(zo), 0 <

i=0

Also observe that Wo # 0 if and only if Vo # 0.
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Suppose that Wo," ", Wp is a Jordan chain of f at Zo, and let F1,’’ ", Fp+l in
"+(C; r/) satisfy relation (6.3) with all the vj’s replaced by wj’s. By (6.5) and the
fact that is analytic at Zo, we find that, for 0 <=j < p, the partial sum

I]/j+l (Z)
i=0

has an analytic zero of order at least j+ 1 at Zo. Hence, for 1 =<j =<p+ 1, there exist
functions a L(C" p,,,) so that

(z) (z- Zo)-%(z), rI.

From this formula and Lemma 3.1 of [11] we see that the distribution derivatives a
satisfy

(6.6) a- zoal(z) VoW’- Wo6, a+l- Zoaj+l a + vu- w6, 1 <--j <= p,
where 6 is the unit point mass at zero.

Define Gj e ’+1( C; r/) by

G F + a .f l_<-j<=p+l.

Then by (6.6), [11, Lemma 3.6] and (6.3), we get

o G1 wof+ Vo*f wof You’*f,

o G+ F + wf+ a ,f+ vj, ,f wf G + v, ,f,

Thus, vo,’’’, v is a Jordan chain of u,f at
Finally, to complete our proof that the Jordan chain condition in Theorem 6.1 is

sufficient for f to belong to the range of , we have the following lemma for scalar
quasipolynomials"

LEMMA 6.4. Let z , zt be distinct points satisfying Re Z > C, and let Pl Pu
be positive integers. Define the operator d on 3m(c rl by

N

(6.7) dx=-d*x=- H *(-(Zl-c)e)pt**x, XGldm(c;
l=l

Let f 3 (C; q), and assume that for each l, 1 <= <- N, the sequence 1, O, , 0 is a
Jordan chain of length Pl off at zt. Then f belongs to the range of d.

Here the notationH *dt denotes the convolution product d d. du when
N_-> 2, and d when N 1.

Proof The Laplace transform of the measure d in (6.7) is given by

d(Z) /1-I
Write

(6.8) tH E ao(z- z)-/=1 j=0

for appropriate constants ao. Define, do by

ePl*(t)
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for l<=l<=N, O<=j<-pl. It is easy to check that, for l<-_l<-_N, dlj6Ll(C;p) for 0-<j=<

Pl- 1 and dip, V( C; p). Observe that

d"lj(Z) (z + zt)P,-J(z- c) -p‘,

so d is given by

N

d I] * d0.
/=1

Moreover, it follows from (6.8) that

N PI N

(6.9) Y E ao H * d,o * do=6.
/=1 j=0

il

Set Flo=f for 1 =< l=< N, and let Fll,’’’, Flp, be the functions in Definition 6.1
corresponding to the Jordan chains Vo 1, vl Vl.p,-1 =0 of f at Zl. Note in
particular that, due to the special structure of these Jordan chains, F
and that the repeated application of Lemma 3.5 of [11] yields

(6.10) do* F0 do*f
for l<=l<=N,O<=j<-pt.

Define x C; 1") by

N Pt
x( t) E E aoFo.

1=1 j=O

It follows from the commutativity of convolution, (6.9) and (6.10) that

N N Pi
dx= H ,dio, E E aoFo

i=1 /=1 j=0

N Pl N

E 2 ao H *d,o*d,*f=f,
1=1 j=0 i=1

so f belongs to the range of d.
Proof of Theorem 6.1. As stated above, the necessity of the condition in Theorem

6.1 for f in ’(C"; r/) to belong to the range of is an immediate consequence of
Lemmas 6.1 and 6.2, and the fact that the left Jordan chains of are identical with
those of the left factor 92 P2D in (6.1).

Conversely, suppose that f ’(Cn; r/) and, for every ZlZ, every left Jordan
chain of L at Zl is also a Jordan chain of f at z. By Lemma 6.1 and Lemma 4.1 for
left Jordan chains it suffices to prove that f belongs to the range of the operator 2.
Let u3 P(e) and /}4-- D(e) be the measures whose transforms are the factors P and
D in (6.1), respectively. If al and to1 satisfy c < tol < to =< a < al, then /"3, b’f and /24

all belong to V(C""; p,.,,). Since ’2 u3* u4, the function f belongs to the range of
2 if and only if g --- ,;1 .f belongs to the range of the diagonal operator x -= ’4" x.
Thus, by Lemma 6.3 and the analogue of Lemma 4.2 for left Jordan chains, it suffices
to show that g in "(C"; r/) bel.,ongs to the range of @ whenever, for each eigenvalue
z Z, every left Jordan chain ofD is also a Jordan chain of g. But D diag [dl, , d, ],
where each di is the monic scalar quasiopolynmial

Hdi(z)
/=1
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Here kil >= 0 is the ith partial multiplicity of D at z. For each with kil > 0, the vectors
Vio (0, 0, , 1, 0, , 0) with the one in the ith coordinate, and vii vi. k,,-1 0
form a left Jordan chain of length ki of D at Zl; hence, by assumption, Vo," ", V.k.-1
is a Jordan chain of g at Zl. Lemma 6.4 shows that the ith component of g belongs to
the range of the scalar operator d corresponding to di. Thus, g belongs to the range
of @.
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Abstract. We give conditions under which solutions of the equation u’(t) Au(t) +f(t) are asymptoti-
cally almost periodic; here u(t) and f(t) are functions on the reals with values in a real Banach space X,
f(t) is almost periodic in the sense of Bohr and A is a function on a subset D(A) of X, to X. We apply
the result to a nonlinear one-dimensional heat equation with an almost periodic time-dependent heat supply.
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1. Introduction. Let {X, l} denote a real Banach space. Let A denote a function
on D(A) X to X, and f a function on R to X; R the set of reals. If we assume that

f is almost periodic (a.p.) in the usual sense of Bohr, it is the purpose of this paper
to give conditions on A so that strong solutions of

(1) u’=Au+f(t)

on [s, c) for some fixed s R are asymptotically almost periodic (a.a.p.) and approach
an a.p. generalized solution of (1) as

As an application, we obtain a result for the nonlinear one-dimensional heat
equation with a.p. time-dependent heat supply:

(2)
ut(t, ) (tr(u)) + r(t, ), R,

u(t,O)=u(t, 1)=O fortR,

0<<1,

where r(t, ) is a.p. in t. Our result for (2) is in terms of almost periodicity in for
L2[0, 1]-valued functions in terms of the L2[0, 1] norm; it is the purpose of a future
investigation to find additional conditions under which almost periodicity with respect
to the usual real valued norm is obtained.

Our methods are based on some results in [1]. The case where f is periodic is
treated in 1 where a monotonicity condition on A, similar to the one we use, is imposed.

We assume without loss of generality that A0 0, the zero in X, since the conditions
we impose on f also hold for f(t)+ Xo, Xo any element in X.

2. Definitions and preliminary results. We say that the function u:[s,)X is
asymptotically almost periodic (a.a.p. for short) if it is continuous and if there exists
an a.p. function v R X such that u(t) v(t) - 0 as .

We will use the following results, which can easily be established by-following
the proofs for the corresponding finite-dimensional results given in, for example, the
book by Fink [2]; it is important to observe that the. range of any a.p. function is
contained in a compact subset of X (cf. [3]).

PROPOSITION 1. The continuous function u [s, o)-> X is a.a.p, if and only if given
a sequence {t’}, t’,>=s, t’,->o as n->o, there exists a subsequence {t,} such that
{ u + t,) } converges uniformly for >= s.

* Received by the editors March 25, 1985" accepted for publication April 7, 1986.
? Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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PROPOSITION 2. If v R- X is a.p. there exists a sequence {tn}, tn-o as n-,
such that v( + t,,) v(t) - 0 as n - o uniformly for R.

The next results are basically in [1] and are concerned with solutions of (1). We
define u:[s,)X to be a strong solution of (1) if u(t) is continuous, is absolutely
continuous on each compact interval of [s, ), is difterentiable almost everywhere on
(s, ) and satisfies (2) almost everywhere on (s, c). If u(s)=x, x is called the initial
value of u(t). We shall henceforth refer to a strong solution of (1) as simply a solution
of(l).

For each (t, s) in a subset of R x R ofthe form a =< s _-< _-< b, a function U(t, s) :X
X is called an evolution operator on X if

(i) U(s, s)x x for each x X;
(ii) U( t, s) U(s, r) U( t, r) fora<-r<-_s<-_t<-_b;
(iii) U(t, s)x is continuous in (t, s) for each x X.

Here and henceforth we always suppose a _-< s -< -< b with a - and b c possible.
We say that U t, s) is an evolution operator for (1) if for each solution u s, b) X

of (1), u(t)= U(t, s)u(s).
If U(t, s) is an evolution operator for (1) and x X is arbitrary, we call U(t, s)x

a generalized solution of (1) on Is, b). If a =-o and b =o, we say that U(t, s)x is a
generalized solution on R.

We note that if there exists an evolution operator for (1) any solution u [s, b) X,
a < s < b, is unique, and similarly, if there exists such a solution u of (1), any evolution
operator for (1) is unique. If A:D(A)-X, we say that AC(to), toR, if

(3) x Yl- x Y 3, (Ax Ay)[ <-_ Atolx yl

for x, y D(A) and h > 0 with hto < 1 (cf. 1, ]).
It is not difficult to show that fixed x and y,

/ --1(1x Yl- [x y 3, (Ax Ay)[)

is a nonincreasing function of A for A > 0 (cf. [4, Lemma 5.1, p. 37]). Thus if (3) holds
for some Ao > 0, it holds for all A > 0.

PROPOSiTiON 3. Let A: D(A) X and A s(O). Let D(A) X where D(A) is the
closure of D(A). Let f: R X be continuous. Let (I- AoA)D(A) Xfor some Ao> 0;
here and henceforth I denotes the identity operator on X. Then there exists an evolution
operator U( t, s) for (1) for >-_ s.

For a proof we may use Theorem 5.1 in 1]; we also use the well-known fact that
if A e s(0) and (I- AoA)D(A) X, then (I- ;tA)D(A) X for any A > 0.

PROPOSrroN 4. Let A e s(to) and D(A)=X and f and g be continuous on R to
X. Let Uf(t, s) and Ug (t, s) be evolution operators for (1) and an equation like (1) with

f replaced by g. Then

(4) Iu(t,s)x-U(t,s)xl If(r)-g(r)lexpto(t-’)dr forxeX, tes.

This is essentially Lemma 5.2 in [1].
PROPOSITION 5. Let A satisfy the hypotheses of Proposition 4 and f be continuous

on R to X. Let U(t, s) be an evolution operator for (1). Then

(5) [U(t,s)x-U(t,s)yl<=lx-y[expw(t-s), t>-s and x,yX.

For a proof, cf. Theorem 2.1 in 1] where actually weaker conditions on A are used.
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3. Main results.
THEOREM 1. Let A and f be functions as given in the introduction with A M(to)

for some to <0, and f a.p. Let D(A)-X, and suppose there exists a Ao>0 such that
(I-AoA)D(A)=X. Then each solution of (1) on [0, oo) is a.a.p, and there exists a
unique generalized a.p. solution 3( t) of (1) on R such that if u( t) is any solution of (1),
u( t) ( t)-> O as t-> oo.

Proof. Since to <0, we have A M(0), and so the hypotheses of Proposition 3
hold. Let { t’} be a sequence with t’ > 0, t’ -> o as n --> oo. Since f is a.p. there exists a
subsequence {t,} of .{t’} and an a.p. function g" R-> X such that

(6) f(t+t,)-g(t)->O as n->oo

uniformly for R. We may clearly suppose t,+ > t,, n 1, 2, 3, .
Let Uf(t, s) be the evolution operator for (1) and u(t) be a solution of (1) on

[0, oo); let u(0)= x. Then

Uf(t + t., O)x u.(t) is a solution of

(2n) u’=Au+f(t)

for _-> -t.; here f.(t) =f(t + t.). Let U(t, s) be the evolution operator for (2n); then

Uf(t + t,, O)x= Uf.(t, -t,)x, >-

Since g is continuous on R, there exists an evolution operator Ug(t, s) for u’= Au + g(t)
and a generalized solution

v.( t) Ug( t, -t.)x,
for this equation. Fix >= 0 and m and n such that m > n. Then

(7) [u,(t)--U,(t)[<--Iu,(t)--v,(t)]+[v,(t)--Vm(t)[+[V,(t)--Um(t)l.
By Proposition 4 with (6) and the condition to < 0, we have given e > 0, there exists
an N so that n > N implies

(8) ]u.(t)-v,(t)l <- If.(’)-g()[ exp to(t-r) dr e,
--t

and a similar result with n replaced by m.
Using Proposition 5, we have

Iv.( t) v.,( t)l <--Iv.(-t.)- l)m(--tn) exp to(t +
(9)

<--Ix- Ug(-t,, -t,.)xl exp tot,.

Using Proposition 4 again with Uo(t, s) the evolution operator for u’= Au, we have

(10) IU(-t..-t,)x-- Uo(-t,,

for some constant B; this follows since g is a.p. and hence bounded on R. By
Proposition 5 and the fact that u 0 is a solution of u’= Au on R, we get

(11) Uo(-t,, --tm)X[ <-- [Xl.
Using (10) and (11) in (9) yields

Iv,(t)- v,,(t)] =< (21xl + B,) exp tot,

and using this with (8) in (7) shows that for N sufficiently large n > N and m > n
imply [u,(t) u(t) =< 3e. Thus {u,(t)} is Cauchy uniformly on [0, ) and so converges
uniformly on that interval. By Proposition 1 we conclude that u(t) is a.a.p, and so by
definition u(t) w(t) --> 0 as --> for some w" R --> X, w a.p.
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Since f is a.p. there exists by Proposition 2 a sequence {7-,}, 7-, > 0, z,--> as
n--> c, such that f(t + 7-,)-f(t)-->0 as n--> ; since w is also a.p., we may suppose
w(t + 7-,) --> a(t) as n --> uniformly for R, where a(t) is a.p.

We show that a(t) is a generalized solution of (1). Let R be given and fix to -< t.
We have for n sufficiently large

(12) [Uf(t, to)a(to)-a(t)l-<luf(t to)a(to)-U(t+7-,)l+lu(t+7-,)-a(t)l.
Since u(t+r,)= Uy.(t,-r,)u(O) where f,(t)=f(t+r.) and Uf.(t,
Uy. (t, to)Uy. (to,-7-,) for n sufficiently large, we have

lUg(t, to)a(to)- U(t + r)[<=lUy(t, to)a(to)- Uf(t, to)Uf.(to, -7-,)u(0)]
(13) +luy(t, to)Uf.(to,-r,)u(O)- Uf.(t, to)Uf.(to,-r,)u(O)

=< la(to)- U(to+ r,)l +sup {IA(t)-f(t)l/I,o I" R};

here we have used o < 0 and Propositions 4 and 5. Since

(14) to) u( to + 7-,)1 -< la( to)- w( to + 7-,)1 + Iw( to + 7-,) u( to + 7-,)1
and since f,( t) f( t)--> O as n--> uniformly on R, (13) shows that the first term on
the right in (12) tends to zero as n--> . But by (14) with to replaced by t, we see that
the second term on the right in (12) also approaches zero as n --> . Thus Us(t, t0)a(to)
a(t), R; i.e., a is a generalized solution of (1) on R.

The uniqueness of a follows easily from Proposition 5; if ul(t) and u2(t) are
distinct generalized a.p. solutions of (1) then h(t)=u(t)-u_(t) would be a.p. with
h(q) 0 for some t R. But h(t) --> 0 as --> by Proposition 5; since this is impossible,
the uniqueness of a follows and our proof is complete.

THEOREM 2. Let A and f be as in Theorem 1, and suppose X is reflexive and f is

ofbounded variation on each compact interval in R. Then for each x D(A), there exists
a solution u(t) of (1) on [0, ) such that u(O)= x which is a.a.p, and approaches a

unique generalized a.p. solution of (1) as t--> c.
A proof of this theorem is an easzv consequence of our.,Theorem 1 and Theorem

5.1(iv) in [1]; our hypotheses imply D(A)-- D(A), where D(A) is defined in [1]. To
show that we also have that A is closed, let x,--> Xo and Ax,--> Yo as n-->, where
x, D(A). Since (I- AA)- is defined and continuous on X (cf. [1, p. 9]) for any A >0,

(I-AA)-(I-AA)x,-(I-AA)-I(Xo-AYo) as n-.

So (I-AA)-(Xo-,yo)=Xo, and hence Axo=Yo; i.e., A is closed.
It is clear that in Theorems and 2, the solution u(t) of (1) may be on any interval

[to, ) rather than on [0, ); the latter was chosen to simplify the notation only.
We also have as a consequence of Proposition 5 that under our hypotheses, all

generalized solutions of (1) are a.a.p. We stated Theorem for strong solutions mainly
to emphasize the fact that the definition of U(t, s) as evolution operator for (1) involves
strong solutions of (1).

4. An application. We consider the boundary value problem (2) stated in the
introduction. We take X L2[0, 1] L2, the set of Lebesgue square integrable real-
valued functions on [0, 1] with the usual norm [ul=(u, u)/2 in terms of the inner
product:

(u, v)= u()v() d, tl, v L2.

Since {L2, (,)} is a Hilbert space, X is now reflexive.
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Let r" R-> R be continuously differentiable, o-(0)=0, and suppose there exist
constant m and M such that 0 < m _-< r’(u) _-< M < oo for u R. Let r(t, so) R x [0, 1 --> R
be in L for each and L2-a.p.; i.e., a.p. in in the L2 norm.

We apply Theorems 1 and 2 of the previous section Take Au-(r(u,)), with
D(A)= {u L2: u(0)--u(1) =0, with u(sc) and u’(sc) absolutely continuous on [0, 1],
u"(:)

It is well known that L2-- D(A).
We next show that A M(o) for some o < 0. By direct calculations we find that

for u # v, u, v D(A),

lim (]u-vl-[u-v-h(Au-Av)[)/h[u-v
h -->0+

(u v, Au Av)/lu vle

’( ’((15) (u sc:)-v sc:))(tr(u’())-o’(v’(sc))) ds: (u(sC)-v())2 d
o

Io_-< -m (u’(sc) V’())2 d: (u(sc) V())2 dsc

the last estimate follows from a result in [5, p. 182]; we can also easily get this with
zr replaced by 2 by using the Cauchy-Schwartz inequality. From (15) and the remark
preceding the statement of Proposition 3, we have that A M(-mer).

We next show that there exists a h > 0 such that (I-AA)D(A)= L2. Letf L2 be
given. Let {C, [[} be the Banach space of real valued functions continuous on [0, l]
with norm u sup {]u(sC)] 0_-< sc-< l}. For fixed h > 0 define Th" C - C as follows"

(r.u(= - - (u(s-f(s ds+c d, 0<-_<=,

where c is the unique constant such that

(6 -, -1 (u(s-f(s)) ds+c dv =0

and cr-1 denotes the inverse of o-. The fact that there exists a unique constant c, follows
since

(17) M-<-o’-’(u)<-m- forueR.

From (16) we may also easily verify that

we omit the details. Using (18) and (16), we see that for h >0 sufficiently large, T is
a contraction on C; let i be the unique fixed point of T. It is easy to verify that
ti e D(A) and satisfies I (o-(u’))’ u -f. We have therefore (I IA)D(A) L2, as
asserted. We have essentially proved the following theorem.

THEOREM 3. Suppose o" R- R is differentiable, o’(0)=0, and its derivative o-’
satisfies 0 < m <- o"( u <- M < o on R. Lee r( t, )" R - L be a.p. in with respect to che
L2 norm. Then each solution u(t, ) of (2) such that u(t,. L for >- 0 is a.a.p, and
approaches a unique generalized solution of (2) which is L2-a.p. as oe. If r( t,. is of
bounded variation for in each compact incerval of R, then for each uo L2 with uo(0)=
u(O) O, Uo and U’o absolucely continuous on [0, 1], and u L2, there exists a solution
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u( t, ) of (2) such that u(O, st) Uo(sr), 0-<=<1, and u( t, ) is a.a.p, and approaches a
unique generalized a.p. solution of (2).

The concept of generalized solution of (2) is in terms of the general definition
given in 2. It is not immediately clear that the generalized a.p. solution is a strong
solution of (2) in the sense as defined in 2. It is the purpose of future investigations
to determine whether conditions exist sufficient for the existence of strong a.p. solutions
of (1) as well as (2).
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Abstract. Under some restrictive assumptions about opacities, we show that the radiative transfer
equations have the form (du/dt)+ Mu + 3u 0, where M is m-accretive and is Lipschitz. Mathematically,
this gives existence and uniqueness of the solution. We also show that the maximum principle applies.
Assuming that opacities are decreasing with respect to temperature, we are able to prove that itself is
accretive. Finally, we derive from this analysis an algorithm for solving the radiative transfer equations
which has some nice properties.
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1. Nonlinear accretive operators theory. Let us assume we are given a real Banach
space Y, which may not be reflexive. We denote by Y* the dual space and by (-,.)
the duality pairing between Y and Y*. Let I1" and I1" [1. denote the norms of Y and
Y*, respectively. We shall use the sets

s(u) (fa Y*" Ilfl[, 1, (u,f):

for all u Y such that [JuJ] 0. Let M denote a mapping from a nonempty subset
D(M) Y into Y. We shall say that M is an accretive operator if for each Ul, u2 D(M)
there exists anf s(u2-Ul) such that

(SU2 SU1, f) -> 0.

In particular, if there exists a mapping So" Yo Y* such that

So(U)S(U)

for all u Y, and such that

(1) (MU2 ,S/,/1 S0(U2 Ul) 0

for all Ul, U2 D(M), then M is accretive. Furthermore, if, for some A > 0, the range
of operator 3-+ AM is equal to Y, where 3- denotes the identity of Y, we shall say that
M is m-accretive. In such a ease, operator (3-+ AM)-1 is a contraction mapping from
Y into Y (see [7]).

We now turn to the following abstract differential equation:

(2)

du
+Mu =0
dt

u(0) Uo
where Uo Y is given.

* Received by the editors November 8, 1984; accepted for publication (in revised form) January 7, 1986.
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The key idea for solving such an initial value problem is to introduce the following
backward difference scheme:

n,k/ n,k - Mu n’k/l O,

(3)
u n,o

Uo

where An > 0 is a time-step that tends to zero as n o .
A fundamental result, due to Crandall and Liggett (see [6]), states that if Uo D(M)

and M is m-accretive then the sequence of pieeewise constant functions un(t) defined
by

un(t)--U n’k forkAn<=t<(k+l)An

converges uniformly on [0, T] to a limit function u C([0, T]; Y), which may be
considered as a generalised solution to problem (2). (It is actually called a mild solution
(see [5]).) In particular, if problem (2) has a solution v C (0, T; X) such that
v(t) D(M) for a.e.t., then u--v (see [3]).

On the other hand, the mapping

S(t): Uo u(t)

is a contraction from D(M) into D(M) and the family (S(t)),>o is called the semi-group
generated by M.

Let us denote by F the (assumed nonempty) set of equilibrium points of M, that
is of elements p D(M) such that

(4) S(t)p=p

for all > 0. We have the following property:

(5) [[u(t)-p[lN as t/,

which means that the distance between the solution at time and any equilibrium
point decreases. In particular, the existence of equilibrium points ensures that the
solution is bounded as time goes to infinity.

In many applications, Y= LI(X), where X is a closed subset of Rd. In such a

case, the set s(u) is found to be the set of all functions f L(X) such that

f(x) when u(x) > O,

f(x) -1 when u(x) < O,

If(x)[ _-< when u(x) O.

It is usually convenient to choose So such that

(6)
1

(So(U))(x)- "1
0

when u(x) > O,
when u(x) < 0,
when u(x) O.

We note that the sum M + of two accretive operators need not be accretive (see
[5]). However, this is the case (see [5]) in the case where one of the operators, say Y3,
is continuous. This is also the case, obviously, when both operators satisfy condition
(1) with the same So.
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About the sum M+ of two m-accretive operators, we shall need a result which
states that if M is m-accretive and is Lipschitz, i.e. there exists o > 0 such that

u=- u, -< ,o u=- u,

for all Ul, u2 Y, then M + is m-accretive. This result is standard and has a simple
proof; as M + is accretive, we need only prove that

u+hMu+hu=f
has a solution for anyf X. For this we note that

is a strictly contractive mapping from X into itself for A > 0 small enough.
Remark 1. When is Lipschitz but not accretive, then the Crandall-Liggett result

still applies. However semigroup S(t) generated by M + is of type w, that is

][S(t)u2 S( t)Ul] et ]]g2 -gl[[

where is the Lipschitz constant of .
2. Problem to be solved. Let us consider a continuous medium, assumed to be a

motionless gas, in a subdomain X c 3, with boundary OX. In the following, we shall
denote by x a generic point in the domain X and a generic direction on the unit
sphere S2.

The interaction of the gas with radiation is described by the energy equation

--+ (, ((,-where

K K(, e) denotes the opacity,

B B(, e) is Planck’s function,

I I(x, , , t) is the specific intensity of radiation at frequency in direction .
The radiation is assumed to be travelling at the speed of light c so that I satisfies

the following transfer equation

10I OI+---+a.-- K(-)(8)
c Ot Ox

where denotes an integral operator defined to take into account Thomson scattering:
we have

(9) (t)(x, a, ) s (K(’, )t(x, a’, )- K(a, a’)t(x, , )) aa’

where Ka((O’, )0 denotes the scattering cross section assumed to be independent
of e and .

The unknown function I is subject to a boundary condition:

(0) t(x, a, , t)= h(x, a, , t)

for x OX, > 0, > 0 and Sz such that n(x) < 0, where n(x) denotes the unit
normal vector to X, directed outward. The meaning of boundary condition (10) is that
the inflow specific intensity h is assumed to be known.
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(11)

Finally, we supplement the system (7), (8), (10) with some initial conditions

I(x,,v,O)=Io(x,,v), xX, IS2, v>0,

(x, o) o(X), xX,

where Io and eo are given functions.

3. Choice of a functional framework. We shall introduce a Banach space Y for
the couple of unknown functions

u(t)={e(t),I(t)}.

We choose

(12) Y= L(X) x LI(x x S2x (0,

with

(13) Ilull I111 + IIII1 whenever u {e, I}.

We denote by I1" ]] either the norm of LI(X) defined as

I111-= Ix I(x)l dx

or the norm of LI(X x Sx (0, oo)) defined by

IIII1 II(x, , )1 dx dad,,.
X

The choice (13) for the norm II" is a natural one. Indeed, if (as they should)
both e(t) and I(t) are positive, then Ilu(t)]] is the total energy (material+radiation).

Next we shall introduce some operators d and @ on space Y so that problem
(7)-(11) is equivalent to

du
(14) --+ Mu + 3u O, u(O) Uodt

where Uo {eo, Io}. First we define operator M as follows:

(15)

M{e, I}= {O, l) OI- I}Ox

D(’sg) { u x: u {e’ I}’
Ou L1 }e I satisfies (10)
Ox

Note that we need a trace theorem, which is proved in [4], to give meaning to the
boundary condition (10). We shall assume that the inflow specific intensity (h) does
not depend on t, so that M is independent of t. We note that M is unbounded.

Next, we define operator as follows: for u e X, u {e, I}, we let

(16)

where

(17) q=-- q(x, a, v)= K(v, e(x))(o(v, I(x, 1", v))-B(v, e(x))
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and

(18) q(v,/)=max (0, min (I, B(v, M)));

finally, M is a given constant.
With such a definition of operator , we note first that (14) coincides with the

original problem (7)-(11) whenever

(19) 0 <-_ I(x, 1, v, t) <- B( v, M)

for v>0, xX, tS2 and t>0.
We shall prove in 5 that the maximum principle applies to system (7)-(11) so

that (19) holds for some M > 0 together with

(20) O<=e(x,t)<=M.

The function o(,, I) defined in (18) is obtained from I with an appropriate
truncation; if we require to be Lipschitzian, then we need q to be bounded, and if
we want to be accretive, we need q to be positive, as we shall see in 6.

4. Properties of operators and 8. Let us first recall some facts about operator. We note that D() is dense in Y (see [2]). To prove that is accretive we shall
need the following lemmas.

LEMMA 1. Let W denote the space offunctions I in L (= LI(x x S2x (0, )) such
that f VI L1. Let fl :R- be a C function such that fl(O) =0 and fl’ L(). Then,
for any I W, (I) W and

(21) l.l. 0__ ,( ( 0I) LI"
Ox fl l I) 12 -x in

To prove the result, one introduces a sequence (I,), of smooth functions converg-
ing to I W (the existence of such a sequence relies on a density result; see [4]). For
a given smooth I, (21) obviously holds. The Lebesgue dominated convergence theorem
is used to prove that (21) holds in the limit, after extraction of a suitable subsequence.
The details are left to the reader.

LEMMA 2. For any I W, then [I W and

l-l. 0__ 1I[ So(I)l"
Ox Ox

Proof For given n J we introduce the function/3, :--> defined by

We check that

(i) /3.(:)-->11;
(22)

(ii) /3’() -> So()

for all sc when n - c and that

(23)

otherwise.

for all R.
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Let I W be given. From Lemma 1 we know that fin(I) W and that

ox
a

From (22)(ii) and (23) we see with Lebesgue’s theorem that

On the other hand, using Lebesgue’s theorem once again, from (22)(i) and (23)
we prove that

fin (I) - ]I] in L1.

If q C (X x S2x (0, eo)) from the definition of the derivative in the distribution
sense, we know that

In the limit n eo, we get that

(f, I 1,

Therefore f. (O/Ox)lI g and f= f-(O/Ox)lI in L1. QED
PROPOSn’ION 1. Operator sl is m-accretive.

Proof. To show that s4 is accretive, we shall choose

So(U) {So(e), So(I)}

where So(e)L (X) is defined as in (6), and So(I)L (XS2(0,)) is defined
in an analogous way.

Let u {e,, I} D(), a 1, 2. We have

(,U2 ,Ul, S0(U2 Ul) a "XX (h-- 11)- 9(/2--/1), S0(/2--/1)

To prove that s4 is accretive, it suffices to prove separately that the advection
operator

0

Ox

with domain

D() { I e LI f
OI }mC L I satisfies (10)
Ox

and operator (-9) are accretive
To prove that is accretive, we notice that from Lemma 2

0--(/--I1) So(I-I)=a’O--[I2-Ii[ in L
Ox

provided that I1 and h e D() and that function I--Ih-Ii1 satisfies

1
OI

L1
Ox
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and vanishes on the inflow boundary F_x (0, oo) (where F+ denotes the subset of
OX x S2 made with those couples {x, f/) such that 12. n(x) 0).

Applying Green’s formula (see [4] for a justification)

dv f O I dx df dv (f n)I dF+
xS Ox

to I 16- I,I, we see that

(" 0-(I2--I’)ox So(I2--I1))>--O SO that is accretive.

Since operator @ is linear, it is sufficient to prove that

(I, so(I))<--O.(24)

We have

Is2 ( fs2 (Kd(’, )I(’)-- Kd(, ’)I()) d’)So(I()) d

Hence from (9) we get (24).
Finally, since the problem

I+Af IO__=f
Ox

with I subject to boundary condition (9), can be solved for anyf LI(X), provided
h satisfies

dv ( n)h dF_<

which we shall assume (see [4]), operator is m-accretive.
As @ is Lipschitz, we have that- is m-accretive. QED
We now turn to operator N. To get Lipschitz continuity of N, we shall require

some regularity on the functions

eK(v,e), eB(v,e).

Actually, we know that e e(T) depends on the temperature T through an equation
of state (e pGT in the case of a perfect gas), and that

2hv
(25) (,(r))= c (e/-l)-

where h is Planck’s constant, and k Boltzmann’s constant. Then the function e B(u, e)
is regular provided that the equation of state T e(T) is regular.

More precisely, we shall assume that there exists a constant C positive such that

(H1) IK(, E1)-K(v, E2)[ CIEI--E21 for all p>0, El, g2

(H2) 0_-< K(v, e) <- C for ally>O, eRi

and that there exists/30, fl > 0 such that

de
(H3) 0 < flo_-___<-- fl,.

dT
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Furthermore, for technical reasons we shall modify function B for e > M (this is
without consequence if we prove that (20) holds).

Let T4 be such that e(T4) M, for e > M we choose

B(,, e)= B(,, e(TM)).

We check that, with such a modification, we have

(26) B(,, e(T)) d,=a min (T4, T4)

where a is some constant.
PROPOSITIO 2. Assume (HI) (H2) (H3); then operator 1 defined in (16)-(18) is

Lipschitzian.
Proof. Let u {e, I} e Y, 1, 2 be given, and

As

for ce 1, 2, we have

lieu2- Ulll -<- 2 dx du [q2--qll dO.

We notice that

q2-ql K(e2)((I2)-B(e2))-K(el)(q(I1)-B(el))

K(e2)(o(12) (I1)) + (K(e2) K(e)) (I1) + K (e2)(B(e,) B(e2))

+ (K(e)- K(e2))B(e,).

From (H2) and (H1) we get

(27)

Applying (26) we get

o=
IB(, e(T1))- B(, e(T))l d aEmin (T, T)-min (T, T)]

4aTb( T, T) C’(e( T,)- ( T))

where C’= 4aT/
Finally, when we integrate (27) for x X, e S2, > 0, we obtain

QED

Applying the Crandall-Liggett Theorem (see Remark 1), we obtain the following
existence result.
CooA 1. If assumptions (H1) (H2) (H3) hold, then for any given t0>0

problem (14) has a unique solution

u e c([0, t0]; g).
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About the asymptotic behavior of solution u(t) as time oo, we have no informa-
tion as yet. Note that in the general case of an m-accretive perturbed by a Lipschitz, the solution u(t) might grow exponentially as

Remark 2. According to inequalities (19), (20) we can restrict ourselves to an
energy interval [0, M]. Then assumptions (HI) and (H2) need to hold only for el, e_,
e e [0, M].

Indeed, outside this interval we can modify opacity K(u, e) in order to get the
desired assumptions.

$. Maximum principle. To solve the original problem ((7)-(11)), we have intro-
duced an operator which involves o(I) instead of I, where 0(I) is a truncation of
I defined in (18). We needed such a truncation to get a Lipschitz . However we have
yet to prove that the solution u of (14) is also a solution of the original problem. We
proceed in the following way.

Assume that the initial energy e satisfies

(28) m’<=e(x)<=N
for all x e X, with 0 <- N’=< N-< M. We also assume that

(29) B( u, N’) <= I(x, 12, u) <= B( u, N)

and

(30) B( u, N’) <= h(x, 12, u) <= B( e, N)

for all x X, 12 S2, u > 0. Then, we prove that the solution u { e, I} of (14) satisfies

(31) N’<=e(x,t)<=N

for almost every x X, 0 and

(32) B( e, N’) -< I(x, 12, , t) <- B( u, N)

for almost every x X, 12 S2, u>O and t>0. In such a case, we have (I)= I so
that u {e, I) is also a solution of the original problem.

To prove (31), (32) we shall require Ka (appearing in definition (9) of operator
) to be symmetric:

(33) Ka(12, 12’)= Ka(12’, f) for all 12, 12’ S2.

LEMMA 3. Let v {e, J} Y be such that

N’<_e(x)<-N

for (almost) every x X, and

B( u, N’) <= J(x, 12, u) B( u, N)

for (almost) every x X, 12 S, > O. Let u { e, I} denote the solution of

Then, one has

u + , (du + Y3u) v.

N’<=e(x)<=N,

B( , N’) <= l(x, 12, u) <= B( , N)

for (almost) every x X, S2, > O.
Proof. We shall use operator s+ LI(X) - L(X) defined as follows, if e e L(),

s+(e) denotes the function equal to one where e > 0, and equal to zero where e =<0.
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(34)

(35)

since

We note that e and I satisfy

e-N+A K(e) 2((B(e)-B(N))-(go(I)-B(N)) dl d,=e-N,

I- B(N)+ AI --- (I- B(N))+ AK(e)(go(I)- B(N))-(B(e)- B(N))
Ox

h(I- B(N))+ J- B(N),

0
--B(N)=0
Ox

and, by virtue of (33)

(B(N)) B(N) Is2(Kd(l’,)--Kd(,’)) dl’ 0.

We multiply (34) by v-= s+(e- N) and integrate for x X.
On the other hand, we multiply (35) by w s+(I- B(N)) and integrate for x X,

leS2 and ,e (0, oo).
We note that

(e-N)s+(e-N)=(e-N)+

and since e B(,, e) is increasing (see (25) and (H3))

(B(e)- B(N))s+(e N) (B(e)- B(N))+.

On the other hand,

(I- B(N))s+(I- B(N)) (I- B(N))+

and (since M_-> N)

((I)- B(N))s+(I- B(N)).

We obtain by addition

+A K(e) 2((B(e)-B(N))+-w(B(e)-B(N)) dl d,dx

;s+a x K( [((-(/-v(e(-(] aa

=A{(I-B(N)), w}+{e-N, v}+{J-B(g),

We note that

(B(e)- B(N))+- w(B(e)-’- B(N)) (1 w)(B(e)- B(N))+ + w(B(e)- B(N))_ >- 0

since 0_-< w-< 1. Similarly,

(q(I) B(N))+- v(q(I) B(N)) (1 v)(go(I) B(N))+ + v(p(I) B(N))_ >- 0

since 0_-< v-_< 1.
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On the other hand, we have (using a result similar to the one proved in Lemma 2)

f.
0
(I-B(N))s+(I-B(N))=.

0

0- 0- (I- B(N))+;

therefore, by integration by parts, we obtain

8(I-B(N))+ da= (a n)(I-B(N))+ dr+o

(note that (I-B(N))+ vanishes on F_ by assumption (see (30)).
Let = I-B(N). Then we have

N2

sxS

IS2x $2

IS2x $2

hence (@, s+()) -<_ 0.
Finally, we have

a’)L(a)

Kd(l’, 1")_(1’) dl’’ dl’ <- O;

which proves that

II( N)+II, + [[(I- B(N))+JJ, 0,

e(x)<-N for a.e. x e X,

I(x,l), ,)<-B(,,N) fora.e, xeX,

In an analogous way, we could prove that

I1( S’)-II, + I1(I- B(N’))-II, <-0.

r’>O.

QED

for (almost every) x e X, and

(37) B( u, S’) <- I"’k(x, f, U) <-- B(u, N)

(36)

forkh,<-_t<-_(k+l)hU"(t)=U "’k

where u "’k is defined inductively by
n,k+ n,k -- ,U n’k+l -" IU n’k+l O.

Let u"’k=--{e,k, i,k}. If we have

N’<- e’k(x) <-- N

We are now able to prove the main result.
THEOREM 1. Assume that initial solution Uo {eo, Io} satisfies (28), (29) and that

boundary condition h satisfies (30). Then the solution u(t)= {e(t), I(t)} ofproblem (14)
satisfies (31), (32). Furthermore, it is also the solution of the original problem (7)-(11).

Proof. From the Crandall-Liggett Theorem (see 1) we know that solution u(t)
is the uniform limit as noe of the piecewise constant functions u(t) defined by



404 B. MERCIER

for (almost every) x X, f S, u > 0, then, applying Lemma 3 with v
and h ,,, we have (36), (37) at index k + 1. Since (36) and (37) hold for k =0, then
they hold for all k>0. Since they also hold for all n>0, making n, we get (31)
and (32). As noticed above, since 0<= N’<= N <= M, u(t) is also a solution of (7) to
(11). QED

The maximum principle we just proved has 3 applications:
(a) It shows that solution u(t) of (14) is actually a solution ofthe original problem;
(b) It shows that solution u(t) remains bounded in L
(c) It shows that u(t) is positive.
Remark 3. Assume that u + A(Mu + :u)= v with v {e, J} and u {e, I} as in

Lemma 3. We easily prove that, if h 0,

dx + dx dv I d = e dx + dx dv Jd.
Using an argument similar to the one used for Theorem 1, we have

e(t) dx+ dx dv I(t) d--< Iluoll,

which shows that the energy is decreasing (or conserved if X 3).
Remark 4. In a way similar to Remark 2, we note that assumptions (H1) and

(H2) need to hold only for el, 82, e[N’, N]. If opacities are infinite for e=0, as
they should be, then our existence result applies only for N’> 0.

6. Accretiveness of operator 8. We shall now prove that operator itself is
accretive under some new assumptions (see (H4) and (HS) below). Actually, the
accretiveness of is not very useful information if we assume (H1) and (H2) since
we already have existence, uniqueness, and uniform L bounds for t- c. However,
besides mathematical curiosity, the accretiveness of is of fundamental importance
for the case where K(v, e) is infinite either for v =0 (see [10]) or for e =0, for which
we refer to Golse and Perthame [8].

We assume the following:

(H4) for all v > 0, function e - K (v, e) is decreasing,

(HS) for all v>0, function e - K(v, e)B(v, e) is increasing.

Assumptions (H4) and (HS) should hold for all e ; however, as noticed in Remark
4, they need only be satisfied in some interval [N’, N] related to the initial and
boundary data.

Remark 5. To understand the significance of assumptions (H4) and (HS) we note
that if I is given, and is independent of t, then (7) is just an autonomous ordinary
differential equation depending on a parameter x X.

Let

where

Then (7) can be written as

K(v, e)(B(v, e)-E(v)) dv

d
--+ () =o
dt
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(for given xX). If we assume that q is increasing then 0(e*)=0 has a unique
solution, and e(t) e*, as t-o, whatever eo. If assumptions (H4) or (HS) were
violated, then limit e* of e(t) as t- could depend on the initial value at t-0, or
e(t) could even diverge as t-.

The case where I is given is a special case, but corresponds physically to the case
of an optically thin medium submitted to a constant inflow intensity h (see (10)). As
opacity K (e) is small, the relaxation time ofthe gas is large compared to the propagation
time connected with speed of light c. In other words, we get I h everywhere before
e(t) has significantly changed from its starting value eo.

We prove the following lemma.
LEMMA 4. If assumptions (H4) and (HS) hold, then operator defined in (16) is

accretive.

Proof. We shall first prove that

(38) (3u2- Ul, s+(u2 Ul) 0

for all u, u2 Y where s+: Y- Y* is defined by

s+(u)={s+(e),s+(I)}

for all u {e, I} Y and where s+ is defined as before.
Let

q, K(e,)(o(I)-B(e)), a 1,2

where {e,/} us, a 1, 2. We have

Nu- Nu dv (q- q) df, q- q

Then

/’/2 Ul, $’+(/’/2-- Ul))--- dx dl (V w)(ql- q2) dl)

where v s+( e2- el) and w=-s+(I2-I1). Thus

(u:- u,, s+(u.-

(39) dx dv 2(-w)(K(e)B(e)-K()B(e)) d

+ dx dv (w-v)(K(e2)(I)-K(e)(I1)) d.

Let

A K(e2)B(e2)- K(el)B(el).

From (H5) and the definition of v, we get vA (A)+.
On the other hand, writing A A+-A_ we have (v-w)A =(1-w)A++ wA_.

As function w=s+(I-I1) satisfies 0-<_w-<_l a.e. for xX, v>0, fZS2, we obtain
(v- w)A >= 0 which shows that the first term in the right-hand side of (39) is positive.
Let us show that the second term is also positive.

Let y=-w-v and z=-K(e2)qg(I2)-K(el)q(I). We notice that

if I2(X ", v) > I(x, 12, v) and ez(X) -< e(X),
y(x, 11, v) if e(x) > el(x) and I2(x, 11, v) <= Ii(x, 11, v),

otherwise.
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In case y= 1, we check that z_>0, since, from (H4), K(e2)>=K(el) and q(I2)->
’p(I1). In case y=-l, we check that z-<0, since (from (H4)) K(el)<=K(e2) and
o(I2) =< o(I,).

Finally, we have proved that yz >-0 for all x X, f S2, u > 0, which suffices to
prove that the second term in the right-hand side of (39) is positive, and proves (38).

Permuting indices 1 and 2, we also get

(40) (U U2, S+( U U2) 0.

AS

So(U- u,) s+(u- u,)- s+(u,- u)

we obtain

(Yau2- au,, So(U- u))>-0

by summation of (38) and (40). QED
Applying a result proved at the end of 1, we obtain the following.
COROLLARY 2. If assumptions (HI) to (H5) hold, then operator ag+ is m-

accretive.
As a consequence of Corollary 2, we learn that the distance between u(t) and

any equilibrium point u is decreasing in the energy norm.
We refer the reader to [8] and 10] for more useful applications of the accretiveness

of .
7. Operator splitting algorithms for solving the radiative transfer equations. Each

time one has to solve a problem of the form

du
m+ agu +u O,
dt

(41)
u(0) Uo,

one can use operator splitting methods like

(42)

u n+l/2 U
(i) + au"+/2 O,

At
n+l n+l/2U --U

(ii) + Yau"+l 0
At

or

(i) un+l/2= Sag(At)u n,
(43)

(ii) u "+’= S(At)u"+’/2

where S(t) and S(t) denote the semigroups generated by operators ag and Ya,
respectively.

If a and are m-accretive, then each one of these algorithms is unconditionally
stable, since, in such a case, the operators

(-+Atag)-’, (-+At)-1, S(At), S(At)

are contractions for all At > 0.
We refer the reader to [9] for convergence of such algorithms, as At 0, in the

case where Y is a Hilbert space.
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In the case where and g are defined as in 2, we see that operator splitting
methods introduce a decomposition of time step At into two so-called "fractionary
steps." The first half-step corresponds to linear transport of specific intensity I at speed
c, coupled with Thomson diffusion. The second half-step corresponds to local relaxation

of radiation with material energy. We note that the first half-step is global but linear,
whereas the second half-step is nonlinear but local.

Practically, for solving the linear transport part, one has a choice between Monte
Carlo methods, or finite element methods. Usually, such methods give a piecewise
constant estimate of specific intensity I on some spatial mesh of the domain; material
energy e is chosen piecewise constant on the same mesh.

We note that solving (42)(ii) or (43)(ii) can be performed cell by cell since x is
only a parameter for operator

Let Q denote some cell of the given mesh: solving (42)(ii) on cell Q amounts to
solving

(44)

(i) e o 4- At de K(eQ (B(eQ --.O d= eO,

n+l n+l n+l n+(ii) io +AtK(e )(Io _B(e 1))=io"
/-n+lFrom (34)(ii) (which is linear w.r.t. -o we get

n+lIQ+At(KB)(eQn+ll0 n+l1+ AtK(e o
which can be substituted in (44)(i). The result is a scalar nonlinear equation of the
following type:

n+l)(45) f(eQ =e o.

It can be seen that, if (H4) and (H5) hold, then f is monotone increasing and
(45) has a unique solution; otherwise, for At large enough, f may not be monotone,
so that (45) may have more than one solution. In such a case, it is not clear which
one we should select. Then, from a numerical point of view, assumptions (H4),and
(H5), which imply accretiveness, have some useful properties.

In the case where the discrete ordinate method is used to discretize both 12 and
u, (43)(ii) is a system of ordinary differential equations that is more difficult to solve
than (42) (ii).

On the other hand, when the Monte Carlo method is used, it is not more difficult
to solve (43)(i) than (42)(i).

This is why we prefer the following mixed algorithm"

(i) un+l/2-- Ss(At)tl n,
(46)

n+l(ii) u -+ At@ )-l u "+1/2.

Note that each one of these algorithms is at most first order accurate with respect to
At. It is also possible to use second order accurate algorithms (see [9]). However, these
operator splitting algorithms, which are very well suited to optically thin media, are
fairly inefficient when applied to optically thick media. In fact, in the latter case,
radiation and material are strongly coupled since K(e) is large, which requires very
small time steps At.

Acknowledgment. The author would like to thank the referee for many appropriate
remarks which have been helpful with respect to mathematical rigor.
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Abstract. We consider the parabolic system that is generated by adding "artificial viscosity" to the
equations of one-dimensional nonlinear elasticity. We construct families of entropies that induce a priori
bounds on solutions, independent of the viscosity. The entropies have exponential growth in the case of
strain hardening and polynomial growth in the case of strain softening. In particular, we recover the standard
theory of invariant regions.
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1. Introduction. Consider the family of parabolic equations

(1.1)
Otu OxV +f(u, v) uO2u,

o,v-o,o-(u)+ g(u, v)= v,9:v,

where or(u) is a given smooth, strongly monotone function on (-c, c),

(1.2) cr’(u) aZ(u), a(u)

f(u, v) and g(u, v) are given smooth functions on (-, )x(-c, c), and v is a
positive parameter that measures the "viscosity."

We view (1.1) as a singular perturbation of the strictly hyperbolic system

(1.3)
Otu-O,v+f(u, v)=O,

O,v-Oo’(u)+ g(u, v)=0.

The method of vanishing viscosity seeks to identify and construct admissible discon-
tinuous solutions of the Cauchy problem for (1.3) as limits of solutions {u(x, t), v(x, t)}
of the Cauchy problem for (1.1), with u $ 0. To carry this program out, one needs a
priori bounds on {u(x, t), v(x, t)}, independent of u, sufficiently strong to induce
sequences that are convergent almost everywhere. A bound on the total variation of
{u(x, t), v(x, t)} would be ideal for that purpose, but no estimates of this type are
presently available. A weaker, L, estimate for {u(x, t), v(x, t)} would induce sequences
convergent in L weak but this would not suffice, in itself, to guarantee that the limit
is a solution of (1.3). Nevertheless, the theory of compensated compactness yields
(DiPerna [2], Rascle [6]) that when tr(u) has isolated inflection points, any
sequence of solutions of (1.1) converging in L weak converges necessarily almost
everywhere.

The standard vehicle for establishing uniform L bounds for solutions of (1.1) is
the method of Chueh, Conley and Smoller [1], which applies if and only if o-(u) has
a single inflection point, say at Uo, being convex on (Uo, ) and concave on (-o, Uo),

* Received by the editors October 28, 1985; accepted for publication April 1, 1986. This research was

supported by the National Science Foundation under grant DMS-8025355, by the U.S. Army under contract
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and

(1.4) [sgn (U-Uo)]a(u)f(u, v)+[sgn rig(u, v)>--O

holds rot lul, I1 sufficiently large. Under these conditions, the level curves of the
Riemann invariants

(1.5) r(u, v):= v+ a(w) dw, s(u, v):= v- a(w) dw

confine a nested family of open, bounded, positively invariant regions for (1.1) whose
union covers the entire u-v plane. (In fact, (1.4) simply states that the vector field
{f(u, v), g(u, v)} points towards the exterior of these regions.) Then the range of the
solution of the Cauchy problem for (1.1) is trapped inside one of these invariant
regions, determined solely by the initial data.

It is not to be expected that solutions {u(x, t), v(x, t)} of the Cauchy problem for
(1.1) will be bounded in L, uniformly in u, for arbitrary tr(u). For instance, considering
that, in the isentropic flow of an ideal gas (the flow is described by equations of the
form (1.3)), vacuum may develop over regions of space-time, one should anticipate
that u(x,.t) will not stay bounded from above, uniformly in u, when r(u) is concave
for u large. Still one hopes that (perhaps weaker than L) bounds for {u(x, t), v(x, t)}
hold under assumptions less stringent than those required for the existence of invariant
regions. For example, in the homogeneous case f(u, v)=- g(u, v)=-O, it is reasonable
to expect strong bounds when r(u) is convex for u large and concave for u small,
irrespectively of the number of inflection points in between. In fact it is plausible that
estimates of a certain type apply, even when tr(u) is concave for u large and/or convex
for u small, provided o-"(u) decays to zero, sufficiently fast, as u ’ oo and/or u $ -oo.
These estimates should extend to the nonhomogeneous case, so long as the growth of
f(u, v) and g(u, v), as lu[ and Ivl tend to infinity, is properly restricted.

The aim of this paper is to establish estimates on solutions of the Cauchy problem
for (1.1), under various assumptions on tr(u). Our approach rests on the construction
of appropriate entropies for (1.3) (cf. Lax [4]). For interesting, recent, related results
see Serre [7] and Venttsel’ [8].

A smooth, convex function /(u, v) on (-oo, oo)x (-oo, oo) is an entropy for (1.3),
with entropy flux q(u, v), if

(1.6)
qu(u, v)=-o"(u)%(u, v),

q(u,v)=-l,(u,v)

hold on (-oo, oo)x (-oo, oo). By eliminating q(u, v) between the two equations in (1.6)
and using (1.2), we deduce that /(u, v) is an entropy for (1.3) if and only if it is a
convex solution of the linear wave equation

(1.7) /,,(u, v)= a2(u)n,,(u, v),

on (-00, oo) x (-oo, oo).
Assume r/(u, v) is an entropy for (1.3), with entropy flux q(u, v), and let

{u(x, t), v(x, t)} be a solution of the Cauchy problem for (1.1), which tends, as ]x]- oo,
to a constant state {tT, }, for any e [0, oo). Upon setting

(u, v):= n(u, v)-n(a, )-nu(a, )(u-a)-nv(a, )(v- ),
(1.8)

gt(u v):=q(u, v)-q(a, 5)+ /,(t/, 5)(u- t/)+ /(t/, 5)[tr(u)- r(t/)],
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we verify easily the familiar identity

O,’Tl(u, v)+Oxgl(U, v)+ u(U, v)f(u, v)+ ,(u, v)g(u, v)
(1.9)

2-vOrt(u, v) v{rluu(U, v)(Ou) + 2r/,v(u, v)(Ou)(Ov)+ rlw(U, v)(Ov)Z},

which induces, by virtue of the convexity of r/(u, v), the inequality

l(u(x, t), v(x, t)) dx+ {u(U, v)f(u, v)+ ff%(u, v)g(u, v)} dxd-

(1.10)
_-< J_ (u(x, 0), v(x, o)) dx.

We observe that, since r/(u, v) is convex, (u, v), as defined by (1.8), is nonnegative
on (-, ) x (-, ) and vanishes at (a, 3), to quadratic order.

The simplest choice of an entropy-entropy flux pair is

1/;2 Io,(u, v)=- + o-(w) dw,

(1.11)
q(u, v)=-vo’(u).

This is valid for arbitrary nondecreasing or(u) and yields the standard energy estimate.
Our aim, however, is to derive sharper bounds and for that purpose we have to impose
restrictions on r(u). In the homogeneous case f(u, v)=-g(u, v)=-O, equations (1.3)
govern, in Lagrangian coordinates, the motion of one-dimensional, nonlinear, elastic
media. We need estimates that cover both the case of strain hardening and the case
of strain softening.

In 2 we assume or(u) is convex for u large and concave for u small (strain
hardening) and construct entropies for (1.3) which grow exponentially in u and v.
They induce a priori estimates on solutions of the Cauchy problem for (1.1). As a
byproduct of our analysis, we get an alternative derivation of invariant regions for
(1.1) and a new proof of a recent result of Roytburd and Slemrod [5]. Special entropies
with exponential growth were constructed by Lax [4] and by DiPerna [3].

In 3 we consider r(u) which are concave when u is large and/or convex when
u is small (strain softening) and construct entropies that grow like powers of u and
v. The maximal power depends on how fast r"(u) decays to zero, as u ’ and/or
u $-. These entropies induce Lp estimates, independent of v, on solutions of the
Cauchy problem for (1.1) with initial data in Lp (--o0, cX3)f’] L2(-cx3, cx3).

2. Entropies with exponential growth. In this section we assume tr(u) is convex
for u large and concave for u small, i.e., there are numbers -< u_ _-< u+ < such that

a’(u) <-O, -c< u < u_,
(2.1)

a’(u)>-O, u+<u<,

and construct entropies for (1.3) of the form

(2.2) r/(u, v)= Y(u) cosh (kv),

where k is a positive constant. By virtue of (1.7), Y(u) must satisfy the linear differential
equation

(2.3) Y"(u) k2a2(u) Y(u),
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For reasons to become apparent shortly, we determine Y(u) as the solution of
(2.3) with initial conditions

(2.4) r(uo) 1, r’(uo)--0,

where uo is a point at which a(u) attains its maximum in the interval [u_, u/]. In
particular, Y’(u)O on (-oo, Uo), Y’(u)>-O on (Uo, 00) and

(2.5) Y(u)>=cosh[ka(u-uo)], -oo< u <oo,

where is the minimum of a(u) over (-oo,
A simple calculation shows that r/(u, v), as defined by (2.2) with Y(u) satisfying

(2.3), (2.4), will be strictly convex on (-o, o) x (-oo, o) if and only if

(2.6) Y’(u)[ < ka(u) Y(u),

As long as (2.6) holds,

(2.7) Y(u)<-exp k a(w) dw

We shall test (2.6) only for u-> Uo, because the discussion for the case u-<_ Uo
would be completely symmetrical. We define

(2.8) X(u) := ka(u) Y(u)- Y’(u), Uo<= u < 00,

and note that, by account of (2.3), (2.4), X(u) is the solution of the initial value problem

(2.9) X’(u)+ ka(u)x(u)= ka’(u) Y(u), Uo<= u < oo,

(2.10) X(Uo) ka(uo).

It is clear that when a’(u)>-0 on [Uo, oo), then X(u)> 0 for all u in [Uo, o). We
have thus shown the following.

PROPOSITION 2.1. Iffor some Uo in (-00, 00)

(2.11) (U-Uo)a’(u)>-O, -oo< u <oo,

then the function *1 (u, v), defined through (2.2), (2.3), (2.4), for any k > O, is a strictly
convex entropy of (1.3).

By contrast, when a’(u)<0 on some interval (Uo, ul), a crude estimation using
(2.9), (2.10), (2.5) shows that, for k very large, X(u) < 0 on an interval Uo < t < u < ul.
However, we have the following.

PROPOSITION 2.2. Assume (2.1) holds. Then there is ko> 0 such that the functio
q u, v), defined through (2.2), (2.3), (2.4), for any 0 < k <- ko, is a strictly convex entropy
of (1.3).

Proof. We integrate (2.9), (2.10) to get

(2.12) exp k a(w) dw X(u)= ka(uo)+ k a’(w) Y(w) exp k a(s) ds dw.

The right-hand side of (2.12) attains its minimum over [Uo, ) at a point u [Uo, u/].
We recall that Uo is a point at which a(u) attains its maximum on the intervaI[u_, u/].
Combining this with the observation that the function

{I }Y(w) exp k a(s) ds
UO
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is increasing on [Uo, ), we infer that

a’(w)Y(w) exp k a(s) ds dw
Uo Uo

(2.13)
=> -{a(uo)- a(ul)} g(ul) exp k a(s) ds

for any u in [Uo, c). From (2.12), (2.13) and (2.7) it follows that so long as X is
nonnegative on the interval (Uo, u),

(2.14) exp k a(w) dw X(u)>=a(uo)-{a(uo)-a(ul)}exp 2k a(s) ds
Uo

Therefore, if

1-1(2.15) k <- a(s) ds log=2 a(uo)-a(ul)’
then X(u)> 0 for all u in [Uo, c). This completes the proof.

We proceed to demonstrate how the entropies constructed above may induce a
priori estimates on solutions {u(x, t), v(x, t)} of the Cauchy problem for (1.1). Let us
assume that, for [0, ), {u(x, t), v(x, t)} decays, as Ixl- c, to a constant state
which is a critical point of the vector field {f(u, v), g(u, v)}, i.e.,

(2.16) f(t, 3)= g(tT, 3) 0.

The entropy (2.2) generates, through (1.8), a new entropy /(u, v), which is nonnegative
on (-o, c) x (-c, c) and vanishes at (tT, 3) to quadratic order. We shall estimate the
solution by monitoring, with the help of (1.10), the evolution of

t), v(x, t)) dx.

As a consequence of (1.8)1 and (2.16),

lu(u, v)f(u, v)+ v(u, v)g(u, v)

vanishes to quadratic order at (tT, 5). Furthermore, (2.2) and (2.6) yield

(2.17)
[flu(U, v)l=< ka(u)rl(u, v),

I/,(u, v)l<= krl(u, v).

First we consider any a(u) that satisfies (2.1) an we assume

(2.18) a(u)lf(u, v)l+]g(u, v)l<-L, -<u<,

Then there is a positive constant C such that

(2.19) I(%(u, v)f(u, v)+l(u, v)g(u, v)l<-CkL7(u, v).

From (1.10), (2.19) and Gronwall’s inequality we derive the estimate

(2.20) f_o(u(x, t), v(x, t)) dx<-eCk I_q(u(x,O), v(x,O)) dx.

Next we turn to the special case of a(u) that satisfies (2.11) and establish L
estimates on {u(x, t), v(x, t)} assuming that {u(x, 0), v(x, 0)} L(-, ) and

(2.21) a(u)lf(u, v)l/lg(u, v)l<=L(lul/lvl/l), -<u<,
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Under this hypothesis and so long as k-> 8 > 0, we have

(2.22)

on (-o, o)x (-c, o), where C is a positive constant that may depend on 6 but is
otherwise independent of k. Upon setting

(2.23) W(t) := max ([u(x, t)[+[v(x, t)[+ 1),

(1.10), (2.22) and Gronwall’s inequality yield

{ Io(2.24) #(u(x, t), v(x, t)) dx_-<exp CkL W(r) clr #(u(x, 0), (x, 0)) clx.

We raise both sides of (2.24) to the power 1/k and we pass to the limit, as k ’ c,taking account of (2.2), (2.5) and (2.7). In the resulting inequality we take the logarithm
of both sides, thus obtaining

(2.25) W(t) <- A + CL W(r) dr, 0 <- < oo,

where A depends solely upon the L norm of {u(x, 0), v(x, 0)}. Therefore, Gronwall’s
inequality implies that W(t), and thereby also {u(x, t), v(x, t)}, are bounded, on
compact time intervals, uniformly in v> 0. In particular, in the homogeneous case
f(u, v)=-g(u, v)=-O, {u(x, t), v(x, t)} is bounded on (-o, ) x [0, ), uniformly in v.

Staying with the case of a(u) that satisfies (2.11), we indicate briefly how the
standard invariant regions 1 may be identified by studying the asymptotics of solutions
of (2.3), as k ’ m. To this end, we introduce new variables:

I(2.26) sc := a(w) dw,

(2.27) Z := a(u)l/2Y.
A straightforward calculation, using (2.3), yields

d2Z
_3/2(a_,/2),,Z(2.28)

d2 k2Z- a

For u confined in bounded intervals, the variation of constants formula applied on
(2.28) yields that, as k ’ c,
(2.29) Z(,) [A + O() ] ek’l,

(2.30)

dZ
-t- kZ 0(1) e-ke < O,
d
dZ
-kZ=O(1) eke >0.

Therefore, using (2.2), (2.27), (2.29), (2.26), (1.5) and (2.30), we obtain

exp[r(u,v)] ifu>uo, v>0,

(2.31) lim rl(u,v)/k=
exp[s(u,v)] ifu<uo, v>0,

k-oo exp[-s(u,v)] ifu>uo, v<0,
,exp[-r(u,v)] ifu<uo, v<0,
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n(u,v)

(2.32)
,/(u, v)

no(u,v)
n(u,v)

k[sgn (u Uo)]a(u)+ O(1),

k sgn v+ O(1).

It follows from (2.32) that when k is large and (1.4) holds as a strict inequality, then
the second term on the left-hand side of (1.10) is nonnegative. Hence, raising both
sides of (1.10) to the power Ilk, letting k ’ , and using (2.31) we conclude that the
level curves of the Riemann invariants (1.5) confine positively invariant regions for
solutions of (1.1). A derivation of invariant regions that is similar in spirit to the above
is given in [4].

The approach to invariant regions presented here may have some advantage over
the traditional one [1] when dealing with solutions of (1.1) that are not C2 smooth.
A relevant example, arising in the theory of phase transitions, was discussed recently
by Roytburd and Slemrod [5]: Assume a(u) is smooth and strictly decreasing on
(-, a), it vanishes identically on the interval (a,/3), and it is smooth and strictly
increasing on (/3, ). Let a(u) jump from a negative value to zero at u a and from
zero to a positive value at u =/3. Thus tr(u) is merely Lipschitz continuous on (-, )
and (1.1) does not generally have classical solutions. It is shown in [5] that, under the
above hypotheses, the Cauchy problem for (1.1) has a mild solution {u(x, t), v(x, t)}
in the class of continuous functions. The standard theory of the (linear) equation of
heat conduction and a straightforward "bootstrapping" argument yield that OxU, Oxv,
O,u, O,v, Ou, Ov are all in L2((-, )x (0, T)), for any T> 0. In particular, (1.10) is
still valid under the current conditions. We may thus apply our argument, using
entropies (2.2) with k ’ c, to infer that the level curves of the Riemann invariants (1.5)
still confine positively invariant regions for solutions of (1.1). The original derivation
of this result in [5] employs a mollification of tr(u) and requires a rather lengthy
argument in order to pass to the limit.

3. Entropies with polynomial growth. Here we construct entropies r/(u, v) on
(-, )x (-, ), which grow at infinity like the pth power of u and v and thus
induce Lp estimates on solutions of the Cauchy problem for (1.1). Throughout this
section we will be assuming

(3.1) a(u)=>a>O, -oo< u <oo,

but we do not impose, as yet, any conditions of convexity on tr(u).
We shall seek convex solutions of (1.7) on (-, )x (-, o) with initial con-

ditions

(3.2) r/(O, v)=H(v), r/,(O, v)=O, -3<v<,

where H(v) is a positive, even, convex function on (-,
If r/(u, v) is the solution of (1.7), (3.2), we set

(3.3)
(u, v):= a(u)rb,(u, v)-rlu,(u, v),

(u, v):= a(u)rl,,,(u, v)+ rlu,(u, v).

It follows from (1.7), (3.3) that

1
(3.4) r/,,(u, v)={(u, v)+(u, v)},

2a(u)

(3.5) nuu(U, V)nw(U, v)- nuo(U, V)=op(u, v)’I’(u, v),
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and so r/(u, v) is strictly convex on (-c, c)x (-, o) if and only if

(3.6) (u,v)>0, (u,v)>0, -<u<o, -c<v<c.

Combining (3.3), (3.4) and (1.7) we get

a’(u)
u(U, v)+ a(u),,(u, v)

2a(u)
{(u, v)+(u, v)},

(3.7)
a’(u)

xP(u, v)-a(u),(u, v)
2a(u)

{(u, v)+(u, v)}.

(3.8) (0, v) (0, v) R(v), -o< v <,
where R(v) Hv(v). In particular, R (v) is a nonnegative even function,

(3.9) R(-v)=R(v), -c< v <c.

From (3.7), (3.8) and (3.9) it follows that

(3.10) (u,v)=(u,-v), -c<u<, -c<v<o.

Every positive solution of (3.7) on (-c, ) x (-c, o) induces, via (3.3) and (1.7),
a strictly convex entropy for (1.3). If ua’(u)>=O on (-, c), then the solution of (3.7),
(3.8) with any positive R(v) is automatically positive on (-, c)x (-c, ). Thus,
when tr(u) is concave on (-o, 0] and convex on [0, c) it is easy to construct strictly
convex entropies with arbitrarily prescribed growth. Our current objective, however,
is to determine entropies for the case where tr(u) may be concave for u large and/or
convex for u small.

We consider solutions of (3.7), (3.8) with

(3.11) R(v)- a(O)lvl , -< v<,

where y_>-O. When y is an even integer, say y 2m, the solution of (3.7), (3.8), (3.11)

m--1

(u,v)= Ak(U)a(u)v+ Bk(U)2k/,
k=0 k =0

(3.12)
m--1

XI)’(U, V)-- Ak(U)a(u)v2k- Bk(U)V2k+l
k =0 k---O

where

(3.13) Am(u) 1, -c< u < o,

and Bk(U), Ak (u), k 0, , m 1, are determined by the recursion relations

B’k(U) -(2k + 2)a:Z(U)Ak+(u),
(3.14) k=0,...,m-l,

A(u) =-(2k+ 1)Bk(u),

(3.15) Bk(O) =Ak(O)=0, k=0,.’’, m- 1.

When m 0, (3.12) reduces to

(3.16) (u, v)=(u, v)= a(u), -< u < c, -o< v < c.

This solution is uniformly positive on (-c, c)x (-c, c), by virtue of (3.1), and
induces the entropy (1.11)1.

is of the form
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When m 1, (3.14), (3.15), (3.13) and (1.2) yield

o(u -2[,r( u ,r(o) ],
(3.17)

Ao(u) 2 [tr(w) tr(0)] dw.

Inserting these values into (3.12) and after an integration by parts we obtain

*("’ )=(") - (,i /
-() E,(w)-,(O)l[a-(w)] dw,

(3.18)
"t’(u, v)=a(u) v+ -a(u) [,(w)-(o)][a-(w)] dw.

a(u)

If

(3.19) [o’(w)-o’(O)]2[a-2(w)] dw<K <oo, -oo < u < oo,

then we can generate positive solutions of (3.7) with quadratic growth on (-oo, oo)x
(-oo, ) by adding to solution (3.18) K times the solution (3.16). For the case of
interest, namely ua’(u)<=0 on (-oo, oo), and by account of (3.1), (3.19) is equivalent to

(3.20) f-oo w=la’(w)l dw <

Though in principle one may proceed with the study of explicit solutions (3.12)
for m 2, 3, , the calculations get so complicated that a more qualitative approach
becomes necessary. We discretize the problem by the following procedure: We fix
r>0, set a, := a(nz’), n =0, +1, +2,. ., and define the step function t(u) on (-oo,
by

d(u)=fan, n’ru<(n+l)7", n=O, 1,2,...,
(3.21)

a,, (n-1)z’<u<=n’r, n=O,-1,-2,’’’.

We will determine the solution of (1.7), (3.2) on (-oo, oo) (-oo, oo) by first solving

(3.22) ,u(U, D)--d2(U)vv(U,
with the same initial data, and then passing to the limit - $ 0.

The solution of (3.22), (3.2) is a C function with continuous second derivatives,(u, v) and oo(u, v). By contrast, ,(u, v) experiences jump discontinuities across
the lines u +r, +2r,..-. The functions

,(u, v):= (U)vv(U, v)-uo(U, v),
(3.23)

(u, v):= B(u)’vv(U, v)+ "uo(U, v),

also experience jump discontinuities across the lines u +r, +/-2r,. but are con-
tinuous, with respect to u, from the right on [0, oo) and from the left on (-oo, 0].

In the sequel, we restrict attention to the upper half-plane, 0 <= u < oo, -oo < v < o,
because the discussion for the lower half-plane would be entirely symmetrical. Since
a(u) is constant on the interval Ira’, (n+ 1)-), it follows easily from (3.23), (3.22) that

Pu(U, V)+anPv(U, V)=O,
(3.24) m" < u < (n + 1)’.

’u(U, v)-anv(U, V)=O,
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Combining (3.23), (3.21) and (3.24) we deduce

((n + 1)’, v)=a"+l+an(n,r, V-an’r’)+
2an

a"+l-a"(n.r, v+ a,’r),
2a,

initial data (3.8), (3.11), with y 2, is

(3.27)

a+...+a2 }2 ,-11 (m’,v)= v- ’’ + 2 {ag+ +a}{a --ak+l},
an an k=o

aoz+’" "+ a--11
(n% v) v+ + E {a+ +a}{a a+l}.

an an
As was to be expected, the above solution converges to (3.18), as r $ 0.

Turning now to general initial data (3.8), (3.9), we apply (3.25) recursively, thus
arriving at equations of the form

(3.28)
(eo,-..,._,)

a)’(nT", v)= Z n(eo, en_l)R 1)- 2 e,a,7"
(co,.. ",en_l) i=0

,(eo," e,-1)R v+ eiair
i=0

In (3.28) the ei take values +/-1 so the summation contains 2" terms. The coefficients
/3,(Co,’’’, e,_l) are determined through the recurrence relations

(3.29) /3o 1,

/3n+l(eO,’’’,en-1,--1)=an+l+a-Ynn(eO,’’’,en-1),
2an

(3.30)
an+l an/3,+,(Co,’’’, e,_,, 1)--fl,(eo,...,

2a,

for n =0, 1,2,. ..
When a’(u)>=O on [0, ), in which case the sequence {a,} is nondecreasing, all

/3, are positive and so any positive R(v) yields positive (u, v) and (u, v). Here,
however, we are interested in r(u) that are concave on [0, ) and convex on (-, 0].
The main result of this section is the following proposition.

PROPOSITION 3.1. Assume (3.1) holds and

(3.31) ua’(u)<-O, -<u<.

Furthermore, let

(3.32) I_ lul-=la’(u)l du <

((n+ 1)r, v)=a"+l-a"p(n% v-a,,7-)+a"+’+a"(n-, v+a,7-),
2a, 2a,

which are the discrete analogues of (3.7).
For simple initial data it is possible to determine explicitly (u, v) and (u, v)

by solving (3.25) and then using (3.24). For instance, the solution of (3.25) under
initial data (3.8), (3.11), with 3’ 0, is

(3.26) p(nr, v) (nr, v) a,, n O, 1, 2,....

Similarly, it is straightforward to verify by induction that the solution of (3.25) under
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for some p >- 2. Then there exists a strictly convex entropy rl (u, v) for (1.3) which satisfies
the following growth conditions on(-o, )x (-, ):

(3.33)  (lul + Iris) <  )<-M(lul +1 1 + 1),

(3.34) 1%( u, v)l + It/v( t/, v)l <- L(lulp-1 + Ivl’-’ + 1),

with Iz, M and L positive constants.

Proof. Let us estimate (nz, v), as computed via (3.28)1, with R(v) given by (3.11)
for y =p- 2. We limit our attention to n 0, 1, 2,... since the discussion of the case
n =-1,-2,. would be completely symmetrical.

Under our assumption (3.31), the sequence {a,} is nonincreasing and so, as it
may be seen from (3.30), some of the values of/3, will be positive while others will
be negative. In fact it follows easily, by induction, that

(3.35)
/3.(-1, e,’.., e._)->0 forall (e,..., en-1),

/3.(1, e,,’’.,e._,)_<-0 forall(e,,...,e._).

Therefore, the sign of (m-, v) will depend on the outcome of the competition between
terms with positive coefficients and terms with negative coefficients, in the summation
(3.28). Using (3.30) we can show by induction that

(3.36)
E fl,,(-1, e," ", e._,)-

a.+ao
(,,...,._) 2ao

E n(1, el," ", /n--1) a. ao,
(e,,...,._) 2ao

and so the gross effect of positive coefficients dominates the gross effect of negative
coefficients. From (3.36) it follows that

a
(3.37) 2 /3,(Co, , e,-1)

(EO,"" ",en_l) ao

(3.38) E fl.(eo, , e.-1)l =1.
(eo,-.-,._)

We write down (3.28)1, with R(v) given by (3.11), and we separate terms with
positive and negative coefficients"

(e,--.,e,,_)
(3.39)

aofl.(-1, el,""", e._l)
n--1 n--1

v E air + E (1 + e,) ai7"
i=0 i=0

aofl.(1, el,’’" En--1)
n--1 n--1

V )-’, ai7" + 1 + ei) ai7"
=0 =0

We fix > 0 so small that

(3.40)
(1 + 6)-’(a,, + ao) + (1 + B)’(a,,-ao) >- a,,,

(1 + 6)’(a,, + ao) + (1 + 6)-’(a,,- ao)<-3a,,,
n= 1,2,....

Noting the elementary inequalities

(3.41) (1 + 3)-rAY (1 + 6-1)’B’ <-(A+ B) ’ _-<(1 + 6)VA’ +(1 + 6-1)B,
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which hold for any positive numbers A, B, and using (3.36), we obtain from (3.39)

(3.42)

(3.43)

n-1

i=0

+(1 + 6-)’ao

n-1

I)- aft"
i=o

I/n(EO,’’’, En_l) (l+ei)ai’r
(eO,"’,en-1) L i=0

(1+6-)Yao E
(eo,...,,_)

Ifl,,(eo, , e.,_,)l (1 + e,)a,r
i=0

We estimate the last term on the right-hand side of (3.42) and (3.43) by rearranging
the terms in the summation and using (3.30), (3.38):

2 1/3.(o, ", e.-1)l (1 + e)air
(eo,’",e,-) L. i=0

2 2 [/3,,(eo, , e,,-1)l (1 + e)az
k=O (eo,-’-,ek_,l,- 1,-" ’,- 1) i=0

(3.44) 2 aj+__+ aj ak ak+l

k=O j=k+l 2aj 2ak

(eo,"’,e-) i=0

N 2 a
=o =o 2a

The right-hand side of (3.44) is a priori bounded, independently of n, by viue of
(3.32) and (3.1) (recall =p-2). We have thus shown that there is a constant K such
that

3 n--1 /

(3.45) n"r, v) <= - a,, v ai’r -F Ka,,
i=0

1 n--1

(3.46) ( n’r, v) >--_- a,, v- _, ai’r Ka,,,
i=0

Since (n-r, v) (n’r, -v) (3.45), (3.46) yield

3
(3.47) (nr, v) --<_ a,,

1
(3.48) (nr, v) >_

n-1

v+ ar
i=0

n-1

v + Y ar
i=0

n=l,2,...,

n= 1,2,....

Letting r $ 0, (u, v), (u, v) converge to the solution (u, v), (u, v) of (3.7),
(3.8), (3.11). Hence

(3.49)

3
,t,(u, v) <-_- a(u)

3
(u, v)<--- a(u)

v- a(w) dw

v+ a(w) dw

+Ka(u),

+Ka(u),

Kan, n 1, 2, .
+ Ka,,, n 1, 2,...,



CONSERVATION LAWS WITH LITTLE VISCOSITY 421

(3.50)

1
dP(u, v)>=- a(u)

1
(u, v)>=- a(u)

v- a(w) dw

v+ a(w) dw

-Ka(u),

-Ka(u)

on (-c, oo) x (-oo, oo). Upon adding to the above solution K + 1 times the special
solution (3.16), we end up with a new solution of (3.7) which is positive on (-, o) x
(-, ). This induces, via (3.3), (3.7) and (1.7), a strictly convex entropy r/(u, v) for
(1.3), which satisfies the growth conditions (3.33), (3.34) (recall p 3,+ 2). This com-
pletes the proof of the proposition.

When p =4, (3.32) reduces to condition (3.20), which, as we have seen, is both
necessary and sufficient for the existence of positive (u, v), (u, v) with quadratic
growth rates. Thus (3.32) appears to be sharp.

Let (t, 5) be any constant state and let ,](u, v) be the positive entropy induced
by /(u, v) via (1.8). It then follows from (3.33), (3.34) that if {f(u, v), g(u, v)} satisfies

f(, 5)= g(tT, )=0,

If(u, v)[+lg(u, v)[<-_A(lu[+[v[+ l), -<u<c,

then there is a positive constant C with

(3.53) IG(u, v)f(u, v)+(u, v)g(u, v)l<-CA(u, v),

for -o< u < o, -c< v < o. Therefore, applying Gronwall’s inequality to (1.10) yields

(3.54) I 7(u(x, t), v(x, t)) dx <- eCa’ [ l(u(x, 0), v(x, 0)) dx.

By virtue of (3.33) and (1.8), (3.54) induces Lp bounds, independent of v, on solutions
of the Cauchy problem for (1.1) with initial data in LP(-oO,
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OSCILLATING SOLUTIONS OF THE FALKNER-SKAN EQUATION
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Abstract. The Falkner-Skan equation results from an appropriate similarity substitution in the Prandtl
boundary layer equations. New solutions are found analytically, including a periodic solution and many
solutions which oscillate a finite number of times and then tend to a limit.
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1. Introduction. The boundary layer technique of Prandtl [13] has become one
of the cornerstones of modern fluid dynamics and aerodynamics. One aspect of the
method consists of finding particular solutions of approximations to the Navier-Stokes
equations by assuming that a solution within the boundary layer has a "similarity"
form. Using these solutions as first approximations, one then employs the method of
matched asymptotic expansions to solve the boundary layer equations more generally.
General references to these techniques include [2], [12], [15] and [16].

Among the first to look for similarity solutions were Blasius [1] and Falkner and
Skan [3]. These authors considered laminar incompressible boundary layer flow past
a fiat plane or a wedge. They began with the steady-state Prandtl boundary layer
equations, which we write as follows:

(1) u,, + vy O, UUx-- l)Uy UUx-J- ’31/Uyy.

Here (x, y) are orthogonal coordinates in the boundary layer, with x representing arc
length along the wall and y the perpendicular distance from the wall, u and v are the
corresponding velocity components, and 3’ is the kinematic viscosity. Also, U U(x)
is the assigned exterior stream velocity. The appropriate boundary conditions are

(2) u=v=0 wheny=0, uoU(x) asy-o.

Their investigations led to a classical fluid dynamical model which can be written in
the form

(3) f’"+ff"+(1-f’2)=O.

Herefis proportional to the stream function andf’ u U. For our purposes a similarity
assumption proposed by Spalding [17] and studied extensively by Evans [2] is con-
venient in deriving (3) from the Prandtl equations. They assume that U satisfies the
equation

(4) dU_ CU2(_I)/
dx

where x is the coordinate in the direction of the stream as measured along the bounding
surface and C is a constant. Thus /3 measures the pressure gradient in the stream
direction. With this interpretation negative values of/3 less than -0.5 and all/3 > -0.199
are found by Evans [2] to be of physical interest. This is to be contrasted to the original
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derivation of Falkner and Skan, in which U was assumed to be proportional to x",
producing (3) with/3 =2m/(m+ 1). In this original setting only 0-</3 <2 was found
to be significant. We study solutions with/3 > 0 in a companion paper ([9]; see also [8]).

Small negative values of/3, between the "separation" value of-0.199 and 0, were
introduced, with physical justification, by Hartree [6] and later by Stewartson [18].
Here we are interested primarily in values of/3 <-1, which is included in the range
of physical interest as described by Evans. In this range there are two sets of boundary
conditions for (3) which have been been considered [2], [6], [18]. These are

f(O) =f’(O) O, f’() 1,(5)

and

(6) f(O) =f’(O)=0, f’() -1.

In most known applications f’ is restricted to lie between -1 and +1, and then
solutions to (3)-(5) only exist in a small range of negative/3 [5], [7]. However it has
been suggested that physically interesting solutions may be possible in whichf’ exhibits
"overshoot," by rising above 1, and recently some interesting numerical studies have
been done of solutions of this kind 10], 11 ], 14].

An initial analytical investigation of solutions with overshoot, for large negative
/3, was done by Troy 19]. In this paper we prove the existence of many new solutions
of (3), satisfying either (5) or (6). The existence of these new solutions depends on
showing that (3) has a periodic solution if/3 <-1. This was first suggested by some
numerical computations in [14].

Our method for proving the existence of these solutions is "shooting." That is,
we consider an initial value problem for (3), such as

(7) f(O) =f’(O) O, f"(O)

and vary 3’ to satisfy the desired condition at . It turns out that a more fundamental
initial value problem is (3) coupled with the initial conditions

(8) f(O) =f"(O) O, f’(O) c,

with -1 < a <0. We denote the unique solution to (3), (8) by f,, and will show that
if/3 < -1, then a can be chosen so that f, is periodic. From this we will obtain solutions
of (3), (8) with either f’(o) .or f’() -1. Each of these conditions is of physical
interest [16]. Using these solutions, we then study the initial value problem (3), (7),
and again find solutions with f’(o) 1 or f’(o) -1. In this case, we find a solution
which is not periodic but which oscillates infinitely often.

2. Statement of results. The first four results refer to the initial value problem (3),
(8). They make it clear that there is a complicated bifurcation "from infinity in phase
space" as/3 crosses -1 from above.

TI-tEOREM 1. For any <- there is an d in (-1, O) such that fa is periodic with
some period P andf has exactly one local maximum in (0, P). If -1 <= -< 0 then there
is no periodic solution of (3) except f=-O.

TrJEOIEM 2. If <- 1, then there is a sequence {aj} c (-1, 6), j >-O, tending to 6

from below, such thatf’j(q) tends to -1 as 1 tends to infinity, andf’j has exactlyj local
maxima in 0 < 7 < o.

The next result discusses solutions such that f’ tends to + 1. It is more complicated
to state, because branches of solutions of (3), (5) (plotted in the/3-f" plane) move
into the region f"> 0, according to the numerical computations in [10] and [14], as/3
decreases from -1. It is convenient to begin with a result in which/3 is varied and the
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fixed initial conditions f(O)=f’(O)=f"(O)=O are considered. In accordance with
previous notation, we denote the corresponding solution by fo.

THEOREM 3. For eachj >- O, let Sj {fl ]f’o tends to + 1 with exactlyj relative maxima
and minima}. Then every negative lies in some Sj, each S is bounded below, and there
is a decreasing sequence {fl} tending to -o such that fl is contained in the interior ofS.

We then have a second result about solutions with f’ tending to +1.
THEOREM 4. Suppose that fl S. Let 6 be as defined in Theorem 1. Then there is

a decreasing sequence a’k, k >= j, with t*o 0 and ce >= 6, such that ift Ce*k, then.f’ has
exactly k relative maxima and minima (f" vanishes exactly k times), and then tends to
1 at an exponential rate.

It should be observed that we have not proved that the a necessarily tend to 6.
We now consider solutions satisfying the initial conditions (7). We denote the

unique solution to (3), (7) by Fv. The results here parallel to some extent those for
the initial conditions (8), except that there does not appear to be a periodic solution.

THEOREM 5. For each fl <-1 there is a / < 0 such that F,, F’, and F’ all vanish
infinitely often on (0, o) and do not tend to a limit.

THEOREM 6. There is an increasing sequence yj, j>--O, contained in (-, ) such
that Fj vanishes exactly 2j times and then (Fj, F) tends to (-1, 0). Thus F solves
(3), (6).

THEOREM 7. Suppose fl S. Then there is a decreasing sequence /*k, k >=j, in (/, O)
such that if/= Y’k, then F F’v has exactly k relative maxima and minima F" vanishes
k times) and then F’ tends to 1 exponentially fast. Thus Fv solves (3), (5).

3. Proofs.
ProofofTheorem 1. We first verify that there are no periodic solutions if-1 =</3 =< 0.

(We are not considering any particular initial conditions at this point.) Suppose that
for some/3 in this range there is a periodic solution, with period P > 0. We may assume
that f’(0)-0. An integration of (3) shows that

I0(9) f"+ff’=-flrl+(fl+l) (f’(s) ds+f"(O).

At r/= P, under the restriction on/3, this a contradiction, since we obtain f"(P) >f"(0).
Henceforth we assume that/3 <-1. Let f, be the solution of (3), (8). We try to

choose 6 so that for some Q > 0,

(10) f(Q) =f"(Q)=0,

where f=f. This implies that f(Q + r/)= -f(Q-r/), and therefore f is periodic with
period 2Q.

The existence of 6 is proved by shooting. Suppose first that a 0. Then, from
(3), f, f’ and f" all are positive on some interval (0, e). Therefore for small negative
a, while f is initially negative, f= 0 before f"= 0. That is, there is an r/o such that
f"> 0 on (0, r/o] while f(r/o) 0.

From now on we consider only values of a in (-1, 0). Solutions of (3), (8) are
continuous in a. Since f is negative and decreasing as long as f’ is negative, it follows
that f" is positive up to the first zero of f, if this exists, and at this zero, f’ is positive.
Also, at the first zero of f", f"’ must be nonzero, for if f" and and f’" vanish
simultaneously, then 1-f’= 0 and f" is identically zero. Therefore, the set of a such
that f 0 beforef 0 is open in the interval (- 1, 0), as well as nonempty. Similarly,
the set of a such that f"=0 before f= 0 is also open. To obtain condition (10) for
some a and Q > 0, we must prove that the latter set is nonempty. This follows from
the following lemma.
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LEMMA 1. If a is sufficiently close to -1, then f" becomes zero at least as soon as f.
Proof. Suppose, instead, that for all a in (-1, 0) there is a p > 0 such that ff" < 0

on (0, p) and f(p)= 0. Then (9) becomes

(11) if(p)= Ip-(I 1) [f’(x)

where A =-/3 > 1. A contradiction will be obtained by showing that the right side of
(11) is negative for a close to -1. For this we use the following two technical lemmas.

LEMMA 2. Choose a fixed 6 in (0, 1) and assume that a <-1 + 6. Then there is a

first a > 0 such that f’(a)=-1 + 6 and a first b > a such that if(b)= O. Further, a and
f"(a) tend to infinity as a tends to -1, and b-a<-(1-6)/6a.

Proof The existence of a and b is assured since f’ is positive as long as f’< 1.
On (0, a), c <f’-I + 6. Therefore, using (9) with/3 <-1, we find that f"(a) > 3a. Also,
since f’---1 solves (3), it is clear that a ee as a- +. To complete the lemma, we
observe that f">= 6a on (a, b), since f’" > 0 there. Therefore

6 =if(b)-f’(a) >= 6a(b- a)
as desired.

In the remainder of the paper we consider a number M such that

(12) M > 200a/(a 1)(1 3).

(This inequality is used in the proof of Theorem 2, but for Theorem 1 we only
need M>6)t/(a-1)(1-6).)

LEMMA 3. /.fc is sufficiently close to 1, then there is afirst c > a such thatf’( c) M,
and c a O as ce -1+.

Proof Suppose that f’ < M on the interval (b, b + 1) for all small values of 1 + a.

Then (3) and Lemma 2 imply that on this interval, f"_-> e-M6a/2-a(M2-1)/M. Since
a tends to infinity as c tends to -1, we see that for sufficiently small (1 + a),

(13) f">= e-Maa/2> M.

But this implies that f’(b + 1) > M, a contradiction. Therefore for a close to 1 there
is a c in (b, b+ 1) such that f’(c)= M, and (13) holds over (b, c). This implies that
c- b <-2M eM/6a, and this with Lemma 2 completes the proof of Lemma 3.

We now continue with the proof of Lemma 1. We see that f is negative in [b, c],
so p > c and if(p)> M for ce close to -1. On (0, a),

(14) aa -<- f’(s) ds<-(-l + 6)a.

Also, a +JTf’ Using Lemma 2, we obtain

(15) -aa > if(s) ds+o(1)>=(1-)a

as a - 1 +. Further, f’ > M on (c, p), so

(16) f’(s)2 ds >- M f’(s) ds >- M(1 6)a/2

for a close enough to -1.
Next we obtain an upper bound on p. From (15) it follows that -aa >-

M(p-c)+o(1) as a -1+. We also know that c-aO as a -1+.. Therefore for a
sufficiently close to -1,

(17) p<=2a-aa/M.
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To complete the proof of Lemma 1 and Theorem 1, we use (11), (12), (16) and (17)
to obtain

f"(p)<=2aA +Aa/M-(A-1)(1-6)aM/2<O.

Proof of Theorem 2. Let be a point chosen as above so that fa is periodic. (We
do not claim that c is unique.) Define a set W1 as follows.

W1 {a in (-1, 0) such that if -1 <f’(0) < a, then f’() -1
for some first > 0, f"(Ct)<0, and f"=0 exactly once in (0, )}.

LEMMA 4. The set W1 is nonempty and open.
Proof of Lemma 4. Since f" and f’" cannot vanish simultaneously, unless f"= 0,

W1 is easily seen to be open. Let r/o be the first zero off". We have shown that if a + 1
is small, then f’(rto)> M. In addition, define a number K by

K=-3A+(A-1)(1-6)M/2.

Finally, choose a so close to -1 that

(18) a > max {eM(8A + 16M)/6, (8A + M)/K}
where a and 6 are as in the proof of Lemma 1.

We now observe that if, as previously, p is the first positive zero of f, then

(19) f"(p)<-Ka.

This is seen from (9), with r/=p, (16) and (17).
We now let r/1 denote the first point beyond rt r/o where f’= M. There are now

two cases to consider:

f<0 on(’qo,(i)

and

(ii) f(p)=O at somepin

In considering case (i) we introduce the fundamental "energy" function

n 1/2f,,2 + fl (f, _f,3/3),

and we see that H’-_ff,,2 Therefore H is increasing in (0, rl), and in particular,
H(r/1) > H(c), where, as before, f’(c)= M. Because M> 1, this implies that

f"( rll) <= --f"( c) <= -($a,

where g=1/2eTM. Iff’> 0 on (71, r/l+ 1), then (9) and (18) imply that f"<-ga/2 on
this interval. Then (18) implies that, in fact, f’ must equal zero for some r/2 in (71, rl + 1).

Similarly, again using (9) and (18), we show that iff’>-1 on (72, 72+ 1), then
on this interval

f"<= -6a/4,
which again leads to a contradiction. It is apparent from these inequalities that f"< 0
past r/o until f’=-1, and this shows W1 is nonempty if case (i) holds.

To deal with case (ii), we use (9), (12) and (19) to show that

(20) f"( rl <= -Ka
in the interval (p, rl). This, with (18), leads to

(21) f" <- -Ka + h <- -Ka/2 <-_ -M
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on (r/l, r/1 + 1), iff’> 0 on this interval. Since f’(rtl)= M, it is seen that f’ 0 at some
next r/2 < r/1 + 1.

We now want to show that f’=-1 before r/= rt2 + 1. This is more complicated
than previously, and requires that we find a bound on f(r/2). It will also use (12).

Integrate (9) once to give

f’ +f2/2 <- a rt2/ 2.

This inequality, with r/=p and then with r/= 72, shows that

(22) f’(p)<=ap2/2

and

(23) f(’02) -< /. 1/2’02.

But (21) holds in (p, rt2), so we find that

(24) rt2<= p + 2f’(p)/ Ka.

From (17), (23), and (24), and the definitions of K and M we conclude that

(25) f(r/2) -< 12a 1/2a.

Proceeding in a similar way, we can show that if-1 <f’< 0 in (r/2, rt2 + 1), then
in that interval

f"<=(12A1/2-K/4)a+A <--1,

which leads to a contradiction and so completes the proof of Lemma 4.
Continuing with the proof of Theorem 2, recall that c was chosen so that fa is

periodic, and furthermore, f >-1 everywhere. Therefore if a is sufficiently close to
ci, then f" must vanish at least twice before f’ 1. Hence cl sup W1 is in the interval
(-1, c). We wish to show that the solution f, has the properties ascribed to it in the
statement of Theorem 2. We need the following key result, which is also used later.

LEMMA 5. Let E denote the set

E {(ff’,f")lf>O, 0=<f’--< 31/2, (f")2<=-2,8(f’-1/2f’3)}.

Then E is positively invariant for the natural first order system equivalent to (3), and if
f is a solution such that (f, f’,f") enters E, then (f’,f")--> (1, 0) as q--> .

Proof Positive invariance follows because H 0 and H’> 0 on the part of the
boundary of E where f> 0, and since f’=> 0 in E. The other part of the result is also
clear, because H decreases in E and the minimum of H, and its only stationary point
in E, is at (1, 0).

Now let f=f,. From the definition of al, and the fact that f" and f’" cannot
vanish simultaneously, we see that f" cannot vanish more than once. On the other
hand, suppose that f" does not vanish at all. Iff’ becomes larger than 1, then (3) leads
to a contradiction. One can therefore show that (f’,f")--> (1, 0), which implies that
(f, f’, f") enters E. However then nearby solutions also enter E, which again contradicts
the definition of al. Therefore f" vanishes exactly once. However f’ cannot fall below
-1, and it follows easily that when a al, (f’, f") (-1, 0), as desired.
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Now there may be other values of a, between 1 and 6, such that f behaves in
the same way. However we have seen that for a close enough to 6, f" must vanish
more than once. Therefore the set

Vl={a in (a,, 6)If" vanishes once in (0, co), and (f’,f")- (-1, 0)}
has a supremum, say 61, in [al, 6). Let

W2 {a in (61,6) If" vanish twice, after whichf’ falls below 1 }.
Arguing as above, we find the solution f2 of Theorem 2, and a routine induction
completes the proof of this result.

Proof of Thebrem 3. We first consider the solution fo when/3 -1. A number of
papers have been devoted to just this case. A recent paper contains the result we want.

LEMMA 6 [4]. If [3 --1 and f(0) -f’(0) =f"(0) 0, then f’ increases to above 1
and then decreases to 1, while f" has only one positive zero. Furthermore, f’-> 1 at an
algebraic rate.

Next we observe that for any negative/3, the vector (fo,f’o,f) immediately (after
7 0) enters and remains in the set E. By Lemma 5, f tends to 1.

Now let

/1 inf {/3" [if/3" </3 < 1 thenf 1 with exactly one
local maximum and no local minima}.

Since f" and f’" cannot vanish simultaneously, we see that/31 lies in $1. Furthermore,
the methods of Troy in 19] show that for this value of fl, f’- 1 at an exponential rate.

LEMMA 7. For fl just below ill, f has exactly one max and one min beforef-> 1.
Proof Because fo is continuous in/3, we see that for any e > 0, there is a 6 > 0

such that if0< fll-fl < 6, then If’- 1] < e andf> 1/e before f/ crosses for the second
time. In a neighborhood off’= 1 solutions of (3) behave like (translates of) solutions
of Weber’s equation

(26) y"+ r/y’ + 2hy 0,

where y f’- 1. It is known that there is a B > 0, depending on A, such that no solution
of (26) can have two successive zeros in the region q > B. This implies that f’ cannot
vanish twice in any region where f> B. From this we see that if ill-/3 is sufficiently
small, then fo can have no more than two crossings of f’= 1. This proves Lemma 7.

In a similar manner one inductively completes the proof of Theorem 3.
Proof of Theorem 4. This proceeds in the same way as Theorem 3. Consider a

fixed/3 in Sj. If a 0, then f’ tends to 1 with j relative maxima and minima. Let

aj inf {a ]f’ tends to after exactly j relative maxima and minima}.

Then just as in the proof of Theorem 3 we show that fj has the desired properties,
and starting just to the left of a we construct a+l. We know that as a- 6, f’- 1
acquires more and more zeros, and the result easily follows.

We now turn to the results which concern the initial conditions f=f’=0. As
before, the solution to this problem, with f"(0)=3, will be denoted by Fv. For the
sake of brevity we merely outline the proofs of Theorems 5-7.

We first consider a fixed/3, which need only be negative.
LEMMA 8. If --T is sufficiently large, then F’v decreases monotonically to below -1.
This is proved by easy estimates which we omit. Let yo=sup {ylF’v decreases

monotonically to below -1}. Since we know F=f and tends to +1, it is clear that
yo 0. Further, F"vo cannot have a zero, since then F would have a zero for y close
to yo. It easily follows that Fo tends monotonically to -1.
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LEMMA 9. Fvo is in fact the only solution to (3), (7) such that F’ tends monotonically
to -1.

Proof. Suppose that F and G are two such solutions, and assume that F’(0)<
G’(0) < 0. Then F’"(0) < G"’(O), so initially, F" < G". Suppose that at some r/, F" G".
It is easily seen that then F’"< G’", a contradiction.

It is now clear that if 3/is close to, but larger than, yo, then F comes close to,
but does not cross, -1. (Otherwise there would be a second solution with the properties
of Fro.) As in the proof of Lemma 4 it then follows that for such 3’, F’ first has a
negative local minimum, then a positive local maximum, and then falls monotonically
below -1. It this way we obtain yl, 3’2, etc. as in the proof of Theorem 2. That is, we
complete the proof of Theorem 6.

Theorem 7 is obtained in a similar manner. Finally we can obtain Theorem 5 by
letting 7 be the supremum of the yj of Theorem 6 or the infinimum of the 3’ of
Theorem 7. Note that we cannot prove that these give the same value of 3’.
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SOLUTION, GRADIENT, AND LAPLACIAN BOUNDS IN SOME
NONLINEAR FOURTH ORDER ELLIPTIC EQUATIONS*

PHILIP W. SCHAEFER?

Abstract. In order to obtain bounds of the type in the title, a suitable function is defined on the solutions
to a certain class of semilinear fourth order elliptic partial differential equations. The subharmonicity of
this function under appropriate co.nditions on the coefficients and nonlinear terms leads one immediately
to the desired bounds.

Key words, elliptic equations, maximum principles, pointwise bounds
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1. Introduction. The technique of defining a function on the solution of a differen-
tial equation and deducing results about the solution of the equation by means of the
auxiliary function is well known. In [4], Payne used this idea to deduce gradient
bounds on the solution in the torsion problem. There he utilized the Hopf maximum
principles [9] to establish that the maximum of the auxiliary function occurred at a
critical point of the solution in the domain of definition. Payne and several other
authors [5], [7], [8], [10], [11] and references therein have extended his idea to the
determination of bounds on the gradient of the solution to more general second order
elliptic partial differential equations which are subject to boundary conditions of
various kinds. One can find an exposition of some of these extensions, generalizations,
and applications of Payne’s method in Sperb’s book [13].

The aforementioned technique has also been used in the study of fourth order
elliptic partial differential equations. Dunninger [2] showed that, although there is no
maximum principle for the solution of fourth order elliptic equations, any nontrivial
solution of

A2u + cu 0, C > 0 in D c R",

for which Au 0 on OD, satisfies the inequality

I,(x)l < I(xo)l, x e D,

where Xo is some point on the boundary 0D of the bounded domain D. This was
accomplished by showing that a suitably defined auxiliary function was a nonconstant
subharmonic function. The result was extended to allow a variable coefficient in place
of c and to deduce a related result in the case of metaharmonic equations in [1].

One can give any of a number of other illustrations of this technique. Here we
shall employ this method in the study of nonlinear fourth order equations of the form

(1.1) A2u q(x)g(Au) +p(x)f(u) O.

By means of an appropriately defined auxiliary function defined on solutions of the
equation, we shall develop maximum principles and deduce bounds on the solution,
gradient of the solution, and the Laplacian of the solution. The principles are presented
in 2 and some immediate applications are obtained in 3.

* Received by the editors April 22, 1985, and in revised form July 11, 1985.
? Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300.
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2. Principles. In [6] Payne obtained some specialized results from the sub-
harmonicity of certain auxiliary functions defined on the solutions of the equation

A2U =f(u),

where A is the Laplace operator and A2 is the iterated Laplacian. Here we introduce
an auxiliary function for a more general equation which allows us to deduce other
bounds of importance in applications.

Let D be a bounded domain in Euclidean n-space and let u C4 be a solution
of the equation

(2.1) A2u q(x)g(Au) + cf(u) O,

in D, where we initially assume the coefficients satisfy

(2.2) q(x) >= 0, c > 0, c constant,

and the nonlinear functions satisfy the requirements

(2.3) sg(s) >= O, if(u) >= > O,

where the prime indicates differentiation with respect to u.
We define the function

(2.4) V(x) u,,u,i + T(Au)2 + 2ycF(u),

where 3’ is a positive constant to be chosen and F(u) is a primitive of the function f,
i.e.,

F(u) f( t) dt.

In (2.4) we have used the comma notation to indicate partial differentiation with respect
to xi and the summation convention, i.e., repeated indices in a term signifies summation
from to n.

By a straightforward calculation, we have

A V-- 2u,iju,i -+- 2U,i(Au),i-- 2T(Au)(A2u)+ 2T(Au),i(Au),

+ 2ycf(u)Au + 2ycf’(u) u,u,.
Now by (2.1) and the addition and subtraction of u,u, and (Au),i(Au),i we can write

(2.5)
A V= 2u,tiu,ii + I(Au),i + u,il 2 .qt_ 2yq(x)(Au)g(Au)

+ (27 1)(Au),,(Au),, + (2ycf’(u)

from which it is clear that V is subharmonic in D for y max {1/2, -}.
We summarize this result in
THEOREM 1. Let uC4(D) be a solution of (2.1), where q(x)>-O and c>0. If

f C’(R) satisfies if(u) >= > 0 and g satisfies sg (s) _-> 0, then for y >= max {1/2, 2c-} the
function

I (X)

V(x)--u,iu,i+T(Au)2+2Tc f(t) dt

takes its maximum value on the boundary of D.
If instead of (2.1), we consider

(2.6) A2u q(x)g(Au) +p(x)u O,
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where q(x) >= 0 and p(x) >- po> 0, and define

(2.7) W(x) u,,u,, + 3"(Au)2 + 3"p(x)u2,
then in a manner similar to the derivation of (2.5), one obtains

A W= 2u,ou,o + I(Au),, + u,,] 2 + 2yq(x)(Au)g(Au) + (23,- 1)(Au),i(Au),,

+(yp- 1)U,iU, + ypl u.i + 2p-l up,il2 + yu2[Ap-4p-IIVp[2].
Consequently, we deduce the following.

THEOREM 2. Let u C4(O) be a solution of (2.6), where q(x)>-0 and p C2(D)
satisfies p(x) >= po> 0 and pap -41Vpl2__> 0. If g satisfies the condition sg (s) _-> 0, then
for 3, -> max {1/2, } the function

W(x) U,iU,i AI- 3,(Au)2 "-[- 3,p(x)u2

takes its maximum value on the boundary of D.
If q(x) 0 in (2.1) and (2.6), then we can introduce alternative auxiliary functions

defined on the solutions of the respective equations.
THEOREM 3. ]f U C4(D) is a solution of

(2.8) A2u+cf(u)=O, c>0,

where f C satisfies f’(u) >- > 0 and f(O) O, then for

,=>max 1,(n_l)
the function

T(x)=nu,iu,i-uAu+3,(n-1)2 (Au)2+ c f(t) dt

takes its maximum value on the boundary of D.
Proof. Using a straightforward calculation of the Laplacian, (2.8), and a comple-

tion of the square, one obtains the identity

AT 2rlu,iju,ij (Au)2 + cuf(u) + J(n 1 )(Au), -- U,i[ 2

+ (n 1) (r 1)(au),,(au),i + [( n 1 )23,cf’ 1 ]u.iu,i.

Since nu,isu.o >= (Au)2, we conclude that T is subharmonic in D under the conditions
cited in the theorem.

In our next special case we omit the parameter 3, but encounter a fixed lower
bound on p(x).

THEOREM 4. If u C4(D) is a solution of
(2.9) AZu+p(x)u =0,

1)=where p x >= and A p- < O, then

1 (2n- 1)2 )2S(x)=-(Au-2u)2+-(Au +4nu,iu,i+(2n2-Zn+ 1)pu2

takes its maximum value on the boundary of D.
Proof. Computing the Laplacian and using (2.9), we have

AS 2pu-- 2(Au)2 + 4uAu + (4n2- 4n + 2)(Au),(Au),i + 4(2n 1)u,i(Au),i
(2.10)

at- 4U,iU,i -’1- 8nu,iju,ij at- zu2Ap + 2"rpu,iu,i + 4"ruu,iP,i,
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where r r(n) 2n 2 2n + 1. We use the arithmetic-geometric mean inequality on the
fifth term of (2.10) to deduce that

(4n2- 4n + 2)(Au).,(Au),, + 4(2n )u,,(Au)., + 4u.,u.i >- (Au).i(Au).,

and is thus nonnegative. Moreover, using the same inequality on the last term in (2.10),
we have

’u2zp + 2’pu iu + 4’uu p,i >= ’u2[Ap p

and hence the sum is nonnegative when the bracket is nonnegative. Consequently,
from (2.10) we have

S 2pu-2(U)2 +4UU + 8nU,OU,ij.

Now since nu,ou,o (u) and

4uu => -u 6(u),
we conclude that S2(p-)u2 and S is subharmonic in D.

In our final principle we require p to be harmonic.
Tno 5. Let u C4(D) be a solution of (1.1), where q(x)O and p(x) is a

positive harmonicfunction bounded below by Po. Iff C is a boundedfunction satisfying
f’(u)>0 and g satisfies the requirement sg(s)0, then for ymax{,} and
a max (2yzf:/po) the function

R(x)=U.iU.i (au) fop(x)
+ y

p(x)
+ 2y f(t) dt + ap(x)

takes its maximum value on the boundary of D.
Proof We calculate

R,2 2p-u,u,2-p-2u,u,p,2 + 2p-y(u)(Au),2
p-2(u p,2 + 2 yfu,2 + ap,2,

R 2p- u,ou,o + 2p- u,i(u), 4p-u,u,op,

+ 2p-3]Tu]2]Tp]2+ 2w-’q(u)g(u)+ 2yp-’(u),2(u),2
4p-2(u)(u),.ip, + 2p-(au)2[Vp[2 + 2f’u,u,2,

and then form

R+ 2p- -p,2R,2 2p u,ou,o+2p- u,(u),+2yp q(u)g(u)
(2.1)

+ 2yp-’(u)d(u), + 4yp-fpdud + 2yf’u,2u,2 + 2ap-’]Tp].
The need for p(x) to be harmonic arises in R where p appears with both a positive
and negative coefficient. Now if we use the arithmetic-geometric mean inequality on
the second and fifth terms on the right side of (2.11), we can write

R + 2p-p,2R,2 2p- u,ou,o + (2yp 1)p-2(u),(u),
+2( yf’- 1) u,u, + [2ap (2yf)2]p-2[Tp]2,

from which the result follows.

3. Bounds. In Theorem 1 the subharmonic function V(x) attains its maximum at
some point, say x0, on the boundary of D. Thus it follows that one can obtain bounds
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for the gradient of the solution, the Laplacian of the solution, and (perhaps implicitly)
for the solution of (2.1). For example, as a consequence of Theorem 1, we have

u(xo)
[Vu(x)12<=lVU(Xo)12+v[Au(xo)]2+2),c f(t) at

au(x)

for x in D. If in Theorem 1 we also have f(0)= 0, such as when f(u)-u3+u, then we
can obtain an estimate for the gradient that does not depend on the value of the
solution at the point in question, i.e.,

u(xo)
IVu(x)l= lVu(xo)l=/ [Au(xo)]=/2 c f(t) at.

dO

If, in addition to u being a solution of (2.1), one imposes homogeneous boundary
conditions on u, then it may be possible to obtain maximum principles on the gradient
or the Laplacian of u. For example, if u satisfies (2.1) in D and u 0= Ou/On on OD,
then it follows from Theorem 1 when f(0)= 0 that

[Au(x)[ =< [AU(Xo)l, x e D

for some Xoe 0D. However, one must be concerned with the existence question in a
problem of this type as is evident from [3] and [12]. In [3] it was shown that if u is
a solution of (2.1) in D, where f’(u)>-O and f(0)=0, and is subject to boundary
conditions of the form u =0= Au, then u 0.

We have only briefly indicated how Theorem 1 in 2 can be utilized to obtain
pointwise bounds. Many other applications of the principles in 2 are possible.
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HOMOGENIZATION LIMITS OF THE EQUATIONS
OF ELASTICITY IN THIN DOMAINS*

A. DAMLAMIAN" AND M. VOGELIUS

Abstract. We study pure bending of a flat, linearly elastic three-dimensional plate with rapidly varying
composition. Under appropriate coercivity--and boundedness--assumptions, it is shown that all limiting
vertical displacement, coming from the equations of three-dimensional elasticity with plate thickness

approaching 0, must necessarily satisfy a fourth order, two-dimensional "plate" equation. This analysis does
not require any special structure of the composition, such as periodicity or quasiperiodicity.

Key words, elasticity, homogenization, plates

AMS(MOS) subject classifications. 73K10, 73K20, 35B30

Introduction. We study pure bending ,of a fiat, linearly elastic three-dimensional
plate with rapidly varying composition. A uniform coercivity-condition and a uniform
boundedness-condition are placed on the constitutive elastic law, but we require no
special structure in composition, such as periodicity or quasiperiodicity. It is shown
that all limiting vertical displacements, coming from the equations of 3-D elasticity
with plate-thickness approaching 0, must necessarily satisfy a fourth order equation
of the form

(1) Ot3(M,t,Ovw)
on the (plate-) midplane f. The existence of a limiting equation of the form (1) is
well known for plates with slowly varying composition [3], 14], 16]; recently Caillerie
has studied plates with rapidly varying periodic composition [2]. The analysis presented
here extends those results to plates with arbitrary variation in composition.. For the
periodic case there is an (essentially) unique limiting rigidity tensor Mv. In addition
to the particular form of the local variation it only depends on the limiting ratio of
the thickness and the length scale of variation. The tensor M,tv may be expressed in
terms of energies of certain periodic cell problems.

Without structure assumptions about the local composition it is no longer possible
to give explicit formulas for the M,tv. We believe that’in interesting cases it may be
possible to find upper and lower bounds for its eigenvalues much in the same way as
has been (at least partially) done for certain composites [5], [12], [13], [19].

The problem studied here is also closely related to the problem of plates with
rapidly varying periodic thickness considered in [7]-[10]. If voids are thought of as
occupied by a material of zero strength, then a plate with rapidly varying thickness
may in principle be thought of as a flat plate with rapidly varying composition. Due
to our coercivity-condition, voids are not permitted in the flat plates considered here;
they represent an added difficulty which we, at this point, technically do not know
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how to handle without extra assumptions about the local structure of the composition.
Some of the ideas of F-convergence may be relevant to this problem, since they have
successfully been applied to study limits of noncoercive functionals in other circum-
stances 1 ].

Plates with rapidly varying composition are of interest in structural optimization;
in certain design contexts they are known to be stronger than plates with only slow
variation in composition. We refer the reader to [10] for a more detailed discussion
of the relation between an optimal design problem and plates with rapidly varying
composition.

The approach taken here is a variation ofthe method of H-convergence introduced
by Murat [15] and Tartar [17]. One major difference is that in this case both the
dimension of the domain in which the limiting equation is satisfied as well as the order
of the limiting equation differs from that associated to the equations with rapid
variations. In the analysis this difference is probably most apparent in the construction
of the isomorphism from H-2(O) to -(f), which is the candidate for the resolvent
of our limiting operator.

The organization of this paper is as follows. In the first section we briefly provide
some preliminaries concerning the equations of 3-D elasticity, and in addition we give
a precise statement of the convergence result to be proven later. It is very convenient
to rescale the thickness variable ofthe plate to the interval (-1, 1); the three-dimensional
equations are now all in the same domain--but they become singularly perturbed as
the old thickness parameter approaches zero. In 2 we apply Korn’s and Poincare’s
inequalities to the solutions ofthe rescaled equations, and this leads directly to estimates
of various expressions and then to statements about weakly convergent subsequences
and the structure of their limits. A major part of any convergence argument, using the
method of H-convergence, is to construct the isomorphism which is the candidate for
the resolvent of the limit operator. In this case such an operator must necessarily map
H--(f) onto () and it turns out that it may be constructed from the three-
dimensional equations by restricting attention to external loads that are uniform
throughout the thickness. Section 4 contains the final step of the convergence argument,
namely the verification of the right constitutive relationship between curvature and
bending moments. This is accomplished by integration by parts of the energy bilinear
form. The trial-functions are the solutions to the three-dimensional elastic problem
with the prescribed loads, and the test functions are picked so that they satisfy the
three-dimensional elastic equations with an external load which is uniform throughout
the thickness, and so that they furthermore have constant curvatures in the limit as
the thickness approaches zero. It is possible to select such test functions because of
the aforementioned isomorphism. This last part of the proof is a variation of Murat
and Tartar’s div-curl lemma, which again is a special case of the so-called method of
compensated compactness 18].

1. Preliminaries and statement of the main result. We shall write _x (xl, x, x3)
for vectors in 3 and .x (Xl, x:) for vectors in 2. Latin indices will usually range
from 1 to 3, and Greek ones from 1 to 2; the summation convention applies whenever
indices are repeated. We write 0i O/Oxi and 00 O2/Ox Oxj. The three-dimensional fiat
plate of thickness 2e is given by

R(e) {_x" .x f, Ix31 < e}

where is a smooth bounded domain in 2 and e denotes a small parameter, with
say O<e _-< 1. We shall denote by O/R(e) and O_R(e) the upper and lower faces of
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the plate

O+R(e) {_x" x t , x3 --i- e}

and by OoR(e) we denote the outer edge of the plate

OoR(e)= {_x" .x e 0f, Ix3l < e }.

Associated with any displacement _u (Ul, u2, u3) of R(e) is its strain tensor

ei.i u_ -(O iuj + Ojui

and the corresponding stress tensor

o’S(y) bklekl(Y).
We are concerned with spatially inhomogeneous materials and so the components bkl
of the elastic tensor are bounded measurable functions in x. These functions are
permitted to change with the thickness parameter e, and (except for certain symmetries)
they will only be restricted by the following two requirements:

(2) bjkl(X- )eijekl C1 E [e/j[ 2,
i,j

(3) Y’. Ibikl(X_ )ekl

a.e. in R(e) for any symmetric 2 tensor e, with constants c1>0 and C2 that are
independent of e. Note" throughout this paper cl and C2 always refer to these same
constants whereas the letters c and C will denote generic positive constants (indepen-
dent of e).

Remark 1. One simple example of rapid variation in composition, which falls
within the framework of our study and which has received quite a bit of attention, is
the case

b jkl(_X) b bkl(_x/s),
where b in ykl(_Y) is periodic and satisfies (2), (3) (cf. [2]). We also mention the work
in [7]-[10] about plates with rapidly varying periodic thickness

() {_..x e a, I,l < h(./)}, 0<a<oo.

If we denote hmax =max h then formally, at least, such a plate corresponds to an
inhomogeneous material

b ijkl(X_ b ", x/s,(x./
with

b I Cokl’ lYI < h(y.),’’(-Y) ,0, Iy, -> h(y),

occupying the flat domain

{_X" .X -, IX31 < 8hrnax}.

The possibility that bjkl may vanish on R(s) is technically a significant extra difficulty
which we shall not include in our analysis of arbitrary, rapidly varying composition.

We always assume that the elastic tensor obeys the symmetries

(4) b jkl bjkl b lk b
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and that the horizontal planes are planes of elastic symmetry, which means (cf. 11])

(5) b -0, b =0.cfly3 t333

Finally we assume that b is even with respect to x3"

(6) bkl(X., x3)= bkl(.X, --x3).

The equations of elastostatic equilibrium for the clamped, vertically loaded,
three-dimensional plate R(e) are

0, i= 1 2
2 in R(e),
eF, i=3

{0, i=1 2
(7) ’(u)vJ

e f+, i= 3
on O+R(e)

_u =0 on OoR(e),

where e=(0, 0, +1) denotes the outward normal to O+R(e). The loads are scaled in
order to insure that _u stays bounded as e goes to zero. For convenience we shall
assume that F is even in x3 and that f_(.x)=f(.x); the common boundary load is
denoted f(.x). Because of the linearity of the problem, this represents no loss of
generality in the limit e - 0, as the energy corresponding to odd loading is negligible
compared with that of even loading for an elastic law with the symmetries (5) and (6)
(of. [8]). Notice that from the assumptions about the loads and (5), (6) it follows that

u l, u2 are odd, u3 is even,

O’ct/3 0"33 are odd, o-a3 is even,

with respect to x3; X will denote the space of all admissible displacements that obey
these symmetries"

X {u_ H(R(e)) _Ul0oR) =0, u, u2 are odd and u3 is even in x3},

where H(R(e)) is the space of (vector-valued) functions with square integrable first
derivatives. The problem (7) now has the following variational formulation"

(8) fR ’(u-)eij(-v)dx-=e2fR Fv3dx-+2e3fo fev3dx"
(e) (e) +R(e)

for any _v X. Unless explicitly stated otherwise we shall always assume that

F L2(R(e)), f L2(1)(9)

with

(10)
F(x.,ey)-F(x.,y) in L2(fx(-1,1)),

f(x.)f(x.) in L(f),
as e 0 (the regularity assumptions on the loads can be somewhat relaxed, see Remark
4, but we do not feel that this serves any purpose in the present context).

Since we are not imposing any requirements on the structure of the rapid variation
in the bjkl we will not in general obtain convergence of _u as e approaches zero.
Instead our main result concerns convergent subsequences (which corresponds to the
compactness property in the theory of F-convergence, cf. [4]).
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THEOREM. Let {8k}k_-i be any given sequence converging to zero. There exist a
subsequence {ek(i)}=, for simplicity denoted {el}l, and a tensor-valued function
Mv(,x such that

(i) M,ov, Mov M,o&,/= Mv,,o,
(ii) Mov lies in L(fl) with

2
M/3v(.x)t13tv >- Cl It,l=,

iM,,(.x)tl= 2
l=,, _-< C= Y Its,

a.e. in , for any symmetric 2 tensor t;
(iii) for any even external load F’ and any boundary loadsf f =f’, satisfying

(9) and (10), the solution to the problem (7), _u ’, as E approaches zero, converges to

(--X301W(.X), --X302W(.X), W(.X)),

where w H2(II) solves the problem

OW
w O on Ofl.

On

The effective load -(x) is given by

(x. F(x., y y+ f(x. ,
where F and fo are the limits from (10). The convergence is in the weak topologies

u3 (x, ely) w(x) in Hl(a x (-1 1)),

1
--UI(.X, ely) ----yOw(x.) in HI(, X (-1, 1)).
E!

Remark 2. It is possible to prove a similar theorem without the symmetry require-
ment that b ijkl--bklij (i.e., without assuming that b ijkl is a symmetric operator on 2
tensors). Of course, the resulting tensor M,va will not possess this symmetry either.
The coercivity estimate stays the same, but the operator norm estimate for M,va, C,
is replaced by ((C)2/Cl). We consider the symmetric case, since it is the only physically
interesting one in the context of elastostatics.

Remark 3. It follows immediately from the statement of our theorem that

u dx3 w() in
2el

it is actually shown in the proof of the theorem that 1/(2e), u’ dx converges
strongly towards w in ().

Remark 4. As stated earlier, the assumptions (10) on the loads are not the weakest
possible. For the solution of (7) (or rather of (8)) to make sense it is necessary and
Sucient that the functional

0 62 f Fvd+2e3 Io fv
() +()
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be in the dual of {vE HI(R(e)) V[0og()=0, v is even in x3}, with the integrals
representing appropriate duality pairings.

Define a rescaled functional r as follows"

(.;e, v)= e-l fg Fv(x.,x3/e) dx_ +2 f,
(e) +R(e)

is then an element of the dual of {rE Hi(R(1)) VI0oR(1 "--0, ) is even in x3} and
our theorem still holds provided converge strongly in this dual space. The effective
load -o is given by the functional

(7, w)=(lim 57, w),
e--0

where the function w(.x) in the second expression is interpreted as a function of all
three variables (xl, x2, x3)= (.x, x3) (only independent of x3). We note that it is not
possible to obtain all elements of the dual of 2(f) as effective loads by this construc-
tion. The solution to the limit problem

a(M.aw) o in

Ow
w 0 on

On

may be defined variationally for any -o in the dual of 2(f), but for certain (very
unsmooth) -o, w is not related to solutions of the 3-D equations of elasticity through
the limiting process discussed in this paper.

2. The rescaled problem---a priori estimates and limit behaviour. In this paragraph
we study a rescaling of the problem (7) to the fixed domain R(1)=fx(-1, 1).
Independent variables in R(1) will be denoted (.x, y) and we define the new dependent
variables as follows"

U(.x, y)
1

=-u;(.x, ey), U3(.x y)= u(x., ey),

Eo(x,y)
1
eo(u_)(.x, ey), Eo(.x,y)

1
)=-(r,j(_u (.x, ey)

The strain tensor of _U respective to the variables (.x, y) is given by

(11) (
e E33J

and from an application of Korn’s inequality in the domain R(1) (cf. [6]), it now
follows that

( )1/2(12)

(remember " vanishes on 0oR(l)). By rescaling the system (7) we see that

.o+- E.3 =0,
e Oy

(13)
1 1 Z F’( ey) in R(1)--0#3#- 33
e Oy

Z3=0,-3=f() on0R(1),
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or in a variational form

;/3e/3(_V)+2;ae3(_V)+ 3e33(_V) d.x dy
R(1) e e

(14)

I F(’ ey Va dy+2 Io fV3
R(1) +R(1)

for any ye X1 {Ye Hi(R(1))" g]0og(1) 0, E, V2 are odd and V3 is even in y}. Here
we have used the notation e(g) for the strain of the displacement field y(, y) relative
to the variables (, y).

LEMMA 1. e norms Vlll, IIEllL=, ad IIllL are all bounded

Proo Inseing y= U into (14) and using the formula (11) for e(U) we get

(15) f EE dy= f F(, ey)U dy+2 fo fU .
(1) R() +R()

The coercivity of the elastic tensor and the estimate (12) now leads to

c 2 Ile0ll F
i,j

C(IlF(x, )ll+ll/llm) 2 I111 L(R(1))
i,j

so that

(16)

The desired estimates follow directly from (16) in combination with (3) and (12).
Remark 5. Based on Lemma 1 and the formulas for E,3 and E3 we get that

L(R())

L2(R(1))
ce-(llF (.x, y)ll L2(R(1)) -]- IIf )).

According to our assumption (10) F(.x, ey) converges in L2(R(1)) and f in

LEMMA 2. The third component of U_, U3, is independent ofy and belongs to/-]r2(l)).
Furthermore

U -yOU, Et -yO,t

Proof From (18) we get that (O/Oy)U =0, U is therefore independent of y. From
(17) we get (O/Oy)U=-OU and since U is odd with respect to y, U=-yOU.

(19) _U,-- _/do in H’(R(1)),

(20) E,__ o
o E o in LZ(R(1)),
, o in LZ(R(1)),(21) Z0---- Z0

as el approaches zero.

L2(I]); Lemma 1 now gives that II-g I1-’(,)), IIEjII L2(R(1))and IIEj[I L2(R(I))are bounded
independently of e. From any sequence {ek}=l converging to zero it is thus possible
to extract a subsequence {e}_ such that



442 A. DAMLAMIAN AND M. VOGELIUS

E’=e(_UE’)=1/2(OU’+OU’) converges as a distribution towards 1/2(OU+
OU) -yOU; on the other hand, it also converges towards E, and consequently
Et3 -yO,t V. We already know that V /-/’(n) with 030= 0 on 0n. From the fact
that -y O,U= U Hi(R(1)) we conclude that U H2(l) (3/-]r1(1). It only remains
to prove that (O/On)U =0 on 0f, where O/On is the outward normal derivative.

Since U, 0 on OoR(1) 0f x (- 1, 1) and U, converges weakly towards U in
HI(R(1)), it follows that -yO,U3 U =0 on 0fx (-1, 1). This necessarily implies
that Oo, U=O on 01, and so (O/On)U= n,O,U=O on 0. [3

If v(.x, y) is a function on R(1) then we define

v(.x, y) dy.(X. -From (19) and the fact that U is independent of y it follows that O,-- U3 in H(f);
this result may be slightly improved.

LEMMA 3. 0’ converges strongly towards U in/-]rl(l)) as el approaches zero.

Proof We may write

Oo, U(x.,y) dyOczU(’x)

v;(.x, ay

eE,3(~ )-(U;(.x 1)- U;(.x, -1)).

From the estimate of [[E3IIL2(R(1)) in Lemma 1 it therefore follows that

(22) 0O(.x)+-(U(.x, 1)- U(.x,-1))0 in L2() as e 0.

We also know that U’- U in H(R(1)), and this implies that U(, 1) converges
weakly in H/2(), and thus strongly in L2(), towards U(, I)=OU(). It
follows immediately from (22) that

0( 0’- U)oO in L2(),
which shows that 0’ converges strongly towards U in a(O), as e approaches
zero.

Integration in y on both sides of (21) gives I_ E ’ i_ o
3 dy Ea3 dy in L2(). It

turns out that i l_ oE3 dy 0, and fuhermore that it is possible to find the weak limit
of (1/e) I1_ a3 dy in H-() (our notation for the dual of 1())

LEMMA 4. (l/e,)I1 x’ o
3 dy converges weakly in H-I(o) towards O fl_ yX dy as

e approaches zero.

Proof Performing an integration by pas and using the first and third equation
in (13) we obtain

(23)
e -1 e Oy -1

Since E;’E in L(R(1)) we know that

YE
-1

and therefore

"a3 dy--’O yE3 dy in H-I(’).
El -1 -1
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The tensor --I1_1 yE dy will play a significant role in the construction of the
tensor Mra; it eventually turns out that

yX3 dy M,,aO,U.

At this point we only observe that

(24) -0,3 yE dy F(x., y) dy + 2f(.x) in iI,

where F and fo are the limits of F(.x, ey) and f, respectively (cf. (10)). To get (24)
one uses (23) and the second and fourth identities in (13) to write

-0,3 yX, dy
E -1

X dy

E
2

-1 yY-33 dy + F (.x, ey) dy

2f(.x) + F(x., ey) dy.

Passing to the limits in this identity as e approaches zero along the sequence {el}__l
we are led to (24).

Remark 6. So far we have obtained a number ofconvergence results for subsequen-
ces U’, E el t31

ij and E 0 corresponding to a specific set of loads (F,f) converging to
(F, f). Since the appropriate norms of the differences between the U’s, the E’s
and the E’s corresponding to different loads (F,f) and (G, g) are bounded by
C([](F-G)(x., eY)ll&(R(1))/ [[f-gllm)) (Lemma 1), it follows that we may pick
the same index sequence {el}:l for any loads (F,f) that converge to this (F,f)
in the sense of (10).

L2(R(1))xL2(I-I) is a separable Hilbert space; let {(FN,fN)}N:100 be a basis.
Following the previous argument we may for each N find a subsequence

{e/N}7_l C: {elN-l}7:l C:

__
{e}7:1 C: {ek}k=l

so that the convergence results listed above hold for solutions to the problem (7) for
any (F,f) converging to (F%,f). By taking the diagonal subsequence of all the
{e}ll we obtain a subsequence {el}ll for which the convergence results hold
simultaneously for all N. Since linear combinations of the {(F, ogN)} are denSe
in L2(R(1)) x L-(f), and since appropriate norms of the differences between the U,’s,
the E,’s and the E,’s, in the limit, are bounded by the norm of the difference between
the limits of the loads in L2(R(1)) x L(12) (Lemma 1), it follows that the convergence
results of this section hold for the fixed subsequence { el}= for any loads (F,f) that
converge in the sense of (10).

3. An auxiliary isomorphism. If the homogenized limit operator is to have the
form O(MrOr) then it must necessarily be an isomorphism between/-)2(12) and
H-2(f) (our notation for the dual of/2(f)). We shall now study in more detail a
particular case of the boundary value problem (7), where the exterior load is indepen-
dent of x3 and e and where the boundary loads, vanish. We show that, in the limit as

el approaches 0, this naturally leads to an isomorphism between 2(f) and H-2(f).
We owe the initial suggestion, that it might be easier to obtain an isomorphism using
vanishing boundary loads, to L. Tartar. For the remainder of this paper {el}=l always
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refers to the "universal" subsequence of { ek} ke= selected by the diagonalization process
discussed in Remark 6.

Let G be in L2(I)) and let _v X be the solution to

0, i= 1, 2
in-OJ[’J(-V)] e2G(.x), i=3

R(e),

(26) o’(_v),j=0, i= 1,2,3 on O+/-R(e),

_v=0 on0oR(e).

As before we introduce rescaled variables

V(x.,y)
1

=-v(.x, ey),
E

V(x., y)= v(x., ey),

1
Eij =-ei(_v)(_x,e ey ), ltr(v)(.x ey)ij---

E

From the analysis in the previous section we know among other things that

Q’-* V3 in Hl(f)

as el approaches zero We furthermore know that V/-]r2(12).
LEMMA 5. For any G L(f),

r,=>- c GV d.x, Ilall,-=- C av dx..

Proof. The identity corresponding to (15) in this case (F(y, ey)= G(y), f =0)
reads

R(1) (1)
Gv; dx. dy;

because of the coercivity assumption (2) and the fact that G is independent of y it
follows that

(27) c, 2 l[/ 2 < ~ < 2 Ia Gf’; dx.
oz,l i,j

From Lemma 2 we know

~’-- V3 in L2(R(1)).E -yO

Passing to the limit in (27) along the sequence {el}, and using the weak lower
semicontinuity of the norm, we thus obtain

L2(a) Cl IlYO,V3]I 2 <2 G dx.

This proves the first inequality of our statement, since

2 IIo 2

o,[3

is one of the equivalent norms on/2(f).



LIMITS OF ELASTICITY EQUATIONS IN THIN DOMAINS 445

The identity corresponding to (25) in the present situation reads

0o,/3 y.,; dy =-2G(.x).

Consequently,

(28) 110112I_I--2m) =< C 2 Y,o, dy =< C 2 I111=)).
a,# -1 L2(O)

and E are related byThe E o

i bikl(, ey) "Ekl,
and this in combination with (3) and (28) leads to

11 = < c E 11 =H-(O) 0 L2(R(1))"
i,j

The last inequality of (27) then gives

which in the limit as e approaches zero along the sequence {e/}=l yields the desired
second inequality.

We define an operator from L2(fl) into (O) by G V. It follows directly from
the two inequalities in Lemma 5 that

i.e., the above operator may be extended as an injective and bounded linear operator
: H-(O) (O). From the second inequality in Lemma 5 it now follows, using
the Lax-Milgram lemma, that maps H-2(O) onto (O). In summary

(29) The operator G may be extended as
an isomorphism between H-(O) and

Let G, i= 1, 2, be two elements of L(O), and let denote the solution of (26),
corresponding to G G, 1, 2. According to the variational formulation (8) and the
symmetry of the elastic tensor bkl

e GlV(),3 dN ij(f(1))eij(f(2))
R()

I (f()e() e Gv(,3
( (el

From this we immediately conclude that

al g(),3 a (1),3 ,
and thus in the limit, as e approaches zero along the sequence {e}=, we obtain

(30) Ia G(G2) = ;a G(G) .
By continuity the identity (30) is satisfied for any G e H-(O), i.e., we have shown
that is selfadjoint.
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Finally let us consider the operator that takes G EL2() to the tensor

Yo/3 dye L2(’). The 0 and are related by

o bokl(, eY) kl

and using (3) and the last inequality in (27), we thus get

y.,: dy < C I1:11 =L2(R(1))
(31)

I1112 < c G dx.
i,j

Because of the weak lower semicontinuity of the norm it follows, by passing to the
limit in (31) along the sequence {el}-, that

(32) , L2(fl)

We just proved that vll=<.) cI111.-2<.)and from (32)we therefore get

d <ClIGII, -1 L()

or

The operator G yE dy may be extended as a
(33) bounded linear operator from H72(f/) into L2(f).
We shall refer to this extension as -.

4. The proof of the main result. We already proved that the rescaled displacements

-u, (.x, ely),-u2 (.x, ety), u’(.x, ely)

converge weakly towards

(--y01U(x),-yO2U(x), U(x ))

in HI(R(1)), with e3/2(-).
In this section we verify that there exists a tensor Mva (independent of the loads

F, if), with the properties (i) and (ii) listed in our theorem, for which

(34) YE, dy M,,O,U.
-1

From (24) we know that

--3a/3 f
and by combining with (34) we therefore get that U satisfies

O,(MvOvU)= F(x., y) dy+2f(x.)

yY_,t dy F(x., y) dy + 2f(.x),

in

with

O
U3o=0 inu=on



LIMITS OF ELASTICITY EQUATIONS IN THIN DOMAINS 447

Except for a change of notation (replace U by the simpler w) this will complete the
proof of our theorem.

Our verification of the existence of the tensor Mva proceeds by the method of
compensated compactness (cf. [18]); specifically we adapt the so-called div-curl lemma
of Murat and Tartar to the present problem. _u as previously denotes the solution of
(7) (or (8)) with loads F L2(R(e)) and f_ =f =f L2(), and _v denotes the
solution of (26) with G L2(). U, E 0, Zj and y, 0, 0 denote the rescaled
variables corresponding to and , respectively. Letting be an arbitrary but fixed
function in (), we shall then compute the limit of

XE,jb dy E ,jb dy
R(1) R(1)

in two different ways as e goes to zero along the sequence {61}=1.
Inseing the test field 6y into (14), and using the fact that e(y) has the form

(11), with E replaced by E, we get

Ejbdy= F (, ey)Vbdy+2 fVb
R(1) R(1) +R(1)

(35)

f ZvVvOdy IfR(1) e R(1)

(other terms vanish because is independent of y). From (19), compactness and
Lemma 2 we get that

V’6 V in L(R(1)),

V’(y, 1) V in L2(),

VvO-yOvVO in L(R(1))

at the same time F’, f’ and Z are all weakly convergent in L (indeed the first two
converge strongly). We therefore conclude that as e approaches 0 along the sequence
{6/}_, the first three terms on the right-hand side of (35) approach

(36) F(y, y) dy + 2f() V&+ yZ dy OVOb.
--1 --1

The last term -1/ R) VO dy requires special attention. Using PoincarCs
inequality on veffical lines and the fact that (O/Oy)V= (cf. (11)) we get

ife R(1) E

cZ L2(R(1)) V3
e L2(R(1))

and since both and "E331[ (()) are bounded this last term is of order e.

It thus suffices to study the limiting behavior of

y3 dy -V3o.e 1) e
_



448 A. DAMLAMIAN AND M. VOGELIUS

According to Lemma 3, 17, converges strongly in/-]rl(f) and according to Lemma 4
(l/e,) I 1_ el 0

3 dy converges weakly in H-I(I)) towards O 1_ yE, dy, hence

dy V3 dx
El

converges to

(37)

as e approaches O. Collecting the terms in (36) and (37) we get

lim E’/ o
o dx dy -Vdp dx + yEv dy O,VO,b dx

EI--0 (1)
ij

--1

We integrate the last two terms in the right-hand side by parts to remove derivatives
from b. Using the fact that b vanishes on 01q and the identity (24) we thus obtain

IR I(I )(38) lim EoEocpdxdy=- yE dy Ovdx.
elO (1) --1

Exchanging the roles of U and y in the above argument we would similarly obtain

, 16dxdy=_ yO(39) lim oE dy OvU dx.
elO (1) --1

Because of the symmetry of the elastic law

.,jE,jdpd.xdy,
R(1) R(1)

and it then follows from (38) and (39) that

yX dy OrV
-,

"oyZay ou6.
In terms of the operators O and - defined in the previous section, this may be stated

f’(i ) l’(40) yEv dy Ov(G)d dx. -,,( G)O,,Ud .
The identity (40) has so far only been verified for G in L2() (and any $ ()),
but because of the continuity of the operators and ff, (cf. (29), (33)) it follows
immediately that (40) holds for any G in H-2(). Let ’ and pick ()
with 1 in ’. is an isomorphism between H-2() and 2() (cf. (29)); inseion
of G= -(xx$) into (40) yields

for all b in @(f’) (here we use that 0 1 on supp (b), b (IY)). Since ’ c c f is
arbitrary we conclude from (41) that there exists Mv(.x) with

yX. dy M,,,(x.)O,,U,

as stated in (34). Mtr is given by

(42) Mt -(b-l(1/2x,xtq)) in f’,
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where 0 is any element of (1)), 1 in 1)’. It is clear from the formula (42) for
M,tva that it obeys the symmetries

By taking the U3 (and E), that correspond to loads F= F(.x) L2(II), ff =0 and
inserting in (40) we obtain

(43) I-,(F)a,/a9(G)dx.=I:Y,(G)a,9(F)dx..
Because of continuity (43) holds for all F, G H-(O). Pick F= -(xx) and
G=-(xx) with ff 1 in ’, it then follows from (42) and (43) that

Mo ffp(--l(xax))= (--I(xRx))= Moo
in 12’. Since 11’ is arbitrary this verifies the last symmetry of Mtr.

At this point we only know that M,,r Loc(l)); we now verify that the Mtya
are indeed L-functions. Consider the identity (38) corresponding to F= G(.x) and

ff =0, and replace by 2:
", ",2 dx dy "o dx.(44) lim yZdy OV2

eta0 (1)

It follows directly from (3) and the fact that bjkl is symmetric that
/ .ocz I71<, ,,

i,j

consequently,

l-6 ax ay < oo6 clx cly.
(1) i,j R(1)

Because of the weak lower semicontinuity of the norm, (44) now yields

(45) C z I,1== dx. dy<= Y,oq3 dy 0 .-
(1) i,j --1

H61der’s inequality gives

a,fl 2I z "0 i< Ix, axay,2 d.X
(1) o,/3

and therefore in combination with (45) it gives

3
C Z o 2YEo, dy dx < y,O dy oV dx

2 , -1 --1

2 ygOdy
a, -1

(fO a, )1/2
From this we conclude that

yE dy
--1

6 d.x_-< c)_ Z I016 d.x,

or in terms of the operators ow and if-
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If we pick G 6e-(-xrxtyd/) for some constant symmetric 2 tensor and some
(), 0=1 in f’cc f, then

-t - (1/2xv-xtvd/ -,t (’--1 (1/2X,rX,51]I)) tea M,o,t,
in f’. Inserting in (46) we get for any b (f’)

(since O(G) 1/2xrxtvO). Equation (47) says that (E. IM.vtv12)1/ is an L2 multiplier
<-C=(Y, ,, t =) /-,of norm :3 consequently, (E,, IM,vt,l)1/2 is in L(’) and

2 IM,t,l
2

a.e. in ’. Since ’c cf is arbitrary this proves that Mr L(I)) and it also verifies
the second inequality in (ii). It remains to show that Mv is coercive. Due to the
coercivity of bkt (cf. (2))

e2c, X I,1 < :,,,"
i,j

SO

(1) i,j R(1)

0Passing to the limit in e along the sequence {el}l=, using the relation E =-yO
(Lemma 2), the identity (44) and the weak lower semicontinuity of the norm, we get

elf y2lov12Zdxdycf 10 22il dy
R(1) a,fl R(1) i,j

0- yX dy OV&
Because of the constitutive relation (34) (which has already been verified) this yields

or in terms of the operator

Cl 2 10(a M.,o(ao,(a4 .
If we pick G -(xt) for some constant symmetric 2 tensor and some in
(a), 1 in a’ c c a then

0 (G)

in a’. Inseing in (48) we get for any 4 e N(a’)

c, % Itl Mvttv ,
from which it immediately follows that

2
C [t[2
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a.e. in f’. Since ’c c f/ is arbitrary this establishes the first inequality in (ii). We
have thus completed the proof of our theorem.
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LINEAR RECURSIVE SCHEMES ASSOCIATED WITH SOME
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
IN ONE DIMENSION AND THE TAU METHOD*

E. L. ORTIZ AND A. PHAM NGOC DINH$

Abstract. Standard compactness arguments for Volterra’s equation are used to prove the existence of
the solution of some nonlinear partial differential equations in one dimension by associating them to linear
recursive schemes. Sufficient conditions for the quadratic convergence of hyperbolic and parabolic types
are given in this paper. By using a best approximation perturbation technique--the Tau Method--we show
that these recursive schemes lead to accurate numerical approximations in concrete problems.

Key words. Tau Method, nonlinear PDE, hyperbolic equations, parabolic equations, singular perturba-
tion of PDE

AMS(MOS) subject classifications. A07, 35J60, 35K55, B25, 45D05, 65M99

1. Introduction. Kalaba has shown in [4] that the solutions of certain classes of
nonlinear ordinary and partial differential equations may be represented in terms of
maximal operations applied to the solution of associated linear equations. The tech-
nique of quasilinearization was introduced by Bellman [2], who used it successfully
in the analysis of the initial value problem associated with Riccati’s equation.

The nonlinear partial differential equations considered in this paper are ofthe form

(o) L(u)=ef(t,u(x,t)),

where u is an unknown function defined on a domain D and e" 0 < e =< 1 is a small
parameter. The linear differential operators L considered here are the wave and heat
operators in one dimension. The function f(t, u) is assumed to be continuous in (t, u)
and to satisfy a Lipschitz condition in u.

In the hyperbolic case this paper can be regarded as a generalization of Pham
Ngoc Dinh 13], where stronger assumptions on f are required. We associate with our
problem L(u)= ef a linear recursive scheme for which the existence of solution is
proved by using standard compactness arguments related to Volterra’s equation. If
f(t, u) is twice differentiable in u, quadratic convergence is shown for the case of a
parabolic operator; this result extends a previous result of Kalaba [4]. A similar result
is proved for the hyperbolic case. Both results are local in time.

The linear recursive schemes developed in this paper enabled us to use a perturba-
tion technique based on the ideas of best uniform approximation, which extends very
considerably the classical Tau Method of Lanczos, and which has attracted considerable
attention in the last few years. We give examples in which by using the recursive
formulation of the Tau Method of Ortiz [8] we are able to construct very accurate
numerical approximations to two nonlinear partial differential equations: one of
hyperbolic and one of parabolic type.

2. A weakly nonlinear hyperbolic problem in one dimension. In this section we are
concerned with the solution of the nonhomogeneous one-dimensional wave equation
with a right-hand side depending on the unknown function u(x, t).
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(1)

Let us consider the problem of finding a function u(x, t) satisfying the equation:

02u 02u
Ox2=ef(t,u) for0<x<l, 0<t<T,

Ot2

u(O, t)= u(1, t)= O, u(x, O)= o(X),
()

0--U(x, 0) l(X) for0<x < 1 0< < T.
0t

We make the following assumptions on the function f in (1):

(i) f is locally Lipschitz with respect to u, i.e. for each T> 0, there exist A(t)
(3) such that ]f(t, u,) -f(t, u:)] =< A(t)]Ul- u2] for each ]0, T[ and with A(t)

L2(0, T).
(ii) f(t, u) is a continuous function with respect to the two variables and u.

(3’) o(x)isgiveninH(l))andl(x)inL:(l)),wherel2 ]0, 1[, e is asmallparameter
(0<e<-l).

We write f(u):=f(t, u); u(t) := u(x, t); fi(t):=Ou/Ot.

2.1. Definition of a bounded sequence u.(t). Let us introduce the sequence of
functions {un(t)}, un(t):= un(x, t), defined by the linear recursive relations:

02/,/1 02Ul
Ot2 Ox2 ef(uo),

(4) Ul(O,t)=Ul(1, t)=O,

UI(X 0)-- /0(X); /l(X, 0)-- /l(X).

02Un+l 02/,/n+1
atE Ox2 ef(un),

(5) un+,(0, t) u,,+,(1, t) 0,

Un+l(X 0)--" /0(X); /n+l(X, 0)-" /l(X);

the first function Uo(t) will be determined for

Uo(t) 6 L(0, T; H(f)), rio(t) 6 L(0, T;

LEMMA 1. The solution Un+l(t) of (5) exists and belongs to a bounded set of
L(O, T; H(fl)), and tin+l(t) belongs to a bounded set of L(O, T; L2(I))); these sets
are bounded independently of n and e.

Proof Let us suppose that u, is in a bounded set of L(0, T; H(fl)) and that tin
is in a bounded set of L(0, T; L:(fl)), i.e.:

Let M be a constant independent of n and e such that

(6) []Un[[H(t)<M, [[tnllt2()<=M, a.e. t[0, r].

Then, let us show that U,/l(t) and tin/l(t) are in the same bounded sets of
L(0, T; H() (and L(0, T; L:(Y)) respectively.

Equation (5) is equivalent to the following variational formulation:

d
a(Un+l, V)-]"’(/n+l, V)L2(C) e(f(u,,), V)L:(a) f0rall v H(f),

(7)
Un+l(0) a0, an+l(0)--/1

LINEAR RECURSIVE SCHEMES ASSOCIATED WITH NONLINEAR PDE’S 453

and such that
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where a(u, v)= lo (Ou/Ox). (Ov/Ox) dx and (u, V)t2(a) is the scalar product in L2(f).
Let u+l(t) be the sequence defined by:

(8) ,j t) v(x)
k=l

({Vk(X)} is a "basis" of H(O) i.e. a countable and everywhere dense subset of H(O);
the {Vk(X)} can be the eigenfunctions of O:/Ox:), which is the solution of

d
a(u.+, Vp)+(fi+l,

(9)
u+(0) Uo,

where

aoj(X) rlkj" vk(x) ao(X) in H(f) strongly,
k=l

/lj(x) 2 7kj" Vk(X) al(X) in L(fl) strongly.
k=l

The coecients ;(t) verify the linear differential equation of second order [3]"
’n+ k22en+l

(10)
Sk. (t)+ k, (t)=2e(f(u), V)(m

"n+ln+l(0) k,j, 1 < k Nj.s, , (0) ,
Let us multiply (9) by ",+l(,j t) and sum up with respect to the index k,

1 d 1 d
( (f(u.), a+l)().2 dtu ,]l(a)+ ll+lll

Therefore by integration we obtain

2 2(11) [[/’lJn+l[[/(l)-[-[[liJn+l]l2(l-) =]]I,IOj Ho(FI) -[’- Ilj]]L2(II)-I-2E (f(ttn), /Jn+l)L2()dO.

Since toj and tlj converge to to and ffl in H() and L2(f/) respectively, there exists
a constant C independent of n and j such that:

(12) Ilaojll
On the other hand:

2 <f(u), a+,>(. dO < IIf(u)ll = L:(a) dO.

But in one dimension the imbedding of H’(a)= {u[u, ou/ox e L(a)}, Sobolev space
of order 1, in o(fi) space of continuous functions defined in fi, is continuous 1 ]. Hence

(13) [u.
Therefore

[f(u.)[ N C:, where C: is a constant independent of n, e

on account of the continuity of the function f on a compact set.
Let us consider:

(4) S+l(t) I1+,11:(.)+ Ila ill:+ L:(O).
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From (11), (12) and (13)"

SJn+l (t) --< C -- (C22 + fi+l 2) dO.

Hence

(15) SS.+l(,) C -I- (C+ Ss.+l(0)) dO.

The theory of Volterra integral equations [5] implies that

(16) T TSJn+l(t) _-< S(t) a.e. e [0, T[ _-<

where S(t) is the maximal solution of Volterra’s equation:

S( t) C -- (C22qt- S( O)) dO,

and the solution is defined in [0, T[. Hence

(17) S+l( t) <= S( t) in[0, ] with < -< T.

Let us then choose the bound M of (6) such that

(18) 2C1<M2 (C1 given by (12)).

But S(0) C1; S(t) being a continuous function, there exists an interval [0, T]( " <= )
such that

(19) S(t) -< M2 for each e [0, T] T will now be called T).

From (17) and (19)

(20)

that is

UJn+l is in a bounded set of L(0, T; H()),
(21) u.+l"s is in a bounded set of L(0, T; L2()),

sets bounded independently ofj, n, e.

From (21) we can extract a subsequence, still denoted by {uS.+1}, such that

(i) uS.+1 --> U.+l in L(0, T, H(f)) weakly whenj--> ,
(22)

(ii) u.+l"s _> un+l" inL(0, T; L2())weakly.whenj-->c.
We can easily check from (9) and (22) that u.+l satisfies (7) in L(0, T) weakly ..
From (20) we deduce that

the solution u.+l(t) of (7) remains in a bounded set of L(0, T; H(I))(23) and tin+l(t in a bounded set of L(0, T; L2(f)).
2.2. Solution of the initial problem.
1. Existence of the solution of (1)-(2). We shall show that {u,(t)} is a Cauchy

sequence in L(0, T; L2(f)). Let d,+l be d,+l=u,+l-u, with d,+l(0) d,+l(0) =0.
d,+l satisfies the equation

-(d,+) e[f(u,)-f(u,_)]
OX2

(24)
dn+l(0)- dn+l(O)- O, d.+l t(O, T; H(f)), d,,+, t(O, T;
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Let us consider s ]0, T[ and define q,+l(t) [6] by

(25) q,+l(t)=
d,+l(o’) do’,

0,

Let us set

(25’) w,+( t) d,+(o’) do’.

s>-t,

s<t.

Let

(28)

2

dx < T2 d,+ L(O,T;L2(al)

A(t) dt Ild,,llL(o.r;/2(m ).

k 2eT A( t) dt < 1

(a condition which is always satisfied by taking a sufficiently small e or a suitable T).
Therefore

(29) {u,(t)} is a Cauchy sequence in L(0, T; L2(f));
hence in L2(0, T; LZ(f)) LZ(Q) where Q ]0, T[ x ]0, 1[.

From (23) it is possible to extract from {u,(t)} a subsequence, still denoted by {u.(t)},
such that

Un+ "-) U in L(0, T; H(Iq)) weakly when n

ti,+ ti in L(0, T; L2(f)) weakly when n - o.

From (20) we can deduce that

(30)
the limit u of the subsequence {u,} is such that
u, u (a.e. in Q).

From (30) we can show, by using a lemma on weak convergence [7], that

(f(t, u,), Vv)L2(a) (f(t, u), vv)L2a) in L(0, T) weakly ..

But

(27) I1@./,112 IoL2(I-)

Finally, due to (26) and (27):

Multiplying (24) by @,,+(t), we obtain, after integrating by parts

Ildo+,( )ll Io
Using the assumption (3)(i) it follows that

(26)
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Then we can take limits in (7) and find that u satisfies the equation

a(u, v)+(d/dt)(fi, V)L2(a) e(f(u), V)L2(a) foreach v H(I),
(31)

U(0) /,0, U(0) /1

Expression (31) is the variational formulation of (1)-(2).
By using the same argument as in 2.1 we obtain

Remark 1. By using the function 0+(t) defined in (25) we can show the unique-
ness of the problem (7).

2. Uniqueness of the solution of the problem (1)-(2). Let u and b be two solutions
of (1)-(2); if we set w u- v, then w verifies the following equation:

02w
elf(t, u) -f(t, v)]

OX2

(32)
w(0) (0)= 0, w L(0, T; H(O)), L(0, T; L(O)).

As before let us introduce the function O(t) defined by

w() d, s t,
(t)

O, s<t.

Multiplying (32) by (t), and after integrating by pas we find that

iiw( )ll 2
<) + IlWl(s)llHA<>=-2e ([/(t, u)-f(t, v)], @)t2()dt,

where w(t)= o w() dc. If we set

we obtain, by using hypothesis (3)(i) and the inequality 2ab (1/a)a2+ ab for each
a > 0, that

( 1 )fo fo(s)2e max a,-+ A(t)(t) dt+e’llWl(S)lJ A(t) dt
(33)

for each a, a’> 0.

Then let us choose a’ such that ea’ A(t) dt < 1. Therefore we obtain finally

(0T ) 1/2(0 )1/2(34) (s)N C(T) A(t) de () de

where C(T) is a constant only depending on By using Gronwall’s lemma we have:

(s)=0 i.e. u=v.

Hence, we have the following.
To 1. e problem (1)-(2) under the assumptions (3)(i), (ii) and (3’) has

one and only one soluion u e L(O, T; H(a)) and such tha e L(O, T; U(a)).
Remark 2. From the uniqueness of the solution of the problem (1)-(2) it follows

that the total sequence {u(t)} converges to the solution u(t).
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3) Limit when e approaches O. Let us denote.u the solution of (1)-(2). On account
of (21) u and tie are in a bounded set of L(0, T; H(I))) and L(0, T; L2(I)))
respectively; therefore we can prove as before the following result:

THEOREM 2. When e- O, u- unique solution of

(, +ddt(fi, v)m)=0,
(35)

u(O) (to, ft(O) (tl in L2( Q) strongly.

3. A weakly nonlinear parabolic problem in one dimension. In this section we
consider the partial differential equation

Ou 02u
at axe= ef(u), 0<x<l, 0<t< T,

(36) u(O,t)=u(1, t):O,

u(x,O)=ao(X).

3.1. Case of simple convergence. Let us assume the f satisfies hypothesis (3)(i),
(ii). Let us define the sequence of functions {u,(t)} by the linear recursive expression

0/n+ 02Un+l(37) =ef(u,,) n>O, 0<x<l, 0<t<T,
Ot Ox

tln+l(O, t) Un+l(1, t) O,

un+(x, O)= no(X)e H(f),

with Uo(t) L(O, T; Hlo(l))) and such that rio(t)e L2(0, T; L2(I))).
By using the same arguments as in 2 it is possible to show that
LEMMA 2. The solution u.+( t) of the equation (37) exists, is unique, belongs to a

bounded set of L(O, T; H(f)) and ti.+(t) is in a bounded set of L2(O, T; L2(I))); the
sets are bounded independently of n and e.

THZOZM 3. The problem (36) under the assumptions (3)(i), (ii) has one and only
one solution u L(O, T; H(I))) and is such that ti e L2(0, T; L2(-)). We also have

lim [[Un+ U[[ L(O,T;L2(II))f-IL2(O,T;H(f))= O,

where u,/(t) is the solution of (37).
Let us denote u(t) the solution of (36). Then, we have the following.
THEOREM 4. When e 0, u f, unique solution of:

a(u, v)+(i, V)L(m=0 forallve H(lI),
u(O) ao in L2(0, T; H(a)) strongly.

3.2. Case of quadratic convergence. Let us assume that f satisfies the conditions
3(i), (ii) and also that

the first and second derivatives f’ andf: with respect to u exist
(38) and are continuous with respect to (t, u).
Let ti stand for the partial derivative of u with respect to t. As before, we will associate
with (36) a sequence of functions {u,(t)} defined now by the linear recursive scheme

OUn+ =e[f(u.)+(u,,+-u,,)f’(u,,)], n>0,
Ot Ox

(39) u,,+,(0, t)= u,,+,(1, t)=0,
u.+,(x, o)= no(X).
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Let us set

F.(t, u)=f(u.)+(u- u.)f’(u.).

LEMMA 3. The solution u.+(t) of (39) exists, is unique and belongs to a bounded
set of L(O, T; H(I))), and ti.+l(t) is in a bounded set of L2(O, T; L2(1)).

Proof Let us suppose that u. and ti. are in bounded sets of L(0, T; H()) and
L2(0, T; L2(1)) respectively,

(40)
Ilu.ll.o’) M a.e. [0, T],

(a dO <- M,
o

where M is a constant independent of n and e. Let u.+l(t) be the sequence defined by

(41) Un+l(J t) k.jn+l(t)" Ok(x) ({0k(X)} is a "basis" of H(I)),
k=l

solution of the equation

(42)
u+,(O) Uo,

where Jo = nj" v(x) o(X)in H() strongly. The coefficients , satisfy the
following first order linear differential equation

"n+l 2 n+lk.2 (t)+(k2 --ef’(u.))S-k,2 (t)=2e([f(u.)--U’(u.)],
(43)

,1(0) k, 1 k j.

n+lLet us multiply (42) by Sk0 and sum with respect to the index k:

(44) Ho(a)

with

(45)

By using the hypothesis of recurrence (40), assumption (38) and the inequality 2ab <-

a/a + ab2 for each a > 0 we obtain

u./, o/ 2 /, L2() dO

(46) - C1-1
I- C2

q- (o -1
I- j q- 3,) i;.+lll 2 2

2m) + C3]lu+,ll 2] do

for each a, /3, y>O and where C, (C, such that IIoll,&<>_-< c,), c2 and C3 are
constants independent of n and e.
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Let us set

(47) S.+,(t) L2(a) dO

and let us choose a =/3 =y . Then we finally obtain

(4a) S+() C + (G+ c3s+(0)) do.

As in 2, if we choose, for instance, M such that M>2C we can deduce that there
exists an interval [0, T] such that

[]U+l(t) II.A(.) M a.e. c [0, T],
(49) .

L2(a) dO
o

From (49) and if we take limits in equation (42), we find that there exists one and
only one U.+l(t) which solves

a(u.+l, v)+(fi.+l, V)L(n) e(F.(t, u.+), V)L(a) forall v H(fl),
(0)

u.+(0) ao.
Quadratic convergence. Let us show now that {u.(t)} is a Cauchy sequence in

L(0, T; L2(fl)). Let d,+ be such that d.+ u.+ u,, with d,+l(0) 0. d.+(t) satisfies
the equation

(51) a(d.+l, v)+(.+, V)L(a)= e([F.(u.+)-F._l(U.)], V)L(n) forall v H(fl)
with

F.(u.+,)-F._,(u.)= e[f(u.)+(u.+,-u,,)f’(u.)-f(u._,)-(u,,-U._l)f’(u._)]

= f"(ql+a+ .f’(u

and where q lu +(1-1)u_(0< < 1). By using a lemma on regularity [7] we
obtain from (51)

2 2

(53)
2e f"(q.)+f’(u.), d.+l, d.+ dO.

2()

The continuous imbedding of H(O) in o(fi) enables us to show that

(54) ff,(q.), dn+l < [[2 4 for all

where C is a constant independent of n and e.
If we choose a and T sufficiently small, we can deduce that there exist two

constants and y > 0 such that:

{11 d+, A.+ 11 d+l (o,r;(} dO< d 4

Finally

(55) d.+, o.;=.))klld. =(O,V;Z))
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with (k))2=2eT/a. Therefore, for a suitable value of T, {u.} is a Cauchy sequence
in L(0, T; L2(I)) (e is not necessarily small).

Taking limits in (50), we find that the limit u is the solution of:

a(u, v) +(ti, v)-(n) e(f(u), v)(n) for all v H(f).
(56)

u(0) ao.
Equation (56) is the variational formulation of (36).

The convergence of {u.} to u is such that

(57) u./,- u L(0,T;L2(a)) < k()llu. nil 2
L(O,T;L2(I’)).

Hence, we have the following:
THEOREM 5. Problem (36), with assumptions (3)(ii) and (38), has one and only

one solution u L(O, T; H(O)). The sequence {u.} defined by (37) converges quadrati-
cally to it in the meaning defined by (57).

Remark 3. Let us go back to the hyperbolic case. If the function f(t, u) satisfies
the assumptions (3)(ii) and (38), we can show that there exists an inequality similar
to (55): let us consider the sequence {u.} defined by

02
(58) u.+ Ou.+

Ot Ox2 eF.(t, Un+l)

with F.(t, u)=f(u.)+(u-u.)f’(u.), where u.+(t) satisfies condition (2). As in the
parabolic case we show that the sequences {u.} and {ti.} are in bounded sets of
L(0, T; H(f)) and L(0, T; LZ(f)) respectively.

Let d.+ u.+ u.. d.+(t) satisfy the equation

02
-d,.+l e[F.(t, u,.+l)-F.-l(t, u,,)],n+l(t)
OX

(59)
a.+,(0) d.+(0) 0.

Let us introduce the functions q.+l(t) and w.+l(t) defined by (25) and (25’). We have

(o =- ([(, u/l-f_l(, u)], ,/1( de

=-2e f"(q.)+f’(u.)d.+l, qt.+l dt
L2(m

where q.=Au.+(1-A)u._ (0<A <1).
But using the continuous imbedding of H(O) in c(1) and (27), we have

(61) 2e (d.+f’(u.), q.+l)2() < 2eTZCllld.+lll L(O,T;L:(O))

where C1 is a constant independent of n and e.

Writing ff.+l(t) w.+(t) W.+l(S), we have

(62) In+l(t)llWn+l(t)lq-lWn+l(S)l (t<=s).

This enables us to evaluate

-2e ’(q. ), I]/n+
L2(f)
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On account of the continuous imbedding of Ho(f) in o().

(63) -2e f"(q.), .+1 at <2C=Tllw.+lllo,;..)lld.II =L(O,T;L2(O))
L2()

Where C2 is a constant independent of n and e.

Finally by (60), (61) and (63) we can find for a suitable T0 a number 0
such that

2 2[ld.+,llO.T;))+ Ilw.+,ll =L(O,T;H(m)
(64)

2

But the inequality 2ab a + b implies that

(65) d+, o.;.)) k)lld =< L(O, T;L2(O))

with k TCe/.
Therefore, for a suitable T>0, the convergence is quadratic even if e is not

necessarily small. We then have the following result:
THEOREM 6. Problem (1)-(2) with assumptions (3)(ii), (3’) and (38) has one and

only one solution u L(O, T; H()). e sequence {u} defined by (58) converges
quadratically to it.

4, An application to the numerical solution of nonlinear partial differential
equations, The Tau Method is a peurbation technique based on the ideas of best
uniform approximation by polynomials. Given a linear differential equation with
polynomial coefficients, or with coefficients approximated by polynomials to a sufficient
degree of accuracy,

(66) (u) F(x, ),

we attempt to solve a slightly peurbed form of the original problem, defined by the
so-called Tau problem

(67) (u,) F(x, t)+ ;r(X, t),

where H(x, t) is the product (or linear combination of products) of best uniform
approximations of zero, of degrees r and s respectively, on a given domain D. The
parameter (or vector parameter) is chosen for u(x, t) to be a bivariate polynomial
which satisfies the initial or boundary conditions given for u.

The theory of the Tau Method, originally proposed by Lanczos in the late thiies,
has been developed by Oiz [8] and computational procedures for the numerical
treatment of linear and nonlinear paial differential equations have been discussed
by Oiz and Samara [10] and Oiz and Pun [11], [12] in very recent papers and in
references given there.

Oiz and Pham Ngoc Dinh have discussed aspects of the error analysis of the
Tau Method in connection with nonlinear ordinary differential equations in [9]. Their
approach is, essentially, to reduce the nonlinear problem to a sequence of linear
problems for equations with variable coefficients.

In this section we shall discuss the numerical solution of two types of nonlinear
paial differential equations by making use of the linear recursion schemes proposed
in the early pas of this paper. As we shall see, results of a very remarkable accuracy
are obtained.
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Problem 1. Let us consider the nonlinear hyperbolic problem

02u 02u
Ot2 OX2

(68) u(x, 0)

where

uE(x,t)+F(x,t), (x,t)EO,

ou(x,t)
ot t=O

g(x), 0--<x--<l,

u(O, t)= u(1, t)= h(t), 0 _-< <- 1,

F(x, t)=exp (t)(1 + r2- exp (t) sin rx) sin rx;

g(x) sin rx, h(t) 0,

and the domain D-- {(x, t) E [2:0 -< t, x -< 1}.
The exact solution of (68) is u(x, t)= exp (t)sin rx. We use the linear recursive

scheme defined by

(69) 02u"+ 02Un+l
2UnUn+l --112 + F,

Ot2 OX2

with Uo (1 + t)sin rx, and u,+ satisfying the conditions given in (68), but for the
fact that functions F and g have been replaced by tight polynomial approximations.
After 3 iterations the uniform norm of the error of approximation over the domain D
becomes stable for r s 6, 8 and 10. It is equal to 0.1 x 10-3, 0.9 x 10-6 and 0.4 x 10-8

respectively.
Problem 2. Let us consider the nonlinear parabolic problem

Ou 02u
u2(x, t)+ F(x, t) (x, t) D,

Ot OX2

(7o)
u(x, O) g(x), 0-<x=<l, u(O, t)= u(1, t)= h( t), 0_-<t-_<l,

where F, g, and h are the same functions as in Problem 1. The domain D is also the
same and the exact solution of (70) is identical to that of (68). We asssociate with (70)
the linear recursive scheme defined by

(71) OUn+l 02Un+l
2UnUn+ -I,i

2 -- F,Ot Ox2

with Uo=sin rx, and u,+ satisfying the same conditions as (70), but with F and g
approximated by polynomials. Applying the Tau Method to the numerical solution of
the problems defined by the linear recursive scheme (71), we find that for r= s =6
and 8 the uniform norm of the error of approximation over D becomes stable after 3
iterations, the error being equal to 0.7 10-4 and 0.8 x 10-6 respectively. For r s 10
the error becomes stable after four iterations, when it reaches 0.4 x 10-8.

Acknowledgment. The authors wish to thank the referee of this paper for his
constructive and useful remarks.
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RECURSION RELATIONS FOR SOLUTIONS
TO THE SCHRODINGER EQUATION*

MICHAEL REACH

Abstract. We will consider the general eigenfunction for a second-order differential operator in one
variable. For many well-known elementary functions, we can also find a three-term recursion relation in
the eigenvalue parameter. For practical computation, this is a very desirable property. Examples include
Legendre functions, Bessel functions, etc.

In [Math. Z., 29 (1929), pp. 730-736], Bochner showed that the only polynomial solutions to this
problem were the well-known ones. This paper will look for solutions that may not be polynomials.

It will be shown that, unfortunately, for the simple recursion relation,considered here, no really new
examples exist.

Key words, recursion relations, Bochner, elementary functions
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1. Notation. Let L be a second-order differential operator in one variable x,

+ g.(X)x+ g(x),(1) L(x) : gl(X) dx--
and let B be a second-order difference operator in k, acting on a sequence {lk} by

(2) (Bl), =- a,l,+l + b,l, + Cklk_

For later convenience, subscripts like k will range over Z+ c for some fixed c C; that
is, over all complex numbers differing from a given one by an integer. Constants will
normally be complex; functions will be: C C and as smooth as necessary.

2. Basic problem. We seek a sequence of functions {k(X)} s.t.

L(x)= ,(x)(3),

and

(4) (B(x)) ak+l(x) + b(x) + ck_l(x)= O(x),(x)

for all k Z + c and some L, {a, b, c}, {Ak}, O(x). Of course, we really seek the whole
sextuple (L, B, A, 0, , c).

We can allow some (not all) of the ’s to be zero. This will enable us to include
the classical orthogonal polynomials. We will see in 5, though, that all ’s must be
nonzero, either for each k big enough, or else for each k small enough. O(x) should
be nonconstant in x, and A nonconstant in k. Note that L and 0 are independent of
k, and that B and A are independent of x. This will allow us to commute them in
several formulas.

3. Symmetries. Given a solution to our Basic Problem, many obvious changes
yield new sextuples which will also be solutions. Nine of these changes will be listed,

* Received by the editors December 17, 1984, and in revised form August 30, 1985. This work was

supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy under contract DE-AC03-76SF00098.

? Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley,
California 94720.
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to be used extensively later. Assume, then, that c’ C is an arbitrary constant, and that
(L, B, A, 0, , c) solves the Basic Problem. The following is a list of new solution
sextuples:

(a)
($1) (c’L,B,c’A,O,,c).

This scales L by a constant. Since (3)k implies (c’L)Ckk (C’Ak)Ckk, (S1) is also
a solution.

(b)
($2) (L,B,A,O,c’,c).

is scaled by a constant here. ($2) clearly follows from multiplying (3)k and
(4)k by c’.

(c)
($3)

(d)
($4)

(L+c’,B,h+c’,O,,c).
($3) transfers a constant between L and hk. We see it by modifying (3)k to be
(L+ c’)6k=(A + c’)dp.

(L,B,A, O, , c-c’).

This new solution just has a shifted subscript. The (3)k corresponding to it is
now Lk+c, k+c’k+c’ for k Z+ c-c’ and the new (4)k is similar.

(e)
(S5) (L, c’B, A, c’O, , c).

($5) scales the recursion relation by a constant. The new (4)k will be ((c’B)t)k
(c’O(x)).

(f)
($6) (L,B+c’,A, O+c’, , c).

In ($6), a constant is transferred between B and 0, so that (4)k is now (Bdp)k +
c’6=(O(x)+c’).

(g) Symmetry seven is under the change of independent variable x, say by x x(x’).
If L’ is the new differential operator resulting from the variable change, we
derive the new solution ($7):

(S7) (L’, B, A, O(x(x’)), (x(x’)), c).

Equations (3)k and (4)k change in the obvious ways. We will use this transforma-
tion most commonly for the simple shift x x’+ c’.

(h)

(s8)

Let Ck(X)=f(X)Ok(X), for some function f(x) and all k. Then

(f-’Lf B, A, O, #/(x), c)

is a solution allowing us to multiply by an arbitrary function of x. Equation
(4)k will look similar, with $ in place of $, and (3)k will be (f-lLf)d/k(X)=
(x).

(i)

(S9)

Let (x)=fktO(X), for all k and for fk independent of x. This multiplication
of Ck by an arbitrary constant depending only on k gives the new solution

(L,f-’Bf, A, O, d/(x), c).

Here (3)k will be similar, and (4)k becomes f-1(B(fd/))k--O(x)d/k(X ).
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We will be using these to transfer to simpler-looking solutions, and eventually to
reduce to a few fundamental ones. Clearly, the space of possible variations of these
fundamental solutions will be extremely large.

4. Commutation relations. L is second order, and we can think of the operator of
multiplying by O(x) as zeroth order. Then

[0, L] =- OL-LO

[O,[O,L]]

[O,[O,[O,L]]]

Thus

is first order,

is zeroth order,

--0.

O, O, O, L]]]Chk O.

A typical term of this last expression is

-300LOqbk -300L(Bqb )k

-300(B(Lqb))k

--300(B(Ach))k

-3(BAOOb)k

-3(BABBp)k

Continuing in this way, we soon see that

by (4)k,
as L and B commute,

by (3)k,

since B and 0 also commute,

once again using (4)k.

0=[0, [0, [0, L]]]4)k ([B, [B, [B, A]]]4))k.
This last expression is a linear combination of seven terms, multiplying 4)k-3, 4)k-2, ",

4)k/3, respectively. If we assume the 4)k’S linearly independent for different k’s (as, for
example, if Ak # Ak,, for k # k’), each of the seven terms must vanish. In particular, let
us examine the terms containing 4)k+3 and 4)k-3, which each must be zero. The term
with k+3 is ak+2ak+lak(}kk+3--3Ak+2+3Ak+l--Ak)Pk+3 The term with tk_ is
CkCk-lCk-2(tk 3Ak-1 + 3Ak-2-- }[k-a)tk-3. These must be zero for all k Z+ c. Thus, for
a given k,

either (akak+lak+Eqbk+3 Ck+lCk+2Ck+aqbk =0),

or

5. Pinning down A.

Ak --3Ak+l W3Ak+2-- Ak+3 0.

THEOREM. At least one of the following statements is true"

(6)
1 Ck # 0 and Chk 0 for all k sufficiently large negative, or

(2) ak 0 and qbk # 0for all k sufficiently large positive.

(Recall that the a’s and c’s are the coefficients in (4).)
Proof. Pick some bt 0. If, for all k < l, Ck and tk 0, the theorem is proven.

Otherwise, there is some largest m _-< such that

c,. 4),,- =0.

Since this m is maximal, 4), # 0. Then (4),, becomes

O+ (b,,- O(x))ch,,, + amCm+l--0.
Thus amPm+l 7 0 and b,,+l b,. (polynomial in O(x), degree 1). Now (4),,+1 implies

bm" (polynomial in O(x), degree 2)+ am+ltm+2--O.
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Therefore am+lm+2 # 0 and b=+2 b,,. (polynomial in 0, degree 2). We continue this
way to generate the tbk’S for k > m. Since 0 is not constant, the nth degree polynomial
in 0 at the nth step cannot be zero. At the nth step we’ll get am+,b,+,+l # 0, so that
we’ve shown a, # 0 and b,+l # 0 for all n _-> k.

We will write k e K as a synonym for "k sufficiently large negative" or "k
sufficiently large positive," respectively. It will turn out in 7 that all we shall need is
that the theorem be true for many contiguous k’s. This explains why we can be so
ambiguous about the finite end-point of K.

From this theorem and (5) we get that

/k 3Ak+l + 3Ak+2--/k+3 0 for k e K.

Therefore, ik r k2 + r2k + r3 for k e K; rl, r2, r fixed./k constant, so rl # 0 or r2 0.
If rl # 0, use ($1) to scale Ak SO that the leading coefficient is 1. Then ($4) can

shift k and kill the linear term. Finally, ($3) transfers the constant term into L, yielding
ak k2.

If rl =0, r2 #0, ($1) can be used to scale the leading coefficient of/k to be 1. ($4)
will kill the constant term by shifting k, giving Ak k. We can keep ($3) in reserve this
time for possible need later.

We have reduced to either of two cases

(7) /k k or /k k2 for k e K.

6. Some convenient formulas.
LEMMA.

(8) (L-Ak)"(Orb,)=[L,[L, ,[L, 011... ]tbk, n-->--0.
L’

Proo For n 1, the proof is

L ak Ok LO Oak k LO OL)k.

Larger n’s can be shown similarly by induction.

LEMMA.

(L- ak+l)(L- ak)(L- Ak--1)(0Cbk) O.

Proof. OCbk (BCb)k a linear combination of bk_l, bk, bk+. Call Ak ak- ak+,
Vk----ak- ak-,. Then from the previous lemma,

0 (L- Ak+,)(L- ak)(L-/k-1)(

(L- ak + Ak)(L- ak)(L- Ak + Vk)(0Cbk)

+ + A V (L-

By (8), =([L,[L,[L, 0.

Call

Then

(9)

A, the operator L, L,. L, 0]]. ].
L’

A3cbk +(Ak +Vk)A2k +(AkVk)A,Cbk =0

which is often a convenient form.
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In [3], Griinbaum and Duistermaat attack the problem of finding a differential
equation (instead of a recursion relation) in the spectral parameter, and arrive at a

simpler but similar formula.

7. Finding possible potentials. We need not work with the general second-order
operator for L. Using ($7) to set the leading coefficient to 1, and ($8) to kill the ddx
term, we can use

d2

L dx--5+ V(x), without loss of generality.

Hand calculations show (use D d/dx)

A1 20’D+ 0", A2 =40"DZ+40’"D+ O’’-20’V’,

A3 80’"D + 120’"’D + (605) -40’V"- 120"V’)D + 06) -60’" V’- 80"V"- 20’V’").

Case I. Ak k, k K (from (7)). Here Ak =--1, Vk +1. Then by (9)

(A3 A1)4k 0 for k K.

Since the finite order operator A3- A1 has here infinitely many independent solutions
(by the theorem, bk 0 for all k K), it must be identically zero:

(10) A3-A1 =0.

We will use this argument again. Since we only need an infinite number of solutions,
the sloppy definition of K in 5 is sufficient. Take (10), and equate to zero each
coefficient of a power of D.

D3". 80’" 0:=> 0 rlx2 q- r2x d- r for some fixed rl, r2, r
D2: 120’"’ 0=:>nothing new.
DI: 60-40’V’’- 120"V’= 20’. Using the D equation=:>-4(2rlx + r2) V"

24rl V’= 2(2fix + r).
D: nothing new.

There are now two subcases.
(a) rl =0, so -4r V"= 2r2. 0 # constant, so r cannot be zero. Then

V -x / qlx + q2 for some fixed ql, q2,

0 r2x -b r

Use ($7) to shift x - x +2q, and ($3) + ($4) to move a constant into Ak, giving
V=-x-1/2 (-1/2 for later convenience). Use ($5), ($6) giving 0 x.

(b) rl # 0. Using ($7), ($5), ($6) yields 0 x2 and -8rl V"-24rl V’= 4rlx for our
two equations. The second one can be easily solved"

2xV"+ 6 V’= -x, (2x V’)’ -x3, 2x V’= --Ix4- sl,

v’ -x s/2x), v -x + s/x) + s.

Here sl, s2 are arbitrary constants. Thus Case I, Ak k, has two possible kinds of
solution:

(a) O=x, V= --X ,
(b) 0 x, V= -6x + s/x + s.
Solution to Case I. If R,(x) solves y"-2xy’+2ny=O (Hermite equation), then

R,((1/x/)ix) e’2/4 is an eigenfunction for (a).
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For (b), pick an m s.t. 1/4-m2= sl. Using ($3) and ($4) to move a constant into
,k, we can get V=-x2+(1-4m2)/4x2-(m+ 1)/2. Then if L,m)(x) solves

(11) xy"+(m+ l-x)y’+ ny-O

(the Generalized Laguerre equation), one can check that L,")(-x2/4)eX2/Sxm+l/2 is
an eigenfunction for (b), eigenvalue n.

For the sake of completeness, the recursion relations for Hermite and Laguerre
solutions are included (see [1, pp. 252, 241]): If Rn is a solution to the Hermite
equation, then

Rn+ 2xR + 2nR_l O.

If L") solves the Generalized Laguerre equation, then

LTM(n+l)L’)l (2n+m+l-x)L") (n+m),-1.

These relations are well known. They do not work only for the orthogonal polynomials.
Instead, for any element of the solution space for a given n, one can find elements of
the solutions spaces for n- 1 and n + 1 such that the recursion relation will hold.

Case II. ’k k2 for k K (from (7)). In this case Ak -2k- 1, Vk 2k- 1. Then
by (9)

(A3-2A2+(1 --4k2)A1)Chk =0 for k K.

Here k2k Akdk Lqbk, so (Aa-2A2+AI(1-4L))Chk =0 for k K. Again, since this
operator has too many solutions,

Aa-2A2+Al(1-4L)=O.

We shall use L= D2+ V(x) again, and set coefficients to zero. Only the D and D
coefficients give new data.

D3: 80’"-80’--0==>0 rle + r2e + r3, rl, r, r3 constant.
Using ($7) to shift x, and ($6), ($5), we get to

(12) 0=e or 0=coshx.

DI: 605)- 120"V’-40’V"- 80’"+ 20’- 80’V O.
From (12), we can replace 0" by 0, so

120V’- 40’ V"- 80’ V’ O.

Now a little algebra:
(O’V’+2OV)’=O,

O’V’ / 20V) Sl

((o’) v)’= s, o’,

(0’)2 V s10 -- $2,

Sl O-- s2(13) V= (0,)----.
We can list the possible solutions to (12) and (13):

(a) 0 e, V- e-2 (sl O, use ($7) to shift x),

(b) 0 e, V e (s O, use ($7) to shift x),
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2 --2x(c) 0 e V= -uto e-"-w e (s -uto, s2 -to-),

(d) O=coshx, V
(f12- q 2) cosh x + (1- aa2)/16

sinh2 x

(s, f12- a2, s2 =6(1-4a2))

where we have set the constants for later convenience.
Solutions to Case II.
(a) For V= e-x" If Cn(x) solves

x2y"+ y’ + (x2- n2)y 0 (Bessel equation)

then Cn(e-) is an eigenfunction for (a), eigenvalue n :.
(b) V= e-x" Cn(2e-’/2) is eigenfunction, eigenvalue n.
(c) V uto e to

2 e -2’. If L’)(x) is a solution of (11), the generalized Laguerre
equation, for given n and m, then

--z/2l(2nz e .t._(v+l)/2_n(Z (with z =2w e

is an eigenfunction to (c) with eigenvalue n 2.

(d) V =(fl2-a2) cshx+(1-4a2)/16 a,/3 constants.
sinh2 x

If Pt3(x) solves

(1 xZ)(P/3)"+ [] ce --(a + fl d- 2)x](Pt)’ + n(a + fl + n + 1)Pt =0

(Jacobi equation) then

sinh cosh P-(+t+l)/2(cosh x)

is an eigenfunction to (d) with eigenvalue n 2. (See [1, p. 214].)
For Bessel functions C,(x), the recursion relation is (see [1, p. 67])"

2n
C,_ + C,+ C,.

X

This relation can be used to derive a recursion relation also for the Bessel functions
that solve (b). For the recursion relation for the Jacobi functions P, see [1, p. 213].
The relation for the Generalized Laguerre function in (c) is not obvious. However,
the following relation

{ 2n m + 1 r(m+2)(n+ 1)(n m) l.m (Y)+\ -)Y’.-,,,-I(Y)(m+ 1)(m + 2) (m+ 1)(m +3)

1 2/-(m+4) [,+(m + 2)(m + 3)
,-,,-,,-2t) =0

is sufficient, and can be derived by repeated use of

L(.,) L(nm+l) X-’n--lit(re+l)

and

,/(m+2) lr (re+l) + nL’’) 0-2 (m + 1-y).n_l

found in [1, pp. 241-2]. Here we use the standard normalizations for the L(’’s.
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8. Conclusion. All the possible solutions found correspond to shifts, using the
symmetries from 3, of well-known functions; i.e., solutions to the Bessel, generalized
Laguerre, Hermite and Jacobi differential equations. Note again that those solutions
need not be the standard orthogonal polynomials, but can come from the full solution
spaces. Since these functions are already well known, no attempt was made to catalogue
them precisely: Some are special cases of others.

9. Final note. Though the results given here are hardly surprising, hardly anything
is known about cases with higher-order L’s or B’s. For instance, the problem of finding
the functions satisfying both a Schr/dinger equation and also a five term recurrence,
is, I think, completely uncharted territory. Some of the only nontrivial examples I have
seen of this kind are given by Griinbaum in [4]. The examples he gives are of soliton-like
functions. Though certain steps may be harder, many of these techniques should work
for higher-order L’s or B’s.
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INFINITE SUMS IN THE THEORY OF DISPERSION OF
CHEMICALLY REACTIVE SOLUTE*
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Abstract. We use the Cauchy partial fraction expansion to derive formulae for infinite sums arising in
dispersion theory; the method is general. If {Aj} is the sequence of zeros of f(A) =0 and if for some g(A)

then

g(A) g(Aj)
f(A)- (A -A) f’(A)’

A=A

g(A)
(-1)"n!k (Ak-Aj) f’(A)"

Key words, infinite sums, Cauchy partial fraction expansion, dispersion theory

AMS(MOS) subject classifications. Primary 40C15; secondary 30B50

1. The problem. In our study of the dispersion of a chemically reactive solute in
a cylinder of circular cross section we turn up infinite sums. The physical process is
this: a cloud of solute is released into a solvent, which is in rectilinear flow inside a
cylinder on which a chemical rearrangement of the solute takes place. The flow, being
nonuniform over the cross section of the cylinder, distorts the cloud in the longitudinal
direction; transverse diffusion opposes this; surface reaction moderates the influence
of the streamlines near the cylinder. As time passes, the dispersion process is increas-
ingly accurately represented by a constant coefficient dispersion equation in which the
dispersion coefficients X2oo, X3oo, turn out to be infinite sums, viz.

X2oo D+ E (@1, v)(q,, VI]tl)
2 2

jl Aj-A1

X3oo: 2 2 2

2 satisfy(cf. DeGance and Johns [5]). The eigenfunctions, j, and the eigenvalues, -a,
DV2ddj 2

=-Ai (x,y)eA, D>0,

-Dn. Vqg+Kqg=0, (x,y)eOA, K<-_O

where A is the cross section of the cylinder, OA is its boundary and (,) denotes the
plain vanilla inner product. Aris [2] reviews the literature of this problem.

For a cylinder of circular cross section, X_oo simplifies to
2 2 )2A2 Aj (Aj q- A2 q- 2fl 2X2=l+16N2peA2 f12. 2 2

where/3 =-KID >= O. The sum on the right-hand side can be written

S’1 (/3) + 4(A 1 +/3 2) Sg’1 (/3) + 4(A + fl)2S,1 (/3)

* Received by the editors October 16, 1984; accepted for publication (in revised form) February 25, 1986.
f Amoco Production Company, P.O. Box 3385, Tulsa, Oklahoma 74102.
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611.
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and the problem then is to sum

2

s,()= G
v V/3 _-> O, m--] 2,...(-) +

where 0 < h <. satisfy

,()-o()=0.
We derive formulae that express S’g() as a rational function of and .

Both Euler and Rayleigh worked on the problem of establishing formulae for
ceain sums (cf. Watson [8, pp. 500-502]). Indeed, Rayleigh [7] evaluated the sums

S"’(O)= )-’. 2,,, fl =0, m 1,2,...
j-Aj

where 0 h < A2 <" satisfy J1 (Aj) -O. Much later, Ahmed and Muldoon 1 showed
how to evaluate the sums

1S"’"(fl) =J..E (A}_A)m Vfl_->O, m=l,2,...

using the logarithmic derivative and its Cauchy partial fraction expansion. What we
do is not unlike what Rayleigh does nor what Ahmed and Muldoon do; but it is not
limited to the expansion of the logarithmic derivative. Indeed, various partial fraction
expansions are required to do various classes of sums, but the justification of each
partial fraction expansion requires some analysis and while it is general in form it is
specific in detail. The general idea then is the use of the Cauchy partial fraction
expansion to deduce formulae for certain infinite sums; we illustrate this in two concrete
problems of interest to us: the dispersion of a single solute in circular tubes, cf. 2
and 3, and in narrow slits, cf. 5.

In 3 we evaluate s’k(fl) and its companion s’k(fl) where

1 1sT"k()-- Ic (" ,2k) 2 2Aj+

Now because AJ(Z) flJo(A) 0 implies

2Ay
2 2

S’() and S’(fl) m 2,... can be deduced from the expansion of the logarithmic
derivative, e.g.,

Z S+ d
sY+"(): + ()

2m d
S’()’ m 1, 2,., ..

Thus, to show that various partial fraction expansions are required to do various classes
of sums, we investigate

2 Jo(ol,j1 AjE (,y2. )m 2 2 O----<a--<l,+ o()’

In fact Rayleigh evaluated (1/Am) where {} is the sequence of positive roots of J(A)=O,
v=O, 1,’’’.
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and

1 1 Ja(A2)
0 a 1,

which, like similar sums that arise in multisolute dispersion (cf. DeGance and Johns
[6]) cannot be deduced from the expansion of the logarithmic derivative.

2. The Cauchy partial fraction expansion. For /3_->0, the zeros of f(A)=
AJI(A)-/3Jo() are real (cf. Lommel’s theorem (Watson [8, p. 482])). We let
j 1,..., denote the nonnegative zeros ordered so that Aj < A+I; for/3 0, 1= 0 is
a double root and > 0, j 2, is a simple root; for/3 > 0, A2 is a simple root. Then
f(X) vanishes for A +A and nowhere else.

The residues of g(A)/f(A) at +Aj for g(A) =f’(A), g(A) Jo(A) and g(A) JI(A
are 1, +Aj/(A] +/3 2) and fl/(A + fl). Neither Jo(+A) nor J(+A) survives the calcula-
tion of the second and third residues. Their cancellation results because

d
---d iJl t Jo(i }[Jo(l .3L Jl(1 and

We find, using the Cauchy partial fraction expansion (cf. Copson [4]),

Jo(a) 2A}
jZ.j1 (a) jo(a (a2 2 2x)(x +)

and

The first form of Cauchy’s theorem implies the second andthird expansions; the second
form implies the first expansion (cf. Copson [4, pp. 144-148]).

We show that the four hypotheses of the first form of Cauchy’s theorem are
satisfied so that the second and third expansions obtain. Condition (i) is satisfied
because g(A )/f(A is regular save for the zeros off(A). If C denotes a square contour
on the Argand diagram with vertices at (+jTr, +jrr) then the sequence of contours, { C},
satisfies Condition (ii). Indeed Dixon’s theorem (cf. Watson [8, p. 480]), implies that
the zeros of AJI(A flJo(A fall between the zeros ofJI(A and Jo(A ), i.e., A(0) < Aj(/3) <
A(), V/3 (0, ); this and Schafheitlin’s result (cf. Watson [8, pp. 490-492]), viz.,

and

(0) (jzr --Tr, jet --34zr),

hi(co) (jzr-rr, jrr-rr), j 1,’’"

imply that Aa(fl) Ck Vj, k and/3. To see that Conditions (iii) and (iv) are also satisfied,
we note the asymptotic formula Jl(A)/Jo(A)-tan (A-Tr)+ 1/(2A) in the right half-
plane (cf. Watson [8, p. 496]); this implies that in the left half-plane

-tan -A--r +=-cot I- r +.
Jo(1) 4 2 21
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Then, because

( 1 ) 2_cosh(2ImA)-sin(2ReA)
tan A -w

cosh (2 Im A) + sin (2 Re A)

we find that on the horizontal sides Of Cj, tanh (jr) <_-Itan (A --14w)] coth (j), whereas
on the veical sides, ]tan (A-)[= 1. We conclude that I(A)/o(A)I 1 on C as
j . This implies that

o()
and

A/,(A /o(A A/,(A /o(A

are bounded by (lX l-)-(j-)- on as j and hence vanish uniformly as
j . This establishes the second and third expansions. Likewise, we conclude that
the first expansion obtains, inasmuch as [(d/dA )(XJ(X Jo(A ))]/(AJI(A Jo(A ))
satisfies the hypotheses of the second form of Cauchy’s theorem.

The first expansion leads to the infinite product expansion off(A) and thence to
S’(), Ahmed and Muldoon’s Sum; the second and third lead to S’() and S’().
Thus, if we let F(z; )=J,().-Jo() and write F(z; )= (z-X)F(z; ), then
the second expansion implies that

2 2Rok(z )Fk(Z, fl) A+fl2+(z AIk(Z-A)(A+fl=)
and hence that

d" 2A
dz" Ro (- 1)"-1 n k 2 2)

= =), n=l,2,....(-)"+ (+
On setting z A we find that

R)(A; fl)=(-1)"-’nl k
2A]

and hence that sg’k()=-R)(a;)/(2m) so that the evaluation of sg’k(fl)
reduces to the evaluation of R7)(A; ).

Likewise, the third expansion implies that

J,() 2 2R,(; } &(;) a++(-al (_a)(a + ),
()[2.hence a calculation shows that S’() -R t, )/(2m) so that the evaluation

of S’() reduces to the evaluation of R(I; ).
(m)[23. The evaluation of -o ; ). We obsee that

d/&).o(V%
R (1)o,,(z; ) F(z;/3)

(2)( Z; fi
(d2/dz2)J(v/)

2Rok Fk(Z;/3)

+2

.o(42)(d/ dz)F(z; l

[(a/ az).o(4)][(a/az),(z; t)]

o(V%[ a/ dz)F z; o(42)(d/ dz’)F(z; )
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etc., so that the evaluation of R(o)(z; ) requires the evaluation of (d"/dz")Jo(x/)
and (d"/ dz")Fk(Z; ), n O, 1,..., m. Because F(z; ) (z- A2k)Fk(Z; ) we find that

d dn-1 d"
F(z; fl)= n Fk(Z" fl) + (z-- A) --dz, Fk(Z" fl)

dz dzn-1

and hence in go’)(A;/3) we can replace Fk")(A;/3) by F("+I)(A; fl)/(n+ 1), n=
0, 1,. , m.
Now the formulie

and

zz 1
1(,/7) o(,/7)

imply that (d"/dz")F(z; ), as well as (d"/dz")Jo(x/), is a sum of two terms, each
a rational polynomial in z and /3 times Jo(x/) or x/J(x/). But F(A;/3)=
akJ(Ak)--Jo(Ak) =0 hence neither Jo(Ak) nor J(Ak) appears in Ro’(A;/3). It follows
that Ro’(,X;/3) is a rational polynomial in ,X and/3 and so also therefore is S’’k().
The calculation of s’k(/3) and s’k() illustrates this:

and

imply

and

whereas

and

imply

zjo(x/
1

ZZ%/f/1 (/’)

d2 1 1

dz.So() o()+ ,ITS,()

--&o(a)
z=a 2A,

4A---k + Jo(Ak);

d
F z fl

l -zd-S o()+ ,(),

(; 4
,/7s1(,/7+

d fl Jo(v) + -+ vJ,(v)d--z- F(z;/3)
8z 2Z2 4Z2

Z 8Z2

2
Jo(ak),
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12F(k}(A; ’8) 2A: ,SJo(A) + Jo(A)

and

(2>r,2. 1 /3
Jo(A,) + -+3,k ,,,,/3)= 8A, 2-, A,

Thus we have

o ,;/3)--

-1 3

ok(a,;/3)=
1 f12 +

2 2A
1

24A+ +2 2

The formulae for s’k(fl), m 1, 2, , 5, are recorded in Table 1; these are sufficient
for X2. For m 1, 2, 3 the work can be done by hand; for higher values of m it

TABLE
The sums S"k(fl).

m 2(a c +/32)’S’’k(fl

/3-A:+/3

2"6!

1[-3A: + 12/3 -2/32+
4!

12/32 _t_ 2/33 +/34 + 4/341 /36
A, A _] 4A(A + 32)

3"5!
+(36+ 4/3 + 3f12)A, 144fl + 15fl + 8fl + 3/3

144fl2 _68/33 28/34 + 4/35 +/36 28/34_ 14fls 7/36 64fl6"] f18
+--7U-

F
/ -5a 120 + 30/3 + 16/3 2)A , + 480fl 36/3 64/33 1834

--480/32 + 424fl + 155fl4- 38/35 8/36

_384/34+ 188/35+88/36_4/37_/38 _348/36+34/37+ 17/38 36/381 flo
A A + A J 16h(h +/32)
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cannot. The Symbolic Manipulation Program2 (SMP) is indispensable for m > 3. The
formulae for S’’k(), m--1, 2,..., 5, are recorded in Table 2.

The dispersion coefficient X2 is then

r --26(1 q- )2
X2oo 1 + NZpe [ "A ;21- "-2-)’ F

24(1 q- )2(4 q-) 2/32(42 + 35fl + 25/3 2 + 5fl 3)
9A61(A] +/2)2 45A(A2 -]- ] 2

(21 + 1413 + 2) /3(84 + 57/3 + 10/32) 1 -]
2 q" ] 2

where it remains only to establish h2 as a function of .3 For/3 0, the following is
useful:

1 1 1 1 31 1 3221
A 2/3 2 4 6 7q"’/-----4--1 -}- q- -}-’’"

69120 387072 123863040

which was derived from (d/d)A= 2A]/(A] +/32) by the method of Frobenius.
What we achieve, then, in the calculation of X2 is this: we need only estimate

A2 2vs./3; we need not estimate the summand, viz., Aj vs./3, j 2, 3, , nor the sum
itself. More generally we note that only A vs. /3 is required in order to get s’k(/3)

TABLE 2
The sums S’’k(/3 ).

m 2/32(X , -t- 2)ms?’k()

-/3+

2’6!

2/32 /34

_12132 + 2/33 +/34 2_./__4] /361
6/3+/32+

3! A, AJ 2A(A+/3)

I_24/3 7/32+
4!

48/32_ 20fl3_ 10/34 44/34_6/35_ 3/36 24/36] /38

3"5!

_720fl2 + 516/33 + 270/34 + 8/35 + 3/36fl2A +360/3 + 141/32+4/33 +3fl44

_1236/34+322/35+ 167/36+4/37 +/38 _992/36+76/37 +38/38 206/38"]

/3o
8,,,, +t

I-
1--9/32A 1440fl --684/32--46/33 32/34

2880/32-3024/33- 1680/34- 112/3s-42/3 7344/34--2928/35- 1593/36-86/37-24/3+ +

8528/36_ 1404/37_732fls_20f19_5flo 4444fl8_270/39_ 135/31o
4

A
4

A, + 1040

6,,+t

SMP Reference Manual, Inference Corporation, Los Angeles, California, 1983.
SMP is useful in combining the formulae of Table into a simple formula for X2oo. The results are

correct; in particular they agree with all that we can do by hand, viz., small m, small /3, etc., and when
evaluated they agree with earlier estimates of X2.
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for the formula we derive is a rational polynomial in A and/3; yet we offer this caveat:
to get4 lim_,o Sg"l(/3) requires that A be accurate to order m, at least, in/3. This is
what is necessary to reproduce Rayleigh’s results. Thus, approximations to A 21 lead to
lower order approximations to S’’l(fl) so that crude approximations to A21 lead to
nonsense.

and

4. Other sums. The partial fraction expansions

Jo(aA) 2A] Jo(
A.,(A) 2o() x

O<_-a--<l,

are of interest Their justification rests on obtaining useful bounds for Jo(aA)/Jo(h)
and Jl(ah)/Jl(h) on C.

Retaining the sequence of contours C in 2 we find that Conditions (i) and (ii)
are satisfied; to show that Conditions (iii) and (iv) are satisfied we use

[COS (A-)(1 + o(hl))-sin (A-)(hl+ o(hl)) ], ReA-->_0

(cf. Watson [8, p. 199]) so that

Jo(aA) 1 cos(aA)(1-1/(8aA))+sin(aA)(l+l/(8oX))
a>O.

Jo(X) cos (A)(1 l(8A)) + sin (A)(1 1/(8A))

We conclude for large A that IJo(aA)/Jo(X)l is bounded by (1/a)(cosh (2a ImA)+
sin (2a Re A))/(cosh (2 Im A)+sin (2 Re A)); but this is less than 2/a on the vertical
sides of Cj and is less than (l/a) coth2 (rj) on the horizontal sides of Cj for a (0, 1).
It follows that IJo(aA)/Jo(A)] is bounded by 21/2/a 1/2 on C as j c and hence that
the first expansion is justified for a (0, 1 ]. For a 0, we find that ]Jo(A )1-2 is bounded
by zrlAI/(cosh (2 Im A)+sin (2 Re A)), and thus by zr. rj on the vertical sides of C
and by 7r. x/Trj/sinh (2rj) on the horizontal sides of C. It follows that I/o(X)l is
bounded by 7rx/] on C as j , and hence that the first expansion is justified for a 0
inasmuch as rx/]/(rj-fl) vanishes as j. In a similar way we can show that
IJl(aX)/J(X)l is uniformly bounded on C by 2/2/al/2 so that Conditions (iii) and
(iv) obtain therein, and hence that the second expansion is justified for a (0, 1). The
first expansion implies that

Jo(c4) 2A____ 2X Jo(aAj)(x+(z-x)
(z )Rok(Z; a, fl =--

Fk Z fl X k + jo ,
k j k Xj Xj -[- fl Jo xj

and hence that

2X} Jo(aA)
2 2R(o,)(k,; a, fl) 1)"-’n’ J’#k(X2k--Xj) (,j+fl2) jo(tj

so that the evaluation of the infinite sum reduces to the evaluation of RoT,)(A; a, ).

4 We became interested in this not only to check the results but because constant coefficient dispersion
models are most useful for small values of/3.
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For example, because

’)tz; a =0,/3)Rok
(dldz)F,,(z; )

and

(2)(Z,Ro, a=0, fl)=2
[(d/dz)F,(z; )] (d2/dz2)Fk(Z; fl)

we find at/3 0 that

and

Jl(Ak) 2 1

1 J(Ak)
42 J3o(Ak)

1 1 F1 J,(Ak) ] 2 1

Because

Jl()t) 1 1 1
Aand

AJo(A) 2 16 96

as h 0 and h O, it follows for k 1 that

1 - Jo(a)’8 = h
1 1 1

96 =2 A
because hk satisfies J(hk)= O, it follows for k > 1 that

1 1 1 1 1 1
2 2)2 jo(ij ).

The sum, j=: 1/(hJo(Aj)), appears in the work of Bhattacharya and Gupta [3]; its
summation, -1/96, was conjectured but not rigorously justified.

There are values of z other than z at which the expansion of Ro(Z; a, ),
or more simply

Jo() 2}
Ro(z; a ] ) J1() Jo() (z 2 2 2),-)(+

yields useful information. For instance, on setting z 0 we find a generalization of
Rayleigh’s sum, viz., for m 0, 1,..-

2
Ro(0;=l,#)=-mtZ

=, ( +)

implies

1 2

1 2

2,8 2 2 2 2"a(a+
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More generally z A(0) and z ,X(o) are interesting: J1 vanishes at the former, Jo
at the latter.

5. Sums for the larallel plane geometry. There are other applications ofthe Cauchy
partial fraction expansion in dispersion calculations. For instance in the parallel plane
geometry (a limiting cylinder) the coefficient X2 becomes

2 2(a + a, + 2t + 2/)2X2o=l+16Npea21.ot_.+"2 j (A+fl4;- (A. A

where A1 < A2 <" denotes the increasing sequence of nonnegative zeros of

aj sin (a) -/3 cos (a) 0, /3 _--> 0.

The infinite sum can be rewritten

S3,,(fl)+4(a2+fl +f12) S4c, l(fl) +4(a2+fl +fl2)2SSc,,(fl
where

21 ay
2).sT"k( "-jk (i , 2k) . "--

In Tables 3 and 4 we record the SMP derived formulae for s’k(fl) and s’k(fl),
m 1, 2, , 5, where

1 1sT’() =Y (a- a,)

TABLE 3
The sums

/32
3(1+/3)

-+
2 A+/3+/3

1[1 15/3(1+fl)]3-- (-9-12/3 + 4/3 + 4A) 4
k(ak+/3 +/3

111--4!- (15+20/3-6A2k-4/32)+/3(l+/3)(-9+3fl+/32)A +2--kkk/39 (1 +/3)2 4/33(12 + /3)3
4A k(a q-/3 "+"/3

5 -(-1575 2040/3 +456/32 + 224/33 +48/34+ a(600+ 112/3 +48/32)+ 16A)

/3( +/3 )( 1035 1560/3 360/32 + 96fl + 16/34) _5/32( +/3 )2(3 q- 24/3 + 8/32) 14
48A 16A

21/33(1+/3) /34(1+/3)4
4

128 8a{a+/ +y. -(-2835 3480/3 + 1096/32 +

/3( +/3 )(45 1200/3 213/3 + 108/3 + 16/34)

/32(1 +/3)2(90-300/3-90/32+6/33+/34) 15/33(1

9/34( +/3 )4 /35( +/3)5
256A 16A(A+/3 +/3
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TABLE 4
The sums S’’k(3 ).

2(a+ +)s7,(13)

3 /3 /32(1+/3)
2 a a,(a + + t

1[3 (6+
fl(-21+12fl+4fl2) 3f12(l+fl)] fl3(lq-fl)2

4a 4A 42Xk(Xk+/3 +/3

[-(24+7/3)-3 4
/3(-9+60/3+20/3 3/32(1+3)(-3+3/3+/3 27/33(1+/3) ] /34(1+3)3

2a.] . +-
2,, 4a(., +/3 +/32)

1114 (720+285/3+2/3,]+14/32+6/33)-/3(3105+12600/3+453632+224133+48/34)
5! 48A

/32( +/3 )(-2205 + 7800/3 + 2760/3 + 96/3 + 16/34) 5/33( -F /3 )2(-363 + 120/3 + 40#2) ]
+

48A’
+

16A
19/34(1+/3)3 #(+#)4
28a 8aa++)

1[-15- (5760+2805/3+312/32+128/33+36/3A) /3(14895+37800/3+14952/32+1568/33+336/34)
6!--if- 16A,

/32(1 +/3 )(495 + 9000/3 + 3435/3 + 268/3 + 48/34)

5/33( +/3 )2(-729 + 840/3 + 300/3 + 12/3 q- 2/34) 15/34( q-/3 )3(--354 + 105/3 + 35/3

79/35(1 +/3)4 /36(
256 16(h2, +/3 +/3

Here the Cauchy partial fraction expansions

cos
,/Ea sin (,) /3 cos () (2 2 2-a)(a++

and

sin (A) 2A,8
X sin (X)-3 cos (X) ()t-,)(X+3+

lead to useful representations of

and

cos (4)
(z ,) v"(v sin (v) -/3 cos (V’))

sin (v)
(z a) vq(vq sin (vq) -/3 cos (v))

and thence of $7’k(3) and S,"k(/3).
The four conditions of the first form of Cauchy’s theorem are satisfied for f(a)

sin (a) -/3 cos (a), g(a) cos () and g(a) sin (a). In particular, Condition (i) is
satisfied because g(a,)/f(a) is regular save for the zeros of f(a). If C denotes the
square contour on the Argand diagram with vertices at (+(j +)rr, +(j +)rr) then the
sequence {C} satisfies Condition (ii). Indeed the zeros of f(a,) are real; the proof
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parallels Lommel’s proof for hJl(h )-/3Jo(h ). And the zeros off(h lie on the interval
(jr,jr+1/27r); viz., (d/dX)Xtan(X)>-O on the interval (jTr-Tr, jr+Tr) and
jr tan (jr) 0. To see that Conditions (iii) and (iv) are satisfied we note that ]tan (h)l2

(cosh(2Imh)-cos(2Reh))/(cosh(2Imh)+cos(2Reh)) implies that on the
horizontal sides of C tanh (j +)r -_< ]tan (h)] _-< coth (j +)r, and that on the vertical
sides of C [tanh (h)[ 1. Thus [tan (h)[ 1 on C as j - c. It follows that [g(h)/f(h)[
is bounded by (]h]-/3) -1 =< ((j +])Tr-/3)-1 on C asj and hence vanishes uniformly
as j- c.

The dispersion coefficient X2 is then

1
X2 1 + N2pe

(A 2 fl2)3--- -.[_fl3(l+fl)3_A61 360A21
/3(1 +/3)(-225 1230/3 330/32 + 48/33 + 8]4)

32(1 +/3)2(-33+303 + 1032)
24A 4 360

585 + 810/3 78/32- 192/33 244- 8A 4+

-A2 12
+

45 -for/3 0, the following is useful"

lf12 4 16 4 16 64 69248 512
l _..6 j7._j8

__
14175 93555 212837625 8292375

which was derived from (d/dfl)A 2A21/(A] +/3 +/32) by the method of Frobenius.

6. Conclusion. The foregoing analysis turns on two items. Firstly, the existence
of the Cauchy partial fraction expansion for g(A)/f(A). This is justified if Conditions
(i), (ii), (iii) and (iv) of Cauchy’s theorem (cf. Copson [4, pp. 144-148]), are satisfied.
Secondly, the evaluation of

d" A Ak

This can be done because A- Ak is an unrepeated factor of f(A) so that if f(A) is
regular then fk(A) =f(A)/(A Ak) is regular; hence fk")(Ak) =f("+)(Ak)/(n + 1).
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AN ELEMENTARY INEQUALITY FOR WHICH EQUALITY
HOLDS IN AN INFINITE-DIMENSIONAL SET*

RAY REDHEFFER" AND ALEXANDER VOIGT$

Abstract. An inequality involving an infinite series of geometric means has the curious property that
the set for which equality holds is of infinite dimension.

Key words, inequality, infinite set

AMS(MOS) subject classifications. 26-01, 26A86, 26D15

1. Introduction. Throughout this note n N {1, 2, 3,...} and {an} for n N is
a sequence of positive real numbers. The geometric mean of the first n of these numbers
is denoted by

Gn (ala2 an) 1/n.

Our principal objective is to establish the following.
THEOREM 1. Let al + a + a5 +" < oo. Then

(1) G1-2G2+ 3G3- 4G4+" -< a + a + as+"
whenever the left-hand side converges. If a2j- # o(1/j) the inequality is strict, but if
a2j_ o(1/j) there is exactly one choice of {a2j} for which equality holds.

The condition a2_ o(I/j) allows an infinite-dimensional subset of the Hilbert
space 12, and if we had O(1/j) instead of o(1/j), the subset would be isomorphic to
the Hilbert cube. We know of no other inequality that exhibits behavior such as this.

In the course of proving Theorem 1 we review some significant classical inequalities
from our own point of view. We also supplement the theorem by an inequality in the
opposite direction and discuss the difficult problem of convergence.

2. Inequalities of Bernoulli, Rado and Maelaurin. Let us start from Bernoulli’s
inequality

(2) (l+y)n>l+ny, n>=2, y>-l, y#0

for which an inductive proof can be given with ease. Setting x 1 + y we get the
equivalent inequality

(3) xn>nx-(n-1), n>=2, x>0, x#l.

If we choose x Gn/Gn_ in (3) and multiply by Gn_ the result is

(4) a,>-nGn-(n-1)Gn_, n>=2,

with strict inequality unless Gn Gn_. The arithmetic mean

a + a2 + + anA

satisfies an nAn-(n- 1)An_I and (4) becomes

(5) n(An G,) >= (n 1)(An_- Gn-).,

* Received by the editors September 16, 1985; accepted for publication January 7, 1986.
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under auspices of the U.S. Special Program, Alexander von Humboldt-Stiftung.

$ Department of Mathematics, Universitt Karlsruhe, Karlsruhe, West Germany.
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which is one form of Rado’s inequality. As indicated in [2], the latter provides the
basis for an inductive proof of Maclaurin’s inequality Gn -< An, with full control of
the cases of equality. Addition of the results (4) gives the following, which is also
known as Rado’s inequality:

ak >- nGn mG,,,, n > m >-_ 1.
m+l

It is seen below that (4) leads to Theorem 1 and that is the reason why these
familiar results have been reviewed above. Of course, (3) can be obtained by noting
that the function f(x) x nx satisfies f"(x) ->_ 0, f’(1 0, and hence f(x) -<f(1). The
proof based on Bernoulli’s inequality has been preferred here because of its historical
interest.

3. Proof of Theorem 1. When the series converge we set

E=a2+aa+a6+" ", U=al+a3+as+" ", G=G1-2G2+3G3-4G4+" ",

and we denote the partial sums by E(m), U(m) and G(m), respectively, where the
summation stops at index m. Hence m is even, odd, and indifferent for E, U, G,
respectively. By (4)

a3>-3G3-2G2, as>-5Gs-4G4, a7>=7G7-6G6,

and so on. Upon recalling that al G and adding, we get U(m)>= G(m) for all odd
integers m. By 2 we have equality if, and only if,

G3-- G2, G5-- G4, G7--- G6,

and so on. The equation G2k/ G2k is equivalent to

1)2k(6) (a2k+ aa2"’" ak.

Hence, we can prescribe the azk arbitrarily and the ak+ are then determined uniquely.
Equation (6) gives G2k azk+ and the series G when G2k G2k+a reduces to the

following without parentheses"

al + (-2a3 + 3a3) + (-4a5 + 5a5) +- ".

The series with parentheses converges by hypothesis, and the parentheses can be
dropped if, and only if, (2k + 1)ak/-0. This gives Theorem 1.

4. A two-sided inequality. Adding (4) for even values of m gives -E(m)<-_ G(m)
for m even, and equality is equivalent to

(a2k)k- ala2 a2k-1, k= 1, 2," m/2.

Here we can prescribe a:k- arbitrarily and the a2k are then uniquely determined. The
equality -E G is possible if, and only if, a2j=o(1/j). Letting mee and ignoring
the cases of equality, we are led to the following theorem:

THEOREM 2. Let a + a2 + a3-t- < o0. Then the series G is convergent and satisfies
-E<-_G <- U.

The only remaining problem is to establish the convergence. To this end let e > 0
be given and choose m so large that

amd-am+ld--am+2+. ".e.

With m fixed, let

P Pn am+lOire+2 an, rl > m.
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By Maclaurin’s inequality between arithmetic and geometric means

p<

Raising both sides to power 1/n we get an inequality which implies

lim sup rip1/" <- e.

This gives lim sup riG,, <-e and hence nGn- 0 as n m. If we use this fact, and apply
the method of 3 to a segment

am+ + am+2 + + a,,

we find that the series G satisfies the Cauchy criterion, hence converges.
The proof of Theorem 2 shows that the simultaneous equalities G(2n)=-E(2n),

G(2n + 1)= U(2n + 1) are possible only if all a are equal.

5. The problem of convergence. That G may converge without convergence of E
or U is shown by the following remark, whose proof is left to the reader: Let S be an
infinite subset of N and let a > 0 be arbitrarily prescribed for j N- S. Then we can
determine a > 0 with j S in such a way that the series G converges. Although
convergence of both E and U ensures convergence of G, as seen in Theorem 2,
difficulties remain when convergence of E or U alone is postulated. Here we give a
sufficient condition which is related to Theorem 1"

THEOREM 3. Let the series U be convergent, and suppose there are positive constants

m, M such that

mak+l Gk Ma2k+, k N.

en G converges i and only if a2k+ o(1/k).
The special case m M 1 reduces to the case of equality in Theorem 1.
If G converges then kG2k+l0 and the condition kak+l0 follows from

ka2k+l kG2k+(a2k+/ G2)k/(2k+l kG2k+m-2k/(2k+l).

The main diculty is in the converse.
Suppose, then, that a2k+ =o(1/k). We define b2k+ by

(7) a.b:. -2kG + (2k + 1)G+
and note that (4) gives b2k+ 1. A lower bound can be obtained from the identity

b+ G/a2+)2/2+(2k + 2k(G:/a2+)/+)
together with 0< G2k/a2k+M and the limit

lim (2k+ 1-2kM/2k+) l-log M,
k

whose verification is left to the reader. Hence, there is a constant C such that b2k+ C
Referring to (7) we see that

E I-2k+2k+
k=l

converges by the comparison test. This establishes existence of lim G(2n 1) as n .
The convergence of G now follows from

nG2, Mna,+l O, n .
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In a similar fashion, if E converges, and

ma2k <- G2k-1 Ma2k

for positive constants m, M, then G converges if, and only if, a2k o(1/k).

6. Historical note. The inequality Gn --< A, is attributed by Hardy, Littlewood and
P61ya [2] to Maclaurin and we have followed this attribution here. By a somewhat
different procedure Rado’s inequality (5) is also derived in [2] and is used to give an
inductive proof of Gn-< An. Another derivation of Rado’s inequality was given by
Jacobsthal [3] in 1951, which is to say, 17 years after the appearance of the first edition
[2]. Here the starting point is the identity

A"=G"-ln (n-l)G,f]+
and (5) follows by the choice x G,,/G,,_I in (3). This is the choice we made to get
the equivalent equation (4), though the latter is not mentioned in [1], [2], [3]. We
believe that the particular sequence of events in 2 may have some advantage over
other treatments but, because of overlap with [1], [2], [3], this part of our paper should
be regarded as expository.

Theorem 2 is deduced in [5] from a general inequality, of which -E_-< G and
G_-< U are extremely special cases. The proof of convergence following Theorem 2
was outlined in [4], but so briefly that the argument caused difficulty for some readers.
The missing details have been supplied here. We have not come across any prior
statement of Theorems 1 or 3.
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NEW INEQUALITIES OF MARKOV TYPE*
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Abstract. For any polynomial f with complex coefficients we define

Ilfll :-- I/(t)12w(t) dt

where w:(a, b)- R is a positive and integrable function with all moments finite. It is well known that there
exists a constant y,, not depending on f, such that IIf’ll-<- y. Ilfl} for all f, degf-< n. In the present paper we
consider the analogous inequality for derivatives of higher order and compute the best possible y,. This
constant turns out to be the largest singular value of a certain matrix. Two examples are given.

Key words. Markov inequality, othogonal polynomials, matrix norm
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1. Let -o_<_ a < b <__o and denote by w’(a, b) R a positive and integrable
function with all moments

’b

t"w(t) dt, n >=O

finite. For any polynomial f with complex coefficients we define

(1) Ilfll := If(t)[2w(t) dt

In [3] Mirsky showed that there exists a constant 5’., not depending on f, such that

(2) II/’11-<- . II/11
for every polynomial f, degf=< n.

In this paper we show that the best possible value for 3’, is the largest singular
value of a certain matrix. Moreover, (2) will be generalized to derivatives of higher
order. Finally, the method which yields the best possible 3’, will be illustrated by two
examples.

2. First of all we introduce orthogonal polynomials with reference to the papers
of Bellman [1] and Mirsky [3]. Under the above-mentioned assumptions there exists,
according to [6], a sequence of real orthonormal polynomials p,, n >= O, associated
with the weight function w(t), i.e.,

(3) p.pmW dt 6..,, n, m >= O.

If (2) is valid for real polynomials, the same is true for complex ones since f g + ih,
g, h real, implies Ilfll 2= [Igl12+ Ilhll . Therefore, let f be a real polynomial of degree
n. The (unique) representations

f(t) Ckpk(t), f(r)(t)-- dmPm(t). 0<= r <- n,
k =0 =0

imply

(4) Ilfll -- C, IIf(r)ll :z-- d 2

k=O =0

* Received by the editors February 5, 1985, and in revised form November 25, 1985.
f Institut fiir Mathematik und Angewandte Geometrie, Montanuniversit/it Leoben, A-8700 Leoben,

Austria.
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because of (3). On the other hand,

CkPkr(t) r dmPm(t)
k=0 =0

yields

(5) ,
c e(k)= dj, O<--j < n-- r,

k=O

where

e := pr)pjW dt.

Let c := (Co," ", c,) R "+1, d := (do," ", d,,-r) R "-r+l and

(6)
eo "(r)

/nO

A(r) :=
(r)

r.on_ enn_

According to these definitions, (5) can be interpreted as the linear transformation

A(.r)c=d.

Since Ilfll--Icl and IIfr)ll- Idl, where Icl, Idl are the Euclidean vector norms in R "+1

and R"-r+l, respectively (cf. (4)), we have the following problem:
Which is the best possible constant y(,,r) such that

Obviously, this constant is the best possible in

The answer to this question is well known [5]"
y(.r) is the 2-norm of A(.r). This norm is the largest singular value of A(.r), which

is the square root of the largest eigenvalue of (A(,f))’A(,).
Let A (aik) R be any real matrix. Then the Frobenius norm

(7) IIAII := a,k
k--1

provides an upper bound for the 2-norm of A [5]. Consequently we obtain an upper
bound for y(,,r) in this way which, moreover, can be expressed easily in terms of the
pj. Since

p (,,r p...nmlYm, /’/ O,
m=O

it follows that

IIA( ’II IIP ’ll =.
j=0
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Together with the trivial lower bound for

max ]]p!r)]l < y(nr),
0j

this gives the estimation

(8) max p)ll--< (nr) < //J-(r) 2

O=j<=n j=0

which, restricted to r 1, is better than that given in [3]. Let us sum up now the results.
TnogM 1. Let [[/[[, p, A( be defined as in (1), (3) and (6), and let f be any

polynomial with complex coefficients, degf n, n O. en the best possible constant
such that

(9) [[f(r)[]
is the largest singular value ofAr). Moreover, estimation (8) hoMs.

Example 1. We consider the case a =-, b , w(t)= e A corresponding
system of ohonormal polynomials is

p,(t)={w/:2"n}-/H(t), n0,

where H(t) denotes the nth Hermite polynomial [6]. Since H 2nH_, n 1, it is
easy to prove by induction that

(10) p)= 2r!

holds for 0 r n. Consequently,

()}
ifkr+j,

) /

2rt if k r+j.

Obviously, the largest eigenvalue of (Ar)’A is 2r() and therefore, by Theorem 1

By (10) we have p y, Thus, in (8) the equality sign holds on the left-hand
side. Moreover, (9) becomes an equality for the polynomials p(t) themselves.

These results, as far as they concern the case r 1, were also proved by Mirsky
[3] by a straightforward computation.

3. We want to give a fuher application of Theorem 1 which, however, requires
some additional considerations. We need the following lemma.
La. Let A (a) R be any real macrix with column sums s :== a

and row sums :== a. en

g max z,-- s
i=1 m k=l

where A denotes the largest singular value ofA.
Proof is the largest eigenvalue of M := A’A. Since M is normal the following

estimation holds [4]"

r >_- i max IS, I,
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where S is the sum of the elements in any x principal submatrix of M. The
representation mik "-j=l afiajk of the elements of M yields

Sn mik Y ajiajk Y ajak E z.
i,k=l i,k=l j=l j=l i,k=l j=l

us, for the special choice n, we have obtained the estimation

1 1 2-& Xn nj=l

Since ffA is the 2-norm of A, which is invariant under transposition, the assion is
proved.

Example 2. t w(t) e-’t, a R, a > -1, a 0, b . A corresponding system
of ohonormal polynomials is

{ n’ } 1/2

p,(t)=
r(n++ 1)

t(t), n0,

where L(t) denotes the nth Laguerre polynomial [6]. As one can prove easily, the
recurrence formula [2, p. 109]

dtL L,_ + L,_ O, n > 1

leads to

(11) pn--c(pn_l--Pn_l), n>=l, c:=(l+e/n)-/2.

Hence, for k => 1, j => 0,

and so

e) {-c if k =j+ 1,
k; CeCk if k #j + 1,

..C. C
2

C

An := A(1) C C

0 C

An upper bound for 3,,) is [[a[l- Ila, ll (of. (7)). m short calculation yields

(12) ((nl))2 IIAnlI2F--c2 1
C2 -1=< nc2--1

Substituting for c in (12) and observing that (1 + a/n) >= 1 + a, we obtain the "nicer"
estimation

/--< IIA I1 -< (1 + a)-l/2n,

which, moreover, implies that yl O(n).
Next we present a lower bound for yl by applying the above lemma to An. Let

sj, 0_-<j =< n, denote the column sums of An. Then, by a short calculation,

1 2 c2 -1
(13) (’)/(hi))2> 2c(c" 1)+ n(c- 1)=nj=l sj n(c-1) c+l
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Finally we show that y’)/n > K for some positive constant K as n- oo. We divide
the right-hand side of (13) by n2, substitute for c and take the limit as n --, oo. This yields

g(a) := 4(4e-’/2- e-" + a -3)/a 3,
which obviously is positive for all a > -1. (If a =0, then g(0) lim_o g(a) =].) With
respect to Theorem 1 we thus have proved the following.

THEOREM 2. Letfbe any polynomial with complex coefficients, degf<- n, n >= O. Let
[If[[ be defined by (1) with a =0, b =c, w(t)= e-it, a R, a > -1. Then we have

)--1/2 n fll.
The exponent of n in this inequality cannot be replaced by a smaller one for arbitrary n.

In Example 2 it is difficult to compute the exact value of y(,r) for arbitrary n and
r. The estimates (12) and (13) for y(,1), however, are sharp enough to give the right
order as n o. In the case a 0 the bounds obtained by taking the limits in (12) and
(13) as a- 0 have the form

(2n+ 1)(n+ 1)} 1/2

6

1/2

")/(hi)
2
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A WHIPPLE’S TRANSFORMATION FOR HYPERGEOMETRIC SERIES IN
U(n) AND MULTIVARIABLE HYPERGEOMETRIC ORTHOGONAL

POLYNOMIALS*

R. A. GUSTAFSON?

Abstract. A generalization of the terminating form of Whipple’s transformation is given for hyper-
geometric series in U(n). This is proved by explicit evaluation of a generalized Biedenharn-Elliott identity
for multiplicity-free U(n) Racah coefficients. As a corollary, a Dougall’s theorem is obtained for hyper-
geometric series in U(n). A family of summation theorems for classical ordinary and basic hypergeometric
series is also proved. Finally, a family of orthogonal polynomials on the discrete set xl +" + xn N, where
the x and N are nonnegative integers, is defined which generalizes the (discrete) Racah polynomials of
Wilson. We prove a recurrence relation, duality theorem and an identity similar to an addition theorem for
these generalized Racah polynomials.

Key words, hypergeometric series in U(n), multivariable orthogonal polynomials, representation theory
of U(n), Whipple’s transformation, Dougall’s transformation

AMS(MOS) subject classification. 33A75

Introduction. In 1976, Holman, Biedenharn and Louck [15] defined a multi-
variable generalization of classical well-poised hypergeometric series which they called
"well-poised in SU(n)", n >-2. These new special functions were closely connected to
the multiplicity-free Racah and Wigner coefficients for SU(n) (see 1 and 2 below).
They showed that the hypergeometric series well-poised in SU(n) satisfied a generaliz-
ation of the terminating 4F3(-1) summation theorem and gave an SU(3) analogue of
Whipple’s theorem [4, eq. (4.3.4)]. In 1980, Holman [14] defined a general "hyper-
geometric series in U(n)" and proved generalizations of the Saalsch/itz summation
theorem, a Vandermonde (or Gauss) summation theorem and the terminating form of
the 5F4(1) summation theorem. These results were proved by explicitly computing
identities involving multiplicity-free Racah and Wigner coefficients for U(n) (or
SU(n)). However, it remained an outstanding problem to find a true generalization
of Whipple’s theorem to hypergeometric series in U(n).

The importance of finding such a generalized Whipple’s theorem had been noted
by Andrews [3] and Milne [20]. They hoped that if there were such a generalized
Whipple’s theorem, then there would also be a q-analogue of it. In the classical case,
Watson’s q-analogue ofWhipple’s theorem [24] had been used to prove several partition
identities including the Rogers-Ramanujan identities (Watson [24]). We remark that
in a different direction Andrews [3] has given a generalization of Watson’s q-analogue
of Whipple’s theorem.

In this paper we prove a generalization of Whipple’s theorem for hypergeometric
series in U(n). We first prove in 1 (Prop. 1.50) a generalization of the Biedenharn-
Elliottt (B-E) identity for certain multiplicity-free U(n) Racah coefficients. Generaliz-
ations of the B-E identity have been previously stated and proved by more than one
author [10], [19]. In 2 we explicitly compute a degenerate case of this B-E identity
and obtain a generalization of Whipple’s theorem (Thm. 2.24). For the classical case
n 2 this proof is already given in [15].
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As corollaries of Theorem 2.24, we obtain in 3 several other summation and
transformation theorems for hypergeometric series in U(n). In particular we obtain
generalizations of Dougall’s theorem (Cor. 3.1), an analogue of Dougall’s theorem
(Cor. 3.4) and a terminating form of Whipple’s 6F5(-1) transformation (Cor. 3.8 and
3.10). Finally, we prove a family of summation theorems for classical terminating
,+F,(1) (Thm 3.13) and their q-analogues, ,+p,(1) (Thm. 3.18), for n _>-1.

In 4 we define a family of orthogonal polynomials in several variables (Prop.
4.5) which are orthogonal on the discrete set x +... + x, N, where the xi, 1-<i_-< n,
and N are nonnegative integers and n->2. In 5, 6 and 7 a recurrence relation,
duality theorem and an identity similar to an addition theorem are proved for these
generalized Racah polynomials.

Finally, in the appendix we prove the key technical Proposition A.16 which is
needed in the explicit computation of the special case of the B-E identity used in the
proof of Theorem 2.24.

The approach we have taken in this paper relies on the algebraic properties of
the Racah coefficients or the "Racah-Wigner algebra of tensor operators" (see [8]).
In fact, the key B-E identity is a consequence of the associativity law in the Racah-
Wigner algebra 8], 19].

Another complementary approach to the transformation identities for hyper-
geometric series in U(n) is by means of difference equations. By this method Milne
[20] gave an elementary proof of Holman’s 5F4(1) summation theorem.

The results in this paper involve only the multiplicity-free Racah coefficients for
U(n). A better understanding of the nonmultiplicity-free Racah coefficients should
lead to further generalizations of the transformation identities discussed here and to
new orthogonality relations.

1. Vector coupling coefficients, recoupling coefficients and the Biedenharn-Elliott
identity. We shall recall some facts about Wigner coefficients for U(n), n -> 1, which
are expounded in greater length in [6]. The irreducible representations of U(n) are
in one-to-one correspondence with the set of n-tuples of integers m [m] [m],
[rnl, m2,""", m] satisfying

(1.1) m -> m2, >- -> m,,.

m is the highest weight of the irreducible representation 7r,, of U(n) acting on the
representation space V,. The Gelfand-Zetlin basis (over C) of V,, is defined in [17]
or [6]. A Gelfand pattern (m) (m) is an array of integers mk,i, 1 <--_ k <-_ <= n, satisfying
the "betweenness" conditions

(1.2) ink,l+ mk, <- m+,+

for l<=k<-l<-n-1. The first row of the Gelfand pattern (m) is m =[m,,..., rn].
To each Gelfand pattern (m) is associated an orthonormal basis vector in V, which
is also denoted by (rn). The vector (m) is called a "Gelfand state" and the set of all
Gelfand states (m) with first row m is an orthonormal basis of V,.

The weight h(rn)= [hi,..., ,]= [A] of a Gelfand state (m) is given by
1-1

(1.3) Al= E mkt E mkl-1
k=l

for 2 n and A m. The set of weights satisfies a natural partial ordering:

(1.4) A->A’ if and only if Ai-> A
i=1 i=1
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for all l, 1 -< =< n. There are unique states in V., of highest weight ml., , m..] and
lowest weight Ira.., m.._l, .., rn.].

We are interested in the explicit decomposition of tensor products of the form
Vm (R) V,., or V,.,,(R) Vm (R) Vm, where m is an arbitrary n-tuple of integers satisfying (1.1)
and m’, m" are of the form [p’, 0,. ., 0] and [p", 0,- -, 0] respectively, where p’ and
p" are nonnegative integers.

We have

(1.5) Vm ( V,,V
where the sum is over all n-tuples of integers/x [/x.,...,/z.] satisfying

(1.6a)

and

(1.6b) (bin m,,, p’.
i=1

A space V, on the left-hand side of (1.5) is said to occur in V,. (R) V,.,.
The set of all pairs (rn) (R) (rn’) where (rn), (m’) are Gelfand states of V,. and Vm’

respectively forms an orthonormal basis, called the Gelfand-Zetlin basis, of Vm (R) V.,,.
Similarly the set of all triples (m") (R) (m) (R) (m’) forms an orthonormal basis (Gelfand-
Zetlin basis) for V,,,,,(R) Vm (R) Vm, where (m"), (m), (m’) are Gelfand states of Vm’,, Vm
and V.,,. We shall call these vectors Gelfand states of V., (R) V.,, and Vm,,(R) Vm (R) V,.,
respectively.

For each highest weight/z satisfying (1.6a and b) let T. be a nontrivial intertwining
map

(1.7) T Vm () Vm,---> V.
The map T is determined up to scalar multiples. We shall assume that the restriction
of T to the orthogonal complement of the kernel is unitary and also that T has real
matrix coefficients with respect to the Gelfand-Zetlin bases of Vm (R) V, and V (see
[6, 2]). Under these conditions T is determined up to a scalar factor (phase factor)
of 4-1. This phase factor is then fixed by convention.

We choose the following phase convention. Let

(m)=
(m)._

be a Gelfand state of Vm of highest weight z(m) [m., ., m..]= m. The first row
of (rn) is [rn]. rn and the last n- 1 rows of (rn) are (rn)._l, which is a Gelfand
pattern for U(n- 1). Similarly let

(/)=
(m),,-1

be a state of V, whose first row is [/x]. =/x and last n- 1 rows are identical to the
last n 1 rows of (m). Since the first row of (m)._ is Imp., m2.," , m._.], then it
follows from (1.6a) that (/z) satisfies the betweenness conditions (1.2). Finally let

(m,)=([p’,0,’’’’0])(O)n--1

be the state of lowest weight in V.,,. Then we require that

(1.8) ((/x), T.(m(R)(m’)))>O,
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where (,) is the Hermitian inner product on V. for which the Gelfand-Zetlin basis is
orthonormal. That the inner product (1.8) is nonzero is a consequence of [14, eq. (6)].
This phase convention agrees with that of Chac6n, Ciftan and Biedenharn [9] and
also Aliaukas, Jucys and Jucys [1] (see also [14]).

Remark 1.9. For the sake of simplicity the dependence on the highest weights rn
and m’ in T. will not be denoted, but understood. Thus two distinct operators whose
domains are different spaces Vm (R) V,, but whose images are the same space V. will
both be denoted by T.. Also under essentially the same conditions as above and with
the same notation, we construct the U(n) intertwining map"

(1.10) T," V,,,,(R) V,,,, V,.
DEFINITION 1.11. Let notation be as in (1.5). For arbitrary (m), (m’) and () in

the representation spaces Vm, V,,, and V, respectively, the inner product

(1.12) ((/z), T,((m)(R)(m’))}
is called a vector-coupling, Wigner or Clebsch-Gordan coefficient of U(n). These
coefficients are simply the matrix coefficients of the intertwining map T,.

As a consequence of the definition of the maps T, and as discussed in [6, eqs.
(2.8a and b)] (with different notation), we have the following orthogonality relations
satisfied by the Wigner coefficients:

PROPOSITION 1.13. With notation as above, let (m), (fit) be fixed states of V,, and
(m’), (r’) be fixed states of V,,, then_, ((l), T.((m)(R)(m’)))((t.), T((n3)(R)(n3’)))

()

(1.14a) 1 if(m) (r) and (m’) (rh’),
[o otherwise,

where the sum is over all states (tz) of all distinct V, occurring in V,,(R) V,, (as in (1.5)).
Similarly if (tz), (tz’) are fixed states of V, and V,,, respectively, occurring in Vm (R) Vm,,
then

Z <(/x), T,((m)(R)(m’))><(lx’), T,,((m)(R)(m’)))
)(( m’)

(1.14b) _’1 ifl=tx and ()=(’),
0 otherwise,

where the sum is over all Gelfand states m (R) m’) of Vm (R) V,,,
We now consider decompositions of the triple tensor product V,,,,(R) V,, (R) V,,, with

rn an arbitrary U(n) highest weight and rn’, m" of the form [p’,0,... ,0] and
p", 0, , 0] respectively, with p’ and p" nonnegative integers. We first construct U(n)

intertwining maps of the form

(1.15a) 1(R) T, Vm,,(O Vm ( Vm, --) Vm,,( Vl
where V, occurs in Vm (R) Vm, (as in (1.5)) and T, is defined as in (1.7); and also

(1.15b) T- V,,,,(R) V V
where V occurs in Vm"(R) V and T is defined as above.

PROPOSITION 1.16. For afixed highest weight v such that V occurs in V,,,(R) V, (R) V,,
(i.e. Homu() V,,,(R) V, (R) V,, V) 0), then a basis over C for Homu() V,,(R) Vm (R)
Vm,, V) is given by the set I of all U(n) intertwining maps of the form
(1.17) T(I(R) Tla,)" Vm,,Q VmQ Vm,-’> V

for all highest weights Iz such that V, occurs in Vr, (R) V,,, and V occurs in Vm"(R) V,,,.
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Proof. One checks that the dimension over C of Hom V,,,,,(R) V,,,, (R) V,,,, V) equals
the order of L This can be done for example by a U(n) character computation.
Second, we show that the elements of I are linearly independent over C. Let N and
M be integers such that there exists states (m")l V,,,,, (m)k,l V,, and (m’)k,l Vm’ for
k=l,...,Nand l=l,...,Msuchthat

N

(1.18a) Y (m)k.l(R)(m’)k,l V, component of V,,(R) V,,,
k=l

for all l, 1 <- _-< M, and

M M

(1.18b) v= E (m")t((m)k,t()(m’)k,tE V component of V,,,,(R) Vm@ Vm,.
/=1 k=l

It follows that T(I(R)T,)(v)#O and T(v)=0 for all Tel such that T T(I(R) T,).
This implies that the elements of I are linearly independent over C.

Now with m, m’, m" as in (1.15a and b) and/x’ and u are U(n) highest weights
such that V, occurs in Vr,"(R) V, and V occurs in V,,(R) Vm’, then we construct the
U(n) intertwining maps

(1.19a) T,,(R) 1 :( V,,,(R) V,.)(R) Vr., V,(R)
and

(1.19b) T: V.,(R) V,.,- V.
As above, a basis over C for Horn (V,.,,(R) Vm (R) V,.,, V), if nonzero, is given by

the set of all U(n) intertwining maps of the form:

(1.20) T(T.,(R) 1) V,,,,(R) V,,(R) Vm’-- V
for all highest weights/x’ such that V,, occurs in V,,,,(R) V,, and V occurs in V,(R) Vm’.

We thus obtain two different bases over C for Hom (V,,,(R) V,,(R) Vm,, V): One
basis consisting of maps of the form (1.17) and another basis consisting of maps of
the form (1.20). The entries of the change of basis matrices between these two are
called recoupling or (multiplicity-flee) Racah coefficients.

DEFINITION 1.21. Let assumptions be as in (1.15a and b). Define the (multiplicity-
free) Racah coefficients

m" m /z’]ER
by the following identity:

[ m" m tx’] T’( T’(R) I(1.22) T(1 (R) T) E, /,,

where the sum is over all highest weights/z’ such that V,, occurs in Vm,,(R) V,, and V
occurs in V,,(R) V,,,.

Remark 1.23. In Definition 1.21 we can vary the assumptions on the highest
weights m, m’ and m". Let m" be an arbitrary U(n) highest weight and m, m’ be of
the form [p, 0,. ., 0], [p’, 0,. ., 0] respectively, where p, p’ are nonnegative integers.
If tx m+ m’=[p+p’, 0,..., 0] then the intertwining map T(I(R) T,) is defined
similarly to (1.15a and b). For all highest weights/z’ such that V,, occurs in Vm,,(R) V,,,
the maps T(T,,(R) 1) are defined similarly to (1.19a and b). They still form a basis of
Hom( V,,,,,(R) V., (R) V.,, V). We therefore define ["" ’m’ ,] by the same expression (1.22).
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Remark 1.24. The notation in Definition 1.21 for the multiplicity-flee Racah
coefficients above differs from the standard notation of Biedenharn et al. [17]. The
standard notation for a general Racah coefficient of U(n) is much more complicated
and, in the case above, would have a number ofredundancies. The notation of Definition
1.21 is similar to that of the 6-j symbols for $U(2) [7], [12] or more general groups
[10], [29]. However, the Racah coefficients are not identical to the 6-j symbols but
differ by a product of dimension factors and a sign factor [29]. The 6-j symbols
themselves for U(n), n > 2, are not completely satisfactory as different authors choose
different sign factors (see [28]). Since we will not need these complicated sign factors
in this paper, we avoid them.

We now state the orthogonality relations satisfied by the Racah coefficients above.
PROPOSITION 1.25. With notation as in Definition 1.21 let the highest weights , u,

m, m’, m" satisfy the assumptions of (1.15a and b) and also with I replaced by the
highest weight i. Similarly let I’, u, m, m’, m" satisfy the corresponding assumptions for
(1.19a and b) and also with I’ in place of 1’. Then we have

, m’ m’ 0 otherwise,

where the sum is over all highes weighcs ’ such that g., occurs in V,,@ V and V
occurs in V.,@ V,. Also

(1.26b) 2 m’m u u otherwise,

where the sum is over all highest weights I such that V occurs in V,,, (R) V,,,, and V occurs
in V,,,,(R) V.

Proof Assume that ,/2 are highest weights of irreducible representations occur-
ring in Vm (R) Vm, and also that u and are highest weights of irreducible representations
occurring in V,,(R) V,, and V,,,,(R) V, respectively. Let (v) be a fixed state of V, and
() of V. We first prove the following identity:

Y ((v), T(1 (R) T)((m")(R)(m)(R)(m’)))
(m")(R)(m)(R)(m’)

(1.27) ((), T(I(R) Tc)((m")(R)(m)(R)(m’)))

_{1 if/z bZ, v and (v) (),
0 otherwise,

where the sum is over all states (m") (R) (m) (R) (m’) of V,,,,(R)
By the definition (1.7) of T, T, T. and Ta the left-hand side of (1.27) equals

{((v),T,((m")(R)(tz)))(m")(R)(m)(R)(m’)

((m")(R)(/x), (1(R) T)((m")(R)(m)(R)(m’)))}
(1.28a)

(1.28b)

{ ((f,), T((m")(R)(t2)))((m")(R)(12), (1 (R)Tz)((m")(R)(m) (m’)))}
E { ((v), T((m")(R)(/z)))((/x), T((m)(R)(m’)))}m")(R)( )(R)( m’)

{ ((),T((m")(R)(12)))((l),Ta((m)(R)(m’)))}()
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where the outer sum in (1.28a and b) is the same as in (1.27) and the inner sums are
over all states (/z), (/2) of V, and Va respectively. By interchanging the order of
summation in (1.28b) we find that (1.28b) and the left-hand side of (1.27) equal

(1.29)

E ((,), T((m")(R)(k)))((), T((m")(R)(fi)))
(m"),(),()

{ ((i),T,((m)(R)(m’)))((12),T((m)(R)(m’)))}(m)(R)(m’)

where the outer sum is over all states (m"), (/z), (/2) of Vm-, V and Va respectively
and the inner sum is over all states (m)(R)(m’) of V,(R) V,,,. By identity (1.14b) the
inner sum in (1.29) equals 1 if/z =/2 and (/z)= (/2) and equals 0 otherwise. Hence if
/z #/2, then (1.29) and the left-hand side of (1.27) equals 0. If/z =/, then (1.29) equals

(1.30) ((,), T((m")(R)(/z)))((), T((m")(R)(/z)))
(m")(R)()

where the sum is over all states of V,,,,(R) V. By equation (1.14b) the expression (1.30)
and hence the left-hand side of (1.27) equals 1 if -- and (9)= (), otherwise it
equals 0. This completes the proof of (1.27).

With assumptions similar to that in (1.27) and with a similar proof we have

E ((,), T,(R)(r,(R)l)((m")(R)(m)(R)(m’)))
(m")()(m)(R)(m’)

((v), T(R)(Ta,(R)l)((m")(R)(m)(R)(m’)))
(1.31)

_1 if/z’=/2’, ,= and(u)=(),
0 otherwise,

where the sum is over all states in V,.,,(R) V., (R) V,,,.
Applying (1.22), we obtain the following:

(m")(R)(m)(R)(m’)
((u), T(I(R) T)((m")(R)(m)(R)(m’)))

((u), T(I(R) T)((m")(R)(m)(R)(m’)))

(1.32) [m"t’ mt

(m")(R)(m)(R)(m’)
((u), T,,(R)(T,(R)l)((m")(R)(m)@(m’)))

((u), T(R)(T,(R)l)((m")(R)(m)(R)(m’))))
where the sum on the left-hand side and the corresponding sum on the right-hand side
is over all states of Vm,,(R) Vm (R) Vm, and the outer sum on the right-hand side is over
all highest weights /’, /2’ of irreducible representations occurring in V,,,(R) V such
that V occurs in V,(R) V,, and V, V,. From (1.31) the inner sum on the right-hand
side of (1.32) equals if ’= ’ and 0 otherwise. Thus the right-hand side of (1.32)
reduces to the following expression:

(1.33) E,, m p m’ u

By identity (1.27) the left-hand side of (1.32) equals if =/2 and 0 otherwise. This
completes the proof of equation (1.26a).
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Fix highest weights m, m’ and m" satisfying the assumptions of (1.15a and b) and
v such that V occurs in V,,,,(R) V,, (R) V,,,. Observe that the number of highest weights
/x and the number of /z’ for which [,; ’] is defined are both equal to
dime (Horn (Vm"(R) Vm(R) Vm,, V)). Thus equation (1.26a) implies that the Racah
coefficients [’ ’] are the entries of a real orthogonal matrix with rows indexed by
the highest weights ’ and columns indexed by the/x. Equation (1.26b) is a consequence
of the orthogonality of this matrix. This completes the proof of Proposition 1.25.

COROLLARY 1.34. With assumptions as in Proposition 1.25 we have

(1.35)
m’ u m" u /x

Proof Let i" V,.,,(R) V,. (R) Vm," Vm,(R) Vm (R) V,,,,, be the isomorphism mapping the
state (m")(R)(m)(R)(m’) of V,,,,,(R) V.,(R) Vm’ to the state (m’)(R)(m)(R)(m") of
V,.,,. By Remark 1.9 we see that T(1 (R) T. T T. (R) 1)i and T T.,(R) 1) T 1 (R) T.,) i.
It follows that

m
(1.36) T.(T.(R)I)=Y m’ T(I(R) T.,),

where the sum is over all highest weights/z’ such that V., occurs in V., (R) V,.,, and V
occurs in V,.,(R) V.,. If we now interchange the labels m" and m’ and interchange /x
and ’, we obtain

(1.37) T.(T.,(R)I)= m"
T.(I(R) T)

where the sum is over all highest weights/x such that V. occurs in V., (R) V,., and V
occurs in V.,,,(R) V..

Multiplying both sides of (1.22) by ["" a’,., . and summing over , we obtain

(1.38)

m"
T(I(R)T.)= Y, m’ T(T.,(R)I)

T( Ta,(R) 1)

by (1.26a) with summations over and /x’ as in (1.26a and b). Setting /2’=/x’ and
equating the coefficients of T(I(R) T,) in identities (1.37) and (1.38), we obtain (1.35).

We now prove a generalization of the Biedenharn-Elliott identity for the multi-
plicity free Racah coefficients above. For SU(2), the original statement and proofs are
due to Biedenharn [5] and Elliott [13] independently. For a more complete exposition
of the SU(2) Biedenharn-Elliott identity see [12] and [7]. A generalization of this
identity to arbitrary groups for general Racah coefficients was given by Derome and
Sharp 10]. Louck and Biedenharn 19] give an alternative proof for the U(n) generaliz-
ation of this identity. All these proofs consider general (nonmultiplicity-free) Racah
coefficients. The proof given below for multiplicity-free Racah coefficients is a simple
generalization of the SU(2) proof involving recoupling coefficients for four-fold tensor
products (see [12]).

Let ml be the highest weight for an arbitrary irreducible representation of U(o).
Let m2, m3 and m4 be U(n) highest weights of the form mj [pj, 0,..., 0] where p
is a nonnegative integer for j 2, 3, 4. Let V,, be an irreducible representation space
occurring in (4=1 V,.,. A basis for Homt.)((4=1 V.,,, V.,) is given by the following
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intertwining maps"

4

(1.39)
i----1

where

(1.40)

as m2, m123 vary over all highest weights of irreducible representations occurring in
V.,, (R) V.,2, V,.,:(R) V,.3 respectively and such that V occurs in V/I,1123Q Vlr/l

Let mz3 be the highest weight [pz+p3,0," ", 0]= ma+ m3 and m4 be the highest
weight of some irreducible representation occurring in V,@ V4. If V occurs in

V@ Vm,4, then consider the inteawining map"

4

(1.41) Tm(Tm23Tm,4)’ Vm, Vm
i=1

where

(1.42) T:3"V@VV T4"V@V4V Tm’V3@VV.
We now express the intewining map (1.41) in terms of the basis (1.39):

(1.43) T(T@ Tin,a)= C,.,T(T,@I)(T,:@I@I)
12,m123

where C,., C are constants. We will compute C,., in two different ways.
We have

T( T23@ T,) Tm(l@ Tm,4)(Tnz3@l@l)
(1.44)

E [mz3 m, ,23]Tm(Tm,23@l)(Tm23@l@l),
m123 m4 m m14

where the sum is over all highest weights 123 such that V occurs in V,@V and

V occurs in V,@ V.. Also we have

(1.45) T(T,I)(T3II)= Ira, m ’2]T(T, I)(T,II),
m2 m2 123 m23

where the sum is over all highest weights 2 such that V, occurs in V,@ V and
V, occurs in V,@ V.

From (1.44) and (1.45) it follows that

(1.46) C,,_[m m ml][m3 ml ml3]m3 m123 m23J k m4 m m14

On the other hand, we have

T(T T,4) T(T@ 1)(1@ 1@ Tin,4
(1.47)

E [ m’4 m2 m124]Tm(l@Tm124)(l@l@Tm,4)
m24 m3 m m23

where the sum is over all highest weights m24 such that V, occurs in V,4@ Vm and

V occurs in V,4@ V3. Similarly,

/ m,

2 Lm4 m124 ml4J
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and

(1.49) T(I(R) Tm,)(l(R)l(R)Tm,) Z / m3 r12
fill2 t. m4 rn

ff/123] Tm Thai23 () 1)( Thai2 () 1 (R) 1),
m124_1

with the sums in (1.48) and (1.49) satisfying conditions similar to that in (1.45).
Equations (1.43) and (1.46)-(1.49) imply the following:
PROPOSITION 1.50 (Generalization of Biedenharn-Elliott Identity). Let m be an

arbitrary U(n) highest weight and m2, m3, m4 be of the form [pj, 0,..., 0] with pj a
nonnegative integer for j 2, 3 4. Let the conditions in (1.40)-(1.42) be satisfied, then

(1.51)
m3 m123 m23 m4 rn m14

m12 m4 m m124/ m4 m124 m14 m3 m m23

where the sum is over all highest weights m124 such that Vm124 Occurs in Vm,4(R) V,,2 and
Vm,2 (R) V,,4 and V, occurs in Vr/,l124Q Vm3.

2. A generalization of Whipple’s transformation. In this section we will explicitly
compute a special case of the generalized Biedenharn-Elliott identity (1.51). We will
then obtain a transformation relating a homogeneous Holman hypergeometric series
W("), "well-poised in SU(n)," to a product of gamma functions times a non-
homogeneous Holman hypergeometric series F(n-l) in U(n-1). For, n 2 this result
reduces to a terminating form of the classical Whipple’s transformation between a
balanced 4F3 and a well-poised 7F6 hypergeometric series [25, eq. (7.7)].

We begin by writing explicit expressions for the Racah coefficients in identity
(1.51). These multiplicity-free Racah coefficients have been (essentially) computed by
Aliaukas, Jucys and Jucys [1] (see also [2], [14]) and also by Wong [28], [29].

We start with the following definition.
DEFINITION 2.1. If h =[h,’" ",h,] is a U(n) highest weight with hi->_0 for

i= 1,- ., n then define

(z, + n- ) !(a+ n-2)!... (z.)!
(2.2) (h)=

I-I,__<,<2__<,, (A,- , +j- i)

We now express the multiplicity-free Racah coefficient in Definition 1.21 as a
product of () factors times a U(n+ 1): U(n) reduced Wigner coefficient (see [6]
and [9]). This result is given in Wong [29] and Holman [14] except for simple factors
due to slightly different definitions. We note that there is a simple typographical error
in formula (1.9) of Wong [28] which is corrected in formula (1.13) of [28] and also
in formula (3.4) of [29] which is corrected in Holman [14]. In proving the (corrected)
formula (1.9) of [28] one uses identity (2.25b) of [18].

PROPOSITION 2.3. Let n>--2. Suppose that the U(n) highest weights m, m’, m", v,
tx, tx’ are partitions (i.e. all components are nonnegative integers) and satisfy the assump-
tions of Proposition 1.25, then

[m" m /z’] [(v)(m)]/z(([v, 0],+)[[m’,0],+](2.4) m’ v /x (/x’)(/x) /x m’ m

where

0].+,]m,
m

n+l

rn
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is a U(n+l): U(n) reduced Wigner coefficient [6], [9] and ifA=[A1,’’ .,A,] is a
partition, then [A, 0]n+ is the partition [)t 1, ",An, 0].

Similarly we obtain from [29, formula (3.3)] the following:
PROPOSITION 2.5. Let n >=2. Suppose that the U(n) highest weights m, m’, m", ,,

tx, Ix’ are partitions and satisfy the assumptions of Remark 1.23; then we have

[m" ’] [./P[(t,,)ff/l(m)]/2(([u,O!+l [[m’,O]n+] ([la,,O!,(2.6)
rn

m’ , /x i/7iiJ rn / [0,’’’,0], \ m

with notation as in Proposition 2.3.
We now describe the formula for the U(n + 1): U(n) reduced Wigner coefficients

appearing in (2.4) and (2.6). We first establish our notation.
DEFINITION 2.7. If h [h, , hl] is a U(l) highest weight and q [ql, ",

is a U(m) highest weight where and m are positive integers, => m and

(2.8)

then

h >= q >-" >- h,,, >- q,,, >= hm+l >" >- ht,

k r ]rb_l l]_=, (h-qk + k-s+ 1) 1/2

(2.9a) St,,, h q)= [ l_l l_ 1_Ii -(-q-k --- - -S -k-)llk=l lls=k+l

We also denote the omission of all factors containing qi for some i, 1-<i=< m, in the
following manner:

(2.9b) Sm(h" q)= "=i+

and similarly for some i, 1 -< -< l,

(2.9c)

(2.9d)

i-1 F" ] /11= tqk- h + i- k)
Sm(h" q),Sl"(h;i q)= I-[k-’-(-i----qk+k--i+l)=

i--1 F(qk hi + i- k) ] 1/2

Sl(h’,q)= r r,,_:..,Ilk=’ Sire(h.q)

In terms of these quantities we can express the reduced U(n+ 1): U(n) Wigner
coefficients in two different ways. Let h, h’ be U(n+ 1) highest weights such that

(2.10a)

and

h >- h >- h2 >- h’2 >=" >-- hn+l >= h’n+

n+l

(2.lOb) (hi-h)=p
i=1

for some nonnegative integer p. Similarly let q, q’ be U(n) highest weights such that

(2.11a) q > q’ >. > >= =q,=qn

and

(2.1 lb) (q,-ql)=p
i=1

for some nonnegative integer p’, p’ -< p. We also assume h and q satisfy the betweenness
condition"

(2.12) hi >= ql >- h2 >= q2 >=" >- qn >- h,,+



506 R.A. GUSTAFSON

and similarly for h’ and q’. From the calculation of Chac6n, Ciftan and Biedenharn
[9] (see also [14]) we have

[p ,0, ",O]n

(2.13)

Sn+ln+l(h; h)S,,+ln(h’; q’)Snn(q; q’)
Sn+l n+l(h; h’)Sn+ln(h; q)

S,n(q’; q’) Z (-1)’’+’+’
Pl, ,Pn

Sn+ln(;i t)Snn(q;

where ti q+ pi, Pi is a nonnegative integer for i--1,..., n and t] is restricted so
that all factors on the right-hand side of (2.13) are defined and finite.

From the calculation of Aliaukas, Jucys and Jucys 1 we find

(2.14)
v/(p-p’)!

Sn+,+(h; h)S,,n(q’; q’)Sn+ln+l(h; h’)
S,n(q;q’)S,+ln(h’;q’)

Sn+ln(h;q) Y. (-1)’
[rz,’",r.+]

Sn+ .(r; q’)
[Sn+ln+,(r; r)]2[ Sn+ln+l(h’ r)Sn+l,+l(r; h’)Sn+,,(r; q)

where q Yi=2 (hi- r) and the sum is over all U(n) highest weights r [rz," rn+l]
such that right-hand side of (2.14) is defined and finite. Note there is an "understood"
rl component of r which does not appear in the expression (2.14).

Recall the generalized Biedenharn-Elliott identity (1.51). With notation as in
(1.51) and n -> 2 we now compute a special case of identity (1.51) by setting

(2.15) m23 m2
q-- m //,1123 m12 -I- m m12 ml m*,

where if h [h,. ., An] is a highest weight of a U(n) representation, then

(2.16) A*==[-An,’’’ ,-A1]

is the highest weight of the contragredient U(n) representation For simplicity we shall
further assume that tn is a partition, i.e. all the components are nonnegative integers

Applying Propositions 2.3, 2.5 and Corollary 1.34, we have

m3 m23 m23 (m23)(m12)
(2.17a)

.(([m123’O]n+l) [ [m3’O]n+l ]m [0,..., 0],

(2.17b)

m23 m

m4 rn
m23] :I ./t/(m)(ml) 1/2

m14 J A?m-23--]-4) ]
.(([m,O]) [[m4,0]] ([m123,0])),m14 / m4 ml
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(2.17c)

(2.17d)

ra3 m12
m4 rn

m2

m4 m124

and

(2.17e)

ml4 m2
m rn

r
m23 L(mlza)J//(m23)

m14 L[0,’", 0]. ( [m124’ 0])/’m14

where [m, 0] [m, 0]n+l, etc. in the notation of Proposition 2.3.
For a U(n) highest weight A =[A1," ",An] (similarly for a U(n+l) highest

weight) define

(2.18) d(A) dimension of Va
I]l-<i<j_-<n (Pin -Pin)

i=1 i!

where Pin Ai + n for 1 -<_ =< n. Now recalling the definition (2.16) of the con-
tragredient highest weight ,* and applying identity (A.17) from Appendix A, we
have in place of (2.17d)

(2.19)

ra2 ml

m4 m124

m12 (_l)p2
m14 ,////( m12) d//(m14)

(([m14, 0In+l)ml m2

d([m124, 0]n+l)d(-ml) 1/2

where m2 [p, 0,..., 0]n as in Proposition 1.50.
To compute the reduced Wigner coefficients appearing in (2.17a), (2.17c) and

(2.17e), we use the Chac6n, Ciftan and Biedenharn computation (2.13) and to compute
the reduced Wigner coefficient in (2.17b) we use the Aliaukas, Jucys and Jucys
computation (2.14). Finally to compute the reduced Wigner coefficient in (2.19), we
use (2.13) and a summation theorem of Aligaukas, Jucys and Jucys given in identity
(14) of [1] and described in [14, eq. (30)].

To describe the final result of this explicit calculation of the generalized Bieden-
harn-Elliott identity, we need to introduce Holman’s "hypergeometric series in U(n)"
[14], [15].

DEFINiTiON 2.20. Let n >--2. We define

W(qn) 13 A23

tAln A:zn An_l,

(/11 alk

anl ank

bll blj

bn bnj

Z1
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yl+’’’+yn=q i=1 j=i+l A0 i=1 /=1

(b,,)y, z’
i= l= i=1

where q is a nonnegative integer and the sum is over all n-tuples (y,...,y,) of
nonnegative integers such that y +...+y, q. The symbol (a),, denotes the rising
factorial (a)(a + 1) (a + m 1) for m -> 1 and ao 1.

The series (2.21) is called well-poised in SU(n), n 2, ifj n,

A-A A, for s < r,

a- asr Ais, for < s,
(2.22)

b-b A, for < s,

b, 1, 1 N iN n.

If we denote the series (2.21), whether or not well-poise by W)((A)l(a)[(b)](z)),
then for n 2 define

(2.23a) F(.)((A)l(a)l(b)](z))= 1 W(,
q--o qi ((A)l(a)l(b)l(z)).

For n 1 define

(a,,)q...(a,,)q
(2.23b) F("((A)[(a)[(b)[(z)) q=o -(-i-q i--i-q z[’

which is a classical kF_ hypergeometric series.
We now state a generalization of Whipple’s transformation (see [25] and [4, eq.

(4.3.4)]).
THEOREM 2.24. Let q be a nonnegative integer and let z, ., z,, w, ., w,, a,

beC such that w-zi is a nonnegative integer for i=l, 2,...,n-1. We also set
S 2 (Wk Zk) For n > 2 we havek-=!

z-zz+ 1

W(q. z z3 + 2 z2- z3 + 1

z-z.+n-1 z-z.+n-2 z._-z.+l

Z W Z W2 + 1 Z W, + n 1 z + s q a

z) w 1 z W2 ZZ W. + n 2 z2 + s q a

z,-w-n+l zn-w2-n+2 z,-w,, z,+s-q-a-n+l

1 z z2 -1- 2 z 2 3I-/’1 .71 b

z2-z 1 zz-z,+n--’l zz-b-1

z,-z-n+2 z,-z2-n+3 z,-b-n+l

(2.25)
r(w,,-z.+l) iI [F(Wl-Z.+n-l+l)F(a-zt+l) ]’-i--/) ,=1 -((z,-z.+n-l+l)r(a-w,.+l)
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F(a s + q-z,, + n)F(b-z,, + n-q)
r(a-w,,+n)r(b-z,,+n)

Zl Z2"- 1

F,_) Z Z3. + 2

Z Zn_ -" l’l 2

Z W

zz-w-I

z._ w n + 2

Z2 Z + 1

Z2- 2n--1 + n 3

z-w+l
Z2 W2

z,,_-- WE-- +3

Zn--2- Zn--1 -’ 1

Zl--W,+ n--1

z2- wn + n --2

zn-1- wn + 1

Zl+S-q-a

z2+s-q-a-1

z,,_l + s q a n + 2

zl+q-b
z2+q-b-1

z,_l+q-b-n+2

1 z z+ 2 z z,, + n

z- Zl 1 z2- z,, + n 1

2n--1 Z n + 3 ._ z-- n + 4 ,_ z + 2

zl-a Zl-b
z2- a z2- b

z,,_l a n + 2 Zn-l- b- n + 2

Proof. If A is a U(n) highest weight, let (A)k denote the kth component of A, i.e.
A [(A)l, , (A)k, ", (A)n]. Together with the notation and assumptions of Propo-
sition 1.50 and equations (2.15), we will also assume that

(ml), > (ml) + (p+P3 + P4) > (m)3
(2.26)

+ 2(p2 +P3 +P4)>’’" > (m,), + (n- 1)(p +p3 +P4).
After a lengthy explicit calculation of identity (1.51) using formulas (2.17a-e) and

(2.19) as described above, we find

,l+,+"’+,n=p3 1 Nn Ars /=1 N()!+ --((m,4>-(m)t+l-k)y, ]}=((m)-(m)+)Ziy
(--1)P3 [F((m)-(m4)+/) F((m)-(m)+n-l+l) ]
r((m),-(m,), + 1) r((m),-(m,)-p2+ n) r((m),-(m,),-p+ 1)

(2.27)
(p2) r((,), (,) + n) r((),- (,), + 1)

H (Ar+y-y)
ylO 2r<sn Ars
2ln
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fi [(p3+(ml)l-(m)l+l-1)y,
/=2 ((ml),-(m)l+l-1)y,

(pz-l-(m,)n-(m)l+l-n)y, ((ml4)k-(m)l+l-k)yl ]
where on both sides Ars =(m)s-(m)r+r-s and the Yi are nonnegative integers
(1 -< -< n on the left-hand side, 2 =< _-< n on the right-hand side). On the left-hand side
yi=(m)i-(m24), l<=i<-n, and on the right-hand side y=(m)-ri, 2<-.i<=n, where
the r are indices of summation in the Aliaukas, Jucys and Jucys form (2.14) for the
reduced Wigner coefficient in (2.17b).

Two remarks should be made. The first is that condition (2.26) implies that the
only restriction on the left-hand sum in (2.27) is that Y= yi--P3. Also the sum on the
right-hand side of (2.27) terminates at yi (m) m14)i for 2 -<_ _-< n (or possibly smaller
values of y2 and y,).

Now fix (m)i--(m4)i for 2-< i=< n and fix P3 but let m, m14, (m), p and P4 vary
subject to the condition (2.26) and also that

(2.28) [(ml4)i-(ml)i]=P4, 2 [(m)i-(ml4)i]=P2-l-P3
i=1 i=1

The identity (2.27) is valid for all nonnegative integers (m), (m), (m4) for 1 -<_ i-<_ n
satisfying some condition:

(2.29) (m),>(m,a)+Cl>(ml),+Cz>(m4)+C3>(m,)2+C4>"’>(m,),+C2,

for some constants C,..., C, >0. For simplicity we shall also assume (m)-
(m4), >p2.

Note that the factors in front of the summation sign on the right-hand side of
(2.27) may be written as

(P3)! /=2 ((m4)-(m).,+n-l+l),.,),-.,,4),)
(2.3o)

((m)-(m)-p3+ 1)p3
We would have a similar formula if we assume (m)l-(ml4)<-p2 Also note that
(m)-(mn)-p2=P3-i= ((m)i-(m4)) by condition (2.28), so all the subscripts
of the rising factorials in (2.30) are constants.

By substituting (2.30) and clearing denominators, the identity (2.27) becomes a
polynomial identity of fixed degree in the variables (m), (m), (m4)i for 1-< i<=n.
It follows from (2.29) that (2.27) is true for all values of (m), (m), (ml4)i G C, -< _-< n,
such that both sides of (2.27) are defined.

Now substitute q--P3, a =-(m),, b=-(m)-(n-1), z=-(m)_+ and w=
--(ma)n-l+ for 1 =< l<= n. We then obtain identity (2.25). Q.E.D.

Remark 2.31. For n--2 one uses formula (2.5) of [15] to translate Theorem 2.24
above into the classical terminating form of Whipple’s transformation [4, eq. (4.3.4)]
between a well-poised 7F6 and a balanced 4F3 hypergeometric series. In this form the
parameter q is no longer restricted to be a nonnegative integer, but may take on
arbitrary complex values (subject to the usual condition that denominators do not
vanish).

Remark 2.32. On the left-hand side of identity (2.25) the W) series satisfies
Holman’s "well-poised in SU(n)" conditions (2.22) (also [15, eqs. (3.2)]. On the
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right-hand side the F(’-) series satisfies a generalization of the "balanced" or "Saal-
schiitzian" condition. With notation as in (2.21)and (2.23a and b) this balanced
condition is

n--1 n--1

(2.33) Y a, + n Y b,,
/=1 /=1

for each i, =< i_-< n- 1. Note that the F(") series in Holman’s generalization of the
Saalschiitz summation theorem 14, Thm. 3] is "balanced" in this sense just as in the
classical case.

3. Corollaries of Theorem 2.24. In this section we will discuss a generalization of
Dougall’s theorem 11], an analogue of Dougall’s theorem, limiting cases of Theorem
2.24 and new summation theorems for classical hypergeometric series and basic
hypergeometric series.

If we set q b-a in identity (2.25), then the right-hand side of (2.25) can be
summed by means of Holman’s generalization of the Saalschiitz summation theorem
14]. By continuation we may drop the assumption that wi- zi are integers, 1 =< -< n 1.
We obtain a generalization of Dougall’s theorem [14, eq. (4.3.5)].

COROLLARY 3.1. With notation as in Theorem 2.24 let q be a nonnegative integer
and set s 2k=l (Wk- Zk )" For n >-2 we have

(3.2)

z-z+ 1

W(qn) z1-z3+2.
z-z.+n-1

Z1 Wl

z2--W--I

1

Z2 Z

Z2 Z + 1

z-z,+n-2 z,_-z+l

Zl-W+l z-w,+n-1
,7,2 W2 Z2 Wn + n 2

z. w- n + 2 Zn W.

z z+ 2 z z. + n

1 Zz-z.+n-1

z,-z-n+3 1

z+s-b
z+s-b-1

z.+s-b-n+l

z-b -1

z2-b-1 1

z,,-b-n+l 1

(3.3)

F( 1 + s)F(b z. + n q)F(z. n + 1 b + s)F(b z. + n s)
r(1 +s-q)r(b-z. + n)r(w.-n+ l-b)r(b-w. +n-q)

]l [F(wt+q-b-l+l)F(b-w+l)]
=1 F(Zl+q-b-l+l)F(b-zl+l)

Proof We have used

= F(Zl-Z.+n-l+l)F(z.-z+l-n)F(b-w+l-q)

_[F(wt+q-b-l+l)]
=1 F(Zl+q-b-l+ l)

where we assume zi zj is not an integer for 1 -< # j _<- n 1.
An analogue of Dougall’s theorem is obtained if we set q s Yk=l (Wk- Zk).
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COROLLARY 3.4 With notation as in Theorem 2.24 let q and wi-zi for
1,..., n- be nonnegative integers and let q s K: Wk- Zk). For n >--2 we have

(3.5)

z-z2+ 1

W(qn z Z3. + 2

Zl-Z,,+ n-1

Z W

z2--w--I

Z Z @ 1

z- z, + n 2 z,_ z, + l

Zl- W+ l Zl- W, + n-1
Z2 W2 22 W, + n 2

z,, w2- n + 2 Zn Wn

Z -a

z-a-1

z-a-n+ 1

z-z2+2
z2- Zl 1

zn z n + 2 zn zz- n + 3

=q, [F(a-Zl+l)F(b-wl+l)]./=l F(a-w+l)F(b-zl+l)

Zl Zn 1_ n Z b

z- z, + n 1 z- b 1

1 z,-b-n+

-1

Proof. With q s we can apply Holman’s Saalschiitz theorem to the right-hand
side of (2.25). We then obtain (3.5) after using the following identity:

F(z, n + l + q- b) I [r(w,- z, + n + l)F(z, wt + l- n) ]F(w,-n+l-b) /=1 F(Zl-Z,+n-l+l)F(z,-z+l-n)
(3.6)

F(b-w,+n)
F(b-z.+n-q)’

where we assume zi- zj is not an integer for _-< j _-< n 1.
Remark 3.7. For n 2, Corollary 3.1 reduces to the classical Dougall’s theorem

when the w2 series is replaced by the corresponding well-poised 7F6 hypergeometricq

series by means of formula (2.5) of 15]. In this classical form q is no longer restricted
to be a nonnegative integer, but may take on arbitrary complex values (if z- w is a
negative integer).

In Corollary 3.4 for n 2, the well-poised 7F6 series corresponding to the Wq2)

series is in general not defined because the integer z-Wl + 1 _-< 1 is a denominator
parameter in the 7F6 series. Hence Corollary 3.4 is not a generalization of a classical
result, but rather an analogue of Dougall’s theorem.

Limiting cases of identity (2.25) also yield transformation formulas for hyper-
geometric series in U(n). For example, taking the limit w-c in (2.25) gives a form
of Holman’s generalization of the terminating 5F4(1) summation theorem ([14, Thm.
4] and see also [20]). By taking the limits a- or b- we obtain generalizations
of the terminating form of Whipple’s 6F5(-1) transformation theorem ([4, eq. (4.4.2)]
and [25]).

Taking the limit a- in (2.25), we find
COROLLARY 3.8. With notation and assumptions as in Theorem 2.24, we have

ZI--Z2 ql-

W(qn z z -3t- 2 z z "3c- 1

Z Z - n 1 z2 z, + n 2 zn_ z +
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Zl- Wl Z1- W2 + 1 Zl W, + n 1
Z W 1 z2- we z2- w, + n -2

z,-wl-n+l z,-w2-n+2 z,-w,

z z2 + 2 z z. + n

zz- z 1 z2- z, + n -1

z. z n + 2 z. z- n + 3 1

Zl-b
ze-b-1

z,-b-n+ 1

(3.9)
rwo-z.+) r(b-z.+n-q)"fi ]i3ii-{-) F(b-z.+n) = kF(z,-z.+n-l+)

z-ze+l

F(,,_I) z z3 + 2

z- zn_ + n- 2

z2- z3 +

z z,,_ + n 3 z.-2- z._ + 1

Z W Z W2-- Zl W, + n 1 z + q b

zz-w-I ze-we ze-w,+n-2 z+q-b-1

z._-w-n+2 z,_l-wz-n+3 z,-1-w,+l Z,_l+q-b-n+2

1 z z+ 2 z z. + n z b

z2-z 1 ze-z,+n-1 z2-b-1

z,_-z-n+3 z,__-z-n+4 z,,_-z,+2 z,_l-b-n+2

Now taking the limit b in (2.25), we find
COROLLARY 3.10. With notation and assumptions as in Theorem 2.24, we have

z-w Zl-W+n-1 z+s-q-a
W asabove

z,, w n + l z, w z, + s- q- a n + l

Zi--Znq-Yl

z,-z-n+2

(3.11)

F(a-w.+-)i-s-q) ,, F(z,-z.+n-l+l)F(a-wt+

as above
z w zl w, + n z + s q- a

z,_ w n + 2 z,_ w, + z,_ + s q a n 2
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Z1-Zn+rl Z1-a

zn-l zl n + 3 zn-l zn + 2 z-l a n + 2

Remark 3.12. We also obtain interesting summation theorems on taking the limit
a-oo in identity (3.5) or the limit b-oo in identities (3.5) and (3.2). After dividing
by q!, if we sum with respect to q both sides of the limit of identity (3.2) we obtain
a generalization of the binomial theorem (see also Milne [21]).

Now divide both sides of identity (3.2) by q! and sum over q_-> 0. The left-hand
side becomes a terminating F(n) series which is summable by Holman’s generalization
of the terminating form of the Gauss summation theorem 14, Thm. 1]. The right-hand
side becomes a classical ,/l F, (1) series such that the sum of the numerator parameters
equals the sum of the denominator parameters. This is for n _>-2. For n- 1 we obtain
the same result by Vandermonde’s theorem or by the classical Gauss summation
theorem [4]. Thus we have

THEOREM 3.13. For n >--1, let bC and K be a nonnegative integer for 1= 1,
2,..., n. We assume that b is not a negative integer or zero for 1 <-_ 1<-n. Setting
C Kl we have1=1

(3.14) "+iF"(-c’bl+gl’b2+g2’’’’’b"+K’")blb2 b,"
’1 =(-1)c! I 1

,--., /=,(b),,,

We also prove a "q-analogue" of Theorem 3.13. First, we give a definition.
DEFINITION 3.15. Define the basic hypergeometric series

(3.16) +lP bl , b q’x

with

1, n-0,
(3.17) (a;q)= (1-a)(1-aq)...(1-aq-l), n=1,2,....

THEOREM 3.18. For n-->l, let fllC and yl-qI(, for l<-_l<-n, where KI is a
i-[ qnonnegative integer and fl is not a negative power of q or 1. Setting cr 1=1 Yl

where c Y.ll KI, we have

(3.19) n+ln ill, fl-, fl,,
q, 1 -II,=,(3,;q),,,

Proof We first prove the following identity:

(-1; {0, 0<r<c,
(3.20) 6o(-1" q, q)

q)s o
s=o (q; q)s

q (-1; q), r=0.

From the q-binomial theorem [4, eq. (8.2.4)], we have

(3.21) 6o(a; q,z)= H (1-aqjz)
s=o (1 qSz)

Hence o(-; q, q)=0 if 0< r c. We also have [4, p. 66]

(3.22) 16o(a; q, z)-a 16o(a; q, qz)= (1- a) 16o(aq; q, z).
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Setting a o"-1 and z 1 in (3.22), we find

(3.23) 14o(q-C; q, 1)= (1-qc) 14o(q-/1", q, 1)

and by induction

(3.24) lbo(q-; q, 1)= (1-q-)(1-q-C+l) (1-q-1) lbo(1; q, 1)

where bo(1; q, 1)= 1. This completes the proof of identity (3.20).
Using the identity

3.25 ([31Y1([31. "’).jJ.
for 1 _-< l_-< n and j => 0, we rewrite (3.19) as

(3.26)
(tr-; q)J(B q)/<l (fl/1qJ q)l, (0"-1qJ

=o (q, q)
q)c"

Now if we expand I]l= ([31qJ; q)l,: in powers of qJ, we find

(3.27) -I (fllq; q)K, 1 + higher order terms in qJ,
/=1

with highest order q. An application of identity (3.20) completes the proof of Theorem
3.18.

Remark 3.28. There is a similar proof of Theorem 3.13 relying on a classical
(ordinary) analogue of (3.20), which can be proved by induction from the ordinary
binomial theorem. This classical analogue of (3.20) is given in an equivalent form by
Aligaukas, Jucys and Jucys [1].

We also mention that Milne had discussed how a generalization of Dougall’s
theorem might lead to an identity similar to (3.14), just as in fact occurred. His
conjectured identities are different than (3.14) [22].

4. Orthogonal polynomials in several variables. In this section we define a family
of orthogonal polynomials in several variables which generalize the Racah polynomials
of Wilson [26], [27]. These polynomials are orthogonal on a discrete set {(xl, , x/l)
Z/11xi_->0 for l<-i<-n and i= xi N} for some nonnegative integer N and for n_->2.

Recall the orthogonality relations (1.26a and b) satisfied by the multiplicity-free
Racah coefficients above. Let notation be as in Proposition 1.25 and let n _-> 2. We will
denote A [A,..., A/l] for the highest weight A of any irreducible representation
space V Set zi=/z’- mi and hi vi txi for l<i<n and denote N=p" Y7=lZi

i=1 hi. Finally we assume that vi > N+ mi and mi > N+ v+l) for 1 =< =< n and with

v(/1+) 0.
When we substitute the explicit form (2.4) and (2.14) of the Raeah coefficients

into identity (1.26a), we obtain

(4.1) L 6.(v, m, m’, m"lz’)4,,(v, m, m’, m"ltz’)w(z)= 6a,.m
Zl/" "/Z N

where

1 if/x =/2,
6a,. 0 otherwise,
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and

(4.2)

and

H Zk + mk Zl + ml + k)

(mk V + l-- k)zk ]
(mk-mt+l-k+ 1)=k(ml-mk+k-l)(=l+l

II ml- lk t_ k- l)z," fi 1

/=1 (ml-- b’14;" 1--l)zt(Zl)[’

(4.3)

and

(4.4)

1
I-I v hk Vl hl + k -1

_<<,_<. (hi)!

I [(Vl--Vl+l--l)(hl+l)(hl)!] k<
1

1= (Vl--l+l)h <__ t<_<_(mk--vl+l--k)h,
1

II
<=k<-l<- m- + k-

I-[ (vk-v+l-k+l)hl(V,-Vk+k-l)h+,
2<_k<l<_n

yt>=O
2<_l_<__n

v v + ru_ s_._+__yz
Ps r + ?" S

1=2k= (v-vt+l-k+l)yl(mk-V,+l-k)y
with a similar formula for

Similarly to the argument in the proof of Theorem 2.24 it follows that identity
(4.1) is true for all v, rn E C" with the restriction that the denominators in (4.2)-(4.4)
should not vanish.

We now rewrite (4.1) and set Otk----mn_k+l--k [k----l’n__k+l--k, Xk=Zn-k+l,

tk hn-k+l for -_< k =< n.
PROPOSITION 4.5. Let n >-2 and N be a nonnegative integer. With notation as above

and a, fl C", then for tl , t,) 7/ such that .= ti N and t >= 0 for 1 <-_ <-_ n,
and similarly for t’ ., we have

(4.6)
Xl+" .+x N

where xi is a nonnegative integer for 1 <-i <= n and

tt t, { 10 ift=t’,
otherwise,

and

(4.7)

w(x) H ((Olk--Xk)--(Oll--Xl))
1.<--_ k l.<_--,

,_-<<l-<-. (k--Oq-t- 1)xl(/--(Xk)(xk+l)

(l--OZk)a" fi 1

1=1 (n Oll)xl(Xl)
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and

(4.8)

and

H (( tk + Sk) tl + !))-1
lk<l<=n

.8, + 1),k (/3, ,8k) t,+ 1) 1
(3-,,),

1
1-I (t,- ,,),,(t,)!H

2<--kl<--n (31 Olk h /=1

1

N (,8,, --CI)N

P,(x; a./3. N)= 1-It=’ (3,-/3. +
N!(/3n--al)N

(4.9)

F(n-1)

-/32

/31 -/33 /327/33

\/31 --/3.--1 /32-/3.--1 /3n--2-/3.--1

--tl ln--/3n’+-/31 Xl--al+/31 Xn--an+l
-q g, +2 t. 3. + 32 x a + 32 X. an +2

-q +._ t. . +._ x a +._ x. . +._
fl,, +/31 -a! +/31 an +/31

-/31 +/32 --/3n +/32 --al +/32 an +/32

-/31 +/3,,-1 --/3n "/3n--I --al +/3n-1 an "-/3n-1

and similarly for P,,(x; a, 3, N).
Note that P,(x; a, fl, N) is a symmetric polynomial in the variables Xl-al,

x2-a2,’’ ", x.- a.. Hence P,(x; a, fl, N) may be expressed as a polynomial in the
elementary symmetric functions ei(xl al , x. a.), 1 <= <-_ n. Recall that for a set
of variables u, , u. and _-< i_-< n, one defines

(4.10) el(u1,’’’, Un Z tlA tlj2 tlj,
j <J2 "<Ji <=

where the sum is over all subsets {jl,""" ,ji}c_ {1,..., n} of cardinality i.
We will abbreviate ei(x-al,’",x,,-a,) by e(x-a) for l<-i<=n and also

abbreviate the set of nonconstant polynomials {e2(x- a),. , e,,(x- a)} by e(x- a).
Note that el(x- a)= Y’.7=I xi oei N-ET=, ,.

DEFINITION 4.11. With a, fl, x, and t’ as in Proposition 4.5 we define the Racah
polynomial in the variables e(x-a)= {e2(x-a),’". e,,(x-a)} by

(4.12) Rt(e(x- a); a, fl, N) =- Pt(x; oe, fl, N)

and the inner product

(4.13)
(R,(e(x-a); a, fl, N), R,,(e(x-a); a, fl, N)}

=- Rt(e(x-a); oe, fl, N)Rt,(e(x-a); a,8, N)w(x).
+. .+x N
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Remark 4.14. For n 2 we obtain up to a scalar factor the orthogonal polynomials
defined in (4.1) and (4.2) of Wilson [27] by substituting m =% m2 -6-N, /Zl

fl + n- N-1 tz2= -n, p.,’l=x+y,=-x-6, Ul=fl-1, u2 0and N=-(a+l) in
the notation of equations (4.1)-(4.3) here and with a, fl, y, 6 defined as in [27]. (Use
transformation (1.2) of [27].)

We also remark that for n 2, the Rt polynomials contain the Hahn polynomials
as a limiting case (see [27]). However, for n > 2, the Hahn polynomials in several
variables defined by Karlin and McGregor [16] have a weight function (see [16, eq.
(5.13)]) which in general does not appear to be the limit of the weight function w(x)
in (4.8) here. It is also not known what relation, if any, there is between the Rt
polynomials in two variables and the orthogonal polynomials defined by Suslov [30].

Two important questions need to be answered about the R, polynomials. First,
are there polynomials in several variables orthogonal with respect to a continuous
measure generalizing the Wilson polynomials [27], [32] just as the Rt polynomials
generalize the discrete Racah polynomials in one variable? Second, are there q-
analogues of the Rt polynomials (see [31], [32]) ?

5. Recurrence relation for the Racah polynomials. Let (tl, , tn) c 7" such
that ti--> 0 for all i, 1 _-< i_-< n and E i=I ti--N for some nonnegative integer N. We fix
below a,/3 c C" and N, and abbreviate Rt(e(x- a); a,/3, N) by Rt. Rt is a polynomial
of degree N- t in the variables ez(x- a),. , e,,(x- o) where x (x,. ., xn) Z n,
xi>0= and Yni= x N.

DEFINrrION 5.1. Let ej be the n-tuple (0,...,0, 1,0,...,0) with 1 in the jth
entry and 0 elsewhere. Then + ej-e, is the n-tuple obtained by adding to the jth
entry and subtracting 1 from the nth entry.

If t, > 0, then for all k, 1-< k-< n- 1, we will show that Rt satisfies the following
recurrence relation

(5.2)

n--1 n--1

Rt+k-. ..-XkjA(t) ej+(x a)Rt + "-knA(t)Rt + l:l(t)km Rt-,.+k
j=l m=l

n-1

+ E B’khtR,-,k+ + Ckt)Rt-+.
h=l

(t)where .ak--t)-. B,., B(),C(kt) are defined in (5.10), (5.12)-(5.14) and (5.19) below and
are independent of x. We also set Rt_ =-0 if t 0, 1 =<j _-< n.

We begin the proof of (5.2) with the following well-known lemma describing those
polynomials which can appear nontrivially in a recurrence relation for Rt.

LEMMA 5.3. If t,, > 0 and 2 <- <- n, then

(5.4) ei(x o Rt E at,Rc
as polynomials in the variables e2(x--a),... e,,(x-a), where at,6C and the sum is
over all t’ t, , t’,,) ’", t >= 0 and _,

i= ti N such that t,, + >= t’ > t,, 1.

Proof We can write

el(x a Rt E a,,Rt,

where at, C and the sum is over all t’c Z", t’=> 0 and Y" t N. We need to showi=1

that if at, # 0, then t, + 1 >-t’,-> t,- 1. We have

(5.5) at, (el(x- a)R,, R,,)(Mt,) -1.

If ac0, then deg(e(x-a)R,)>=degRc in the variables e(x-c),...,e,,(x-a),
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equivalently t’,=> t.- 1. Similarly

(5.6) a,,= (R,, el(x- a)R,,)(Mt,)-’.

It follows that if a,, # 0, then deg R, <= deg R,,+ 1 or equivalently t, + 1 _>-t’. Q.E.D.
Proof of the recurrence relation (5.2). The leading term (L.T.) in the series for

R, is

(5.7)

(t.)!(3.-,),,,
1-I

(,- 3s + t,- ts)
N!(fl.-a,)N ,<__,<j<=.-,

i:1 1:1 ’:1 (i--, "[- 1)t, 1=2 (i--Oll),i

Assume t 0 and consider R,+k_,, for some integer k, 1 <= k -< n 1. After compar-
ing the leading terms of R t+ek_e, and R, we obtain

,,,+ :’ill r(e._+__:_.!_(e,+,,)] fl-" t:l L (ft. + t, ill) ,: (ilk + tk al)

(" + t" --(flk + tk)-- l) { (g + tk) (x a)R,}t(.+t.-a,-1) =o

+ terms of degree less than N- t, + 1

in the variables e2(x a ),. , e,, (x a ).

To compute lower degree terms in the recurrence relation (5.2), we must consider
the next to leading terms in R

(t,)!(,-al)t,, H (fli-flj+ti-tj) H (i-,,+ti-tm+l)
N!(fl.-a,)N : l<=i<j<__.--I i:’

i,jm

n--I

1-I (fl,,, -fl + t,,, 1 t) 1-I (i--j )--1
j=m+l li<j<=n--1

II [ fl
’=1

(5.9)
I:1 (ji l "-F 1 )’i /:2 (i Ol)’i

fi ([m tl- [l)tm-l([m JI- X Oll)tm_
/=I

,,-1 1 fl 1

l: (m [l "JI- 1 )tin_ /=2 ([rn Oll)tm-I

(fl,- + t.)(fl.-al + t.- 1)}
m:, (t,,+l)(fl.+t,,--al)i:1 (fli+ti--(m+tm)) (ii--(18n+tn)--l)

i#m
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(fl,,, + t,. (ft. + tn) 2)
(fl,.-(fln + t.)- l

(mq-tm--n)

(]m+ tm-al-1) (L.T. of R,_.+.)}.
(t)Now let (Ao be the n n matrix with

(5.10a) A)=
0

ifj n,
otherwise

and

(5.10b)

A(t)= nIl r(]n + tn)--(i+ tl) fi 1 (fl + tn (fli + ti)-- 1)
--ij =1[ -(--tn-fl,) l=2(i-Jt-ti-al) tn(fln+tn--al--1)

(i -F" ti)n+(i + ti)n-’e,(x-a)
(i + ti)n-j- if < n and j < n.

if < n andj n,

It follows that if tn > 0 and 1 _<- k_<- n 1, then

n-1

et+ek-en- E A ej+l(X a)Rt knl
j=l

n--1 { tm 1 [ (___i (3m
__

tm
m-- t(n+t--a--l)

_
m#k i#m,k

(fl, (fln + tn

(3k--( -F tm))(k -]- tk--(fln + tn)+ 1)
(k + tk--(m "- tin)+ 1)(flk--(fl +

(flm + tm--(fln + tn)-- l)
(m--(n+tn))

(m di- tm --fln)(flm + tm --o,-- 1)Rt_,,,+,,}
(5.11)

(tk + 1) nil [ (/3,- (ilk + tk) 1)
tn (fin + tn Oll 1) ,=, (, + t, (ilk + tk) 1)

i#k

(fli + ti- (fin + t,))]
(, (fl,, + t,)) J

(flk + tk--( + t))
(l ( + t.

(ilk+ tk--fln+ 1)(ilk + tk--a,)Rt

n--1

h,j,m= (tn+l)(n+tn--Ol) i:1 k(i+ti-(m+t.))
i

(fl, + t, (fln + tn l ](fl,- (ft. + t)- 1)

(/3, + t, (/3 + t,,) 2)
(fl (/3n + tn)- 1)

(m + tm--n)(m-F tm--O,--1)

A(k))(A(t-m+%))lRt_,.+.}
+ terms of degree less than N- t.

in the variables e2(x- a), ., e.(x a),

where (A(t-e-+e-)) is the (j, h) entry of the matrix inverse of A(--+).
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Now observe that if t,. > 0. then
(5.12)
n--1, ak)(a(t-m+%’))-fhl
j

, 1

,= ((+-(,+,+ ((+-(+m+
(t,. + 1)(fl.+t.-al)

t. (ft. + t.- tl- 1

0 ifk#mandh#k,

(ft. + t -(fig + tk)-- 1)
ifk m and h k,

(fl. + t.--(flk + tk))

(fl.+t.--(flk+tk)--l) fi (flk+tk--l+l) ] (k+tk--(l+tl))
(fln+tn--(flk+tk)+l) /=2 (k+tk--al) 1=1 (flk+tk--(fll+tl)--l)

lk

ilk= m and h k,

(fl. + t.- (fig + tk)-- 1) (flh + th- al) (fig + tk)- (fl + tl)
(. + t.--(flh + tn)) ,=2 ( + tk-a,) 11/=1 (h + th)--(,+ h)

lk,h

ilk m and h # k,
(+t.--(k+t)+l)

where we have used the fact that, except for their nth rows and columns, both matrices
A’) and A’--,+,,) are the products of diagonal matrix and a Vandermonde matrix

For l_-<k, m<=n-landkm, weset

tm nl (i--(fire q- tm))(i + ti--(fin + t.))
km tn(fln d- t 1) lli=l ([3i -- ti--([3m + tm))([3i--(fin d- tn)

im,k

(flk--(m + tm))(flk + tk--(fl. + t.)+ 1)(tim + tm --(fl. + t.)-- 1)
(ilk + tk--(fl,. + tm)+ 1)(flk--(fl. + t.))(flm --(ft. + t.))

tm(5.13a) "(flm+tm--fl.)(fl,.+tm--al--1)--
(t. + l)(fl + t.--a)

]l [ (fli-(flr+t)) (fli+ti-(fl.+t.)-l)]i=1 ([3i -- ti (m -" tm ([3i (fin -F 1)

(fl, (fl. + t.
(t + t.- c- 1)

(. + t. -(ilk + tk)-- 1).
(fl + t --(flk + tk))

If _-< k <_- n 1, then set

(t.) (tk + 1) i [ (i- (k 4(" tk)-- 1)
Bkk-- tn(fln+ tn--al--1) i----1 t.(fli+ti--(flk+tk) -1)

ik

(5.13b)
(ilk + tk- (ft. + t.))

(flk--(fl. + t.))

(i -- ti (n -’[- t. )) 1
(fli (fl + t ))

(flk+ tk--fl.+ 1)(flk + tk--al).
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(5.14)

Similarly for 1 <= k, h -< n- 1 and k m, we set

--tk n_i1 [ (i --(flk + lk) (fl + t-(fl. + t.)- l ]B’kht)=
(t,, + l)(fl, + t, al) i=1 (i + ti--(flk + tk)) (fli--(fl, + t,)-- l)

ik

(k -Jr- tk--(n + tn)--2) 1)(i: A(k)(A(t_ek+e.))l)(fig-(fl.+t.)-l)
(ilk+tk--a--

’>0 for all 1 <i <n," t’ N and t;=Now let t’= (t,. ., t) E 7/’ where ti- i=1

1. Then

n--1

(5.15) (R,,,A())eg+l(X-o)R,)
j=l

n--1

(5.16) E Ak)>(ej+l(x- a)Rt,, R,)
j=l

n--1

(5.17) E A(k))(A(t’))-fhl(Rt’+eh-e., Rt).
j,h=l

From (5.12) it follows that t’= t-ek + e, and expression (5.17)
n--1

(5.18) E A(At-+)IMt,
j=l

where E- A(At-+) is computed in (5.12) and M, in (4.8).
Forlkn-1 and tkOWeset

n--1

(5.19) Ct=-M(Mt_+.)- E A(At-+").
j=l

If tk 0, set C’ 0.
Applying Lemma 5.3, this completes the proof of the recurrence relation (5.2).

6. Duality for Racah polynomials. The main result in this section is
PROPOSIXION 6.1. With notation as in oposition 4.5 and where

(-ft,, -ft,_,. ., -) and similarly for , g and , then we have

(6.2) P,(x; , , N)= P_(-; , a, N).

The proof of Proposition 6.1 is a consequence of the following
LEMMA 6.3. With assumptions as in Proposition 1.25 we have

(.4 m’ u

Proo Applying identities (1.22) and (1.31), we obtain

[m" m ’] ((u), T(l T)((m,,)(m)(m’)))
m (m")@(m)@(m’)

(6.)
((,), r(r.,@l)((m")@(m)@(m’)))

with the sum over all Gelfand states (m")@(m)@(m’) of V,,@ Vm@ Vm, and () is
any state in V.
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L ((v), T((m")(R)()))((), T,((m)(R)(m’)))
(,),(’),(m"),

(m),(m’)
(6.6)

((v), T((la,’)(R)(m’)))((tz’), T,((m")(R)(m)))
where the sum is over all states (/z’) of V,,, etc.

Let m"=[p",O,...,O] and

(m,,) ([P", O, ",0]).
then in the notation of Proposition A.6 we have

(6.7) ((v), T,,((m")(R)(/x)))= (v) [p", 0,..., 0]
(m")n-1

where (F) is the unique operator pattern (see 17]) such that v], A(F)+ [/z ],. From
Proposition A.6 it follows that

(6.8) ((v), T((m")(R)(tz)))=(-1)P"+*(’)+*()[ d(v)] 1/2

[d(/z)J
((fi), rz((m")(R)())),

where q(/z) and q(v) are defined in Definition A.3 and d(v), d(/z) in (2.18).
From (6.6) and (6.8) we find

d(v) E ((v), T((m") (R) (/z)))
m’ v

(m"),(m),(m’)

(6.9)

((Iz), T.((m)(R)(m’)))((v), T((/z’)(R)(m’)))
((tz’), T.,((m")(R)(m)))
d(v)

((/2), r,((m") (R) ()))
d (m) (),(a

(m"),(da),(m’)

((r), T,((m’)(R)(fi)))((fi’), T,((m’)(R)(9)))
m"

((m), Tm((m")(R)(fi’)))= d(v)
m’ r

where the sum is over all states (v) V, etc. This completes the proof of Lemma 6.3.
In order to apply identity (2.4) to (6.4) above, we shall need the following definition

and lemma.
DEFINITION 6.10. If A--(/l,’’’,An) then A+k"=(Al+k, A2+k,"’,

A. + k) for any integer k. If (A) is a Gelfand pattern, i.e. an array A0 for 1 <-_i<=j <-_ n,
then (A +k) is the Gelfand pattern whose (i,j) entry, l<-_i<-_j<-n, is A0+k.

LEMMA 6.11. With notation as in Lemma 6.3 we have

(6.12)
m /z m m + /z’+ k"

m’ v Iz m’ v + k"

for any integer k.
Proof In the notation of expression (6.7) and Definition 6.10 it follows from [6,

Lemma 2.29] that

(6.13) \(v) [P"’(m"),,_,O"’" 0]
(r),_,

[p", o,... ,0]
(m"),,_,
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where the sign in (6.13) is always positive or always negative for all choices of Gelfand
states (v), (m") and (/) in V, Vm" and V,, (assuming both sides of (6.13) do not vanish).

The phase convention (1.8) guarantees that for at least one choice of such (),
(m") and (/) the sign in (6.13) is positive. Hence the sign is positive for all choices
of (v), (m") and (). Now identity (6.12) follows from (6.6), (6.7) and (6.1-3).

Proof of Proposition 6.1. With assumptions on m", m’, m, v,/,/’ as in (4.1), we
have by Lemmas 6.3 and 6.11 the equality

(6.14) m’ , / m’ rfi+k /2+k

where k= ,. After substituting the explicit form (2.4) and (2.14) of the Racah
coefficients in (6.14) above, then by an elementary computation one obtains the identity

(6.15) P,(x; a, fl, N) P_(-?; fl k", 6 k", N)

where a=-m,_l+-l, fl=-,,_t+-l, Xl I’,-+-m,_+ and tl ’,+1+1-/,+1+1 for
1 _-< _-< n. Observing that

(6.16) P_(-?; fl- k", 6- k", N)= P_(--;/3; 6, S),

then identity (6.2) follows for all a,/3 C" (such that both sides of (6.2) are defined)
by an argument similar to that in the proof of Theorem 2.24.

Remark 6.17. Lemma 6.3 is a well-known symmetry relation for multiplicity free
Racah coefficients (see [12] and [29]).

7. An identity for Racah polynomials. The generalized Biedenharn-Elliott identity,
Proposition 1.50, implies an identity for Racah polynomials which is similar to an
addition theorem. In the notation of formula (1.51) we set 6 (n, n 1, , 1), 1 t, r]Tl t ---/, if/1 ff/123 X -[- y, if/12- ir123 X, if/1 r12 Y, r/14--/ t, /17/14-- r124
t- u, r,24 m u, Z" (m- m,4), N, 27_, (m,24 m,,), N- N’, (m- m,24)i-i=1

N’, where for Z, A’ 6 C", then (A + ’) ,k + A’, 1 < < n.
Applying identities (2.4), (2.13), (2.14), (2.17a) and (2.17e) to (1.51) and continuing

for a,/3 6 C ", one obtains the following"
PROPOSTIOy 7.1. With notation as in Proposition 4.5, let a, C, N >- N’>_ 0 be

integers and x, y, 7/n such that 7=1 ti N, ,i=1 x N’, y.ni__l Yi N- N’, where xi,

yi, ti >--0 for <-_ <-_ n. We have (when both sides are defined)

(7.2) Pt(x + y; a, fl, N) f(y, a, fl, t, u)P,(x; a -y, , N’)P_,(y; a, fl + u, N- N’)

where the sum is over all u 7" such that ti >-- ui >- 0 for 1 <-_ <-_ n and Y.= u N’ and
where

(N)-I((fl+U)n--OI)N-Nf(y, a, fl, t, u)=
S’ ((fl + u),- a)s-,.

(7.3) ((/3 + u) -(a --Y))N’-u. I]
,:, u, <=<=,<=._, (- )u,

[ (flk--(a--Y)i),k(flk--(fl + t)l)uk(fll--(fl + t)k)(’-u)k ]
Appendix A. Let rn =[m,..., m,] be a U(n) highest weight and define

(A.1) m=m*=[-m,,’",-m,].
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If (m) is a Gelfand state of V,, define (ffi) to be the Gelfand state of V, with Gelfand
pattern

(A.2) ffiij mj_i+l,, 1 -< -<j =< n.

It is important to note that (ffi) is in general not the dual basis vector to (m) with
respect to the Gelfand-Zetlin basis of Vm.

NOW let

(m)n-1 (m’)n-1]

be Gelfand states of V,, and assume that the highest weight m is a partition. In [17]
and in [6, eq. (1.10)] the "boson polynomial"

rm o I
is defined. Also in [6, eq. (1.14)] a "dual boson polynomial"

/(ffl’)’-’ i (m’) /\ (rB)._, / It(m)._
is defined. This notation for the dual boson polynomial is not consistent with Louck
[17] or with definition (A.2) above, because in [6] we set (ffl) V, to be the dual basis
vector to the state (rn) with respect to the Gelfand-Zetlin basis of V,,. However the
dual basis for V, is not actually the Gelfand-Zetlin basis for V, as given by applying
the lowering operators of Nagel and Moshinsky [23] to the highest weight state of
V,. For a similar reason

{rm’7._,\
B Cm], d///(m)’/2tII/ [m]n /

(rn)._, \ (rn)._, /
is not a Gelfand-Zetlin state vector for the U(n)x U(n) representation acting on
V, (R) V, , where

l(m’).-,
/ [m] i
\(m)o_,l

is the dual basis vector to

\(m).-,I
in the pairing of the algebras c and M of creation and annihilation operators as
described in [6, 1]. We desire that

should be a U()x U() Gelfand-Zetlin state vector in VO V.
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DEFINITION A.3. Let n _>-2. With notation as above we define

(A.4) B| [fit],., / -= (-1)(’’)-(’)B [m],.,

\(fit)._,] (m)._,

where if (m) is a U(n) Gelfand pattern then

q(m)= E mu.
j=l i=1

LEMMA A.5. With n >= 2 and notation as above

[fit] (m)-’/2B [fit],
(,)-i (,)-,

is a Gelfand-Zetlin state vector in

Proof After applying (1.10), (1.14), (2.17) and (1.17a and b) of[6] (recalling the
different notation in [6]), this is essentially identity (2.112) of Louck [17]. The proof
of identity (2.112) is as follows. Identity (2.112) is certainly true when (m’) (m) are
highest weight states of V,,. Then applying lowering operations as.in (2.98) and (2.99)
of [17] and using (2.114) of [17], one proves (2.112) by induction for arbitrary Gelfand
states (m’) and (m) of V,,.

We have the following proposition.
PROPOSITION A.6. Let p be a nonnegative integer and

be a Gelfand state of V[p,o,...,o],. Let [m]n and [M], be U(n) highest weights and assume
that [m], and [M]n are partitions. Let (m) and (M) be states in V,,l, and
respectively. Let VtM3, occur in Vtp,o,...,o,(R) Vt,,, and let

(r)
[p, 0,..., 0],

be the Unique operatorpattern (see [17] or [6]) such that [M]n A(F)+ [M]n. For n >=2
and with notation as above, we have

(M) [p, 0,...,0Jn (m)
(p),-,

(A.7)

o,..., o]o

where, for any U(n) highest weight A [A1,. ", An ],

(A.8) d(A)= n--1

1-Ii= i!

and Pin A + n for 1 <- <- n.

Proof Let
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be the highest weight state in Vt.j. and

(0)_,

be the lowest weight state in V[p,o,...,o],. With notation as in [6] we have

(v([M],)([m],,)) ’/2 [M], B [p, 0,...,0], (A) / [m],
(M)._, (p)o_, \(m)._,l

(A.9) [M] (a), [p,O,...,O] (a)| [ml (a)
(M)n- (P)n-1 \ (m)n-1/

(A.10) B [p,O,...,O], (A)BI [m], /(A),B [M], (A)
(P),-1 \(m),_l]

(A.11) =(-1)p+’c(M)-(m) B [p,O,...,O],, (A)
(p).,

B [r]. /(ft.), B

(A.12)

()

by Definition A.3 and Lemma A.5, and

(- 1 )P+’(M)-, (,.,) d ([ M],, )J//([M].
d([m].)

(r)._,
[p, o,...,o].

(p).-,

[p,O,... ,o].
(o)._,

[m].

(’)._,

by [6, eq. (2.24)].
From [6, eq. (2.12)] we also have

/[ M] d[/[ m 1/ 2 M

()._,)
[A]. I
(o)._,

B [p,O,...,O], (A)

./t/([M],,)
(M),,_

[p,O,... ,0]
[m],,

(P)n
(m),_l

(m),,
[p, O,..., O]

[m],,

-’ (0)._,
(m)._,

(A.13)

[m].
(m)n-1
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If we set (P),-1 =(0),_1 and (m)n-l=(m).-l=(m’).-1 and equate (A.12) and
(A.13), we obtain

ii5; (’)
t,0,...,0o

.--1 (O)n_l
(/’)n--1

(A.14)

(m’)
[p, 0,... ,0]

[m],

-’ (0).-1
(m),,_,

From formula (2.13) above for reduced Wigner coefficients and formula (3.8) of [6]
which expresses a U(n) Wigner coefficient in terms of reduced Wigner coefficients,
one checks that both Wigner coefficients appearing in (A.14) are postive real numbers.
It follows that

ii]iJ (.,)._,
[,0,...,0].

(o)._,
(’’)"-’1

(m’),
[p, 0,...,0], >0.

-1 (0),,_,

After equating (A.12) and (A.13) and applying (A.15), we obtain identity
(A.7). Q.E.D.

PROPOSITION A.16. Let n >-2. With notation as in equations (2.10)-(2.14) above,
where h, h’ are U(n / 1) highest weights and q, q’ are U(n) highest weights, we have

o,..., h!d(q’)l"2
[p’,0, ",0],_1 \q’//=(-1)P’t.ath-)

where d (h), d (h’) are defined by formula (A.8) (as dimensions of U(n + representa-
tions) and similarly for d(q), d(q’) (as dimensions of U(n) representations).

Proof Consider the Wigner coefficient:

[p, 0, ,0],+, \(A.18)
\[p’,0,’’’, 0],,/q")"-
\ (0),_, /

q"),_

where

[p, 0,...
(r).+,

is the unique operator pattern such that

A(F)+,+h’= h and
(q")-i

is a U(n) highest weight state in Vq,.
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(A.19)

Applying formula (3.8) of [6], we find

h
[p, 0,..., 0Jn+l \ q,q

k [p’, 0, , 0]n/q")"-
(0)._ /

(q")"-

., o-,,,+,

(q,,_
[p’, o,...,

(O)n_i

where

(y) ([p’, O, , 0].)
is the unique operator pattern such that q’+ A(y), q. Similarly we have

/ \
,i’

,o],/")n--,
\ (0)n_l /

(A.20)

’ [p’,0,...,0],
(<i"),-,(")"-’

(0)._,

Now applying Proposition A.6 to relate the U(n + 1) and U(n) Wigner coefficients
appearing in (A.19) and (A.20) and using that

(A.21) (q,, [p’, 0,..., 0]
q’

0
"-’ (0),_,

(q")"-’

as in (A.15), we obtain identity (A.17).
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Abstract. R. Askey’s problem of estimating quadrature sums involving pth powers of polynomials
(0 < p <) in terms of integrals, is solved. In its simplest form, the method can extend the large sieve of
number theory to sums involving pth powers, rather than just squares, of trigonometric polynomials. Further,
the method yields estimates whenever the abscissas in the quadrature have a suitable spacing and the weights
have suitable bounds. In particular, it may be applied to generalized Jacobi weights and to Freud weights.

Key words, quadrature sums, pth powers, orthogonal polynomials, Freud weights, the large sieve,
generalized Jacobi weights
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1. Introduction. The large sieve ofnumber theory is an inequality for trigonometric
polynomials of degree at most n,

S,(r)= ake ik’, r[0,27r],

which states that

(1.1) E [s.()l={2n+ -}(2)- Is.()l= d,
j=l

whenever 0 =< 7.1 < 7"2 <" < 7"M 2 and

(1.2) =min {7"2--7.1, 7.3--7.2,’’’, 7-m--7-m-l,27"i’--(7"m--7"l)} >0.

See Montgomery [16, p. 548 and p. 559, Thm. 3], but note the different notation.
It is the purpose of this paper to extend (1.1) to sums of the form Yj--1 IS-()Ip,

p > 0, and to show how such sums may be estimated using L2 techniques. While such
sums have been considered by Davenport and Halberstam [4] and Forti and Viola
[5], their estimates did not include the case 0 < p < 1, and the upper bounds involved

n--1terms such as Yk=O lal(k+2)-=, rather than IS()I d. In this paper, we shall
also solve a problem of Askey [2] on quadrature sums involving pth powers of
polynomials. Before discussing the latter, we first illustrate the method in the case of
trigonometric polynomials. Let

(1.3) D,(7.)= e ’k’, 7"[0,27r).
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Applying (1.1) to Dn(x-’), and noting that

(1.4) ID.(r)l2 dT" 2r(2n + 1),

we obtain for any x [0, 2r),

(1.5) ., ID,,(x-’)l:z<-{2n+ 6-1}(2n+ 1).
j=l

We remark that it is unnecessary to use the large sieve to derive an inequality of the
form (1.5), and we pause in our exposition to outline the proof of such an inequality.
First, note the straightforward bound

ID,(’)I <= min {2n + 1, r/I ’1},
Let e=(2n+l)-+6 and assume (as we may) that all x- (j=l,2,...,m) lie in
[-Tr, r]. Then

E ID,(x-r)l<-- E (r/lx-l)-+ E (2n+l)z

j=l Ix--l=>
<_--2(2n+ 1)2+2 E (Tr/(j3))2+2 Y (2n+ 1)2.

Here we have used the fact that in each interval of length 3, there is at most one point
of the form x- . Then, using the definition of e,

E ID,,(x-’)12<=2(2n+ 1)2+2(7r/3)2 E j-2+2(2n + 1)2{8/3+ 1}
j=l j>--((2n+l)6)-l+l

<=2(r/3)((Zn+ 1)3) + 2(2n + 1){2 + ((2n + 1)3) -1}
<- 22(2n + 1){n + 3-1}.

This establishes (1.5) except for a factor of 22.
We now return to our main theme. Let p > 0. Theorem 6 in Mat6 and Nevai 14]

shows that for any trigonometric polynomial S, (’) as above,

(1.6) ]Sn("l’)lp <=(2+2np)e(8.a’) -1 I&(u)l du, " e [0, 27r].

Let k denote the smallest positive integer such that kp>=2. Applying (1.6) to
S,(7")Dk,(x--") with x fixed, we obtain

IS(’)D(x-’)l <-(2+2n(k+ l)p)e(8r)-
Now setting " x, and noting that kp {kp- 2} + 2, and

ID,,(x u)l-< 2n + 1 D, (0),
we obtain

(1.7) ISn(x)l _-< (2+2n(k+ 1)p)e(8-)-(2n+ 1)- IS,,(u)lPD(x-u} du.

Next, (k 1)p < 2, so that

2 + 2n(k + 1)p <2 + 2n(2p + 2) < (2n + 1)2(p + 1)
and hence

(1.8) I&(x)l --<(p+ 1)e(4,n-)-l(2n + 1) -1 IS.(u)lO.(x-u) du.
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Applying Jensen’s inequality (Zygmund [24, p. 24]) to (1.8), and noting (1.4), we obtain
the following proposition.

THEOREM 1. Let 0 < p < o. Let d/( t) be convex, nonnegative and nondecreasing in
[0, o). For any trigonometric polynomial Sn (t) of degree at most n,

tP(IS,,(x)lP)<=(27r)-’(2n+ 1) -1 q(IS.(u)lP(p+ 1)e/2)D2.,(x-u) du,

(1.9)
x [0, 27r].

If 0 < p < 1, p is concave, rather than convex, and so it is meaningful to include
the pth power-in (1.9). Applying (1.5) to (1.9), we obtain
Tzoz 2. Assuming the notation of (1.2) and Theorem 1,

(1.10) Z O([S,(7))lP)<=(2n+6-1)(27r) -’ d/(IS,,(u)lP(p+l)e/2) du.
j=l

Theorems 1 and 2 are useful in trigonometric interpolation and approximation.
In 1969, Askey [2, p. 553] posed the following problem: Let P,_l(x) be any

polynomial of degree at most n-1. Let {Xnk},=l be the zeros of the polynomials
orthogonal with respect to dee(x), a positive measure on [-1, 1], and let {A,k},_- be
the corresponding Christottel numbers. When is

(1.11) ._. AnklPn_l(Xnk)]p C Ie,_,(x)lp da(x),
k=l -1

where C is independent of Pn-1 and n? Such inequalities are essential in various
problems in approximation theory, and in particular, in investigating mean convergence
of Lagrange interpolation (Askey [1], Bonan [3], Knopfmacher and Lubinsky [9],
Nevai [18], [19], [20], [22], [23]).

For p 2, the Gauss quadrature formula establishes (1.11) with C and with
equality of both sides. Askey proved (1.11) for certain Jacobi weights for p=> 1.
Subsequently, Nevai [20, pp. 167-168] proved inequalities generalizing (1.11) for p_-> 1
and for generalized Jacobi weights on [-1, 1]. For the Hermite weight, estimates such
as (1.11) appear in Nevai [20] with the range of summation suitably restricted. Similar
estimates for generalized Hermite weights appear in Bonan [3] and for Freud weights
in Knopfmacher and Lubinsky [9].

To date, no one has succeeded in dealing with the case 0 < p < 1. We shall fill this
gap, using much the same method as that used to prove Theorems 1 and 2. Furthermore,
we can treat general quadrature sums with suitably spaced abscissas, rather than just
Gauss quadrature sums. As before, estimation of sums involving pth powers is reduced
to estimation of a sum involving an even integer power of a specific polynomial. The
specific polynomial (which is the analogue of D,(x-t) above) is

n-1

(1.12) K,,(v, x, t)= Z p1(v, x)p(v, t),
j=0

the kernel function associated with the Chebyshev weight

(l-t2) -’/2, t(-1,1),
(1.13) v(t)=

O, t(-1,1).

Here pj(v, x), j =0, 1, 2,..., are the orthonormal Chebyshev polynomials associated
with v. Finally, the sum involving K, (v, x, t) may be estimated using the large sieve
or using methods of Nevai [20, p. 167].
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Before stating the results for weights on [-1, 1], we need the definition of the
generalized Jacobi weights (GJ), studied in [20], [2!] [23]. Throughout, C, C1, C2," ,
denote positive constants independent of n and x, and of all polynomials P of degree
at most n, or at most a positive constant times n. Further, we use, o, O as in [20]. Thus,
for example, f(x)--, g(x), if there exist C1 and C2 such that C <=f(x)/g(x)<= C2 for
all relevant x.

DEFINITION 3. Let -1 tl > t2> > tN 1 and Fk > --1, k 1, 2, , N. Let
w(t) =0, t[-1, 1] and

N

(1.14) w(t)--- II It- tlr, e [-1, 1].
k=l

Then we say that w is a generalized Jacobi weight and write w GJ. The following
quantities are associated with w:

vn(t) (x/1 + 1/n)2rl+l (It- tk] + 1/n)Fk (V/’ d- + 1/n),2rn+l
k=2

(1.15)
t[-1, 1], n-1,2,...,

and vn (t) 0, [- 1, 1]. Further for 0 < p < and n 1, 2, 3, ,
]P(u)lPw(u) du

(1.16) An(w,p,x)=inf x [-1, 1]
IP(x)l

where the inf is over all polynomials P of degree at most n- 1. In particular,

A,,(w, x) A,,(w, 2, x), x e [-1, 1].
THEOREM 4. Let w GJ, 0< p, L < oo and be a positive integer. Further, let tO(t)

be convex, nonnegative and nondecreasing in [0, oe). Then for all polynomials P(x) of
degree at most ln,

(1.17) (IP(x)l).(x) el n-L+l fl-1 O(czlP(u)l’)lKn(v, x, u)lw(u) du,

xe[-1, 1].
THEOREM 5. Let w GJ, 0 < p < c and let be a positive integer. Further, let q( t)

be convex, nonnegative and nondecreasing in [0, ). Given

write

-1 <-_ Ym < Ym-1 <" < Yl <- 1,

Oj arc cos (y) e [0, 7r], j 1, 2," ., m
and let

(1.18) 6=min {02--01, 03--02,""" Om--Om_l}>O.

Then for all polynomials P(x) of degree at most ln,

(1.19) Z .(y)q(IP(y)l)<-C,{n +-’} d/(C21P(u)lP)w(u) du,
j=l

and

(1.20) 2 A.(w,y)q(lP(y)l’)C3{l+(n6)-’} q(f2lP(u)lp)w(u) du.
j=l --1

The constants C1, C2 and C3 are independent of m, Yl, Y2, Ym, t, n and P.
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COROLLARY 6. Let {xnj} and {Anj} denote the abscissas and Christoffel numbers in
the Gauss quadrature for the weight w GJ. With the notation of the previous theorem,

I_(1.21) A.,(IP(x.)l)_-< c ,l,(c=lP(u)l")w(u) du,
j=l

for all polynomials P of degree at most In.
In the case k(t)= and p _-> 1, Corollary 6 is implied by Nevai [20, Thm. 9.25,

p. 168]. Further for q(t) t, Corollary 6 ensures that Nevai [23, (24), p. 675] is correct
as stated, even for 0 < p < 1.

Finally, we state the analogues of the above results for weights with the whole
real line as support. First, however, we need a definition of , a suitable class of Freud
weights"

DEFINITION 7. Let W(x)=exp (-Q(x)), x R, where Q is even and continuous
in R, and Q"(x) is continuous and nonnegative for large positive x. Then we say W
is a Freud weight and write W if either

(1.22) I. Q"(x) is positive and nondecreasing for large positive x, or

II. There exists a (1, 2) and C and C1 such that

xQ"(x)/ Q’(x) <-_ c, x Cl,(1.23)
and

(1.24) lim xQ’(x)/ Q(x) a.

Associated with W are the following quantities: For large enough n, q, denotes the
positive root of the equation

(1.25) qnQ’(qn) n.

Further, given a nonnegative integer j, 0 < p _-< o and n -j / 1, j + 2,..., we define the
generalized Christoitel functions

(1.26) An,p(W,j, x)--inflIPWI]L/[P(X)I, X,
where the inf is over all polynomials P of degree at most n. We also define the classical
Christoffel functions

f (PW(u))2 du
(1.27) A,,(W2, x)=A,2(W, 0, x)=inf --2c-)- n= 1,2,..., xR.

The essential feature of W : is the following: Lower bounds are available for the
generalized Christoitel functions (Freud [6], [8], Lubinsky [13], Levin and Lubinsky
[10], [11] and inequalities are available which connect the Lp norms of weighted
polynomials over finite and infinite ranges (Nevai 17], Mhaskar and Satt 15], Lubinsky
[12], [13]). As concrete examples of weights W satisfying I, we mention
exp (-Ixl(log Ixl)), -> 2,/3 => 0, and exp (-exp (Ixl)), > 0, suitably modified for
small ]x]. As examples of weights W satisfying II, we mention exp (-]xl(log ]x])),
1 < a < 2,/3 R, suitably modified for small

THEOREM 8. Let W , 0 < p < o, and let be a positive integer. Let /be convex,
nonnegative and nondecreasing in [0, c). There exists a positive constant C* with the
following property: Let

-C*q,, <-_ y,,, < Y,,,-1 <" < Yl < C*q,,,

and

(1.28) t min {y y_1: j 2, 3,. ., m} > 0.
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Then for all polynomials P of degree at most ln,

(1.29) X tl’(lPWl(y))C{n/q.+6-} 4,(c:lPWl(u)) du.
j=l

The constants C1 and C2 are independent of m, 6, {yj}, n and P. If in addition (1.23)
holds, then we may take C* arbitrarily large, but C1 and C2 will depend on C*.

We shall prove Theorem 8 using the kernel function for the Chebyshev weight.
By using the kernel function for the weight WE we can also estimate sums of the form

Z 4(IP(y)I) W=(yl),
j=l

but we omit the more complicated proof.
For the Hermite weight, the following corollary is related to results in Nevai [22]

and for generalized Hermite weights to results in Bonan [3]. For Freud weights, a
similar result appears in Knopfmacher and Lubinsky [9], but for all cases, the following
corollary is new when 0 < p < 1.

COROLLARY 9. Let {x,j} and {A,0} denote the abscissas and Christoffel numbers in
the Gauss quadraturefor the weight W, where W . Let -oc < r < 2. With the notation

of the previous theorem, there exists C* such that

(1.30) Z A,jlP(x,)Ipw-r(x,j)<= C1 foo IP(u)IPW2-r(u) an,

for all polynomials P of degree at most ln.
Note that even when (1.23) holds, we could not prove (1.30) for the full sum

extended overj 1, 2, , n. The reason for this is that upper bounds for the Christottel
functions are not available near x, and

The paper is organized as follows: In 2, we prove the results for the finite interval,
namely Theorems 4 and 5 and Corollary 6, and in 3, we prove Theorem 8 and
Corollary 9 for weights on the infinite interval.

2. Weights on [-1, 11. The proof of Theorems 4 and 5 and Corollary 6 will use
estimates on the Lp Christottel functions:

LEMA 2.1. Let w GJ and 0 < p < oc. Then for n 1, 2, 3, ,
(2.1) A,,(w,p,x)’An(W,X)"n-,,(x), x6[-1, 1].

Proof See Nevai [20, Thm. 6.3.28, p. 120], and note that if w GJ and w GJ
and w--- w, in [-1, 1], then A,(w, p, x) A,(w, x) in [-1, 1].

We can now prove Theorem 4 in a special case:
Proofof Theorem 4 when O( t)= and L is a positive even integer. Let L be a fixed

positive even integer. By definition of the Christottel functions, we have for all
polynomials P of degree at most ln, and for It] _-< 1,

IP(t)lP <-- Al--,l(w, p, t) IP(u)l’w(u) du
-1

(2.2)
<--_ Cn-l(t) IP(u)lw(u) du,

-1

by Lemma 2.1, and as l,(X)’--,(x), Ixl--< 1. Let k be the smallest integer such that
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kp>=L. Applying (2.2) to the polynomial P(t)Kk,(v, x, t) with x fixed, we obtain

(2.3) IP(t)lPlgn(o,x, t)lkP<=Cn-l(t) IP(u)l’lg(v,x, u)l’w(u) du,
-1

x, t [-1, 1].

By Lemma 2.1,

I(x) cn-’(x), Ixl--< 1.

Thus we must prove

(2.9) I.(x) <- Cn-*.(x), Ixl <- 1.

First, note from (1.15) and (2.7) that

(2.10) ff,(t) >- C2(1/n)I-1 Itl < 1

Let e=(1/4) min,jlti-b], so that for Ix]_-<l, the interval (x-e,x+e) contains at
most one of {tl, t2,’", tN}. Given ]xl_-<l, we let tc denote the element of
{/1, rE," ", tN} that is closest to x. If this does not uniquely define tc, we take tc to be
the closest element from the left of x. We have

(2.11) w(u).lu-t[r, u6(x-e,x+e)(3[-1, 1],

Next, we note that

(2.4) IK,(v,x, t)l<-_Cln, Ixl, Itl_-< 1,

and

(2.5) g(v,x,x)-n, Ixl_-<l

(Nevai [20, p. 79, p. 108]). Setting t=x in (2.3), and using (2.4) and (2.5) and
kp L+ {kp L} with kp L >-_ O, we obtain for Ixl <_- 1,

(2.6) IP(x)l" <- Cn-"+la’-’(x) IP(u)l"gn(V, x, u)w(u) du,
--1

which is Theorem 4 in the special case mentioned.
In order to complete the proof of Theorem 4, we must apply Jensen’s inequality

to (2.6). For this to be possible, we must obtain upper bounds for
’_ KLn(V, X, U)W(U) du"

THEOREM 2.2. Let w GJ. Let L be a positive even integer such that

(2.7) L> 1 +max {2F1+ 1, F2, F3,’’’, Fv_l, 2Fv + 1}.

Then with the notation of (1.12) to (1.16),

(2.8) {K(v,x,u)/K(v,x,x)}w(u)du.-n-#(x), xe[-1, 1].
-1

Proof. In the special case N 2, so that w is a Jacobi weight, this is Theorem
6.3.10 in Nevai [20, p. 109]. Let

I_In(X) {gn(v,x,u)/Kn(v,x,x)}t’w(u)du, Ixl-< 1, n=l,2,..’.
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with the constants in independent of x [-1, 1 ]. Next, it follows from Lemma 6.3.8
in Nevai [20, p. 108] that

(2.12) Ig(, x, u)l<-f/{Ix-ul/l/nL Ixl, lul--< 1.

By (2.5), (2.11) and (2.12),

(2.13) I,(x)<-_n- [ (C/e)w(u) du
x--ule

+ Cn-’ In tl(Ix- ul + 1/n)- du
Ix-ul<

<= C4n-n(x)+ C3n-J,(x),(2.14)

by (2.10) and where L,(x) denotes the second integral in (2.13), so that

(2.15) J(x) I(x- to)- tlr/(ltl+ l/n)I dt.

Suppose first that 2 -< c =< N- 1, so that tc (-1, 1). Let z x t. We consider two cases"

Case I. zl >- 1/n. Let o- sign (z). We see from (2.15) that

Jn(x) {J + j }lz-tlrc/(ltl+l/n)Ldttl>=lzl/2 tl<=lzl/2

IZIFc+I J ul---->l/2
Ir-ulrc/(luzl+l/n)du+Clzlc fl,.<-,z,/2 (Itl+l/n)-dt’

by the substitution t= Iz[u in the first integral, and as [z-tl-" Izl for in the second
integral. Then we see that

J(x) <= lzlr+- I- ulrc, lul- du + lzlr2C u- du
ul->l/2 1In

(2.16) <- Clzlrm-1,
as L> 1 +F and Izl->_ 1In. Finally, we note that as Izl- Ix-t ->_ 1/n,

.(x)--- (Ix t[ + 1/n)r "--Izl
and hence (2.14) and (2.16) yield (2.9).

Case II. [z[ < 1In. Making the substitution u/n in (2.15), we see that

J.(x)=nL-’-r Inz-ulr/(lul+l)du

<-n--rmax{fols-ulr/(lul+l)du’lsl<=l }
<= CnL-In(X),

as Izl Ix- tl < 1/n implies that

if,, (x)--- (Ix tcl + 1/n)I’* n -r.
Then (2.14) again yields (2.9).

Finally, we must show that (2.9) holds when t (t, t}. Proceeding as at (2.13)
and (2.14), we see

I’(x)<-- Cn-l"(x)+C flx-,,l< {K"(v’x’ u)/K"(v’x’x)}lu-tlrdu"

<= Cn-,(x) + Cn-l(lx tl/z+ 1/n)r+
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by Theorem 6.3.10 in Nevai [20, p. 109] as tc +1, and (2.9) again follows.
We can now complete the proof of Theorem 4:

Proof of Theorem 4 in the general case. Let L be a positive even integer satisfying
(2.7). By (2.5) and (2.8), we may rewrite (2.6) as

I’ /IIP(x)l <-_ c IP(u)lK(v,x, u)w(u) du Kn(V,X, U)W(u) du,

for all polynomials P of eree at most In. Applying Jensen’s inequality (Zygmun
[24, p. 24]), an then usin (.8), we otain (1.17) for all suciently large positive
even integers L. It then follows that (1.17) holds for all L>0, since ir 0< L’

IK,(v,x,u)lCn-’lK,(v,x,u)l’, Ixl, lull.
We shall need the full generality of the following lemma in the next section.
LEMMA 2.3. Let -< Yl < Y <" <Y < and Y max) lyl. Let

Oj arc cos (y)/Y) [0, ], j 1, 2,. ., m,(2.17)
and let

(2.18)
Then for ul--< Y,

(2.19)

6=min{Oj+,-O;" 1-<_j=< m-l}.

X K,(v,y/Y, u/Y)<--(8/rZ)n{n+6-},
j=l

where Kn v, x, t) and v are as in (1.12) and (1.13).
Proof. Note that

po(V,X)= Tr
-/2 and p;(v,x)=(2/Tr)/Z cos (j arccos x),

j 1, 2, 3, , x [-1, 1]. Let r/, 0 [0, rr]. If’ denotes that the first term in the sum
is multiplied by ,

(2.20)
where

Kn (v, cos 0, cos r/)
2 hE,--’ COS (jO) COS (Jn)
’77" j=0

1
X’ {cosj(n+o)+(-1) cosj(n-O+rr)}

Re {S,(n + 0)+ S*,(n-o+ r)},

Sn(t) ln lneOt and S.*(t)=-- (--1)Je ijt.
77" j=o 7r j=o

Now let lu] =< Y and write r/= arc cos (u/Y) [0, ]. We see from (2.17) and (2.20) that

j= j=

Note that 0 + [0, 2] and 0 + [0, 2], j 1, 2,. , m, and fuher that the
numbers 0 + ,j 1, 2, , m lie in an inteal of length at most , as do the numbers

0j + m j 1, 2, , m. We may thus apply the large sieve, namely (1.1), to Sn and
S to deduce

2 K(v, y/Y, u/Y) < 2{2n + 8-’}
z=

= =}
;:,

{ISn(t) +lS(t)l at

4n-(2n + -). U
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An alternative proof of Lemma 2.3 may be based on the method in [20, pp. 167-
168].

Proof of Theorem 5. First, (1.19) follows easily from Theorem 4 and Lemma 2.3
with Y 1, while (1.20) follows from (1.19) and Lemma 2.1.

ProofofCorollary 6. Let 0,j arc cos (x,j) (0, 7r), j 1, 2,. , n, and assume the
zeros x are ordered so that 0, > 0,,-1, j 2, 3, , n. By Theorem 9.22 in Nevai [20,
p. 167],

Onj On,j_ 1/n,

Hence (1.21) follows directly from (1.20).
j= 1, 2, 3, , n.

[3

3. Weights on R. First, we need some properties of q,, defined by (1.25).
LEMMA 3.1. Let W .
(i) For large enough n,

1 <-- q2./q <- 2.

(ii) If (1.23) holds, then there exists C > 1 such that

q2n/ q,->- C > 1, for n large enough.

(iii) Suppose Q" satisfies (1.22). Let , denote the positive root of the equation

(3.1) :] Q"(,) n,

for n large enough. Then

(3.2) q, ,, for n large enough.

Proof (i), (ii). These follow exactly as in Freud [8, p. 22].
(iii). By monotenicity of Q", for n large enough,

q,Q’(q,) n 2,Q"(,) <= , Q"(u) du

,(Q’(2,)- Q’(,)) =< ,Q’(2,),
for n large, by (1.22). As uQ’(u) is nondecreasing for large u, we deduce that q, _-<2,.
Further for some large enough A,

qQ’(q,) n Q"() >-_ u) du

=,(Q’(,)-Q’(A+))
-> ,Q’(,)/2, for n large enough.

We deduce that q, >= :,/2, for n large enough, as Q’(u) and uQ’(u) are nondecreasing
for large enough u.

LEMMA 3.2 (infinite-finite range inequality). Let W gT. Let 0 < p <= oo. There exists
a constant C and a positive integer no such thatfor n >- no and all polynomials P ofdegree
at most n,

(3.3) PWII ,,) c PW[[ L,(-22q,,EEq.)

Proof Take g 1 in [12, Thm. A, p. 264] and note that llqEn <= 22qn by Lemma
3.1(i). [3

Next, we need estimates of the Christottel functions:
LEMMA 3.3. Let W . Let 0<p <-_ o, and let j be a nonnegative integer. There

exists a constant C* such that

(3.4) A,,p( W,j, x)--- (q,/ n)+l/pw(x),
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If (1.23) also holds, then

(3.5) hn,p(W,j,x)>=C(qn/n)J+l/PW(x), xEI.

Proof of Theorem 5. First, (1.19) follows easily from Theorem 4 and Lemma 2.3
this follows from Levin and Lubinsky [11, Thm. 3.5]. Suppose now that W satisfies I
in Definition 7, so that Q"(x) is positive and nondecreasing for large enough x. Then
Lemma 3.1(iii) and Theorem 3.1 in Lubinsky [13] show that there exists C* such that
for Ixl <= C*q,,

(3.6) An,p( W,j, x) >= Cl(qn/ n)J+l/pw(x),

To prove the upper bounds to match the lower bounds in (3.6), we apply Theorem
3.4 in Lubinsky [13]. Noting that Q’(x) is positive and increasing for large x, we must
show the following:

Given r/> 0, there exists e > 0 and C > 0 such that

(3.7) Q’(e)/ Q’() < rl, > C.

There exist C > 0 and C2 > 0 such that for :>_-C1,

(3.8) 3Q’()(log(Ixl/))/Q(x)<l,

The condition [13, (3.10)] holds trivially as Q"->0. To prove (3.7), we note that if
0 < e < 1, and A is large enough,

Q’(e,)/ Q’(,) ( fSe
Q"(u) du + Q’(a+))/(fS Q"( u) du + Q’(a+))

<- eQ"(e) + Q’(A+ )/ e) Q"(e) + Q’(A+- /(1-),Next, if x => 30> C3,

Q(x) Q’(u) du + Q() > Q’()(x-

Q’()(29/30)(x/) >= 3:Q’(:) log (x/),

as log u<= u/6 if u->30. Thus (3.8) holds. Then Theorem 3.4 in [13] shows that (3.6)
holds with ->_ replaced by =<, and then (3.4) follows.

Suppose now that (1.23) holds. By Lemma 3.1(ii), we can choose a fixed positive
integer k such that C*q,,k =>22q,, for n large enough. Then (3.6) shows that for

A,,p( W, j, x) >-_ Ak,,,p( W, j, x) >- Cl(qk,/(kn))+’/PW(x) >= C2(q,/n)J+l/pW(x).

Using the definition (1.26) of A,,p(W,j, x), we see that this last inequality may be
rewritten in the following equivalent form: For all polynomials P of degree at most n,

Then Lemma 3.2 yields

P() wll() -< c:(n/q.)+’/"llPwll,.(),
and (3.5) follows.
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The following lemma is an analogue of Theorem 4:
LEMMA 3.4. Let W , 0 <p <o and let be a positive integer. Further, let ,( t)

be convex, nonnegative and nondecreasing in [0, o). There exist C1, C2, B and C* such
that

(3.9) t([PWIP(x))<= Cl(qnn)-1 (CleWl(u))g.(v,x/(Bq.), u/(Bq,)) du,
Bqn

for all Ixl--< C*q and all polynomials P of degree at most ln. If (1.23) holds, we may
take C* arbitrarily large, but C, C1 and C2 will depend on C*.

Proof. Let k be the smallest positive integer such that kp-> 4. Let

B 44(/+ k).

It follows easily from q2n -<-2q, (Lemma 3.1(i)) that for any positive integer j, we have

qj, <= 2jq,, n large enough.

Hence

(3.10) 22qt+k,----< Bq, n large enough.

,Let P have degree at most ln. For each fixed x, P(t)Kk,(v, x/(Bq,), t/(Aq,)) has degree
less than (l + k) n in t, and Lemma 3.3 shows that there exists C* such that for tl --< C*q,

IPWIP(t)lgk,(v, x/(Bq,,), t/(Bq,))l

<- C2(n/q,) I_ IPWl(u)lg.(v, x/(nq), u/(nq))l du

<-_ C3(n/q,) IPW]P(u)IK,(v, x/(Bq,,), u/(Bqn))] kp du,
Bqn

by Lemma 3.2 and (3.10). As the constants are independent of x, we can set x, and
use (2.4) and (2.5) (as in the proof of Theorem 4---see (2.3) to (2.6)) to deduce that

Bq

(3.11) IPWl(x)<-C4(naq)- IPW]P(u)K(v,x/(Bq,), u/(Bqn)) du,
Bqn

for Ixl <- C*q,. To obtain (3.9) from (3.11), we must apply Jensen’s inequality. First
note that

(3.12) K4,(v,x/(Bq,),u/(Bq,))du=nq K4(v,x/(Bq,),t)dt---n3q,,
B

for Ixl--< Bqn/2, by Theorem 2.2 with w(u)= 1. We may then use Jensen’s inequality
and (3.11) and (3.12), in the same way as in the proof of Theorem 4, to deduce (3.9).
If (1.23) holds, Lemma 3.3 ensures that lower bounds for A,,p(W,j,x) hold for all
x R, as obvious modifications of the above argument yield the stronger stated
result. I-1

Proof of Theorem 8. In view of (3.9), it suffices to show that

(3.13) (q,n)-1 E K(v, yj/(Bq,), u/(Bq,,))<=C3{n/q,+t$-},
j=l

for all lul--< Bq,, with C3 independent of m, {yj}, n, and u, provided

-C*q, <= y,. < Ym- <" <y <- C’q,,
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with C* small enough and with 8 as in (1.28). We can assume that C*<= B/2, so that
ly/(Bq.)l <- 1/2, j= 1, 2,. ., m. Then as d/dx (arc cos (x))--- -1 for Ixl -< 1/2, we see
that

arc cos (yj/(Bq.))-arc cos (yj_l/(Bq.)) >= C4(Y-l- y)/q. >= C4/q.,
by (1.21). Then Lemma 2.3 with Y Bq. shows that (3.13) is true. l-1

Before proving Corollary 9, we need a result on the spacing of the zeros or
orthogonal polynomials. Let p.( W2; x), n 0, 1, 2,..., denote the orthonormal poly-
nomials for the weight W2.

LEMMA 3.5. Let W ;. There exists C* such that

x..-i x., q./ n, Ixl C*q.

Proof. The proof of the upper bounds on x..j_l-X., in Freud [7, pp. 293-294]
requires only suitable upper bounds for A.( W2, x) and convexity of Q. The proof of
the lower bounds for x.._l- x., in Freud [8, p 36] uses only suitable upper and lower
bounds for K.( W2, x, x) and suitable upper bounds for

Y. (p( W, x))2= 1/{h.,2( W, 1, x)}2,
j=0

as well as the monotonicity of Q’. As Lemma 3.3 yields the desired upper and lower
bounds for h.,p(W,j, x) and h.( W2, x), the result follows.

Proof of Corollary 9. If C* is small enough, Lemma 3.3 shows that

Z x.lP(x.)l’W-(x.)<= Cl(q./n) Z IP(xnj)IPW2-r(xnj)
Ix,,jl<-- C*q. Ix,,jl<-_ C*q.

Cl(qn/ n) 2 Ipw*(x.)l
Ixjl<-C*q

where W*(x)= exp (-Q*(x)) and Q*(x)= ((2-r)/p)Q(x). If q* denotes the root of
the equation q*Q*’(q.)= n for large enough, Lemma 3.1(i) shows q.---q.*. If ,=
max {x.._l- x,.j" ]x,l <-C*q.}, Theorem 8 shows that

Y A.2IP(x.2)IPW-r(x.2) <-_ C2{1 +(t.n/q,,)-1} I IPW*(u)l du
d-

and then Lemma 3.5 yields, the result.
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JACOBI POLYNOMIALS ASSOCIATED WITH SELBERG INTEGRALS*

K. AOMOTOf

Abstract. An extension of Selberg’s beta integral is evaluated and used to obtain a new integral
representation for Jacobi polynomials.

Key words. Jacobi polynomials, Selberg integrals

In his work with Y. Kanie on the Fock space representation of the Virasoro
algebra, Prof. A. Tsuchiya mentioned the importance of computing the following
integral Jx J(xN)(x, A ’, A ")"

(1)

N

Jx X(x3,’’’ ,xN) l--I x)’(1-xj)x"

G j---3

H [Xi- Xj] dx3 A’’A dXN"
3<=i<j<N

The integral is taken over the (N-2)-dimensional domain G: 0-<xj-< 1, 3-<j =< N,
where we put xl 0 and x2 1, and X(x3, , xs) is an arbitrary symmetric polynomial.
For convergence take A’>-I, A">-I and for simplicity A >0 (see (Ts)). The one
dimensionality of the twisted de Rham cohomology associated with Jx implies that
Jx/J1 is equal to a product of certain rational functions of A,A’, and A" (see [A1,
p. 177]). However, it seems to be rather difficult to get explicit formulae. J1 is known,
since it is A. Selberg’s celebrated formula. See [Se], [Ma], [Mo]. Conjectured q-
extensions of J1 are stated in [As], [Ma], [Mo], IRa].

In this note we want to show that if X I]3 (xj- t), then Jx/J is equal to

(N-2)!
(2) --N-2O(’)t 1 2t)\

HjN=3 (a+fl+N+j-4)
for ce -1 +2(A’+ 1)/A, fl =-1 +2(A"+ 1)/A, where P’)(x) denotes the Jacobi poly-
nomial of degree n. In the case A 2, this formula reduces to a standard one for
orthogonal polynomials; see [Sz, (2.2.10) and 4.2].

We denote by the function I-Ij3 x)’(1- x)X" I-I3_<,<__<N Ix,-x[, by dr the (S-
2)-form dx3 A. A dxN and abbreviate by (i, j) the difference xi- x. Recall that xl 0
and x2- 1. We start by proving the following.

LEMMA 1.

f (3, 1)(4, 1)... (j, 1)
dr(3)

(k, 3)

(3a)

(3b)

=0 for 4<-_k<-j

1 I (4, 1) (j, 1) d- forj+l<k<N.
2

Proof. The domain of integration, is invariant under an arbitrary permutation of
the arguments (3, 4,..., N). When 4 -< k<=j, the integrand changes sign when 3 and
k are transposed. This shows that (3a) holds.

* Received by the editors August 14, 1985; accepted for publication January 7, 1986.
5" Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464, Japan.
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On the other hand, whenj + 1 _-< k -< N the same transposition transforms as follows

(3, 1) (k, 1) (3, 1)
--> -l(4)
(k, 3) (3, k) (k, 3)’

so the left-hand side of (3) is equal to

(5) -I (4, 1)’’’ (j, 1)d’-I
and this completes the proof of (3b).

LEMMA 2.

(3, 1)(4, 1)... (j, 1)
(k, 3)

f (3, 1)2(4, 1)... (j, 1)
(6)

(k, 3)
dT"

(6a)

(6b)

----21f(3’l)’"(J’l)d" for4<k<j=

=-f dP(3,1)...(j, 1) dz forj+l<=k<-N.
G

Proof. Transposition of 3 and k transforms

(3, 1)2(k, 1) (k, 1)2(3, 1) (3, 1)2(k, 1)
(7) -> -(3, 1)(k, 1)

(k, 3) (3, k) (k, 3)
for 4_-< k_-<j,

while

(8)
(3,1)2 (3, 1)(k, 1)

--(3,1)+ forj+l<-_k<-N.
(k, 3) (k, 3)

The last term changes sign under the transposition of 3 and k, so this integral vanishes.
These equalities imply Lemma 2.

LEMMA 3. For 3 <--j <--_ N

1)A,,f (4,1)...(j, 1)
(3,2)

Proof. By Stokes’ formula

(9)

(10)

( 1 )dr= A’+A"+ 1 +(N-j)A

x f (4, 1)... (j, 1) d’.

0 fc d{(3, 1)--. (j, 1) dx4^’"^ dxu}

=(A’+I) f (4, 1)... (j, 1) dr

a, (3,1)... (j, 1)+
(3,2)

dT"

]" (3, 1)... (j, 1)-xZ Jok=4 (k, 3)
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In view of Lemma 1, this is equal to

(11)

(2, 1)(4, 1)--. (j, 1)
(3,2)

dT

+ A’+ A"+ 1 +(N-j)A (4, 1) (j, 1) d"

which implies Lemma 3.
LEMMA 4 (Recurrence formula). For 3 <-j <-N,

(12)
A’+A"+2+(j-3)A +(N-j)A (3, 1).-. (j, 1) dr

()., ’+ +(-j ,(4, ... (Z a-.

Proof. By Stokes’ formula again,

O= I d{(3, 1)2(4, 1)... (j, 1) dx4^’"^ dxN}
G

(13)

(A’+2) I (3, 1)... (j, 1) dr

A,, (3,1)2(4,1)...(j, 1)+
(3,2)

d’/"

N f (3 1)2(4,1)...(j, 1)
-/ k_-4 (I)

(k, 3)
dT".

In view of Lemmas 2 and 3, and seeing that

(14)
(3 1) (2, 1)2

(3, 1)+(2, 1)+
(3,2) (3,2)

we get

(15)

O= A’+A"+2+-(j-3)A+(N-j)A (3 1)...(j, 1) dr
2

+A"(2,1) f (4,1)...(j, 1) dr
G

f (4, 1)... (j, 1)
dr+ 1)

J (3,2)

M+M’+2+-(j-3)I+(N-j)I (3 1) (Z l) dr
2

(, a’+ +=(-j ,(4, ... (Z ,
which implies Lemma 4.
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Successive applications of Lemma 4 lead to the following theorem.
THEOREM 1.

(16)
( 1 )

i=3
A’+A"+2+A N

2

This identity and the symmetry of give the following.
THEOREM 2.

I 1 ]N N
h’+ 1 +-(N-j)A

* I-I (xj-t)dr= E (--t) N-r
G j=3 r=2 r-2 j=3 rh,+ h,,+2+ h/N_J_3]

\ 2]J2
(17)

(N-)! P3(1 -t3 (a + fl + N-4+j)

for a =(2(h’+l)/h)-I and fl =(2(h"+ 1)/h)-l, where P’(x) denotes the Jacobi
polynomial of degree n defined by

(18)
P(,,’’t)(x) (n + a + fl + 1)’’" (n + a + + v),

=0

It has been remarked by Prof. R. Askey that if we take X Hi=3 (xi- t), then the
D(N-r+a,N-quotient Jx/J1 is also equal to a constant multiple of --r-2 r/)(1--2t). This easily

follows from (16).
He also pointed out the following: If h, h’, h" are all nonnegative integers, then

(16) implies the following recurrence relation:

H-I HjN=3 k+-(N-j), H---1Hj-- k+-(N-j)2
’)(, O, 0).

This equality is nothing else than the key formula (5) in [Se]. By the change of
variables xj x3tj for j => 4, we have

i’)(x, o, o)
(N-2) 1 +

2
A

JN-1)(/, 0,/ ).

The proof of Selberg’s formula can then be completed along the same line as in [Se]
using Carlson’s theorem.

Note added in proof. K. W. J. Kadell has recently proved a conjecture of Askey
for a q-analogue of Selberg’s integral.
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DIRICHLET AVERAGES OF x log x*

B. C. CARLSONf

Abstract. A neglected class of special functions may be described as Dirichlet averages of x log x or

equivalently as derivatives of hypergeometric R-functions with respect to the degree of homogeneity. Special
cases include the derivative of a Legendre function with respect to the degree and the derivative of Gauss’s
hypergeometric function with respect to a numerator parameter. There are connections with the logarithmic
derivative of the gamma function, with Euler’s dilogarithm, and with 3F2; some special cases of 3F2 are

thereby evaluated. Applications include a two-point boundary-value problem, mean values, series expansions
of elliptic integrals, integral tables, and several physics problems. The discussion of various properties
emphasizes series expansions, quadratic transformations, inequalities, and evaluation of special cases,
including certain cases of the derivative of a Legendre function with respect to the degree.

Key words. Dirichlet averages, logarithms, hypergeometric functions, R-functions, elliptic integrals,
Legendre functions

AMS (MOS) subject classifications. Primary 33A30; secondary 33A25, 33A45

1. Introduction. A class of special functions that seems not to have been discussed
systematically arises in the asymptotic expansion of elliptic integrals and in various
other problems. The prototype of this class is the derivative of a Legendre function

P with respect to the degree u. The general case is the derivative of the multivariate
hypergeometric function Rt with respect to the degree of homogeneity. It can
equivalently be thought of as a Dirichlet average of oxt/Ot x log x. After defining
this average, denoted by Lt, we shall list some places where it occurs.

We recall first the definition of the R-function [3, (5.9-1)]. Let b and z be k-tuples
with components in the open right-half complex plane, C>. The Dirichlet average of
x t, C, is defined for k -> 2 by

(1.1) Rt(b, z)= f (u" z) dla,b(U),

where u. z ,k=1 UZ is a convex combination of the variables Zl," , Zk and /Zb is a
Dirichlet measure (i.e. a multivariate beta distribution with possibly complex para-
meters bl," ", bk). The integration extends over all nonnegative weights Ul,’", Uk
whose sum is unity. If k 1 we define Rt(b, z)-- z’. The analytic continuation [3, See.
6.8] of Rt(b, z)/F(c), c= Eik__l bi, is entire in and b and holomorphic in z on Cok,
where Co is the complex plane slit along the nonpositive real axis.

The subject of this paper is the function Lt defined by

0
(1.2) Lt( b, z) -- Rt( b, z).

If b, z C k>, k > 2, we see from (1.1) that

(1.3) Lt(b, z)= (u. z) log (u. z) dla,b(U).
d

* Received by the editors October 10, 1985; accepted for publication (in revised form) January 23, 1986.
This work was supported by the Director of Energy Research, Office of Basic Energy Sciences. The Ames
Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract
W-7405-ENG-82.

t Ames Laboratory and Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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That is, Lt is a Dirichlet average of x log x. The case 0 is discussed briefly in [3,
Ex. 5.9-12 and p. 305]. If k- 1 we define Lt(b, z)- z log z. We shall often display the
components of b and z by writing Lt(bl,. ., bk; Zl," ", Zk). If k 2, b (/3, fl’) and
z (x, y), 1.3) becomes

r( +’) f’Lt( fl’ fl’; x’ Y)= ii(-’) 30
[ux +(1- u)y]t lg [ux+(1- u)Y]

(1.4)
u-l(1 u) ’-1 du,

where/3,/3’, x, y have positive real parts and is unrestricted. The case in which x or
y is 0 will be discussed in 4.

We list some examples to show that Lt is worth studying.
Example 1. The difference between two values of the logarithmic derivative of

the gamma function is

g/(fl)-(y)=Lo(fl, y-fl;1, O), Refl>0, y0,-1,-2,....

Example 2. The derivative of Gauss’ hypergeometric function with respect to a
numerator parameter is

0
(1.6) 2Fl(a,/3; y; z)=-L_,(fl, y-fl; l-z, 1).

Oa

If a is a negative integer, the 2Fl-function is a polynomial; if a is close to a negative
integer, the function can be approximated to first order with the help of the derivative.
Equation (1.6) can easily be generalized from 2F1 to Appell’s F1 or Lauricella’s FD by
expressing these functions in terms of R, (e.g. see [3, Ex. 6.3-5]).

Example 3. The derivative of an associated Legendre function with respect to its
degree is

0 sin 0
P(cos 0)=

2F’lt
(1.7)

Ou + L_,( + 1/2,/ + 1/2; e i, e-i).

This derivative is useful in antenna theory 13, pp. 114-115]. Special cases are evaluated
in closed form in (6.14) and (6.19).

Example 4. For any real and positive x, a, b, the solution of the two-point
boundary-value problem y" x log x, y(a) y(b) 0, is

(1.8) y(x)--1/2(x-a)(x-b)Lt(1, 1, 1; x, a, b).

Closed formulas are given in (8.10), (8.12), and (8.14).
Example 5. Let x,. ., Xk be positive numbers and Wl," "’, Wk positive weights

with Y wi 1. Then exp Lo(cwl,’’’, CWk; Xl,’’’, Xk), > 0, is a homogeneous mean
value of the xi that increases strictly with c unless the x are all equal. It tends to the
weighted geometric mean I] x" as c 0+ and the weighted arithmetic mean Y wixi as

Example 6. Series expansions of elliptic integrals and some other R-functions
[6], [5] near their singularities involve L,. For example [6, (1.20)],

(zw1/ [(+x(+y(+(+w]-/ de

(1.9) ’. [-L,(1/2, 1/2; x, y)R,,(1/2, 1/2; Z-1,

-R,(1/2, 1/2; x, y)L,,(1/2, 1/2; z-’, w-l)]
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where x and y are nonnegative, z and w are positive, and 0 < max {x, y}/min {z, w} < 1.
Convergence is fast near the logarithmic singularity at x =y 0. A closed formula for
L,(1/2, 1/2; x, y), which was not known when [6] was written, is given in (6.13).

Example 7. Integrals with a logarithm in the integrand are met in various applied
problems and can sometimes be put in the form (1.4). Two such integrals occurring
in diffusion problems associated with crystal growth [14, (17), (36)] [11, (A4)] are
constant multiples of Lo(1/2, 1/2 + 1/n; z2 1, z2) and Lo(1 + a, 1 a; z 1, z + 1),
where n is a positive integer and a is an angle in units of or. In connection with the
first example, Seeger [14, p. 6] remarks that he "did not succeed in expressing [the
concentration] in terms of well-investigated functions." A more complicated integral
(not found in tables) containing a logarithm and a Bessel function is

’e
-pt log (t)tJ(xt) 1/2)(2x)(pE+x2)-v-ldt= ,/T-1/2F(/

(1.10)
q(2 , + 1 -log (p2 + x2) +1/2Lo( , + 1/2, 1/2; p2, p2 + x2)],

where p, x, and u + 1/2 are positive. An example with an integrand not containing a
logarithm is

(1.11) u-l(1-u)a-l[2Fl(a b; c; ux)- 1] du=-Lo(b, c-b; l-x, 1),

where Re a>0, larg (1-x)l < , and c0,-1,-2,.... The case a b=1/2, c= 1 occurs
in the theory of neutron stars [8, Appendix B].

Equation (1.5) is a special case of (4.4). Equations (1.6) and (1.7) follow, respec-
tively, from differentiating [3, (5.9-12) and (6.8-19)]. It can be verified that (1.8) satisfies
the differential equation by using [3, (5.6-5), (5.6-10), (6.3-3)] to prove a more general
result for y" =f(x). Example 5 comes from Theorem 7.2 or from [1, (2.6) and Thm.
1] and [7, Thm. 4]. Equation (1.9) is taken from [6, (1.18), (3.17)]. Equation (1.10) is
proved by differentiating [3, Ex. 5.10-3] with respect to h and using [3, (5.9-23)] and
Equations (2.11), (6.4), and (2.3) of this paper. Equation (1.11) is derived by integrating
the 2Fl-series term by term and comparing with (5.13).

This paper does not discuss higher derivatives of R, with respect to nor double
Dirichlet averages of x’ log x, although the latter occur in some problems such as the
two-dimensional Ising model.

2. General properties. Several important properties of Lt follow immediately from
the theory of Dirichlet averages or from properties of Rt"
(2 1) Lt(b, z)/F(c) c =Yk bi is entire in and b and holomorphic in z on Cok.i=1

See (1.2).

(2.2) L,(bl,..., bk; Z,’’’,Zk) is symmetric in the indices 1,...,k [3, Thm.
5.2-3].

(2.3) A vanishing parameter bi can be omitted along with the corresponding variable

z [3, (6.3-3)].

(2.4) Equal variables can be replaced by a single variable if the corresponding
parameters are replaced by their sum [3, (5.2.-3)].

In particular, if all variables are equal, then

Lt( bl, ", bk’, x, ., x) Lt(c, x) X log x.
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From (1.3) we obtain

L,(b, Az) A ’L,(b, z) + A ’R,(b, z) log A

A ’L,(b, z) + R,(b, Az) log A,

Lo(b, Az) Lo(b, z) + log A.

Differentiation of [3, (6.8-15)] gives

(2.6) L,(b, z)= -( Ii=, zV’ b’) L-c-’(b’ z-1)’

where c i=k b 0, -1, -2," z (:ok; and z-’ (z-1, z{).
Since L, is a Dirichlet average, it satisfies a system of Euler-Poisson equations

I-3, (5.4-2)1,

(2.7) [(z,-zl)D,Di+b,Dj-bD,]L,(b,z)=O, i,j= 1,2,..., k,

where D=O/Oz. Differentiating [3, (5.9-2)] with respect to t, we find also the
inhomogeneous differential equation

k

(2.8)
i=1

and the differential-difference equation
k

(2.9) , D,L, tL,_ + R,-I.
i=1

If we define x + z (x + z,, , x + Zk), where z is independent of x, then (2.9) implies

d
(2.10) -x L,(b, x + z)= tL,_,(b, x + z)+ R,_l(b, x + z).

Some useful relations are peculiar to the case of two variables"

(2.11) t,(,/3’; x, y)= log (xy)R,(, ’; x, y)-x’+’y’+L__,_,( ’, ; x, y),

where x, y e Co and/3 +/3’ # 0, -1, -2, . This follows from (2.6) and (2.5) or alterna-
tively from 3, (5.9-21 ].

0
R_,(u + t, v t; x, y) x-aLt_v(u + v- a, a; 1, y/x)

Ot
(2.12)

=-y-aL__t(a, u+v-a; x/y, 1),

where x, y Co and u + v 0,-1,-2,- . On the left side use homogeneity to arrive
at arguments 1 and y/x and then apply [3, (5.9-20)]. The second member equals the
third by (2.6) and (2.2). We shall use (2.12) to derive (6.4) and (6.5).

In addition to the representation of L, by the multiple integral (1.3), a representa-
tion by a single integral is obtained by differentiating the corresponding representation
[3, (6.8-6), Ex. 6.8-8] of

B(a, a’){L_,,(b, z)+ [q(a’)- q,(a)]R_,,(b, z)}

(2.13) ’’-1 log (t) H (t + z,) -b’ dt
i=1

fO k
-’ log (t) I] (1 + tzi) -b’ dt,

i=1
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where B is the beta function, a + a’-)--,,k bi a and a’ have positive real parts, andi=1

z Cog. For integrals with finite limits of integration, we find by differentiating [3,
(8.1-2)] with respect to a that

x -1(y ,’- log i + wit) -b, dt
-x

k

(a, a’l(y-x/’- II (+ wx-i=1

k

B(a, a’)(y-x) a+a’-I I-I (zi-[- wiy) -b’

+[,(a’)- ,(a)]_., b,
+ wx

z + wy z + wy

where the conditions on the parameters are the same as for (2.13), y > x, (z + wy)/(z +
wx) denotes the k-tuple with ith component (zi+ wiy)/(zi+ wix), and zi+ wit Co for
every t[x,y] and every i=l k. The equality a+a’=,k

bi can always bei=l

satisfied by choice of bk if we put Zk 1 and Wk O.
An integral containing the confluent hypergeometric function ,S (the Dirichlet

average of ex) can be evaluated by differentiating [3, (5.10-11)] with respect to a"

(2.15) - log (t)S(b, -tz) dt=r’(a)R_.(b, z)-r(a)L_(b, ),

where a and all components of have positive real parts and bi 0,-1 -2,..i=1

The functions of Kummer, Bessel and Whittaker are expressed in terms of S by [3,
(5.8-7), (5.8-23), (5.12-20 to 27)].

3. Relations between associated functions. Two or more L-functions of k variables
are said to be associated if the parameters t, b,..., bk of each function differ by
integers from the corresponding parameters of the other functions.

THEOREM 3.1. Between any k + 1 associated L-functions of k variables there exists
a linear (possibly inhomogeneous) relation with coefficients that are polynomials in the
variables and parameters. The inhomogeneous term, if any, is a linear combination of
R-functions with polynomial coefficients.

Proof. There is a linear homogeneous relation between any k + 1 associated R-
functions [3, Thm. 8.4-3] in which the coefficients are polynomials in the parameters
as well as the variables. By (1.2), differentiation with respect to produces a linear
relation of the kind described between the corresponding L-functions.

Let wi bi/c, c -,k bi and let ei be a k-tuple with unity in the ith place andi=1

zeros elsewhere. We list first some homogeneous relations:

k

(3.1) Lt(b, z)= E wiLt(b+ ei, z),
i=1

k

(3.2) Lt+1 b, z) E wiz,Lt b + ei, z),
i=1

(3.3) (zi-zj)Lt(b-eh, Z)W(zj-Zh)Lt(b-ei, z)W(Zh-Zi)Lt(b-ej, z)=O.



DIRICHLET AVERAGES 555

The first and third are special cases of [3, (5.6-4), (5.6-11)], while the second comes
from differentiating [3, (5.9-6)].

Ditterentiation of [3, (5.9-8), (5.9-9), (5.9-10)] yields, for i- 1, 2,..., k,

(3.4) (c- 1)L(b-e, z)- (c+ t- 1)L(b, z)- tz,L_l(b, z)+ R(b, z)-z,g_l(b, z),

(3.5) DL,(b, z)= wtL,_(b+ e, z)+ wR,_l(b+ e, z),

(3.6) z,D, + b,) L,(b, z) w,(e + t) L,( b + e,, z) + w,R,( b + e,, z).

From [3, Ex. 5.9-6] we see that

(3.7) t(z-z)L,_,(b,z)+(c-1)[L,(b-e,z)-L,(b-ej, z)]+(z-z)R,_(b,z)=O,
(e+ t- 1)(z,- z)L,(b, z)+ (c- 1)[zL,(b- e,, z)- z,L,(b- ej, z)]

(3.8)
+ (z, z)R,(b, z) O.

In the case of two variables, differentiation of [3, (5.9-24), (5.9-25)] gives

(3.9) w(z-z)L,(b+e,z)=zjL,(b,z)-L,+l(b,z), j=3-i, i= 1,2,
2

(c+ t)L,+l(b, z)- , (b,+ t)ziL,(b, z)+ tz, zL,_l(b, z)
i=1

-Rt+(b, z) + (Zl + z2)Rt(b, z)-zlZ2Rt_l(b, z)
(3.10)

bbz (z- z)R_(b+ e + e, z)
c(c+l)

(Z1 Z2)2
DDzR+(b, z).

t(t+l)

In (3.10), where c bl + b2, the second and third equalities come from two applications
of [3, (5.9-24)] and [3, (5.9-9)], respectively. The case with a nonnegative integer and
b (1/2, 1/2) was quoted in [6, (2.24)], where it was used to show that-the quantity
An(l/2, 1/2; x, y) defined by [6, (1.13)] is a homogeneous polynomial of degree 2n in
x 1/2 and yl/2 containing (xl/2-yl/2)2 as a factor. That conclusion is confirmed by
(6.13) of the present paper, which yields the formula

2
(xY)("-)/2"

4. The ease of a zero argument. If all components of z except one, say Zk, are
fixed, both R, and L, have a branch point at zk 0. (In the exceptional case where bk
is a nonpositive integer, Lt is a polynomial in Zk, for bk can be raised to 0 by successive
applications of (3.4) and then omitted by (2.3). Equation (5.17) is an example. Similar
remarks apply to R,.) If Re b +. + bk-1 -b t) > O, R, and Lt have finite limits as Zk -’> 0
in Co with [arg Zk[ bounded away from r, and we define the value of the function at

Zk =0 to be this limit. By an extension [3, (8.3-4)] of Gauss’ theorem for a hyper-
geometric function with unit argument,

R,(bl, b; z, z_, O)
(4.1)

I’( c)r( c b, + t)
R(b,’’’, bk-l’, Zl,""", Zk-1),

r(c+t)F(C-bk)
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where C=bl+...+bk#O,-1,-2,’.’; Re(c-bk+t)>O; and Zl,’’’,Zk-IE([0.

Logarithmic differentiation with respect to shows that

(4.2)

Lt(bl, ", bk; Zl," "’, Zk-1, O)
Rt(bl, ", bk; Zl, ", Zk-l, O)

6(C--bk+ t)-6(c+ t)+
Lt(bl, "’, bk-1; z, "’, Zk-)
R,(bl, bk-; z, Zk_

with the further conditions that c+ t, c-bk 0,-1,-2,.... Although (4.2) will be
used in the remark following Theorem 7.1, a better form for other purposes is obtained
by ordinary differentiation of (4.1)"

(4.3)
Lt(bl, ", bk; Zl, Zk-1, O)

F(c)F(c bk + t)
{Lt(bl,’", bk-; z,’’’, Zk-)

F(c+t)F(c-b)

+ [b(c-- bk + t)- p(c.+ t)]Rt(bl,’" ", bk-1; Zl,’" ", Zk-1)},

with the same conditions of validity as for (4.1). If k--2 this reduces to

t)
(4.4) L(fl, T-fl; x, 0) x[b(fl+t)-(T+t)+logx],

where fl, % T/ 0, -1, -2,... and Re (fl/ t)>0. The elliptic integral (1.9) is
equivalent to Legendre’s first integral if w--o, and its series expansion then contains
the special case of (4.4) with/3 =1/2, y- 1, and a nonnegative integer. This case was
quoted in [6, (1.10)], with the difference of b-functions given by [6, (1.11)] or [3,
(8.3-15)]. Other special cases of (4.4) are (1.5) and

(4.5) Lo(1, m; x, 0) log x-(1 + 1/2 + 1/3 +... + 1/m),

where m is a positive integer. Ifx m, this tends to the negative ofthe Euier-Mascheroni
constant as m

5. Series expansions. Let all parameters and variables be complex, define 1-z--
(1-z,’’’, 1- zk) and ]l z[ maxi [1- zi], and assume [1- z[ < l and bl+.. / bk
-1, -2," ". The series expansion [3, (5.9-4)]

(5.1) R,(b, z)= E (-t)
R(b, l-z)

=o

is the Dirichlet average of the binomial series

(5.2) x’= 2 (-t)’(1-x), [1-x[<l,
=o s!

where (-t)o=l and (-t)=(-t)(-t+l)(-t+Z)...(-t+s-1), s=1,2,3,..-.
Differentiation with respect to is essentially the same for both series. By [3, proof of
Cor. 6.3-4] both converge uniformly for Itl < T, where T may be arbitrarily large, and
so the series may be differentiated term by term. Since (-t)o 1 we assume s to be a
positive integer and find

(d/dt)(-t)=(-1)(-t+l)(-t+2) (-t+s-1)

(5.3) +(-t)(-1)(-t+2)... (-t+s-1)+"

+(-t)(-t+ l) (-t+s-2)(-1).
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If (-t)s 0 we can rewrite this as

(d/dt)(-t), =(-t) ++. "+
t-1 t+1-

(5.4)
=(-t)s[(t+l)-q(t+l-s)].

If n where n 0, 1, , s- 1, then (5.4) is indeterminate, but all terms on the right
side of (5.3) vanish except one, leaving

(5.5) [(d/dt)(-t)],=,,=(-1)"+ln!(s-n-1)!, n=O, 1,... ,s-1.

Therefore, if 0, 1, 2,. ., differentiation of (5.1) yields

(5.6) Lt(b,z)= (-t)[d/(t+l)-d/(t+l-s)]Rs(b,l-z), I1-z1<1.
s=l S!

On the other hand, if n =0, 1, 2,..., we find

(5.7)

Ln(b,z)= (-n)[O(n+l)-O(n+l-s)]R(b,l-z)
s=l S!

+(1)"+in! E
(s-n-l)!

Rs(b,l-z), II-z[<l.
s=n+l

The first sum is empty if n 0, whence

(5.8) Lo(b, z)
1
R(b, 1 z), I1 z < 1,

s=lS

while

Ll(b,z)=-Rl(b, l-z)+ Z I’--z R(b’
(5.9)

1
Lo(b, z)+ , R(b, l-z), II-zl< 1.

=2s-1

The second equality in (5.9) is generalized by

(5.10) Z
1
RN+(b, z) Z 1 L,(b, l-z)

s=l S n=O

where Izl < 1 and N =0, 1, 2,.... This equation is proved by taking the Dirichlet
average of the case in which all components of z are equal.

If all components of z are equal, (5.7) reduces to

(-n)x" lg x- s [(n+l)-6(n+l-s)](1-x)"
=1

(5.11)
-(1)"+’n! E

(s-n-l)!
(l-x) s, II-xl<l,

s=n+l S!

(x--l) n+l
F(1, 1; n+2; l-x)

n+l

(x--l) n+l
R_(1, n+l;x, 1), ]arg x] < 7r.

n+l

We shall use (5.11) to prove (5.15).
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An explicit formula [3, (6.2-1)] and a recurrence relation [4, (A.6)] are available
for computing the polynomials Rs in (5.6) and (5.7). Moreover we may use (2.5) to
make one component of z equal to unity; then Rs has one vanishing component that
can be eliminated by [3, (6.2-5), (6.2-6)]. If k-2 this leaves a power series in one
variable:

(5.12) Lt(fl, y-fl;1-x, 1)= (-t)(fl)[q(t+l)-ff(t+l-s)]x
s=l (/)sS!

where [x[ < 1, 3’ 0, -1, -2, , and 0, 1, 2, . From (5.7) we obtain similarly,
forn=0, 1,2,...and y0,-1,-2,...,

L(fl, T-fl; l-x, 1)-
(-n)(fl)

=,
[(n+l)-(n+l-s)]x

(5.13) 1)+ln.
(v)s

3F2(1,1, fl + n+ l; n+2, 7+ n+ l; x), [arg (l-x)[ < ,
(v)+(n+l)

which reduces to (5.11) if fl . An impoant case of (5.13) is

(5.14)

L,(1, y-1; x, 1)-
s=, (y)

[q(n+l)-q(n+l-s)](1-x)

n
(/).+,

(x- 1)"+ zF(1, 1; y+n+l; l-x)

n
(/).+,

-(x-1)n+lR_l(1, T+n; x, 1),

where n is a nonnegative integer and [arg x[ < zr. If 3’ is a positive integer, say y 1 + m,
we can sum the 2Fl-series by (5.11) to get

Ln(1, m;x, 1)=
(-n)s n!m!

(x-l)
=1 (m+ 1 [q(n + 1)- q(n + 1 s)](1-x) +

(n+m)-----
(5.15)

{ "+m(-n--m)sx"+’logx [tP(n+m+l)-q(n+m+l-s)](1-x)
= S!

where n and rn are nonnegative integers, [arg x[ < 7r, and x # 1. If n 0 the first sum
is empty and a change of index in the second sum gives, with the help of (2.5),

Lo(1, m; x, y) log y + log-
x-y y

(5.16)
+ [q(1 + s)- 0(1 + rn)] 2

s=O X

where rn is a nonnegative integer, x, y Co, and x y. This result generalizes (4.5) and
will be used to prove (6.18).

The series in (5.12) terminates if/3 is a nonpositive integer, and the conditions
of validity may then be relaxed:

(5.17) Lt(-n, 3,+ n; x, 1)=
(-n)(-t)

s=l (’)/)ss!
[qt(t + 1)- q(t + s)](1 x) s,
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where x is unrestricted, n is a nonnegative integer, (y), 30, and (-t), 30. The last
condition is required because (5.4) was used to prove (5.12). This result will be used
to prove (6.12).

6. Quadratic transformations. The R-function of two variables has exactly two
independent quadratic transformations [3, (6.9-7), (6.10-1)],

(6.1) Rzt(fl, fl; x, y)= Rt(fl + t, 1/2- t; A, G),

(6.2) gt(fl, fl; x2, y)= gt(2fl + t, 1/2-fl t; A, G),

where A and G denote the squared arithmetic and geometric means of x and y,

(6.3) A=(x+Y)2
G= xy,

and where x and y have positive real parts and /3 + 1/2 0,-1,-2,. .. When the
right-hand sides of (6.1) and (6.2) are differentiated with respect to t, one term arises
from the subscript and a second term from the t-dependence of the b-parameters.
Using (1.2) and (2.12) we find, with the same conditions of validity,

(6.4) 2Lz,(fl, fl;x,y)=L,(fl+t, 1/2-t;A, G)-G’L_,_(-t, fl+l/2+t;A/G, 1),

(6.5) Lt(fl, fl; x, y)= C + D,

where, for convenience in applications, we give several forms for C and D that are
connected by (2.5), (2.11), (6.2), and [3, (5.9-19)]:

C L,(2fl+ t, 1/2-fl- t; A, G)

log (G)R,(fl, fl; x, y2)+ G’L,(2fl + t, 1/2- fl t; A/G, 1)

(6.6) log (A)R(fl, fl; xz, y)
-A/-t3Gt+t-I/-L_ _l/2(1/2-fl-t, 2fl+t" A/G, 1)t-

log (AG)R(fl, fl; x, y2)

-A1/2-tG2+ZtL_t_t_l/2(1/2- fl t, 2fl + t; A, G),

D -GL__2t3(-t, + l/2 + t" A/G, 1)

log (G)R(, fl; x, y2)-G2+2tL__2t(-t, fl + 1/2+ t; A, G)

(6.7) -log (A)g(fl, fl; x, y2)+A1/2-Lt+_/2( + 1/2+ t,-t; A, G)

-log (A/G)gt(fl, fl; x2, y2)
+ A1/2-t Gt+t-l/2L+t_/2(fl + 1/2 + t, -t; A G, 1).

If =0 the second term in both (6.4) and (6.5) vanishes by (2.3)"

2Lo(fl,/3; x, y)= Lo(fl, 1/2; A, G),

(6.8) Lo(fl,/3; x2, y)= Lo(2fl, 1/2-/3; A, G),

Lo(1 / 2, 1 / 2; x, y) log A 2 log
x +__y.
2

Putting =-/3 and using the first form of C and the second form of D, we find

(6.9) L_t (/3,/3; x2, y) log (xy)R_t fl, fl; x, y2).
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If t-- 1/2-/3 the second term in the third form of C vanishes by (2.3), and the third
form of D then gives

(6.10) L1/2-t3(fl’fl" x2’y2)--(xq-Y)l-2132
Lo 1 fl 1/2; (_X + Y))22

,xy

From L1/2_13 we can obtain L_1/2_13 in terms of Lo by (2.11) and [3, Ex. 6.10-12]. We
shall use (6.10) to prove (6.18).

From the third form of C and the first form of D, we find

L,(1/2 + m, 1/2 + m; x2, y2)= log (A)R,,(1/2 + m, 1/2 + m; x2, y2)

(6.11) -a-’G"+"L_,,_,,_l(-n-m, n+2m+ 1; A/G, 1)

-G"L_,_2,,_I(-n, n+ m+ 1; A/G, 1).

If m and n are nonnegative integers, the last two terms (which are equal if rn =0)
have terminating series expansions (5.17). The result is

x+Y)R,(1/2+m, 1/2+m" x,y2)2 log
2

s=l s (m+l)

[(n+m+l+s)-(n+m+l)](x-Y)2
(xY)"+m-

= (re+l),
[(n+2m+l+s)-(n+2m+l)] x-Y2 "

By (6.2) and [3, (5.9-11)] the term in R can be omitted if, in te last sum, 2 log [(x +
y)/2] is added to the terms in square brackets and the lower limit of summation is
changed from 1 to 0. For example, the case m 0 is

(1/, /; x,
(.3

(:)(n+s)[ x+y](x;y)2=2 (n+l+s)-(n+l)+log
2

(xY)"-’
s=0 S

which generalizes the third equation in (6.8). This formula is useful for calculating the
terms of the series (1.9). The polynomial R,(1/2, 1/2; x, y2) occurring in that series
is the coefficient of 2 log [(x +y)/2] in (6.13).

Comparison of (6.12) and (1.7) gives

.=1 s(m+s)
(6.14)

[(n+m+l+s)-(n+m+l)]()
+

1+ =, -+). 6.+1+)-.+1]

L,(1/2+ m, 1/2+ m; x2, y2)
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where m and n- m are nonnegative integers and -1 < x _-< 1. The logarithmic term can
be incorporated in the second sum by adding log [(1/x)/2] to the terms in square
brackets and beginning the sum at s- 0. Equation (6.14) generalizes a formula due to
Schelkunoff [13, (114)], [12, p. 173] for the case m-0, in which the two sums are
equal. Schelkunoff used his formula in the theory of conical antennas. If m is an
integer, differentiation of

(6.15)
P?(x)

F(v+m+l)

gives

(6.16)

P-m(x)
=(-1) -l __< x __<__ l

r(v-m+l)’

(n-m)!

+ [q(n + m + 1)- q(n m + 1)]p.m(x),

If m is even, there is no branch point at x 1, and the last three equations then hold
for larg (1 + x)] <

Equation (6.14) requires n >_-m, but a known formula [9, 8.762(2)] for the case
n =0, m 1 can be generalized by putting/3 1/2+ m in (6.10) to get

2
Lo 1, m;

2
,xy

If m is a nonnegative integer, the Lo function has a terminating series given by (5.16).
The result is

x-y 4xy x+y

(log (XY) / ml (7) ( ) )[q(1 + s) q(1 + tn)]
2

(xy)
s=o x-y

where x and y have positive real parts, x # y, and m 0, 1, 2,. . From L-m we can
obtain also L_,_I by using (2.11) and [3, Ex. 6.10-12]. Comparison of (6.18) and (1.7)
shows that

log
2Ov v=o

(6.19)
1-x-,-(m_.,_x) s=o x-1

where -1 < x < 1 and m 0, 1, 2, . The limit as x --> 1 is 0. If m is even, the condition
-1 <x<l can be replaced by [arg (x+l)l< r and x# 1.

The infinite series given in [9, (8.761)] can be reproduced by using (1.7), (6.5)
with the third form of both C and D, and (5.12). The second equality in (5.4) is used
also. It suffices to assume/. # -1, -2, -3, instead of Re/x > -1.

7. Inequalities. We assume real and b and x strictly positive for 1,..., k.
The largest and smallest of the x are denoted by Xm and Xmin, respectively, and we
assume Xmx> Xmin to exclude trivialities. Writing L, for Lt(b,x) and Rt for R,(b,x),
we see at once from (1.1) and (1.3) that

(7.1) Rt log Xmi < Lt < Rt log Xma

L_,(1/2 + m, 1/2+ m; x2, y2)
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Chebyshev’s inequality for integrals [10, Thm. 236] implies

(7.2) Lt > R,Lo, > O,

with reversed inequality for <0. Since Ro 1, (7.1) and (7.2) are subsumed in the
following theorem, which is used in [6, (3.33)].

THEOREM 7.1. Both Lt and Lt/ Rt are strictly increasing functions of t. The limit of
Lt/ Rt is log Xma as +o and log Xmi as --o.

Proof Since the integrand of (1.1) is log-convex in t, R, is strictly log-convex in
by [3, Ap. B.6] or [1, Thm. 4]. Hence its derivative and logarithmic derivative are

strictly increasing, which proves the first part of the theorem. To prove the second part
we use [1, Thm. 3]:

(7.3) lim (Rt) l/t= Xmax,

which implies that R, c if Xma ) 1 and Rt 0 if Xma ( 1. If Xma 1 then xi < 1 for
some (since Xmax > Xmin) and u. x in (1.1) is less than unity except on the set of
measure zero where ui=0. Hence (u. x)t-0 almost everywhere as t+, and so
R, 0. Thus [log R,I- in all cases, and we may use L’H6pital’s rule to conclude
from (7.3) that

log Xma lim
log Rt_ lim L___

t+ t-+ R

The proof for t-->- is similar.
Remark. If the assumptions of Theorem 7.1 are changed so that exactly one of

the variables, say Xk, is 0, then R, and L, are well defined for >-bl bk_. In
this region Lt/R, increases strictly with and has limit log Xma as ---> ---OO. This follows
from (4.2) and two well-known facts: @"(x) < 0 for x > 0, implying d/’(c- bk + t)
q’(c + t) > 0; and O(x) log x + O(1/x) as x --> +c, implying O( c bk + t) t( c + t) ---> 0
as t-> +.

THEOREM 7.2. Let be real and Xmax> Xmin>0. Let cw=(cw,..., CWk), where
c > 0 and the w’s are positive weights with Y w 1. Then the limit of Lt(cw, x) is

wixllogxi as c-->O+ and (Y wixi) log (Y wixi) as c+o. Also, Lo(cw, x) is strictly
increasing and strictly concave in c, and Ll( CW, x) is strictly decreasing and strictly convex
in c.

Proof We assume for the moment that Xmax < 1, SO that the series expansions (5.6)
and (5.7) converge. The proof of the first part of the theorem is entirely similar to the
proof of [1, Thm. 1], in which L is the Lo of the present paper. The second part of
the theorem follows from (5.8), (5.9), and [7, Thm. 5]. The case Xmax -> 1 reduces to
the case Xmax < 1 by use of (2.5) and [1, Thm. 1].

Remark. Example 5 in 1 is contained in Theorem 7.2. The underlying reason
why Lo and L1 are exceptionally simple is that x’ log x is concave in x for all x > 0
only if 0 and convex for all x > 0 only if 1.

8. Special cases. Several cases of Lt with restrictions on the parameters have been
evaluated in finite terms in (4.6), (5.15), (5.16), (5.17), (6.12), (6.13) and (6.18). Further
cases can be evaluated from these by (2.11) and the relations between associated
functions in 3. In (5.15) and (5.17) the apparent restriction of a unit variable can be
removed by (2.5). We mention here some other cases, starting with

(8.1) Lo(/3, 1-2/3; 1, 0) (/3)- (1-/3) =-r cot (r/3),
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where/3 is not an integer and Re/3 > 0, and

,n-1/:zI’( fl + l/2)
L2t( fl, -x)

2F(1/2- t)r(/3 + 1/2+ t)
(-x)x,

(8.2)
[(1/2- t) (/3 + 1/2 + t)+ log (-x2) ],

where [arg(+/-x)l<Tr, larg(-x2)l<Tr, and fl+1/2#0,-1,-2,.... Equation (8.1)
comes from (1.5) or (4.5), and (8.2) comes from differentiating the formula in [3, Ex.
8.3-9].

To evaluate an R-function or L-function of two variables with positive integral
b-parameters, we raise the b-parameters from unity by successive differentiations using
[3, (5.9-9)]:

(8.3)

Use of [3, Ex. 5.9-13] and two applications of Leibnitz’ rule lead to

l(1--m)s(m’)s( x ) m’+s

Rt_l(m, m’; x, y) (m)m,Xt-1

x-y

"-l(1-m’)s(m)( y )"++ (m,)myt-1
s=O t),.+s! y- x

where rn and m’ are positive integers, x, y Co, x y, and (t)m+m,_ O. With the same
conditions, differentiation with respect to gives

Lt_l(m, m’; x, y) (m)m,Xt-1

=o (t),,,,+ss!

[q(t)-(t+m’+s)+logx]( x ) ’’’+s

x-y
(8.5)

"’-1 (1 m’)s(m)+(m,)myt-1 E
s=O t)m+sS!

[q(t)-O(t+m+s)+logy] -x
Agreement with the special case (5.16) can be shown by a binomial expansion of
[l+y/(x-y)]m.

Putting n 0 and 3’ 1 in (5.13), dividing by/3, and letting/3 0, we find a relation
between Lo and Euler’s dilogarithm:

xn
(8.6) m fl Lo fl l flo

,1-x, 1)=x3F2(1,1,1;2,2;x)=?=l -"
By (2.3) the limit of the same quantity as/3 tends to 1 is

X
(8.7) -lim fl-lLo(fl, 1-/3; 1-x, 1)=-log (1-x) --.

fl-l n=l r/

The conditions of validity for (8.5) exclude the function

(8.8) L_I(1, 1; x, y)
(log x)2- (log y)

2(x-y)
x#y,

Rt_l(m, m’; x, y)=
(m+m’-l)!

(m-1)!(m’-l)!(t)m+,,,,_2

Dx --1 m’--IDy Rt+,+m,-3(1, 1; x,y).

(8.4)
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which is evaluated by putting f(x)= (log x)2 in [3, (5.5-3)]. Similarly putting f(x)- x
in [3, Ex. 5.5-1], we find

2 x
(8.9) R’-2(l’l’l;x’Y’Z)=t(t-1) (x-y)(x-z)’

where # 0, 1 and the sum extends over cyclic permutations of the distinct complex
numbers x, y, z. We shall refrain from raising the b-parameters by differentiation with
respect to x, y, z as in (8.3). Differentiation with respect to gives

(8.10) L_(1, ,1l" x, y, z)
t( t_ l (x-yx-z) logx -1

with the same conditions of validity as for (8.9). This is the function that occurs in
(1.8). The exceptional cases with =0 or 1 are evaluated by successively putting
f(x)= log x, (log x), x log x, and x(log x) in [3, Ex. 5.5-1]:

log x
(8.11) R_2(1, 1, 1; x, y, z)= -2 2 (x )(x z)’

(8.12) L_(1, 1, 1; x,y,z)=-
(lg x)2+2 lg x

(x- y)(x- z)

x log x
(8.13) g_l(1,1,1;x,y,z)=2

(x-y)(x-z)’

(8.14) L_(1, 1, 1; x, y, z)=
x[(log x)2-2 log x]

(x-y)(x-)

Values for special cases of the L-function permit evaluation of some special cases
of 3F by using (5.13). For example,

3F(1, 1, m+n+3/2; n+2,2m+n+2; x)

can be found from (5.13) and (6.12) if m and n are nonnegative integers. The case
n=0 is

3F(1, 1, m + 3/2; 2, 2m + 2; x) (-4/x) log y-(2/x)y- =(a.5
[(m + +s-(m + ](y ( x(-/,

where 2y 1 + (1 x)/, larg (1 x)l < m and m 0, 1, 2,. ..
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SCHUR-OSTROWSKI THEOREMS FOR FUNCTIONALS ON L1(0, 1)*
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Abstract. Hardy, Littlewood and P61ya [5] introduced the partial ordering of majorization among
n-dimensional real vectors. Many well-known inequalities can be recast as the statement that certain functions
are increasing with respect to this ordering. Such functions are said to be Schur-convex. An important result
in the theory of majorization is the Schur-Ostrowski theorem, which characterizes Schur-convex functions.
The concept of majorization has been extended to elements of LI(0, 1) by Ryff 10]. A functional on LI(0, 1)
that is increasing with respect to the ordering of majorization is said to be Schur-convex. In this paper, we
prove an analogue of the Schur-Ostrowski condition that characterizes Schur-convex functionals in terms
of their G.teaux differentials. We also introduce another partial ordering in LI(0, 1) called unrestricted
majorization. This partial ordering is similar to majorization but does not involve the use of decreasing
rearrangements. We establish a characterization of nondecreasing functionals on LI(0, 1) with respect to
the partial ordering of unrestricted majorization through another analogue ofthe Schur-Ostrowski condition.

Key words, inequalities, majorization, Muirhead’s theorem, peakedness in symmetric distributions,
rearrangement, Schur functions, Schur-Ostrowski’s theorem

AMS(MOS) subject classifications. 26D10, 60El5

1. Introduction. Hardy, Littlewood and P61ya [5] introduced the following partial
order in n-dimensional Euclidean spaces" an n-vector x (xl,’"", x,) majorizes y
(Yl,""", Y,), (x >-" y in symbols), whenever

and

Xi -- Yi

where x*, y* are the vectors obtained from x and y by rearranging their components
in decreasing order.

This partial order has been extended to elements of LI(0, 1) by Rytt [10] and is
given in Definition 1.2 below. Before giving this definition, we develop some notation
to be used in defining a decreasing rearrangement of a function. Let x be a measurable,
real valued function on (0, 1) and rn be the Lebesgue measure. For each x, one can
associate a function dx on (-oe, oe) defined by

dx(s)=m({t’x(t)>s}), -o<s<.

This function dx, called the distribution function of x, is nonincreasing and right
continuous. Two functions x and y are said to be equivalent in distribution if d dy.
The right continuous inverse of d,, denoted x*, is defined by

x*(t) inf {s" d,(s) <- t}.
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The function x*, which is nonincreasing, right continuous and has the same distribution
function as x, is called the decreasing rearrangement of x. The functions x and x* are
simultaneously integrable (or nonintegrable), and their integrals are related by

x*( t) dt >- x( t) dt, 0 <- s < 1

and

x*( t) dt x( t) dt.

The following theorem due to Rytt 12] shows that, by composing the decreasing
rearrangement of a function with a measure preserving transformation, one can recover
the original function.

TrEOREM 1.1. To each x L(O, 1), there corresponds a measurepreserving transfor-
mation tr: (0, 1)-> (0, 1) such that x(t)=x*[tr(t)], where cr is defined by

or(s) m{t: x(t) > x(s)}+ m{t <- s: x(t)= x(s)}.

The definition of the partial ordering of majorization of elements in LI(0, 1), due
to Rytt [10], is given below.

DEFINITION 1.2. Let x, y LI(0, 1). We say that x majorizes y, (x _->" y in symbols)
if

x*( t) dt >= y*( t) dt, 0<-s<l,

and

x( t) at y( t) dt,

where x* and y* are the decreasing rearrangements of x and y, respectively.
Several authors (see, e.g., Day [4], Chong [3]) have obtained interesting results

using this partial ordering. It is also related to the variability ordering of Ross [9].
By removing the rearrangement requirement in Definition 1.2, we obtain a different

ordering called unrestricted majorization, as defined below.
DEFINITION 1.3. Let x, y L(0, 1). We say that x dominates y in the ordering of

unrestricted majorization, (x >_Uy in symbols), if

x( t) dt >- y( t) dt, 0-<_s< 1,

and

x( t) at y( t) dt.

The ordering of unrestricted majorization as applied to the class of density
functions leads to the usual stochastic ordering as seen below.

Let X and Y be random variables on (0, 1) with densities f and g, respectively.
Iff->" g, then f>=g for all 0<s< 1, or P(X<-s)>-P(Y<=s). Thus the condition
X -<_ sty is equivalent to f _>-" g.

Many inequalities that arise from majorization in the finite dimensional case can
be extended for elements of Lp(O, 1). Rytt [11] proved the following analogue of
Muirhead’s inequality.
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THEOREM 1.4. Let x and y be bounded measurable functions on (0, 1). If x >_my
and u is a positive function such that u Lp (0, 1) for all p, -o <p < o, then

log u(t)x) dt ds >- log u(t)y(s) dt ds.

Conversely, if the inequality holds for all such u, then x >-_ y.
In the discrete case, Muirhead’s inequality can be reformulated by identifying an

appropriate function which preserves the ordering of majorization. Such functions are
said to be Schur-convex. Schur [13] and Ostrowski [7] gave necessary and sufficient
conditions for a function to be Schur-convex in terms of their partial derivatives. We
quote from Marshall and Olkin [6] about the importance of this result, "it is difficult
to overemphasize the usefulness of the (Schur-Ostrowski) condition..., many or even
most of the theorems giving Schur-convexity were first discovered by checking (the
Schur-Ostrowski condition)." In the next section, we will present an analogue of this
result for Schur-convex functionals on L(0, 1). This result, given in Theorem 2.9, is
then used to characterize Schur-convex functionals on LI(0, 1). We also characterize
nondecreasing functionals on LI(0, 1) with respect to the partial ordering ofunrestricted
majorization through another analogue ofthe Schur-Ostrowski condition. These results
will be used to prove the generalized Muirhead’s theorem (Proschan and Sethuraman
[8]) in 3. An application to peakedness comparisons of distributions is discussed in
3.

2. Main theorems. We first proceed with some definitions.
DEFINrrON 2.1. A functional b defined on a set M LI(0, 1) is said to be

Schur-convex on M if Yl, Y_ e M and Yl ->’ Y2 imply that b(yl) -> b(y2).
A Schur-convex functional is necessarily constant over functions that are

equivalent in distribution. Thus for a Schur-convex functional b, the value b(x)
depends only on the distribution function of x. A set M is said to be invariant if x M
and x and y are equivalent in distribution implying that y M. Henceforth, we shall
only consider Schur-convex functionals on an invariant set.

For a characterization of Schur-convex functionals, we need the following notion
of directional derivative.

DEFINITION 2.2. Let th be a functional defined on a convex set M LI(0, 1). Let
y and h be such that y + Oh sg for all sufficiently small 0. The Gteaux differential
of b at y in the direction of h is defined to be

Oqb b(y + Oh b(y)
(y) =lim

Oh o--,o 0

if the limit exists.
Note that och/oh(y) is simply the derivative, at 0 =0, of the real valued function

on [0, 1] defined by q(0)= b(y+ Oh).
Let @1 be the class of decreasing functions in L(0, 1), let 9 be the class of

decreasing functions in Loo(0, 1). Let {h: h ’lI(a,b) + A2I(c,d), where 0-<_ a < b < c <
d=<l, AI->0=>A2, Al(b-a)+Az(d-c)=O}. The class - consists of step functions h
which take at most two nonzero values, are decreasing on their support and satisfy

h(t) dt 0. Note that h ;Y- implies h _->’ 0.
Let y 91 and h ft. Then y+h need not be decreasing. However, we have

y + h =>’y, as given in the next lemma.
LEMMA 2.3. Let y 91 and h ; then y + h >-" y.
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Proof. Note that

and

(y+h)*>- (y+h)

3,*+ h

=> y*, 0_-<s<l

(y+ h)-- y+ h= y.

Hence, y + h
In the following theorem, we give a necessary condition for functionals increasing

in the ordering of unrestricted majorization.
THEOREM 2.4. Let be an open subset of LI(0, 1). Let d be a functional defined

on sg such that c is nondecreasing with respect to the ordering ofunrestricted majorization.
Let y ed and he . Suppose that the Gteaux differential Och/oh(y) exists. Then
och/Oh(y) >-O.

Proof. Since d is open, y+ Oh gt for all sufficiently small 0. Thus for all
sufficiently small positive O, y+ Oh and y are elements of d and y+ Oh >=Uy. This
implies that

ch(y + Oh >= ch(y)

and

ab 1
(Y) loio [6(Y + Oh)- 6(Y)]0--

->_0. [3

Next, we consider $chur-convex functionals defined on an invariant set .
THEOREM 2.5. Let be an open invariant subset ofLa(O, 1). Let be a Schur-convex

functional defined on . Let y and h . Suppose that the Gteaux differential
O/Oh(y) exists. en O/Oh(y) O.

Proof Since M is open, y + Oh for all sufficiently small 0. Fuahermore, for
sufficiently small positive O, y+ Oh y from Lemma 2.3. Hence (y+ Oh) (y) and

0 (y) limoo (y + Oh (y)

0.

To show that this condition is also sufficient, which is the content of the main
theorem, Theorem 2.10 of this section, we need the following lemmas.

LEMMA 2.6. Let M be a convex subset of L(O, 1). Let be a functional defined on
an open set containing M. Let O/Oh(y)0 for y e M and h . en y,y. and

Y-Yl imply that (Y2) (Y).
oof Let h y-y . For 0 [0, 1], define

Yo Y, + O(y2- Yl) Oy2 + (1 O)y,
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and

Note that Yo is in . Now,

Hence,

q( O) ck(yo).

d 1

d--- q(0) lim-_oe [$( 0 + e)- q( 0)]

lim
1
[(Yo + eh)- (Yo)]

e->O E

0__
-Oh (Y)>--O frO<--ONl"

b (y2) b(y) -> q(0) dO-- (Yo) dO >-_ O.

In the next lemma, we show that if Yl, Y_ are step functions such that Y2-->" Yl,
then Y2-Y can be written as the sum of functions in -.

LEMMA 2.7. Let Yl, Y2 be step functions on (0, 1) such that y2 >-uyl. Then there
exist h, , hN in - such that

N

(2.1) Y2 Y1-1- ’. h,.
i=1

Proof There is nothing to prove if Yl Y.
Let Yl Y2. Since y and Y2 are step functions, there is an integer n ->_ 2, such that

y(t)-yl(t)= aiI,,d,)(t) where aiO,
i=1

(ci, d) are disjoint intervals and 0 -< c < dl <. < c, < d, _-< 1. Note that Y2 -->UY
implies that a > 0 and a, <0. We will prove that (2.1) holds with N-< n-1, by an
induction on n.

Note that the lemma is immediate when n 2. Assume that the lemma is true for
n 2, , k- 1. We will now prove that the lemma holds for n k. Let a be the first
negative term such that either a+ > 0 or j k. Define a function in 5r by

h aI(,,) + aI(d;,d),
where c < dl and d > c are chosen so that al(c’- c)+a(d d) 0 and one of the
following holds:

1) c=dl and d=c if a(d-c)+aj(d-c)=O,
2) c <dl and dfi=c if a(dl-Cl)+a(d-c)>O,
3) c-dl and d>c if al(dl-C)/a(d-c)<O.
We will now establish that Y2 => Yl 4- h by showing that ) (y-Yl- h)_-> 0 for all

0 < s _-< 1. Note that h 0 on the interval (d, 1).
Let s > d, then h h 0. Thus,

(y-y-h= (y-ylO.
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Let O<s<-dj. Then either y2(t)-yl(t)>=O for all 0<t<s or y2(t)-yl(t)<=O for
all s < -< dj, since there is only one sign change among al, , aj and the sign changes
from positive to negative. Note that h agrees with Y2-Yl on the intervals (cl, c) and
(dj, dj), and that h is identically zero outside these intervals.

If y2(t) y(t) >-- 0 for all 0 < < S, then Y2-- Yl --> h >_- 0 on the interval (0, s). This
implies that

fo (y2 yl h O.

If ya(t)-y(t)<=O for all s<t<d, then y-y<=h<=O on the interval (s, d). This
implies that

(y2-y h <= (Y2- yl h

(y-y)
o

>--0.

Hence we have y2 _-> yl + h. Since y-y h is a step function which takes at most
Nk- nonzero values, it follows from the induction hypothesis that y-y- h

where h’ ,i - for i= 1 N, and N-<_ k-2. This completes the proof.
In Lemma 2.7, if we assume that y, y are decreasing step functions, then the

condition y >_-u y is equivalent to y2 >_-’ y. In addition, we can choose yl + hi,
h,..., y +i__ hi to be decreasing functions as shown in the following lemma.

LFMMa 2.8. Let y, y be decreasing step functions on (0, 1) such that y >-_’ y.
Then there exis h, ., hN in such that

N

y y + hi, and
i=1

(ii) 3’ -t- hi, Y -I- hi are decreasing functions.
i=1

Proof. Define h aiI(c,.cI)+ aI(e,e) as in the proof of Lemma 2.7. We need to
show that y + h is decreasing. Note that

y2(t) if0<t<c’1,

y() + h(t)
y() if c d,

lye(t) ifdj<t-<4,

Since a > 0, y + h is decreasing on a neighborhood of c. Similarly, a < 0 implies
that y + h is decreasing on a neighborhood of d. Suppose that d < 1, then the choice
of a indicates that for e > 0 suciently small, y y -> 0 on (d, dj + e). Since
on (dj, d], it follows that yl + h is decreasing on the interval (d, d + e). Thus y + h
is decreasing on the interval (0, 1).

Note that h e - implies y + h -> y. Since y + h, Yl are decreasing functions, this
is equivalent to y + h >-"yl. Following the same induction argument as in Lemma

N
hi and2.7, we conclude that there exist h,..., h in - such that y= Yl-t-h- hi are decreasing functions. This proves thethat y+h+h,...,y+h+

lemma.
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In the next theorem, we give a sufficient condition for a functional of Lo(0, 1) to
be Schur-convex.

THEOREM 2.9. Let be an invariant open convex subset of L(O, 1). Let d be a
continuousfunctional defined on such that dp is constant overfunctions that are equivalent
in distribution. If the Gteaux differential Oqb/Oh(y) >- 0 for each y and h ,
then is Schur-convex on .

Proof Since is constant over functions that are equivalent in distribution, it
suffices to prove that is Schur-convex on .

Let y, y be right continuous and y y. Let e > 0 be arbitrary. Then
for 1, 2, the sets { t" y(t-) yi(t) > e} are finite, where y(t0-) inft< y(t). Hence
there exists a paition 0< a <... < a < 1 such that

yi(ak)- y,(a+) < e, i=1,2; k=l,...,n-1.

Define

y,(t) --[Io"Y(s)l ds]l<o,,)(t)+ "- 1 [+ yi(s) ds]it,+,(t)al k=l dk+l ak

+ y(s) s .,(, i= .
Then y, y are decreasing step Nnctions satisfying Ig y(s)ds=Ig y(s)ds for
k 1,. , n. This impliesy y. Since is open and Ily y I1 < e, for suciently
small positive e, y, y are in d.

By Lemma 2.8, y-y=2h for some {h,...,h}, where y+
h,...,y+=- h are decreasing functions. The functions y+h,.. .,y+- h need not be elements of . Since d is open, for suciently small positive 0,i=1

h are decreasing functions in satisfyingy + Oh y + 0

N N-1

y+O hi y+O h y.
i=1 i=1

It now follows from Lemma 2.6 that

4 y+02 h e y+0 2 h e...(y).
i=1 i=1

Next, we shall show that this implies (y) (Yle). Note that we have just demon-
strated that the set

o= 00.4 y+02 h e4(y,
i=1

is nonempty. Let 0o=sup{0 0e O}. Since is continuous, we have 4(y+
hi)>(yl), which shows that 0oeO. Now suppose 0o<1. The preceding0o2=1

arguments show that for suciently small positive r,
N N N

y+Oo h+rh,.. ",y+Oo hl+r hi
i=1 i=1 i=1

are decreasing functions in d and satisfy

yl+0o h y+Oo h+rh ... yl+0o 2 h+r 2 h
i=1 i=1 i=1 i=1

Thus 0o+ r , which provides a contradiction to the assumption that 0o< 1. We
therefore conclude that 0o and thus, (y) (y).
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Since the functional is continuous with respect to Loo-norm, we conclude that
th(y2) -> th(yl) by letting e -> 0.

We now use this theorem to establish a sufficient condition for Schur-convex
functional of LI(0, 1).

THEOREM 2.10. Let M be an invariant open convex subset of LI(0, 1). Let ck be a
continuousfunctional defined on M such that dp is constant overfunctions that are equivalent
in distribution. If the Gteaux differential Ock/Oh(y) >= 0 for each y
then dp is Schur-convex on

Proof Since b is constant over functions that are equivalent in distribution, it
suffices to prove that b is Schur-convex on

Let Yl, Y2 1 f-) be right continuous and Y2 m yl. Let e > 0 be arbitrary, then
there exists > 0 such that

lyi( t)l dt <- and lYi(t)[ dt <-, i= 1, 2.
4 4

Since the yi’s are in 1, they are bounded on the interval [8, 1-8]. Define

yi.(t)=- yi(s) ds l(o,)(t)+ yi(t)I[,.l-](t)

+-d _y,(s) ds I(-.l)(t), i= 1,2.

Then y , 1, 2 and Y2e :>m Yl. We also have

i=1,2.

Hence, for sufficiently small e, y @ofq M. Since b is also L,-continuous on M
L(0, 1), it now follows from Theorem 2.9 that b(y2) -> $(y). Since b is a continuous
functional, we obtain that b(y2)>= b(yl) by letting e --> 0. This completes the proof.

The following lemma is used to prove Theorem 2.12, which is an analogue of
Theorem 2.10 for functionals on LI(0, 1) which are nondecreasing with respect to the
ordering of unrestricted majorization.

LEMMA 2.11. Let Yl, y2 LI(0, 1) such that Y2 >=u yl. For each e >0, there exists a
partition 0 < a <" < a < 1 such that the step functions defined by

Io’ [y,(s) ds]I(o,a,)(t)+yi(t)
1 n-1 1

al k=l ak+l ak
y,(s) ds 4ak,a+l)(t)

+ yi(s) ds /tan.1)(t) i= 1 2,
1 an

satisfy the following:
(i) Ily,-y, ll < e, i= 1, 2, and
(ii) Y2 ->-Y.
Proof. Note that if y, Y2 are continuous functions on the interval [0, 1], then (i)

follows from the uniform continuity of y and y. If y’s are not continuous on [0, 1],
we first approximate yi’s by continuous functions xi on [0, 1] such that Ily,-xill < el3,
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i= 1, 2. Next, we find a partition 0< al <"" < an < 1 such that the step functions
defined by

+ x,(s) ds It..,)(t) i= 1,2
1 a

satisfy IIx, x, II, < /3.
Now, define the step functions y, Yz by

y [Io’’al y(s) ds]I(o.,)(t) + kn-l__ a+1- ak [ f.,,+’ y(s)
+ y(s as oo,(), i= .

1 an

Then

Thus

[[y--Xiell
al

[y,(s)-xi(s)] as +

+ [yi(s) xi(s)] ds

<-- Ilx,-y, ll,, i=1,2.

’k+l
[yi(s)-xi(s)] as

yi yie I11 yi xi Ill q- xi xie II1 d- x, y, I1
E E E

---<-+-+- e, 1, 2.
3 3 3

This proves the first part of the lemma.
Let Y2 >__u Yl. Then for any partition 0<aa <"" "<an < 1, the step functions

Yz satisfy that Y2 >=Uy. This proves (ii).
THEOREM 2.12. Let g be an open convex subset ofL(O, 1) and let qb be a continuous

functional on g such that the Gteaux differentials O/Oh(y) >- 0 for y and h -.
Then Yl, Yz and Y2 >-"Yl imply that qb(yz) >- b(yl).

Proof We shall first prove the theorem for step functions. Let yl, Yz be step
N

hi for somefunctions in and y2 > y. Then by Lemma 2.7,
{hi, , hv}

___
-. Since is open, for sufficiently small positive O, y + Ohm,. , yl +

N
hi are functions in and satisfyOZi=l

N N-1

yl+O ’, hi >= yl+O , hi >=’" ">=yl+Ohl >= Yl.
i=1 i=1

rv
hi) >’’’> ch(ya+ Ohl) > 6(Yl).It now follows from Lemma 2.6 that ch(y+O Yi=

N
hi) > b(yi)} and 0o sup {0" 0 O}. Following theDefine 19 {0-< 0 -< 1" b(y + 0 ,=1

same argument as in the proof of Theorem 2.9, we can show that 0o 1. Hence,

b(yz) b Yl h- E h, _--> b(yl).
i=1
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In general, let Yl, y2c LI(0, 1) and Y2 >_u Yl. Let e >0. By Lemma 2.11 there exist
step functions Yl, Y2 such that [[yi -y,111 < e for i= 1, 2 and Y2 ->u Yl. Since is
open, for sufficiently small e, Yl, Y2 are functions in . Thus b(y2) -> (y). Since

is continuous, we conclude that (Y2) (Yl) by letting e 0.

3. Applications. The inequality given in Theorem 1.4 can be reformulated as the
statement that the functional defined by

4(x) log u( t)( dt ds

is Schur-convex. By Theorem 2.10, this is equivalent to the condition o/Oh(x) 0 for
all x e N, Vh e . This condition can be verified as follows.

Using Holder’s inequality, we note that the function M()= log Ilull is convex
in , and thus

M’(a)
’[ u(t) log u(t) dt

1o u( t) at

is increasing in a. Let x and h ; then both x and h are functions decreasing
on their suppos, and 1o h(t) dt O. This implies that

o[lo(t)(Slog(t) dt] e o.
Oh Io u( t)’) dt

More generally, we can replace the function u(t)) by functions of the form
@(t, z) which are log convex in z for fixed t. This is the result of Proschan and
Sethuraman [8], which we will state below.

THEOREM 3.1. Let thefunction @( t, z) on (0, 1) x (-, ) be a log convexfunction
in z for fixed t, and the partial derivative @2(t,z)=O/oz@(t,z) exists. Also let

SUPlzlk @( t, Z) belong to LI(0, 1) for each k <. For any bounded measurable function
x on (0, 1), define

M(x) log (t, x(s)) de ds.

en M is Schur-convex.
Proo It follows from Ain’s theorem [1] that the positive linear combination

(t, z) dt is log convex in z. Let x e N and h e , then

which implies that M is Schur-convex.
Next, we shall study an application of unrestricted majorization to peakedness

ordering of symmetric distributions.
Let X and Y be random variables possessing densities symmetric about zero.

According to the definition of peakedness given by Birnbaum [2], X is more peaked
than (X Y in symbols), if P(X N ) P( YN ) for all 0. Let f and g be the
densities of X and Y respectively. Then the condition X Y is equivalent to f > g
on the interval (0, m).

Birnbaum [2] showed that under appropriate conditions, X Y and Xe Y
imply that X +X e Y + Y. This result can be obtained by considering ceain order
preserving functionals. We first introduce some simplifying notations.
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For s > 0, define

and, for a symmetric function h, define

h(s,x)=(h*gs)(x)

f h(x-y)xs(y) dy

and

Note that

h(s, O)= I h(-y)x(y) dy

I h(y)x(y) dy.

f1/2[h(x+s, O)-h(x-s, 0)] ifs <x,

h(s,x)=]1/2[- h(x+s,O)+h(-x+s,O)] if-s<=x<-s,

[1/2[h(-x + s, O)- h(-x- s, O)] ifx <-s.

We need the following lemma.
LEMMA 3.2. Let c {h: h symmetric and h(s, O) >- Ofor all s > 0}. Let g be symmetric

and decreasing, on (0, oo). Then h * g c .for all h c, i.e., (h g X)(0) >- 0 for h qg
and s > O.

Proof Let h e qg and s > 0. Then

(h g Xs)(0)= I (h Xs)(x)g(-x) dx

I h(s, x)g(-x) dx

=- [h(x + s, 0)- h(x- s, 0)]g(x) dx
>S

+ f [h(x + s, O)- h(-x + s, 0)]g(x) dx
-s=xs

+ [h(-x + s, O)- h(-x- s, O)]g(x) dx

::[;x
S

h( x s, O)g(x) dx h(x s, O)g(x) dx
x--s s

Let y x + s in the first integral, y =-x + s in the second integral, y =-x-s in the
third integral and y x-s in the fourth integral. We get

air h(y,O)g(y-s)dy+fy h(y,O)g(-y+s)dy(h*g*x)(O)---
>o >o

fy>o h(y, O)g(-y s) dY fv>.o
h(y, O)g(y + s) dy].
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By the symmetry of g,

(h g Xs)(0) I h(y, O)[g(y-s)-g(y+s)] dy.
>0

Since h(y, 0) ->_ 0 for all y > 0, and g(y s) g(y + s) >-_ 0 for y > 0 and s > 0, we conclude
that (h g Xs (0) ->- 0. [3

We may now obtain the following result.
THEOREM 3.3. Let X1, X2, Y1, Y2 be independent’symmetric random variables on

(-1, 1) with densities fl, rE, gl, g2, respectively. Let fl, g2 be nonincreasing on (0, 1).
Let X P E for i= 1, 2. Then X1 + X2 >= P YI + Y2.

Proof. We will first establish that X1 + X2 PX1 + Y2.
Fix fl. For eachf LI(0, 1), letfs be the symmetric function on (-1, 1) defined by

fs(t)-f(lt[).
For each s > 0, define a functional on L(0, 1) by

dps(f) f l I([Xl + X2] <- s)fl(xl)fs(x2) dxl dX2

Let T(0, 1) be the class of nonnegative functions u on (0, 1) with 1o u(t)dt =1/2. Note
that for f T(0, 1),

(f) P(Ix, + zI <-- s),
where X1, Z are independent random variables with densities fl, fs respectively.

We shall show that for each s > 0, . is nondecreasing with respect to the ordering
of unrestricted majorization on T(0, 1). Let s > 0. Let f T(0, 1) and h -. Then,

0--- f loimo - I x + x2[--< s)

{fl(Xl)[5(X2) -[- Ohs(X2)]--fl(Xl)fs(X2)} dXl dx2

f f I(]xl + x2[ <= s)fl(xl)hs(x2) dxl dx2

(fl * hs * X)(O).
Since h 3-, hs(t, 0) => 0 for all > 0. By Lemma 3.2, (fl * hs * X)(0) => 0. It now

follows from Theorem 2.12 that is nondecreasing with respect to the ordering of
unrestricted majorization on T(0, 1).

Note that X2 >=PY2 implies that fi __>u g2 when these are considered as elements
of T(0, 1). We now have

P([X, + X2I s) (f2)

-->-- 6(g2)
P(IX1 + Y2I <-- s) for all s > O.

Thus X +X >-_Px + Y. Similarly, we can establish that X1 + Y >-PY1 + Y2. Hence
X +X >=e Y + Y.
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NONRESONANT BIFURCATIONS WITH SYMMETRY*

JACK CARRel, JAN A. SANDERS AND STEPHAN A. VAN GILS:

Abstract. We prove uniqueness of the limit cycle for generic perturbations of a planar integrable
vectorfield which arises in the unfolding of a system of two linear uncoupled nonresonant oscillators.

Key words. Abelian integrals, limit cycle, planar vectorfields
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1. Introduction. Consider a system of ordinary differential equations in Rn, n _>- 2,
and suppose that the origin is a nonhyperbolic equilibrium. If the linear part of the
vectorfield is doubly degenerate then, after reduction to a center manifold, it takes
one of the forms [2], [6], [8]

A1 A2 0 A3-- 0 0
0

0 -to 0

The unfolding of A1 has been given by Arnold [1], Bogdanov [3] and Takens [12].
The unfoldings of A2 and A are still far from complete. Partial results have been
obtained by Langford [10] and Iooss and Langford [9]. Their methods are restricted
to the analysis of planar vectorfields. In these planar vectorfields a global Hopf
bifurcation occurs (see Guckenheimer and Holmes [8]). The main mathematical
difficulty is to prove the uniqueness of the limit cycle for generic perturbations.

In the case of the singularity A: this has been done by Carr, Chow and Hale [5],
Sanders and Cushman 11] and Zholondek 13 ]. Only the last paper solves the problem
without any restriction.

The singularity A leads to the study of generic perturbations of the planar
Hamiltonian vectorfield with Hamiltonian function H(x,y)-xPyq(1-x-y). Most
important, one wants to prove the uniqueness of limit cycles for these perturbed
vectorfields.

The method of proof was taken from Carr, Chow and Hale [5]; the proof in this
paper may seem to be rather ad hoc at first sight, but we have extended it in a more
general setting, which as a bonus has produced a sharper result in the original
problem [7].

On the one hand, our method seems to work only in the case p =q where the
family of curves is hyperelliptic. On the other hand, at least part of this work depends
only on that fact and consequently will be useful in other bifurcation problems, for
instance in problems with more than one parameter, too.

Zholondek 14] proves the uniqueness of limit cycles by a priori estimates without
restriction on p and q.

We will not attempt to relate the results to the behaviour of the original four-
dimensional systen, because the expected homoclinic phenomenon leads to quite
complex behaviour (see [4]).

* Received by the editors January 27, 1985; accepted for publication (in revised form) January 22, 1986.
Heriot-Watt University, Edinburgh, Scotland.
Free University, Amsterdam, The Netherlands.
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In 2 we show how to obtain the relevant equations in the plane and we discuss
the unperturbed vectorfield in the symmetric case. The proof of the uniqueness of
periodic orbits reduces to proving monotonicity of a certain function, which is the
ratio of two Abelian integrals. In this section we also give a sketch of the proof of the
uniqueness result.

In 4 we give all the details of the proof.

2. Formulation of the problem. Consider a singularity of type A3. In order to
classify the behaviour of nearby vectorfields we look at the vectorfield in 4 given by

(2.1) b=Av+G(v),

where

a 1 0 0

0 1
0 --to

a,/3 ,1 are small parameters, to R, G is smooth and of higher order in v. We will
assume the nonresonance condition: to 0, +1, +2, +3. If one introduces polar co-
ordinates

/)1 rl COS 01, /)3 r2 cos 02,

sin 191, /)4----r2 sin 192,

then (2.1) is equivalent to

1 arl -" RI(01, 0:2, rl, r:2),

(2.2)
t:2 =/3r2 + R:2(01, 0:2, r:2, r2),

01 1+O1(01, 02, rl, rz),

02 to + O2(01, 0:2, rl,

where each function is 27r-periodic in 01 and 02. After third order averaging one
obtains the vectorfield

i’1 r, a + cr+ dr22) +

t::2 r2(/3 + erl +fr) +’’ ",

01=1+
02-- to +

where the dots indicate higher order terms and c, d, e, f are real constants. We will
ignore the higher order terms and analyze the planar autonomous system

(2.4) /:1-- rl(ce + cry+ dry), t:2= r2( + er+fr).
2Substituting rl x and r2 =y and rescaling time we obtain the polynomial vectorfield

(2.5) . x(a + cx + dy), y y(fl + ex +fy).
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First we look for those values of the constants for which the system becomes
integrable. More precisely, if we use the rescalings

-fl(p+ 1)p/ fl, y fl /ffi, x= x,
ep

and we replace , )7, by t, y, x, respectively, then (2.5) becomes

(2.6) : ,x(+x+y), . py(1 p+l )x--)’
P

for some constants ti, and a. If we use the integration factor Ixl-llyl-, (2.6) is
integrable with first integral

(2.7)

provided we choose

n-lxl"lYl"(1-x-y),

=_q =q _q+l
P P P

In all of what follows we will assume (for purely technical reasons) that p q.
Under this symmetry hypothesis the integrable system (2.6) becomes

:=px -l+x+ y

(2.8) Xp"
P

PY( l
p+I )--x,--y
P

Figure 1 gives the various phase portraits of the one-parameter family of
vectorfields Xp depending on the value of p.

For p (-1/2, oo)\{0} we see that Xp has periodic orbits.
For computational convenience we introduce new coordinates u and v defined by

x=u+v, y=u-v.

The induced Hamiltonian vectorfield XH is

(2p+l) v2(2.9) fi=pv(-l+2u), f=pu -l+u
P

with Hamiltonian function

(2.10) H=(u2-v2)p(1-2u).

For el, e_ small, consider the vectorfield Y, given by

( 2p+l )-v2(2.11) fi=pv(-l+2u), f=pu -l+u
P

which is a non-Hamiltonian perturbation of XH. Any other cubic perturbation can by
p.artial integration be shown to lead to a fractional linear transformation of the quotient
Q (to be defined in the sequel) and therefore preserves monotonicity results. The
derivative of H along the integral curves of Y is

I;t OH
fi +

OH
f

Ou Ov

2(el v + e2uv)(u- v)p-I ft.
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lo)p (o,,:,o) pE: (-.,

p : -oo,- i.)
FIG. 1. Phase portraits ofXv.

It is not difficult to show (Carr, Chow and Hale [5], Chow and Hale [6]) that a
necessary and sufficient condition for an orbit F(el, e2) of (2.11) to be periodic is that

r
I2I dt O;

in other words

e.l It, l;(u2-)2)p-l du + e2 Ir u21)(u2-1)2)p-l du-O.

Next it is shown that if e]/e2 is in the range of the strictly monotone function 0(h),
(2.11) has, for el, e2 small enough, precisely one periodic orbit, where

(2.12) Q(h) vh) U2V(u2-v2)P- du

vh) V(u2- VZ)’’p-1 du
Here 3’(h) is a periodic orbit of the unperturbed vectorfield. More precisely y(h) is a
smooth compact connected component of the level set H-l(h). When p >0, h takes
values in the set (0, hn) and when -1/2 < p < 0, h takes values in the set (hu, oo) where

(2.13) hn 2p-I- 1 2p+ 1"
In other words, hH is the value of H where the periodic orbit arises from the center.
y(h) is sketched in Fig. 2.
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’y(h)

p>O

D(p) H=D(p)

u

-/" _!< )<0

FIG. 2. Sketch of the level sets ofH-(h).

In 4 we will prove the monotonicity of Q(h). This result is a first step in verifying
the bifurcation diagrams given in Guckenheimer and Holmes [8].

DEFINITION 2.1. For -1/2< p < 0 (p > 0) let Ip denote the interval [h/_/, oo) ([0, hH]).
The following result is the main theorem of this paper.
THEOREM 2.1. For p (-1/2, oo)\{0}, 0(h) is strictly monotone.
Sketch of the proof. For n t U {0} and m U {- 1, 0} let

6,(h) I, unl)m

(h) (1--2tl)p-1/p
dtl.

It is clear from (2.10), (2.12) that

h

In Lemma 4.3 we show that 6 and 6 are related by 6=p/(2p+ 1)6. Therefore in
place of Q we may equally well consider

q(h) 6/6-2P+ 10(h).
P

Lemma 4.4 states that 812, 8] satisfy an inhomogeneous nonautonomous linear ditteren-
tial equation:

2ph 6 63_ 1, 2ph$ 2p
6 + 6p + 2

621 63_1.
2p+ 1 2p+ 1 2p+ 1

These equations fit into the framework of the next section. We can apply Theorem 2.1
for p (-, oo)\{0} directly to obtain a priori bounds for Q(h). For -1/2 < p <= - we will
have to add some more arguments to obtain:

p (0, oo) / 3p p
h[0, hn]=>6p+2=Q(0)>-Q(h)>--Q(hl-z)-2p+l

] 3,p e (-l, 0) P Q(hz--z) > Q(h) > Q(oo),
h e [hn, oo) ==>2p + 1 =6p+2
p e (-1/2,-I]} p

=Q(hn)>_Q(h)>_oo=Q(oo)"
h e [hz4, oo) =2p + 1

Using these bounds on 0 we prove that the second derivative of Q is of one sign at
critical points of Q. More precisely, in Theorem 3.3 we prove that ( 0 implies that

(
p/(2p+l)-q

Q= hg]+\l 6 } 1.
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The hardest part of the argument is Lemma 4.6, where we prove the inequality
sign (p){hg + (1 -(h,]/))} < 0 at critical points. Consequently, sign (P)0 > 0 at
points where ( vanishes. This shows that Q is monotone.

3. A useful framework. In this section we explain some of the structure behind
the computations in the paper of Carr, Chow and Hale [5]. We formulate two theorems
which apply to both the problem considered in [5] as well as to ours.

Assume that ao, a l, q and R are real valued smooth functions, defined on I
[ho, hi), hoR, ho< hi-<. Furthermore suppose that on I the differential equations

(3.1)

where

hold. Let

q&o aao +bOtl -I- eR, q& Cto d- da d-fR

a,b,c,d,e, fe

Q a/ao, Al af ec, A_= ed bf, A3 ad bc.

Then we have
THEOREM 3.1. Suppose that the following conditions hold"

then,

f AI(i) e#0, A2#0 ----#0, R(ho)#O,
e A2

(ii) a(ho)- ao(ho)-0,

(iii) lim Q(h)= A1/A2,
h- h

{ &(h)}signA2 on I,(iv) sign q(h)
ao(h) e

(v) Q(h is bounded on I,

Q( ho) =f/e,

Vh e I" min (f/ e), hl/h2) <= Q(h)-max (fie, AliA2).

Proof. To prove (a) observe that

Q(ho)- al(ho) &,(ho) q(ho)&l(ho)=f_.
ao(ho) &o(ho) q(ho)&o(ho) e

Suppose that for some//, ((/)= 0. Then at h =/

(3.2) q a--- e

which follows from

q--Q=q=c+dQ+ q---a-bQ
Olo Olo e

Combining (3.2) with (iii)-(v) gives (fl).
Remark. The third hypothesis in the theorem is equivalent to

lim q(h)&i(h)=O, i= 1,2.
h- h
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It will be useful to have an expression for O(ho) in terms of the coefficients in
the right-hand side of (3.1). This is given in the next lemma. We omit the proof.

LEMMA 3.2. Suppose that q( ho) O, e O, then

2q(ho)O(ho)=-b +(d-a) c.
e

The next theorem gives an expression for the second derivative of Q at a critical
point of Q.

THEOREM 3.3. Suppose that for some I, ()= O. Furthermore suppose that
e O, f/e All2. Then at h h"

qao O qio+ ( dl qdOl do.f/e-Q ao/

Proof We will assume that all relations given above are evaluated at h h. To
keep the notation simple we will suppress the argument h. From (3.1) we infer that

qffo a l &o + lJa + e, qgi Cdto + d (l f +J.
Thus after eliminating/ we obtain

qg/ C&o+ (d t)&l +f(q/o-(a 4)&o- b&l).
e

Because t 0 both the relations

doQ= &l, g/oQ + ao( g/a,

hold. Straightforward calculation gives"

qao( qgioQ + qi

qfftoQ + Cdo + d dl &oQ + f- qgio af&o+ f- dlfo bf&oQ
e e e e

q Q /o +-- (-a +fo + (a2- Oe)Q).
e

Dividing by f! e- Q gives

(3.3)
qOo

f/e-Q
Q qKo + &o {f Al + (A2- tile)Q}

If we define/3 q&o/ao then (3.2) reads Q(e- A2)= flf-A1. Plugging this relation
into the right-hand side of (3.3) gives the desired result, l-]

4. Monotonicity. In this section we will fill in the details of the sketch of the proof
of Theorem 2.1. To do this we derive a differential equation for 82, 8 which fits into
the framework of the previous section.

For n N U {0} and m N U {- 1, 0} let

(4.1) 6(h)-- I tlnl)m

(h) (1 2u)P-lIp
du,

where y(h) is as in (2.12). From (2.10) and (2.12) we have

(4.2) ((h) 6/
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The next two lemmas give a recursion relation and a differential equation which
are satisfied by the functions 8"

LEMMA 4.1. Let (m+3)/2 and n[Ll{0}, then

R(m, n): m(2p+ 1)"+2
m-2 mpom_2+(m-2pn-2)8"m+pnS"m-1.

Proof. Differentiate (2.10) with respect to u to obtain

Ov
(4.3) O=pu-(2p+ 1)u2+v2-pV-u (1-2u ).

Multiplying this identity with u"v"-2/(1-2u)-/ and integrating along /(h) yields

0 __,.,,+1 s,,+2 _a_ 8" P I (1--2U)l/Pu"vm-1 dv.=pOm-2--(2p+ l,m-2-- m-

Integrating the last integral by parts gives

-’P--- (1-2u)l/Vu" dvm=P f d{(1-2u)l/vu"}vm
du

2 (1--2U)I/P-lun/) du+ (1--2U)I/Pun-1/) du
m m

__2 f un/) pn f (1-2u)u"-l/)mdu"
m (1 2U)P_l/l, m (1 --211)p-1/p

Therefore, by definition of 8"

0= _o,+1 -(2p+ 1)8 "+2
2 pn

pOm-2 m-2 + 8m 8n +-- 8n-1
m m

Multiplying this result by m gives the desired result.
LEMMA 4.2. Let m, n I.J {0}, then

d
2ph 8 m(8" 8"+2m-2!-

Proof. Introducing the value of H in (2.10) as a variable and differentiating (2.10)
with respect to h gives

(4.4)
19/) /)2_//2

Oh- 2pvh

Therefore

m
(8, .+2

LEMMA 4.3. p/(2p+ 1)810=
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Proof. Combining Lemma 4.2 with R(1, 1) gives

d o2ph -d81 8 821,

Therefore,

d p 8o+28 p 82_12ph-d811 2p + 1 2p + 1

At h hn both 8 and 8 vanish. This implies the result. ]

LEMMA 4.4. Let R R(h)=-83_l. Then

d
2ph-d-f 811= 81+ R,

(4.5)
6p+2 p

2ph
dh 2p + 1 2p + 1 2p + 1

oo Combine Lemma 4.2 with R(2, 1), R (1, 1).
To simplify notation we will write

Ro

Note that the differential equation (4.5), which tZo, al satisfy, fits into the framework
of the previous section with q(h)=2ph. As in 2 the quotient of c1 and Co will be
denoted by Q.

The next lemma gives some useful properties of ao and Q.
LEMMA 4.5. (See Definition 2.1 for Ip).

(i) For h Ip, sign (p) Co(h) >_- 0;

(ii) for h Ip, &o( h <- 0;

(iii)
d

sign (p) - Q(hn > O;

(iv)

(v)

(vi)

for each p (0, oo) and h [0, h. ]"

3p
6p+2

PQ(O) >- Q(h >- Q(hn
2p + 1’

for each p (-, O) and h hn, oo).

3pP -Q(hn) >-Q(h)>-- -Q();
2p+ 1 6p+2

for each p (-1/2,-1/2] and h hn, oo):

(vii)

(4.6)

2p+l
Q(hn >-- Q(h) >_- - Q();

suppose that Q()= 0 for some g Ip, then at h "
(p/2p+l)-Q 0 h-/o+ (1 -/&) &o.

tZo /
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Proof. Recall the definition of do:

(h) (1--2U)p-1/p
du,

where y(h) is the level curve H-l(h),hIp (see Fig. 2). Observe that sign (u)=
sign (p), 1-2u >-0. This gives (i). By Lemma 4.2

h f u( vz uz)
2ph&o(

(h) I.)(1 2U)p-1/p
du.

On y(h), v2- u2=< 0. This gives (ii). Combining Lemma 3.2 with Lemma 4.4 gives (iii).
When p > 0,

6’(0) 2
(1 2u)p-’/p

du

B(n+2,1/p).

n+l 1
un+l(l__u)P-1/p du

Therefore Q(O)=3p/(6p+2)=A/A2. The fact that the value of Q at the Hopf point
h/4 equals p/(2p + 1) is a consequence of Stokes’ theorem. Consequently when p > 0
all the hypotheses of Theorem 3.1 are satisfied and therefore (iv) holds.

Suppose that -<p<0 and let u+/-(h) be the two real roots of the equation
u2(1--2U) /p h 1/p. Then

unx/u2_(h,/P/(l_2u)l/p)
61’(h) =2 du.

a u_a) (1 --2U)p-1/p

Observe that o_ u"(1-2u) /p (1/2)"+l(-1)"B(n + 1),-1/p- n 1), which is conver-
gent for 1/p > n + > 0. Furthermore, u_(h), u/(h) goes to -oo, 0, respectively, as h
goes to infinity. Thus we conclude that

-oo, -1/2<p__<-,
lim Q(h)= 3p A1 -1/2<p <0.h-,oo

6p + 2 A2’
So (v) is a consequence of Theorem 3.1. For the values of p between -1/2 and - we
cannot directly apply Theorem 3.1. In this case we argue as follows. For -1/2 < p <-1/2
we know that O(h) =0 implies that (compare (3.2))

6p+2, ao ( 3p )(,) (Q-p/2p+ l)-2p +1 2ph&o Q-6p+2
where ((6p+2)/(2p+l))(ao/2phdo)>O. Suppose that Q(h)>p/2p+l for some h>
hH. Then as Q(c) - and Q_<-0 there exists a/> hH such that 0=> Q(f)>-_p/2p+ 1
and Q(/)=0. But this contradicts (,). If p =-1/2 then (3.2) reads" Q(/)=0 implies that

(Q-p/2p+ 1)= ao 3p
2ph&o 2p + 1"

Thus the same reasoning as above leads to the desired result. This completes (vi). The
last assertion is a direct consequence of Theorem 3.3. [3

It is our goal to show that the right-hand side of (4.6) is sign definite. To reach
this goal we introduce a function J(h) which serves a twofold purpose. First, J(h)
gives an h-dependent estimate of the quotient h&o/ao; and second, J(h) gives rise to
an integral representation for fro.
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LEMMA 4.6. Suppose that O()= 0 for some L Then, at h h-, sign (p){h-/o+
(1 hfo/ ao))do} < O.

COROLLARY 4.7. Suppose that h is defined as in the lemma. Then

sign (p) 0(/) > O.

Proof of the corollary. Combine Lemma 4.6 with (4.6). [3

Therefore, when Lemma 4.6 is proved, all the details in the proof of Theorem 2.1
have been given. Only very interested readers will appreciate the lengthy argument
needed to establish Lemma 4.6.

Proof of Lemma 4.6.
Step 1. Let

f/ uv
du,(4.7) J(h)= {v2(1-2u)I/p-X(h)}

(l_2u)p_l/p(h)

where

(4.8) X(h) max v2(1-2u) TM.
"y(h)

J has some useful properties.

(i) sign(p)J(h)<-O,

(ii) .(h)_-> 0,

(iii) )( h h 1/p/2ph)ao- X(h )do.

(i) is clear from the definition of J. By construction of J the factor inside the curly
brackets is independent of h. More precisely, from (2.10) and (4.8) it follows that

(4.9) v2(1-2u)/P-X(h)= uE(1-2u)l/v-c(p)

where

(4.10) C(p) P 2(i’ 2p4- i ,v(h,max u 1-- 2u) TM

Therefore the derivative of J is

u(vZ_uZ)1 {v2(1-2u)l/p-X(h)}
v(1--2U)TM

du,(4.11) " 2--
and so (ii) is clear. To obtain (iii) we replace (v2- u2)(1-2u)lip by -hTM in the first
term of the right-hand side of (4.11). As a consequence we get

(4.12) sign(p) hffo+ 1-hdo/a Nsign(p) ho+ l+2pX(h o

Seep 2. Before we compute the second derivative of J to obtain an integral
representation for o we integrate J by pas as follows: From (4.3), (4.7) and (4.9)
we may write

I ((2p+u2(-mu)l/p-C1)u-pu)(1-2u)TM ( ouOV )(4.13) a= uv v-pv(-u) au.
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Let

u2(1-2u)l/p-c
,(u)

((2p+ 1)u-pu)(1--2U)v-1/p"

Then integrating (4.13) by parts gives

(4.14) J= f ,_(U)/) du,

where

(4.15) (u)=(1-2p/3)o(u)+p/3(o(u)(1-2u).

The integral representation (4.14) differs in an essential way from the one given by
(4.7). Because v is raised to the power three in (4.14), we may differentiate J twice
without running into troubles with divergent integrals.

Step 3. We will prove that

( hl/p 1 {I (/)2--1/2)//
hdo+ 1+) o2pX(h 4p2hX(h) (h) v(1-2u)((2p + 1)uE-pu)2

(4.16) [2CuE(1-2u)l/p((2p+ 1)u-p)2

(u)
((2p+ 1)u2--pu)2(1--2u)P-1/P] du.+3h 1/p

u l

From the definition of J we obtain

hl/p
2phX h ffo (1 l/p) --h-Ceo + h l/p&o 2ph].

Consequently,

hgio + 1 +
2pX h o 2pX(h)

1

2pX(h)

hl/p )(1 i/p) --if-- Oto + (EpX(h + 2hl/p)&o- 2ph]

((2X(h) + 2h l/P)t0 + 2. 2p. 2phY}.

In the last step we have expressed ao in terms of &o and using property (iii) of J
(Step 1). Differentiating (4.13) twice and inserting the result in the above identity gives
(4.16). This completes Step 3.

Step 4. We will prove that the integrand in (4.16) is sign definite. Let

(4.17) Pa(u) ((2p+ 1)U --p)2, W(u) (1 --2U) 1/p, V(u)-- uEW,
and let

(4.18) I 2CVP3 + 3hl/p(u)uP3 WP-I’
then (4.16) reads

(4.19) ho+ (1+h1/p

) l f (/)2-- U2)U
2pX(h) &=4pEX(h) th) V(1--2U)((Ep+ 1)uE--pu)2 I(U) du.

Observe that on y(h)

(4.20) sign{ /)2-- U2)U }V(1 2U)((Ep + 1)U2 --pu)2’
-sign (p).
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If we let
Px(u) (-2p 1)u2 + (2pz +p)u _p2,
Pz(u) (-8pZ- 6p 1)uz + (6p)-- 3p)u -pZ,

then by a straightforward computation it follows that

3(u)uP3 Wv-x= VP1 + CPz.
Consequently we may rewrite (4.18) as

I 2CVP3 + h x/p VPx + h x/p CPz.
We can still simplify this expression by observing that the relation Px + P2 -2P3 holds,
which enables us to rewrite ! as

(4.21) I=2CP3(V-hX/P)+hx/PPx(V-C(p)).
This relation is nice because on y(h) both V-h x/p and C- V are positive (see (2.10),
(4.10)). We will finish the last step by proving:

PROPOSITION. For p > -1/2 and u (-Do, 1/2], Pl(U)--<0.
Recall that

Pl(U) (-2p 1)u2 + (2p +p)u _p2.
Thus for P>-1/2,Pl has a global maximum at u-p/2, and PI(p/2)=
(p2/4(2p+ 1))(p +1/2)(4p- 6). Therefore, for p (-1/2, ), P1 is nonpositive onE. PI(1/2)- --and for p > the maximum of P1 lies to the right of 1/2. This proves the proposition.

Combining this with (4.21) finishes the last step. [3

Note. After the completion of this manuscript, the authors received a paper of
Zholondek [14] which deals with the same problem. His methods differ completely
from ours and he solves the problem without any restriction.
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PERIODIC ORBITS IN SLOWLY VARYING OSCILLATORS*

STEPHEN WIGGINS" AND PHILIP HOLMESt

Abstract. We develop a global perturbation technique for the study of periodic orbits in three-
dimensional, time dependent and independent, perturbations of planar Hamiltonian differential equations.
We give existence, stability and bifurcation theorems and illustrate our results with examples that exhibit
saddle-node and Hopf bifurcations of periodic orbits.

Key words, bifurcation, Hamiltonian system, periodic orbit, Melnikov method, perturbation theory

AMS(MOS) classification numbers. 34CXX, 58F14, 70KXX

1. Introduction. In this and the following paper we develop tools for the study
of periodic and homoclinic orbits occurring in a class of third order systems that arise
in mechanical and other applications. We call these systems slowly varying oscillators;
they take the general form

:fl(X, y,z)+ egl(X, y, z, t; IX)

(1.1) f.(X, y, z)+ eg2(x, y, z, t; Ix) or /1 f(q)+ eg,(q, t)

eg3(x, y, z, t; Ix)

where the gi are T-periodic in and depend upon parameter(s) IxRk. Additional
structural assumptions on the unperturbed and perturbed phase spaces are given in 2.

Earlier work on systems with slowly varying parameters includes that of Baker et
al. [1971] and Marzec and Spiegel [1980], who pointed out that "strange attractors"
similar to the H6non attractor (H6non 1976]) apparently arise from the Poincar6 maps
of such systems. In particular, Marzec and Spiegel [1980] studied two systems with
fourth order potentials, similar to (1.2), below. Robinson [1983] and Robbins [1979]
also worked on three-dimensional systems with a slow dependent variable; in fact the
famous Lorenz model (Lorenz [1963]) can be put into such a form for high Rayleigh
numbers (also see Sparrow 1982]). However, our immediate reason for studying such
systems is that they occur as models of simple nonlinear elastic structures subject to
feedback control when there is a nonnegligible time constant in the control process.
(In a "rigid" control system the parameter e would be very large, so that a singularly
perturbed system would result.) See Sparrow [1981], Holmes [1983], [1985], and Moon
and Rand [1984] for examples.

An example of such a system is the Duffing equation with slowly varying stiffness
and weak linear dissipation:

(1.2) f x x z eSy,

=e(-az+g(x,y)),
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where g is a feedback control function. F. Moon’s numerical integration of a fifth
order system similar in form to (1.2) revealed chaotic solutions that appear to wind
back and forth among a set ofunstable periodic orbits, the shapes ofwhich approximate
those of certain orbits of the corresponding unperturbed Hamiltonian system. Baker
et al. [1971] had made similar observations considerably earlier.

Our main analytical tool is a three-dimensional generalization ofthe computational
method of Melnikov 1963]. The method utilizes the integrable structure of the unper-
turbed phase space as a framework on which to construct tools for the analysis of the
perturbed phase space. See Greenspan and Holmes [1983] and Guckenheimer and
Holmes [1983, Chap. 4] for details of the two-dimensional theory. Generalizations to
2n-dimensional Hamiltonian systems have been made (Holmes and Marsden [1982a],
[1982b], [1983]), as well as to homoclinic orbits for general n-dimensional systems
(Gruendler 1985]).

The paper is organized as follows: in 2 we describe the geometrical structure of
the phase space and thus motivate our construction of the Melnikov functions. In 3
we show that zeros of Melnikov functions imply the existence of periodic orbits; in

4 and 5 we give stability and bifurcation results. In 6 we illustrate our results with
two examples. In the companion paper (Wiggins and Holmes [1987]) we consider the
related problem of homoclinic orbits in slowly varying oscillators. Although, for
simplicity, we restrict ourselves to three-dimensional systems in these papers, our
methods generalize to arbitrary perturbations of 2n-dimensional slowing varying
Hamiltonian systems (Wiggins [1986]).

2. The phase space of slowly varying oscillators. We consider systems of the form

(2.1)

=fl(x, y, z)+ eg,(x, y, z, t; Ix)

3) =f(x, y, z)+ eg2(x, y, z, t; Ix), eg3(x, y, z, t; Ix)

or l f(q) + eg(q, t; Ix),

with 0 < e << 1, f and g sufficiently smooth (C r, r -> 4), g periodic in with period T and

Ix R k a vector of parameters. We write g(q, t; Ix)= g,(q, t) and frequently drop the
explicit dependence on Ix. We make the following assumptions on the unperturbed
system.

(A1) For e =0, (2.1) reduces to a one parameter family of planar Hamiltonian
systems with Hamiltonian H(x, y; z),

OH
=fl(x,y,z)-

Oy

OH
(2.2) y=f2(x,y,z)=-,

Ox

(e =0).

(A2) For each value of z in some open interval J c R the "planar" system (2.2)
possesses a one parameter family of periodic orbits, q,Z(t- 0), a L(z), where L(z)
is an open interval in R and 0 denotes the "phase" or starting point of the orbit. We
denote the period of q,Z(t- O) by T(a, z) and assume that it is a differentiable function
of a and z. Thus, when viewed in the full x, y, z phase, system (2.2) possesses a smooth
family of invariant cylinders. (See Fig. 1.)
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FIG. 1. Structure of the unperturbed phase space.

It will be convenient to think of (2.1) as an autonomous differential equation.
This is accomplished by defining the function &(t) t, mod T; by T-periodicity of the
gi we then have

-’fl(X, y, Z)+ eg,(x, y, Z, b),

=f:(x, y, z) + eg(x, y, z, q, ), (x, y, z, q,) g x Sl,
(2.3)

eg3(x, y, z, ),

We remark that this suspension makes sense even when the g are independent of ,
although it then becomes trivial. The main point to note is that all the results developed
below in the context of -dependent peurbations also hold good for -independent
(i.e., autonomous) peurbations, although there are sometimes differences in interpre-
tation.

The following peurbation results will be useful. Consider a subset of the two
parameter family of periodic orbits whose period is uniformly bounded above. Let
L(z) L(z) denote the set of a such that on a fixed z =constant plane the periods
T(a, z) of the periodic orbits are uniformly bounded above, say by a constant K.

PROPOSITION 2.1. Let q,Z(t_ 00) be a periodic orbit of the unperturbed system
with period T(a, z)< K. en there exists a perturbed orbit q’Z(t, 0), not necessarily
periodic, which can be expressed as

(2.4) q’(t, O)=q’(t-O)+eqT"’(t, 0)+ (e:)

uniformly in t[to, to+ T(a, z)] for suciently small and all a L(z).
Remarks. This result follows directly from regular peurbation theory and

Gronwall estimates (e.g., Haman [1964]). The restriction to L(z) avoids problems
that arise when periodic orbits limit on homoclinic orbits and the period becomes
unbounded. Fuhermore, q’Z(t, O) may be found by solving the first variational
equation

,z ,z(2.5) .Z=Df(q0 )q, +g(qo’, t).
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The main question which we ask is the following: Do any of the two parameter family
of periodic orbits in the unperturbed system remain in the perturbed system? In order
to answer this question we will reduce the study of the four-dimensional problem (2.3)
to a three-dimensional Poincar6 map. We define a global cross section transverse to
the vector field (2, 3)

o {(x, y, z, )l 0}
and define a mapping of E into itself by letting orbits which start on E evolve for
time T until they return to E. Thus fixed points of the map correspond to periodic
orbits of the vector field. (Note: the construction of the cross section and associated
Poincar6 map is different when the perturbation is autonomous, for then the problem
is three-, not four-dimensional. However, we will see that formally the calculations
are identical in both cases.) Although our Poincar map is three-dimensional we will
see that extending an idea due to Melnikov [1963] enables us to eliminate one
component.

We now describe the geometric and intuitive notions which motivate the construc-
tion of the Melnikov functions. The structure of the unperturbed phase space will form
the framework for the analysis of the system. Since the unperturbed system is
autonomous, on each cross section, E, we have identical copies of the unperturbed
phase space. In addition, the system possesses two constants of the motion, H(x, y; z)
and z itself. These constants are used to construct a moving system of "orbit coordi-
nates" along the unperturbed orbits on the cross section E. Taking the gradient of
the two constants of the motion we obtain the vectors (OH/Ox, OH/Oy, 0) and (0, 0, 1),
which span a plane, II. These vectors are evaluated on the unperturbed orbits on the
cross section E, denoted q’’z(-o). Thus varying 0 moves our two-dimensional plane
II around the unperturbed orbits on the cross section E (see Fig. 2).

-"" ’rq’Z(mT’O)

-e))

FIG. 2. The orbit coordinate system on E.
In order to study periodic orbits in resonance with a time-periodic perturbation,

we introduce the following two component vector valued function:

[q’(mT, O)-q;(O, O)] Ox,--.., O ,[q (mT, O)] (O, O, 1)
l(a, o, z)--

Ilf(q’z(-o))[I

e [qf’Z(mT, O)-q (0, O)]. --x,-y,0 ,[qf’Z(mT, O)-qf’Z(mT, O)].(O,O, 1)
(2.6) +e(e2)

[If(q.Z(-O))[[

de=feMm/n(Ot, O,



596 STEPHEN WIGGINS AND PHILIP HOLMES

where Mm/n(tx, O, z)=-(MT/"(a, O, z), M’/"(a, O, z)) is defined to be the subharmonic
Melnikov function, "[I II" denotes the Euclidean norm, "." is the vector dot product,
and roT= nT(a, z), where T(a, z) is the period of the unperturbed periodic orbit
q,Z(t- O) and m, n are relatively prime integers.

The intuition behind the definition of d(a, O, z) is the following: on the cross
section 0 we have the plane H normal to the vector f(q’Z(-O)) at the point q’Z(-O).
If a peurbed orbit has its initial value on this plane and evolves for time mT, after
which it has returned to within (e) of the plane H, M/" is a measure of the "push"
or "shear" the orbit undergoes due to the peurbation in directions transverse to the
unpeurbed vector field. Thus we expect that if the "push" is zero at some point, an
orbit of period mT/n will be preseed in the peurbed flow. These heuristic notions
are made precise in 3, where we show that nondegenerate zeros of Mm/n correspond
to isolated fixed points of a Poincar6 mapping of EE. Another impoant con-
sequence of the definition of M/" is the fact that an explicit, computable expression
may be obtained for M/".

Mm/"(a,O,z)=llf(q,Z(_O))l gl+g2+g3 (q’Z(t),t+O)dt

(2.7)
O

g(’(t), t+ O) dr,

g3(qX’Z(t), + O) dt

where q’Z(t-O) is an unpeurbed periodic orbit of period T(a, z)= mT/n. In the
next section we derive this expression.

3. Periodic orbits. Here we study the two parameter family of periodic orbits and
show how the subharmonic Melnikov function constructed in 2 is related to a Poincar6
map constructed from the peurbed vector field. We will restrict ourselves to a region
where the periods are uniformly bounded above by a constant K (so Proposition 2.1
applies). This allows us to use the Hamiltonian structure of the unpeurbed system
to transform system (2.3) to action-angle variables (see Goldstein [1980] or Arnold
[1978]):

(x(L 0), Y(L 0), z) (I(x, y, z), O(x, y, z), z).

Under the transformation, (2.3) becomes

OI OI OI )

eg3,

=1,

with F, G, g T-periodic in and where (I,)OH/OI is the angular frequency of
the closed orbit in the unpeurbed system on the constant plane with action I and
energy H(I, ). So in the action-angle coordinate system the action I plays the role
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of the parameter a in our more general notation. We note that for e 0 the solution
to (3.1) is given by

I=Io,

(3.2) 0 1)(Io, Zo)( to) + 0o,

Z’- Zo.

Now we will construct an approximation to the Poincar6 map associated with
system (3.1). The cross section to the flow defined by (3.1) is

(3.3) E= {(I, 0, z, b)16 =0},

and the mth iterate of the Poincar6 map, P, is

PT: (I(O, o, Io, Oo, Zo), (o, o, Io, Oo, Zo), z,(O, o, Io, Oo, Zo))
(3.4)

(I(mT, O, Io, 0o, Zo), O(mT, O, Io, 0o, Zo), z(mT, O, Io, 0o, Zo)),
where the initial conditions are chosen such that

I(0, 0, Io, 00, Zo)= Io,
(3.5) 0(0, 0, Io, 0o, Zo)= 0o,

z (0, 0, Io, 0o, Zo)= Zo.

Using Proposition 2.1 and the solutions to the unperturbed problem given by
(3.2), we can approximate the Poincar6 map using regular perturbation theory.

The solution of (3.1) can be written as

PT: (Io, 0o, Zo)(Io, 0o, Zo)+ (0, mT1)(Io, Zo), O)
(3.6)

+ e(Ii(mT, O, Io, 0o, Zo), Ol(mT, O, Io, 0o, Zo), zl(mT, O, Io, 0o, Zo))+ G(e2).
Recall that this approximation is uniformly valid for one period of an unperturbed
orbit, T(I, z) mT. For the case of ultrasubharmonics, T(/, z) mT/n, n >= 2, m, n
relatively prime, the approximation is not uniformly valid since e must shrink to zero
as n increases.

We now compute I1, 01, and zl by solving the first variational equation. Using
(3.2) we obtain

(3.7)

0 a/0 [(o, zo 0 oalozol(lo, o
0 0 2’

and consequently

(3.8)

1)(Io, Zo)t + Oo, Zo, t)tG(Io, f(Io, Zo)t + Oo, Zo, t)
3(Io, 1)(lo, Zo)t + 0o, Zo, t)

T

Ii(mT, O, Io, 0o, Zo) F(Io, 1)(lo, Zo)t + 0o, Zo, t) dt =-- lffI’/"(Io, 0o, Zo),

F(Io, 1)(Io, Zo)+ 0o, Zo, ) d dtt91(mT, O, Io, 0o, Zo -o io zo

+ G(Io, 1)(lo, Zo)t + 0o, Zo, t) dt

(io, zo) foTIotg3(I’(I’z)+O’z’)ddt
m/nM2 (Io, 0o, Zo),
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mT

zl(mT, 0, Io, 0o, Zo) g3(Io, 1"1(Io, Zo)t + 0o, t) dt 1’/’(Io, 0o, Zo).

The Poincar6 map P becomes

(3.9)
PT: (Io, Oo, zo)(Io, Oo, zo)+(O, l(Io, zo)mT, O)

-’/+ e(1917/(Io, 0o, Zo), ,, (Io, 0o, Zo), M’/"(Io, 0o, Zo))+(e).
We will subsequently show that the first and third components of the (e) part of the
Poincar6 map make up the subharmonic Melnikov function which we defined in 2,
i.e.,/"/" M’/, i= 1, 3.

We define the vector 11m/" as

(3.o) r/"(Io, Oo, Zo) (?/"( -o, Oo, Zo), 7/"(Io, Oo, Zo), I7/"(Io, Oo, Zo)).
We remark that the superscript mn denotes our search for periodic orbits (which we
will frequently omit) which satisfy the resonance relation T(/, z)= mT/n, m, n rela-
tively prime integers.

We now state our main theorem.
THEOREM 3.1. Suppose (I*o, O*o, Z*o) is a point where T(I*o, Z)= mT/n and the

following condition is satisfied:
ol’ oO.

# 0 or # 0,
0Io (t*o,z"d) OZo (x*o,z*o)

aZok aOo aOo alo (,o,)

and

,(Io*, Oo*, Zo*)= (Io*, Oo*, Zo*)=o.
Then for 0 < e <= e (n) the Poincard map, P, has a fixed point ofperiod m. If n 1 the
result is uniformly valid in 0 < e <= e(1).

We remark that the conditions

Ozo o]+Ozo \ oo O0o aOo o/#0
is a sufficient condition for the Poincar6 map minus the identity map to be invertible
in each case and for the fixed point to be isolated. We also call attention to the fact
that no knowledge of hr’/" is needed. Thus evaluation of the double integrals of (3.8)
is unnecessary.

Proof We note that by hypothesis the resonance relation, T(Io, Zo) mT/n, is
satisfied so that mTl(I*o, Zo*) 2rn 0 since mTf is an angular variable. For definite-
ness we assume af/aZo[(,o. ,o)# 0 (the case with af/alo[(,o.z,o) 0 is proved similarly).
Let us perturb the point (Io*, 0o*, Zo*) to (Io*, 0o*, Zo* + Az). Then at this point the Poincar6
map takes the form

PT(Io*, 0o*, Zo* + Az)-(Io*, 0o*, Zo* + Az)

TOo0, rn
OZo

Now if we choose
(,o.. zo)aZ + 19I(I*o, O*o, Z*o + e(az) + e(az), o) + e( ).

I’o, O*o, Z*o)

T
Ozo (I*o, z*o)
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we have

det IDPT-

pm(1o, O*o, Z*o + az)-(I*o, O*o, Z*o + az)= e(:),

(X*o, O*o, z*o+az) 00o 0zo

aZo alo aOo aOo alo
+ (e3) # 0 by hypothesis.

(Xo*, O*o, z*o)

Thus, since IlDpm-idl] (1), the implicit function theorem allows us to conclude
that the Poincar6 map has a fixed point near (Io*, 0o*, Zo*+Az) and thus that the
differential equation has an isolated periodic orbit of period rnT/n near this point. E]

We make the following remarks:
(1) Although P is a diffeomorphism of R3, in order to determine whether or not

it has fixed points we need only check the first and third components of the map. This
is a result of the nonzero twist condition (Of/OIo or f/OZo # 0), which insures locally
that we return to the correct section after time mT.

(2) The advantage ofusing action-angle variables is that they enable us to explicitly
relate the subharmonic Melnikov function to a Poincar6 map by allowing us to easily
solve the first variational equation (3.7), which might otherwise be intractable analyti-
cally. In 4 and 5 this relationship is exploited by utilizing existing theorems concern-
ing stability and bifurcations of maps in order to get similar theorems expressed entirely
in terms of the subharmonic Melnikov function.

(3) Theorem 3.1 does not apply to the case of autonomous vector fields. In such
cases it suffices to study a diffeomorphism of R2 obtained by fixing 0 0o and allowing
the I and z variables with initial values at 0 0o to evolve in time until they return to
0 0o. Hereafter we will delete the subscript 0 on/, 0, and z when there is no possibility
of confusion. We have the following theorem.

THEOREM 3.2. Suppose there exists a point (I*, z*) such that

(a) /rl(I* z*)=/r3(I* z*)=0,

o(M1, M3)
(b) #0.

o(,z) (,.,z.

Then (I*, z*)+ 6(e) is an isolated fixed point for the Poincar map that corresponds to
an isolated periodic orbit for the three-dimensional flow.

We remark that M1 and M3 are defined exactly as in the nonautonomous case
except that the limits of integration now become 0 T(I, z); hence we drop the
superscript rn/n.

Proof The proof is very similar to that of Theorem 3.1. The details can-be found
in Wiggins [1985]. [-I

Finally we want to show that the subharmonic Melnikov function derived in this
section using action-angle variables is identical to the expression that we gave in 2
for an arbitrary coordinate system. We can easily see that/’/" derived in action-angle
variables is identical to the correspondingM’/" of 2 derived using the orbit coordinate
system, since the functions under the integrand are the same and both are evaluated
on an unperturbed periodic orbit. It makes no difference whether or not the unperturbed
orbit is expressed in (/, 0, z) coordinates or (x, y, z) coordinates, since the Jacobian of
the transformation between the two coordinate systems is identically one and hence
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does not affect the integral. The fact that the M’/" are the same is not as obvious,
but is nevertheless true. In action angle variables M’/’ is defined as

(3.11) 1’/(I, O, z)
OI OI

gl + _--- g2+ g3 dt,
Oz

where the integrand is evaluated on an unperturbed periodic orbit expressed in
action-angle variables. (Note: By OI/Ox we mean the partial derivative of I with y
and z held fixed; we denote this by OI/Oxly.z, similarly for OI/Oy and OI/Oz. This will
be important in the following.) Now using the action angle transformation we can write

(3.12) H H(I, z),

and since we have assumed that we are in a region where OH/OI[z is nonzero we can
invert (3.12) to obtain

(3.13)

Differentiating (3.13) we obtain

0/

Ox

(3.14)

I=I(H,z).

OI

y,z --oI oI
Oy , OH

x,y --
oI

"- y,z’

X,Z

+
x,y H

and by definition of the action-angle transformation we have

(3.15)

Substituting (3.14) and (3.15) into (3.11) we get

1 fo7"(x OH OH) OI fo(3.16) M’/"=fl(i,z- gl+-y ga+g30z dt+--Oz H
g3 dt,

where we have pulled the OI/Ozln term out of the integrand since it is constant on
unperturbed periodic orbits. Recall that on an unperturbed periodic orbit we have

(3.17) I= I(H, z) constant.

So differentiating along this orbit we get

(3.18) 0=--
Using (3.18), (3.16) becomes

(3.19) 1’Q17/"(I, O, z)=
1 [Io"’r (0_xH OH OH) OZ]Io’rfl(/, z)

g + --y g2 + -Ofy g d
I

g3 d

where the integrand is evaluated on an unperturbed periodic orbit (note: as in the case
of M/", it does not matter whether this periodic orbit is expressed in (I, 0, z)
coordinates or (x, y, z) coordinates). Finally, we note that in the action-angle coordinate
system (see (3.1)) Ilf(q’(- 0)) ll(/, z), so we see that the expression which we have
derived here in action-angle coordinates (i.e., in a region where the periods of the
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unperturbed orbits are uniformly bounded) is identical to that obtained from orbit
coordinates in 2, so hereafter we will drop the overbars on M, and M3.

4. Stability. We have shown that the study of system (2.1) can be reduced to the
study of a three-dimensional Poincar6 map in the nonautonomous case

(4.1)
PT q) q + (0, mTl(I, z), O)+ e(M’/’(q), 1Ql’/"( q), M’/"(q) + (e2),

q=(I,O,z)

and a two-dimensional Poincar6 map in the autonomous case

(4.2) PT(q)=q+e(Ml(q),M3(q))+C(e2), q=(I,z),

and that nondegenerate fixed points of these maps correspond to isolated periodic
orbits in the ordinary differential equations. We can compute the stability of these
fixed points in the obvious way,. namely linearize the map about the fixed point and
examine the eigenvalues. After some computation, we find that the eigenvalues of (4.1)
(the nonautonomous case) are given by the following cases.

CASE 1. A2 0, A4 0.

(4.3)

(4.4)

m4
A3 1 + +(e).

CASE 2. A2 0, A4 0.

1 1 + 2/3(--4)1/3 + + --3 + (5/3),

a1E4/3e4=i/3 [ ]A l+e2/3e4i/3(--A4)l/3+e
3 (--A A-A3 +(e5/3),

3 (-4)

where

aM1 aM2 aM3
A1 ++ trace [DM],

OI O0 Oz

(4.5)

oD, aM OD, aM3
A2= mT+mT

OI O0 Oz O0

O(M1, ME) O(M, M3) O( M2, M3)
A3= -+" --0(I, O) 0(I, z) 0(0, z)

Of O(M, M3) 0- O(M, M3)m4 mT +mT-
OI O(O, Z) Oz O(I, O)

OM O(M,, M3) OM O(M,, M3) OM O(M1, M3)
OI 0(0, z) O0 O(z, I) Oz 0(I, O)

Here all partial derivatives are evaluated at the zero of M1, M3, and

0(M1, M2) aM10Mz aM aM2

0(I, 0) OI O0 O0 OI
etc"

-det [DM].
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denote Jacobian determinants. These two cases give all possible forms for the eigen-
values for the Poincar6 map with 191/0I # 0 or 191)/z O. If A1 =0, the eigenvalues
still maintain the above forms and if A4 --0 our existence theorem cannot be applied
(we are at a bifurcation point). (Note: the computation of these expressions for the
eigenvalues are not trivial; they involve some results from algebraic function theory
along with the use of Newton diagrams (for complete details see Wiggins [1985]).)
Finally, note that the eigenvalues are completely determined by M1 and M3 at the
lowest order in e (this is a consequence of the nonzero twist condition).

In the autonomous case the situation is simpler, the eigenvalues of (4.2) are given
by

(4.6)
E

/1,2 1 + tr DM + ,,/(tr DM)2-4 det OM+ O(e)

where

tr DM =0M-----!- 19M3 det DM _OM OM3 19M
OI Oz OI Oz Oz OI

and the partial derivatives are evaluated at a zero of (M,
Once the eigenvalues are in hand, stability follows from the standard linearization

theory.

5. Bifurcations. We now address the question of bifurcations for parameterized
families of systems and restrict ourselves to codimension one bifurcations
(Guckenheimer and Holmes [1983], Arnold [1982]). Thus, if the parameter is multi-
dimensional, we fix all but one component and vary that alone. We begin with a
theorem concerning saddle-node bifurcations.

THEOREM 5.1. Consider the parametrized Poincard map with the parameter
Suppose there exists a point (I*, 0", z*, /x*) q* such that mTl(I*, z*) 27rn and

[01) 19(M,,M3) 191) 0(M1 M3)]Mr/"(q*) M’/"(q*) O, - -Z O) ’--t92 0(0I)’ q*
O,

and one of the following holds"

(a)

(b)

(c)
OI O(/x, O) q.

Then near q* there is a bifurcation point at which saddle-nodes ofperiodic orbits occur.

Proof. The equations

MI(I, O, z,/x) + 7(e) 0,

(5.1) mra(I, z)-27rn+elffl(I, O, z,j/x) + 7(e2) 0,

M(I, O, z, )+e()=O
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represent a curve in (/, 0, z,/x) space corresponding to fixed points of the Poincar6
map PT. The tangent to this curve can be computed:

all o(M,, M3) all O(M1, M3) al O(M,, M3)
0I o(, 0)

+()’ 0-i- z: 0)
+---
Oz 0(0, I)

We must show that there exists a point near q*= (I*, 0", z*,/x*) such that

Oil O(M,, M3) all o(M,, M3)+ +6(e)=O
oI o(z, O) oz ( 0, I)

at this point and the rate of change of the/x component of the tangent to the curve
at this point is nonzero. This will show that the curve of fixed points is locally parabolic
in the/x direction about this point and takes one oftwo possible forms for nondegenerate
saddle-node bifurcations (Fig. 3).

I ,O,Z

FIG. 3. Locally parabolic bifurcation curves.

Let us suppose condition (a) of FP1 holds. Then since (alI/Oz)(O(M1, M3)/O(O, ix))
is nonzero at q*, the I component of the tangent to the curve is nonzero at this point.
So by the implicit function theorem we can parametrize the curve of equilibria locally
in terms of L To show that there exists a nearby point such that

all o(M,, M3) all O(M1, M3)
+6(e)=O

oi o(o,) oz

we need only show that

d (0 O(M1, M3)

This follows by hypothesis and also implies that the rate of change of the/x component
of the tangent to the curve of fixed points is nonzero at this point. This completes the
proof of case (a). Cases (b) and (c) follow from similar arguments.

The corresponding result for the autonomous case is the following.
THEOREM 5.2. Consider the parametrized Poincar map (3.1) with the parameter

Id R1. Suppose that there exists a point q*= (I*, z*,/x*) such that

M(q*) O, det DMI O(M, M3)
o(I, z)

O, tr DM[q. # O,
q*
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with at least one of the following conditions satisfied

(1)
a(M,, M) d

0, zz (det DM)I. : 0;
q*

(2)
d

=0, - (det DM)Iq. O.
q*

Then q q* + ((e) is a bifurcation point at which saddle-nodes ofperiodic orbits occur.

Proof The proof is very similar to the proof of Theorem 5.1.
We next prove a theorem concerning Hopf bifurcations for the Poincar6 map. We

utilize the notation given in (3.17).
THEOREM 5.3. Let q(/x) be a smooth curve offixed points for the Poincard map,

1 e K, where K is some open interval in R. Suppose there exists a Io K such that

oI
#0 or

q(o) q(o)
#0

and

(1) A_(q(/o)) < 0,

-A4-A2)(2) (A, -- q(/x0)
=0,

d A4_A2)(3) ---- (A1 2 q(0)

(4) A4(q(/.t,o) =#- 0.

Then near io there is a bifurcation value for the Poincard map (4.1) at-which invariant
circles occur.

Proof The proof consists of showing that the hypotheses of this theorem imply
the hypotheses of the Hopf bifurcation theorem for diffeomorphisms (see Iooss 1979]
or Marsden and McCracken [1976]). It is a routine calculation using the expressions
for the eigenvalues given in (4.3). E]

The analogous theorem in the autonomous case is the following.
THEOREM 5.4. Let q(/) be a smooth curve ofzerosfor M, I I, where I is an open

interval in R. Suppose there exists io I such that

(1) tr DMlq(,o) 0,

d
(2) -- (tr DMl.(o)) 0,

(3) det DMI(.o)> 0.

(We assume these three quantities to be O(1).) Then, for e sufficiently small (but not

zero), 12 t-o + O(e) is a bifurcation valuefor the Poincard map (3.1) at which invariant
circles occur.

Proof Again a routine calculation using the eigenvalues of (4.6) enables one to
verify the hypotheses of the (two-dimensional) Hopf bifurcation theorem. E]
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The stability of the invariant circles (and direction of bifurcation) can be deter-
mined by computation of the quantity

(5.3)

a
32/det DM

{(f,,,, +fo,) (g,u gv,, + 2Lo) + (g,,,, + g,,,) (L,, -f,, 2g,,.,)}

+l-{g,,,,,,+g,,,,+L,v+fo,o},

1
where f /det DM [Ml,xg- M3,xJ] and f and g are given by

f( h, k) 1/2[ M1,Hh2+ 2Ml,lzh:Zk + Ml,zzk]
+[Ml,mh + 3Ml,ilzh :Zk + 3M,izhk: + Ml,zzzk3] + O(4),

g( h, k) 1/2[ M3,uh2+ 2M3,Izhk + M3,=k:z]
+[M3,IiIh + 3M3,,izh:Zk + 3M3,,zzhk2+ M3.... k3]+ O(4),

where all partial derivatives are evaluated at q(/zo). Here h and k are related to u and
v via

/det DM/k) --M3I 3,1 /()"
If a > 0 (resp. < 0) bifurcating circles are unstable (resp. stable). These dreadful

formulae follow from application of the standard stability formula of Iooss 1979] or
Guckenheimer and Holmes [1983, 3.5].

6. Examples. In this section we give two examples, the first illustrating the
autonomous case and the second illustrating the nonautonomous case.

Our first example not only illustrates how the Hopf and saddle-node bifurcations
for diffeomorphisms can interact, but also how the periodic orbits detected by Melnikov
theory can be connected to those created in sub- and supercritical Hopf bifurcation
from an equilibrium point for the three-dimensional flow. Thus we are able to demon-
strate the relationship between the global bifurcation results developed here and
conventional local bifurcation methods.

We consider a modification of the van der Pol equation"

(6.1) . -x + z + e(x:y 6y),

e(y- z + y2),

with parameters (y, 6) R2. For e 0, the system is Hamiltonian with energy

y2 x2

(6.2) H(x, y; z)=--+---zx h.
2 2

The family of unperturbed periodic orbits in action angle variables is given by:

x z +x/ sin 0,

(6.3) y cos O,

Z--Z.
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Computation of the Melnikov functions by substitution into (2.7) yields

M1 =2or(6.4) M=
M3 y-z+I

We now have the following.
THEOREM 6.1. For e > 0 sufficiently small the bifurcation set of (6.1) is as in Fig.

4; i.e., there exists a parabola y 6z on which Hopf bifurcations to periodic orbits from
the unique fixed point (y, O, y) occur, yieMing stable orbits in the region COAD and
unstable orbits in DAE, and there exists two curves within O(e) of AOB (168=
-(1 +83,); y<- 1/4) and CO(6 1 +(3,+2)2; 2,<-9/4) on which saddle-nodes ofperi-
odic orbits and Hopf bifurcations to unstable invariant tori occur The tori exist above
and near CO (in COF). AOB and CO are tangent at 0(-9/4, 17/16) and AOB and
DAE are tangent at A (-1/4, 1/16).

Proof The behavior of the periodic orbits is derived by verification of the
hypotheses of Theorems 5.2 and 5.4, using the Melnikov function (6.4), and computa-
tion of the stability coefficient a of (5.3). The local Hopf bifurcations from (y, 0, y)
follow from elementary linear computations and conventional center manifold and
Hopf bifurcation analysis for flows, as in Carr [1981] or Guckenheimer and Holmes
[1983, Chap. 3]. We remark that the parabola 3’ 62 also emerges from a study of the
Melnikov function, the zeros of which are given by

I 1/2{-(27 +1/2) + 423, +-+ 48],
(6.5)

z=I+y.

For > y2 M has only one zero in I > 0 while for < 3,2, 3,< 1/4 and 168> -(1 + 83,)
M has two such zeros, l-1

In Fig. 5 the results of numerical integrations of (6.1) are shown for parameter
values in various regions of Fig. 4. These results clearly illustrate the periodic orbits
and the invariant torus for the flow predicted by the Melnikov analysis..

To illustrate the nonautonomous theory we consider the equation governing a
pendulum subject to weak damping and variable torque. The torque is supplied by a
servo-motor or some other device, the dynamics of which is modeled by a first order

-9/4

E

FG. 4. The bifurcation setfor (6.1): si sink, sa saddle" SA saddle type periodic orbit; SI attracting
periodic orbit; SO repelling periodic orbit; TR repelling invariant torus.
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4

Saddle Orbit

-4

(b)

Stable Orbit

0 ’ -4 0 5
x x

5 4
(c)

y

0

-,5
-’6 0 3 -5

..,
Unstable Orbit

FIG. 5. Numerical integrations of (6.1).

equation. The servo-motor is also driven by an external periodic perturbation. The
equations of motion are

(6.6) p -sin x + e(z- iy),, e(-yz + y cos t),

so that the unperturbed system is Hamiltonian with energy
2

Y(6.7) H(x, y)=--+ (1 -cos x).

We will consider the effect of the perturbation on rotational orbits (overswinging of
the pendulum). Note that here H does not depend on z and so the unperturbed system
is identical on each z Zo constant slice. This is unimportant in what follows but does
simplify the computations somewhat. The unperturbed orbits are given by

x(t)=2sin- sn + to)

tc

2 [K(k) ](6.8) y(t) =T dn (t+to) k (0, 1),

z(t) Zo,
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where sn and dn are the Jacobi elliptic functions and K is the complete elliptic integral
of the first kind with modulus k. The resonance relation is given by

27rm 27r
(6.9) T(I) T(k)= 2kK(k),

n (I)

where 2kK(k) is the period of the unperturbed orbit and 2r the period of the forcing
function. Note that the modulus k plays essentially the same role as the action I or
energy H, since I(k) and H(k) are both monotonic functions (see below).

Using the remark at the end of 3, we now compute the Melnikov functions M’/"
and M/". Dropping the superscripts, we have

(6.10a)

(6.lOb)

yz y2) dr,M1 O(I) ao
27rm

M3 (- yz + y cos t) dt,

where f(I) and y depend implicitly on k, which is selected to satisfy the resonance
relation (6.9). The computations are lengthy and make use of Fourier expansions of
the elliptic function dn (cf. Byrd and Friedman [1971]). For the case n 1 we obtain

Ml=2m 7rzo- k
(6.11)

M3 7rm -2yzo+ sech
K (k)

cos mOo

where E(k) is the complete elliptic integral of the second kind and K’(k) K(x/1 k2)
is the complementary complete elliptic integral of the first kind. In transforming from
the initial starting time toe[0, 27rm/n], which appears in (6.8), to the phase 0o we use
the relationship to moo/n. When n 1 we obtain

(6.12) M3 -27rmyzo

and M1 remains as in (6.10a). Thus, at first order, only "pure" m 1 subharmonics are
excited (cf. Greenspan and Holmes [1983], [1984]). Henceforth we drop the subscript
0o"

Since the frequency of the unperturbed orbits is

(6.13) f(k)
27/" 7/"

T(k) kK(k)’

we have Of/Oz =- 0 and

OI ok OI k2(1 k)EK(k)
>0 fork(O, 1),

4K(k)] =4(1-k)2K2(k)
where we have used the fact that the action I(k) is given by the monotonic function

4
(6.15) I(k)=- E(k).

We remark that the limits k 0 and 1 correspond to the Hamiltonian energies H
and H 2, the latter being the energy of the homoclinic loop (separatrix) of the
unperturbed system. Thus the frequency increases monotonically with action ! in the
range I (4/or, )(k (1, 0)).
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We now apply Theorem 3.1 to the example. For n 1, the resonance relation (6.9)
becomes 7rm kK(k), which, given m Z/, determines k uniquely since kK(k) is
monotone. Then, from (6.11), for a zero of M1 we require

4E(k)
(6.16) z

7rk

which determines z, and for a zero of M3

(6.17)
8yE(k) l (zrmK’(k))7rk

sech
K(k)

cos mO,

which determines precisely 2m values of 0 in the range [0, 27r), provided that

8yE(k)
(6.18) sech ---i ]

>
7r

We leave it to the reader to verify that the nondegeneracy condition of the theorem
also holds.

When (6.18) is an equality we have bifurcation (the 2m simple zeros degenerate
into rn multiple roots). To verify that nondegenerate saddle-node bifurcations occur,
we fix. 6 > 0 and vary y, thus converting the problem to a one parameter system.
Applying Theorem 5.1, we require a zero of M1, M2 at which, in addition,

O (O(M1, M3)) O(M1, M3)
(6.19) 0--\ 0) =0 and thus

O(z, O)
=0

(since OO/Oz =-0 and Of/OI 0 here). This implies that

[2m-] " sech
K (k)

(.0
l"

=mO=O,-,...= 0=, /=0,...,2m-1.

Note that sin mO =0, cos mO +/- 1, which occurs precisely where (6.18) becomes an
equality. Finally, nondegeneracy condition (b) of Theorem 5.1 holds, since O/Oz 0
and 01/0I 0 and

0(M1, M3)
=[0]. [-27rmy]-[2mTr]. [-2,rrmz] 4"rr2m2z O,

o(% z)

when z O, and

d(O(M1, M3).]d{[27rm] [ 7r2 sech (,rrmK’(k))]sinmO -[0]. [-27rmT]
dO - i-zl o) / =-d-d ,,

(6.21)
27r2m4--- sech -i J

cos mO O,

when cos mO(= + 1) 0. (Since y, 6 > 0 we only obtain the cos mO +1 case).
Summarizing our results, we have the following.
TORM 6.2. There exists a countable set ofbifurcation curves in % )-space given

by

(6.22) /
8e(k)

sech (k ]’ kK(k) rm, m 1, 2,...,
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near which, for e sufficiently small (depending on m), saddle-node bifurcations to pairs
of 2rm-periodic orbits occur for the Poincar6. map of (6.6).

Eigenvalue computations as outlined in 4 reveal that each pair of subharmonics
consists of a stable sink and a saddle. The requirement that M1 0 (see (6.16)) together
with the monotonicity of kK (k) shows that these periodic points all lie near a bowl-like
surface of revolution in (0, I, z) (or (x, y, z)) space. Figure 6 gives our impression of
the situation. Note how the periodic points accumulate near z=46/cr (k= 1; H =2).
In this connection, we note that the curves (6.22) accumulate on the curve y(
7r/8 sech (r/2) as k - 1-(H - 2+). We plan to study questions relating to the resulting
chaotic invariant sets in a subsequent paper.

z y

FIG. 6. Subharmonics for the perturbed pendulum.

We end our discussion of this example by remarking that since M3 has no zeros
(other than z=0) unless n 1 or 3,=0, no other periodic orbits exist near the
unperturbed rotational solutions for 3, ), > 0. We also note that the "bowl" of m! 1
subharmonics created in (x, y, z) space (Fig. 6) has a similar structure to the unfolding
of a Hopf bifurcation for ditteomorphisms of R2 recently studied by Chenciner 1983],
1985a], 1985b].
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Abstract. We obtain existence and bifurcation theorems for homoclinic orbits in three-dimensional
flows that are perturbations of families of planar Hamiltonian systems. The perturbations may or may not
depend explicitly on time. We show how the results on periodic orbits of the preceding paper are related
to the present homoclinic results, and apply them to a periodically forced Duffing equation with weak
feedback.
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1. Introduction. In the preceding paper we developed perturbation methods based
on ideas of Melnikov [1963] that permit us to approximate Poincar6 maps for
autonomous and periodically forced slowly varying oscillators, the flows of which are
close to those of families of planar Hamiltonian systems. We obtained existence,
stability and bifurcation results for periodic orbits in such systems. In the present
paper we extend these results to deal with homoclinic orbits and show how the periodic
results are related to them.

In 2 we outline the geometry of the phase space and we describe basic perturba-
tion results. The computational tools and existence and bifurcation theorems are
developed in 3 and 4, and the relationship between periodic and homoclinic orbits
is discussed in 5. The example and conclusions follow in 6 and 7.

2. Structure of the phase space. As in Wiggins and Holmes 1987] we will consider
systems of the form

9 =fl(X, y, z)+ egl(x y, z, t, Ix)

(2.1) )-f2(x, y, z)+ eg2(x, y, z, t; Ix) or /l f(q)+ eg(q, t),
, eg3(x y, z, t; Ix)

with 0< e << 1, f and g sufficiently smooth (C r, r>_-2), g periodic in with period T
and Ix R k a vector of parameters. We will write g(q, t; Ix)= g(q, t) and frequently
drop the explicit dependence on Ix. We make the following assumptions on the
unperturbed system:

(A1) For e =0, (2.1) reduces to a one-parameter family of planar Hamiltonian
systems with Hamiltonian H(x, y, z):

OH:=fl(x, y, z)-
Oy

OH
(2.2) ..f f(x, y, z)= -,

Ox
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(A2) For each value of z in some open interval J R the "planar" system (2.2)
possesses a homoclinic orbit to a hyperbolic saddle point. Thus, when viewed in the
full three-dimensional phase space, system (2.2) possesses a normally hyperbolic
invariant one-dimensional manifold, Ar, given by the union of saddle points of the
one-parameter family of planar systems. Ac has two-dimensional stable and unstable
manifolds (denoted by WS(Ar), WU(), respectively), such that their intersection
WS(/) [,.) WU (/) dej F is made up of the union of the homoclinic orbits of the one-
parameter family of planar systems. Henceforth we assume that A is connected; if
not, the theory is applied separately to each connected component of Ac.

(A3) The interior of F contains a two-parameter family of periodic orbits, which
we denote by q’Z(t-O) for z J and a L(z), where for each z J, L(z) is an open
interval in R. We denote L(z) by (or(z), ao(Z)) and assume that lim_ T(a, z)=,
where T(a,z) denotes the period of q’Z(t-O) and that T(a,z) is a ditterentiable
function of a and z with dT(a,z)/daO for (a, z) (L(z), J).

Note that the assumptions of Wiggins and Holmes [1987] are included in the
above. As before we suspend (2.1) over the space R S where S R/T is the circle
of length T by defining the function b(t) t, mod T and then by T-periodicity of the
gi we have

g =fl(x, y, z)+ egl(x, y, z, dp; Ix),

); =f(x, y, z)+ eg2(x, y, z,
(2.3) (x,y,z, b) e R3 x S1,= eg3(x y, z, qb; Ix),

b lo

Again we note that this suspension makes sense even when the gi are independent of
b. At e 0, for the suspended system we denote the normally hyperbolic invariant set
by (Ac, b) Ac x S1. See Fig. 1.

For computations it is convenient to have in an explicit form. Recall from
assumption (A2) that A is a one-manifold of equilibrium points for the unperturbed
system such that on each z constant plane the equilibrium point of the associated
planar system is hyperbolic. Since we have assumed that the unperturbed vector field
is Hamiltonian, a simple computation of the eigenvalues of the linearized vector field
at this point shows that O(fl,f2)/O(x, y)< 0. Thus, by the implicit function theorem,

FIG. 1. The unperturbed phase space.
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can be represented as a graph over the z variables"

/={(y(z), ) y(z)=(x(z),y(z),z),f,(x,y,z)=f:(x,y,z)=O,
(2.4)

O(fl,
< o, e s, z e aJ.O(x, y) y(z)

The following results give us information about the perturbed phase space.
PROPOSITION 2.1. There exists e0>0 such that for 0<e<e0<< 1 there exists a

normally hyperbolic invariant one-manifold
(2.5) M {(y(z, b; e), b)= (y(z)/ (e),

where y(z, e) is a C function ofz and e. Moreover, has local stable and unstable
manifolds. W(M), W(M), which are C-close to the local stable and unstable
manifolds of, denoted by W(M) and W(M), respectively.

Remark. is an invariant manifold in the weaker sense in that solutions may
leave M by viue of their z values crossing the boundary of J. is will occur on a
time scale 6(l/e) since motion along M has a speed 6(e).

oof The existence of M, W(M), and We(M) follows from the persistence
of normally hyperbolic invariant sets and their stable and unstable manifolds (see
Hirsch, gh and Shub [1977] or Fenichel [1971]), with some slight technical
modifications. The usual theorem requires M to be compact and boundaryless.
However, there are two ways to get around these requirements. One, due to Robinson
[1983], involves mapping M into a compact space (e.g. a sphere) and smoothly
extending the vector field to a neighborhood of M via the use of bump functions, the
conclusions then follow from the Hirseh, gh and Shub [1977] theol. The second
method is due to Kopell 1985] and involves the use of the invariant manifold theory
of Fenichel [1971]. Briefly, the vector field on the boundary of M is zero, M is then
peurbed in a neighborhood of its boundary via a bump function in such a manner
that it becomes "overflowing" (resp. "underflowing") invariant (see Fenichel [1971]
for precise definitions). The existence of the peurbed manifold and its local unstable
(resp. stable) manifold then follows from the Feniehel invariant manifold theorem.
Fuhermore, the modification of the vector field near the boundary of M does not
affect the dynamics of our original system in the sense that, although now M and
Wo(M) may depend on the specific modification, asymptotic expansions of these
manifolds agree to all orders for arbitra modifications (Kopell [1985]). (Note: the
situation is the same as that which arises in applications of center manifold theory,
where the nonuniqueness of the center manifold does not effect recurrent motions.)

On M all points are fixed, there is no motion. However, on M this need not be
the case. The following result gives us information concerning the flow on M.

PROPOSITION 2.2. Let g3(y(Z)) 1/T g3(y(Z), ) d and suppose there exists

ZoJ such that ga(y(Zo))=0, (d/dz)ga(Y(Zo))O. en (y(Zo, , e), )=
y(Zo) + (e), is a hyperbolic periodic orbit on with period Z
oof This is a straightforward application of the averaging theorem (see Hale

[1969] or Guckenheimer and Holmes [1983]) restricted to .
Remark. If g3 is not explicitly time dependent, then g3 g and averaging is

unnecessary, so the proof goes through without appeal to the averaging theorem.
In order to visualize the situation we take the following cross section to the flow

induced by (2.3)"

(2.6) Eo={(x,y,z, )egaxsl=to[O, T)}.
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If there exists a hyperbolic periodic orbit on Me there are two possible situations (see
Fig. 2).

In these pictures the solid lines are to be interpreted as initial conditions for
solutions of the perturbed equation, while the dotted lines can be thought of as actual
solutions of the unperturbed equation, since the unperturbed equation is autonomous.

FIG. 2. The perturbed manifolds. (a) y(Zo)+eT(e has 1-d unstable and 2-d stable manifolds. (b)
y(Zo)+6(e) has 1-d stable and 2-d unstable manifolds.

The following perturbation results allows us to approximate certain solutions in
the stable and unstable manifolds of (y(Zo) + 6( e ), b for arbitrarily long time intervals.
This is necessary since we wish to find homoclinic, rather than periodic, orbits.

PROPOSIWION 2.3. Suppose there exists Zo E J such that 3/( Zo, c e ), cb
(3/(Zo) + (e), ok) is a hyperbolic periodic orbit on Me. Then, for each e sufficiently small,
there exists C > O, K {z: Zo Ce < z < Zo+ Ce} and solutions q t, 0), q t, O) lying in
the stable and unstable manifolds of (y(Zo, dp; e), b) with the following representations
valid in the indicated time intervals:

Case (a) dim WS[(y(Zo, b; e), 4,)] 3, dim W"[(y(Zo, 4; e), b)]= 2:

q(t, O)=qo(t-O)+eq(t, 0)+(e2), z(to, O)EK, tE[to, OO).

q(t, O)=qo(t-O)+eq(t, O)+(e2), E (-oo, to];

Case (b) dim WS[(5’(Zo, 4; e), 4)]= 2, dim W"[(r(Zo, 4; e), 4,)]= 3:

q(t, O)=qo(t-O)+eq(t, 0)+ (e2), t6[to, ),

q"(t, O)=qo(t-O)+eqT(t, 0)+(e), zU(to, O)K, t(-o, to],

where qo( t- O) is the solution of the unperturbed equation that connects the point 5’( Zo)
on [ to itself i.e., the homoclinic orbit on the z Zo plane.

Proof See Wiggins [1985].
Remarks. (1) q(t, O) and q’(t, 0) may be obtained by solving the first variational

equations

/1; Df(qo)q; +g(qo, t), tE[to, oo),

1 Df(qo)q +g(qo, t), E (-oo, to].

(2) We note that in the (suspended) unperturbed system, dim W[3,(Zo), 4]
dim W"[(5"(Zo),4)]=2 and that for the perturbed system the dimensions of
W[(5"(Zo)+’6(e), 4)] or W"[(5"(Zo)+6(e), 4)] may increase by one (Cases (a) and
(b)). So in order to uniformly approximate solutions in the unperturbed manifolds by
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solutions in the unperturbed manifolds for arbitrarily long time intervals, these solutions
must initially start out close together. This is the reason for the requirements
K in Cases (a) and (b).

(3) For the stable manifold in Case (a) and the unstable manifold in Case (b),
the theorem does not tell us explicitly which solution in the manifolds we are on, only
that all solutions with initial z values in K are approximated uniformly by a correspond-
ing solution to the unperturbed equation. Consequently we are no longer able to follow
individual solutions in these manifolds during their time evolutions.

In 5 we will be concerned with periodic orbits limiting on F. In this situation
we need to approximate perturbed solutions arbitrarily close to F by unperturbed
periodic orbits so we need some kind of control on the flow on

PROPOSITION 2.4. Let 3"(Zo) + (e), qb be a hyperbolic periodic orbit on and
let q’Zo(t- O) be a periodic orbit of the unperturbed system with period T(a, Zo). Then
there exists a perturbed orbit q’Zo( t, 0), not necessarily periodic, which can be expressed
as

q’Zo(t, O):q’Zo(t-O)+eq’Zo(t, 0)+ (Y(e
uniformly in to, to + T( a, Zo) ], for e sufficiently small and all a L(zo).

Proof. See Wiggins 1985].
We will remark that Proposition 2.4 only allows us to approximate perturbed

orbits by unperturbed orbits for one passage through a neighborhood of . This is
due to the fact that orbits take arbitrarily long to pass through the neighborhood and
therefore the slightest error may be magnified greatly over the long time of passage.
Consequently for periodic orbits near F we are limited to the study of resonant orbits
satisfying mT nT(a, Zo), n 1. However, since we can pick T(a, Zo) at will, and by
(A3) T-> as a--> Co, rn can be arbitrarily large.

3. Existence of homoclinie orbits. We now turn our attention to the homoclinic
manifold F. By Proposition 2.3, in order to approximate to 6(e) orbits in the stable
and unstable manifolds of by orbits in the stable and unstable manifolds of it
is necessary that there exist a point Zo J such that (3’(Zo, 4’; e), b) is a hyperbolic
periodic orbit on . Now a hyperbolic periodic orbit on will have either a
three-dimensional stable manifold and a two-dimensional unstable manifold or vice
versa. Thus in the four-dimensional phase space we expect the intersection to be
generically one-dimensional. In measuring distances between manifolds of solutions
in phase space it is only necessary to explore the directions transverse to the manifolds,
so the number of measurements necessary in order to determine whether or not the
manifolds intersect should be equal to the minimum codimension of the manifolds.
In our case that number is one and we expect a single (scalar) measurement to suffice.

Now on the cross section Eo the hyperbolic periodic orbit for the flow,
3’(Zo, b; e ), b), corresponds to a hyperbolic fixed point, 3’(Zo) + (e), for the Poincar
map P, which has either a two-dimensional stable manifold and a one-dimensional
unstable manifold (Case (a) of Proposition 2.3) or a one-dimensional stable manifold
and a two-dimensional unstable manifold (Case (b) of Proposition 2.3). For definite-
ness, in the following we assume that Case (a) holds, since the argument and conclusions
for Case (b) are identical.

We develop a measure for the distance between the stable manifold WS(3’(Zo)+
tg(e)) and the unstable manifold WU(3"(Zo)+(e)) on the cross-section E. Let Co
c(Zo) denote the value of c on the z Zo level that corresponds to the unperturbed
homoclinic orbit on that z-level, and denote this orbit qo(t 0), where we have dropped
the explicit (a, z) dependence for ease of notation.
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At the point qo(-O) on the cross-section E we consider the plane H normal to
the vector f(qo(-0)). There exists a unique point q(-O) in W"(3,(Zo)+(e))fqII
which is "closest" to y(Zo)+ (e) in the sense of elapsed time for a solution leaving
the neighborhood of y(Zo) + (e). Similarly, there exists a curve on the plane H, namely
the intersection W (3’(Zo) + (e)) f’) H, which is closest to 3’(Zo) + tg(e) in the sense of
elapsed time. We choose the unique point q(0, 0) on this curve such that q(0, 0)-
q(0, 0) is parallel to (-f2(qo(-O)), fl(qo(-O)), 0). Thus we require z(0, 0)= z]’(0, 0).
We are guaranteed that such a choice of points can be made for each 0 by Proposition
2.3 which says that the local perturbed manifolds are C e-close to the local unperturbed
manifolds in a neighborhood of 3’(Zo)+ O(e ), th). Thus their tangent spaces are e-close.
Outside of this neighborhood, solutions remain e-close to unperturbed solutions for
finite times, hence their maximum movement in the z-direction is tg(e). See Fig. 3.

$(,(o e) -.L----

--(- f2 (qo(-O))’f (qo(-O))’ O)

FIG. 3. Intersections of the stable and unstable manifolds with II.

Clearly [q"(0, 0)-q(0, 0) is a measure of the distance between WS(3"(Zo)+(e))
and W"(3’(Zo)+ (e)). However, for easier computation and in order to account for
the relative orientations between W (3’(Zo) + tg(e)) and W (3’(Zo) + (e)), we prefer
to use the following distance measurement:

d(ao, O, Zo)=
(OH/Ox(qo(-O)), OH/Oy(qo(-O)), 0). (q(0, 0)-q(0, 0))

IIf(qo(-o))ll

e[(aH/Ox(qo(-O)), aH/ay(qo(-O)), 0). (q’(0, 0)-q(0, 0))] + (e2)(3.1) IIf(qo(-O))

def M(O) 2=e +(e
}lf(qo(- 0))11

where "." is the usual vector dot product, II" is the Euclidean norm, and M(0) is
defined to be the homoclinic Melnikov function.

We now develop a computable expression for M(O). Recall that geo_metrically
M(0) is the lowest order term in an asymptotic expansion for the distance between
the stable and unstable manifolds of a hyperbolic fixed point of a Poincar6 map. We
shall derive and solve a simple differential equation for a time dependent version of
M, as in the standard planar Melnikov calculation.

Letting

(3.2)
A(t, O)=fl(qo(-O))(y’(t, O)-y(t, O))-f2(qo(t-O))(x(t, O)-x(t, 0))

def
A"(t, 0)-a(t, 0)



618 STEPHEN WIGGINS AND PHILIP HOLMES

we compute

/k(t, O)= (qo(t--O))+_---(qo(t-O)) A(t, O)

(3.3)
+fl(qo(t O))g2(qo( t- O, t)) -f2(qo(t O))gl(qo( O, t))

+ fl(qo(t--O))-z(qo(t--O))

-A(o(-o(o(-ol (, o.
Henceforth we suppress the arguments of the f, gi and their partial derivatives. We
have assumed the unperturbed vector field to be Hamiltonian, so that (Ofl/OX)+
(f:/Oy)=O, and (3.3) becomes

(3.4) ’(t, O) =flg2-f2gl + fl

where z’(t, 0) is obtained by solving the z component of the first variational equation:

(3.5) ’(t, O) g3(qo(t- 0), t), E (-o, 0].

Equation (3.4) can be integrated immediately to give

(3.6) Au(0, 0) AU(-o3, 0) flg2--f2gl + f--’--f2 zT(t,

Similarly, we obtain an expression for/ks(t, 0), which leads to

(3.7) AS(oo, 0)-As(0, 0)= (flg:-f:g)+ f--z-f_-z, z(t,

Now AS(c, 0) and AU(-oo, 0) are both zero since q]"s(t, 0) is bounded for all time
(Proposition 2.3) and the unperturbed vector field goes to zero exponentially fast as
y(Zo) is approached. Similarly, the improper integrals converge and we have

(3.8)

Since we assume that the unperturbed vector field is Hamiltonian, the reader can easily
verify that

00 OH 02H OH 02H _d(OH 02HOf:_f, - Oz: z,(3.9) f Oy Ox Oz Ox Oy Ox dt \ Oz ]
+

and that

(3.10) )of:_f: (qo( t- 19)) -- (qo( t- 19))
Oz

since z constant on an unperturbed orbit. Using this fact and integrating by parts
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once, we find

f (flOfE-f200) (q(t-O)’ t)z(t’ O)

(3.11)
OH OH

=-z(qo(-Oo))z (-oo, O)--z(qo(-O))zr(O, O)

OH
+ -oo-z (qo(t- O))g3(qo(t- 0), t) dt,

and similarly

Io (flof2-f2z) (q(t- O))z(t’ O)

(3.12)
0/4

(qo(-0))z;(O, 0)- (qo())z;(, 0)

+ --z (qo(t O))g3(qo(t- 0), t), dt.

Thus we have

(3.13)

We note that (OH/Oz)(qo(-))=(OH/Oz)(qo(O)), since the unperturbed orbit
approaches y(Zo) for t- +o, and that z’(-o, 0) and z(oo, 0) converge to the saddle
point on the section E. See Robinson [1985] or Wiggins [1985] for a discussion of
this limit process. It follows that

(3.14)
a _oH( (o, 0) =0,oHz q -c z -oo, O) -z q Zl

and by our original choice of q(0, 0) and q(0, 0) we have z(0, 0)- z’(0, 0)= 0; thus
we arrive at an expression for the Melnikov function:

(3.15) M(O)= flgz-fzgl-I--2--g3 (qo(-O), t) dt.

Finally, using fi =OH/Oy, f2 =-OHlOx, and transforming + 0, (3.15) can be rewrit-
ten in the compact form

(3.16) M(0)=I (VH. g)(qo(t), t+O) dt.

Now on the cross-section E, the distance between the stable and unstable mani-
folds of y(Zo) + 6(e) is measured by d(0)= (M(O)/llf(qo(-O))ll)+(=), so if M(O)
has a simple zero at 0 (M(0)=0, (dM/ dO)( O) # O), then by the implicit function
theorem, d(0) also has a zero near 0. We have now proved the following.

THEOREM 3.1. Suppose M(O) has at least one simple zero; then for e sufficiently
small, near this point W (y(Zo) + 6(e )) and W"(y(Zo) + 6( e )) intersect transversely. On
the other hand, if M(O) is bounded away from zero for all 0 then WS(y(Zo)+6(e))fq
w"(y(Zo)+e(e))=;.
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This result is important since it allows us to test for transverse homoclinic points
in the Poincar6 map of specific differential equations. Thus, by the Smale-Birkhoff
homoclinic theorem, we know that some iterate of the Poincar6 map, (P), has an
invariant hyperbolic set near such a point; i.e., a Smale horseshoe with its attendant
chaotic dynamics (Guckenheimer and Holmes [1983, Chapter 5]).

Remark. In the formulation (3.14)
def

flg2--f2gl (f^ g)l,2 1S the usual planar Mel-
nikov function, while (OH/Oz)g3 is the additional contribution due to the slow variation
of z. We note that analogous expressions involving such extra terms occur in multidegree
of freedom Hamiltonian examples, of Koiller [1984], Holmes and Marsden [1983]
and Holmes [1986]. Also see Robinson [1983] and Gruendler [1985]. We remark that,
if g is a time-independent perturbation, then, as formulation (3.16) makes clear,
M J_ (VH. g)(qo(t)) dt is 0-independent and thus simple zeros cannot occur and
transversal intersections cannot be found. This is not surprising, since in that case we
have an autonomous three-dimensional vector field and y(Zo)+ 6(e) is a fixed point
with a one-dimensional unstable manifold and a two-dimensional stable manifold (or
vice versa). If such manifolds intersect, they necessarily do so along a solution curve
and thus the intersection cannot be transversal (cf. Guckenheimer and Holmes [1983,

1.8]). However, if g depends upon parameters, then such "autonomous" homoclinic
orbits can occur naturally as a parameter varies (see Theorem 4.2 below).

4. Bifurcations. In this section we give two theorems relevant to the case where
the slowly varying oscillator depends upon a parameter/x R.

THEOREM 4.1. (Nonautonomous). Consider system (2.1) depending on a scalar
parameter tx K, where K is some open interval in R. Suppose there exists a point (0o, tXo)
such that

(a) M(0o,/Xo) 0,

OM
=0.(b) - Oo,,o

(c) 2 0,
(Oo,o)

(d) - Oo,,o)
0.

Then, for e 0 sufficiently small, near tZo there is a bifurcation value 12 at which quadratic
homoclinic tangencies occur.

As we have noted, if g is time-independent then M is necessarily 0-independent.
Hence hypothesis (c) of Theorem 4.1 cannot be satisfied, and Theorem 3.1 cannot be
applied. However, in this case we have the following.

THEOREM 4.2. (Autonomous). Consider system (2.1), where g(q; Ix) is time indepen-
dent but depends on a scalar parameter Iz K

_ . Suppose there exists .a point Io K
such that

(a) M(/zo) =0,

(b) - SO.
=/0

Then, for e # 0 sufficiently small, near Io there is a bifurcation value I at which
nontransverse) homoclinic orbits occur.



HOMOCLINIC ORBITS IN SLOWLY VARYING OSCILLATORS 621

Proofs. These two results are proved by. straightforward Taylor series expansion
of M about the point (0o,/Zo) (resp. /Zo) and application of the implicit function
theorem. See Guckenheimer and Holmes [1983, 4.5].

We remark that in the autonomous case it does not immediately follow that
homoclinic orbits imply horseshoes, although that conclusion does follow for certain
types of saddle-point with complex eigenvalues and in some cases with real eigenvalues
(Silnikov [1965], [1967], [1970], Devaney [1976], Holmes [1980], Sparrow [1982]).

5. Interaction of periodic and homoclinic orbits. In the preceding paper (Wiggins
and Holmes [1987]) we studied the two parameter family of periodic orbits inside F
which remain bounded away from F, i.e., their periods were uniformly bounded above
by some constant.

Now we will relate the periodic Melnikov theory to the homoclinic results of the
present paper. From Wiggins and Holmes [1987, (2.7) and (3.11)-(3.19)], we have,
omitting the arguments q,Z(t)

[ /Io g3 dt g3 dtM"/"(I, O, z) l(i Z)
(VH. g) at

I
(5.1)

dej M,/,
In that paper (5.1) was obtained by a computation involving action angle variables;

however, a cartesian (x, y, z) computation analogous to that of 3 above yields precisely
the same expression. To see this, refer to (3.13) of the present paper, use periodicity
of q’z(t), change the limits of integration to -mT/2--> mT/2 and observe that
(I,z)-llf(q,z(-o)ll Finally, in dealing with periodic orbits the term
(OH/Oz)(qo(-O))z(-o, O)-(OH/Oz)(qo())z(o, O) becomes

OH’ ((-roT)(roT )) -OH
Z 0 Z 0 g3 dt,

0z =onst 2 2 OZ I d-mT/2

as required, and the other boundary term of (3.13) vanishes.
We now show that the limit of Mm/ exists on the homoclinic manifold and give

an interpretation of that limit in terms of the dynamics of the slowly varying oscillators.
It is clear that the homoclinic manifold cannot be approached in an arbitrary manner,
since not all solutions in the perturbed manifolds can be uniformly approximated by
solutions in the unperturbed manifolds for arbitrarily long time intervals: by Proposi-
tions 2.3 and 2.4 this can be done only for perturbed solutions with initial z values in
O( e neighborhood of a point Zo J such that (y(Zo) + O( e ), b is a hyperbolic periodic
orbit (or fixed point in the autonomous case) on M. However, we have the following
result.

PROPOSITION 5.1. Suppose that there exists a point Zo J such that y(Zo) + G(e), qb
is a hyperbolic periodic orbit on . Then

(1) lim M’/1= [o g3(qo(t), + O) dt =0,

(2) lim M’/1 1 (__ (VH. g)(qo(t), + O) dt M(O)- IIf(qo(-0))ll

where the integrands are evaluated on the unperturbed homoclinic orbit with z Zo.
Proof The proof of (1) follows by integrating the zl component of the first

variational equation and examining the limiting behavior as t--> +.
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The proof of (2) involves a straightforward modification of arguments given in
Theorem 4.6.4 of Guckenheimer and Holmes [1983]. l-1

This proposition shows that the periodic Melnikov functions have a meaning on
the homoclinic manifold, although the dynamical interpretations are very different.
Inside the homoclinic manifold, a simple zero of (M’/1, M/) implies the existence
of an isolated periodic orbit of period mT. On the homoclinic manifold, a simple zero
of M implies a hyperbolic periodic orbit, (y(Zo)+ (e), b), on and a simple zero
of M1 implies a transversal intersection between the stable and unstable manifolds of
(y(Zo) + (e), b). However, note that Proposition 5.1 allows us to think of M1 and M3
as functions of (a, z, 0) with 0 R, z J and a L(z) [a(z), ao(Z)], where ao(Z) is
the value of a which gives an orbit on the homoclinic manifold for that particular
z-value.

We end this section by remarking on the case where the system (2.1) is autonomous.
In this case the limits of integration for the subharmonic Melnikov vector are
-T(a, z)/2 T(a, z)/2 where T(a, z) is the period of an unperturbed orbit. In showing
that the subharmonic Melnikov vector has a meaning on the homoclinic manifold in
this case we take limits as a ao, z Zo, where ao is the value of a on the homoclinic
manifold and Zo is a z value such that y(zo)+ (e) is a hyperbolic fixed point on /.

Now we will show that the hypotheses of the homoclinic bifurcation Theorems
4.1 and 4.2 also imply the existence ofnearby families ofperiodic orbits, which converge
to the homoclinic orbits as Ix /2.

Mm/(I, z, IX) and Mr/(I, O, z, IX) denote the autonomous and nonautonomous
subharmonic Melnikov vectors respectively (we will drop the superscript roll for
notational convenience), unless (I(0), z) belongs to the homoclinic orbit, in which
case they denote the homoclinic Melnikov functions of Proposition 5.1. In that case,
the requirement of a hyperbolic set in fixes z Zo (via g3(y(zo) 0) and I Io is
fixed by the unperturbed homoclinic orbit on the plane z Zo. Thus, in 4 we merely
wrote M(IX) for Ml(Io, Zo, IX) and M(0, IX) for M(Io, O, Zo, Ix).

We remark that we have replaced the parameter a with I, the-action. This is
convenient since we are interested in periodic orbits limiting on homoclinic orbits and
is justifiable by Proposition 5.1 and the fact that I represents the area bounded by an
orbit on a fixed z plane, and this area is defined even for the homoclinic orbit.

Our two main results are the following.
THEOREM 5.2 (Autonomous). Consider the parametrized Melnikov functions

M(I, z, IX) for a parameter IX R. Suppose there exists Zo Zo(ix) J such that
7(Zo(ix ), Ix)+ (e) is a hyperbolic fixed point on for each Ix in an open interval K
containing a value Ixo and let I Io be the value of the action corresponding to the
homoclinic orbit on the z Zo(ix level at which

(a) Ml(Io, zo, ixo)=O,

0M(b) (Io, Zo, Ixo) O,
Oix

(c) ag-A (’y( zo, Ixo)) +
ag:

ox
o,

Og3
(d) (r(Zo, o.

Then for e 0 sufficiently small the solutions of (2.1) contain a family A(IX), ofperiodic
orbits (ix K ), which converge on the homoclinic orbit with periods approaching infinity
as Ix-> Ixo+ (e), where is the homoclinic bifurcation value.
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THEOREM 5.3 (Nonautonomous). Consider the parametrized Melnikov functions
M(I, O, z, IX) for a parameter IX R. Suppose there exists Zo Zo(ix J such that
y(Zo(ix ), tx / (e ), 49 is a hyperbolic periodic orbit on J/t for each Ix in an open interval
K containing a value Ixo, and let I- Io be the value of the action corresponding to the
homoclinic orbit on the z Zo(ix level such that at the point Io, 0o, Zo(ixo), Ixo) we have

(a) MI(I1, 00, Zo(ixo), Ixo) 0,

(b)
O0
(I1, 0o, Zo(ixo), Ixo)= 0,

(c) 02M
002 (I1, 0o, Zo(ixo), Ixo) # 0,

(d)

(e) -7-(,(Zo(o), o)) e o.

Then, for e # 0 sufficiently small, the homoclinic bifurcation is a countable limit of
subharmonic saddle-node bifurcations to higher and higher periods.

Proofs. The proofs of Theorems 5.2 and 5.3 involve straightforward, though
tedious, calculations with the Melnikov functions. The interested reader is referred to
Wiggins 1985] for the details. These results generalize the autonomous planar homo-
clinic bifurcation theorems of Andronov et al. [1971] and the nonautonomous planar
Melnikov [1963] methods of Greenspan and Holmes [1983]. We remark that the
theorems can also be proved using the more "geometric" arguments of Silnikov 1965],
1967], 1970], in which a local analysis near the hyperbolic set y is combined with a
near identity global return map (cf. Guckenheimer and Holmes [1983, 6.5]). ]

6. An example. In this section we apply the theory developed above to the equation

(6.1) #=x-xa-z-e6y,

i e(yx az + fl cos t),

which models a single degree of freedom nonlinear oscillator subject to weak linear
damping and weak feedback control (Holmes and Moon [1983], Holmes [1983],
1985]). If/3 0, the system is autonomous and, for sufficiently strong damping (e6)
and feedback (ey) the feedback stabilizes the equilibrium position (0, 0, 0), which is
a saddle-point for small ey. In Holmes 1985] local bifurcation results were obtained
for a slight variant of this system and in Holmes [1983] an ad hoc perturbation method
was used to argue that transverse homoclinic orbits would occur in the nonautonomous
(/3 0) case. (The term/3 cos represents a desired response characteristic, which is
relayed to the system via the feedback loop). This example therefore illustrates both
the autonomous and nonautonomous theories developed above.

The unperturbed Hamiltonian corresponding to (6.1) is

y2 X
2

X
4

(6.2) H(x, y; z) t---+ xz,
2 2 4
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and straightforward analysis reveals the unperturbed phase space structure sketched
in Fig. 4. A hyperbolic manifold , given by x $(z), y 0, where is the intermediate
size root of

(6.3) X X "- Z 0,

exists for -2/3x/ < z < 2/3V. For each z Zo in this range, the Hamiltonian system
H(x, y; Zo) restricted to z Zo has a hyperbolic saddle-point (:(Zo), 0) with a "figure
8" double homoclinic loop enclosing two elliptic fixed points (the other two roots of
(6.3)). For Izl> 2/3x/ (6.3) has a single root and H has a single elliptic fixed point.

First we apply Propositions 2.1 and 2.2 to this system, and seek periodic orbits
for the perturbed flow in the manifold (W, b)+ (e). This necessitates computa-
tion of

(6.4) g3(3(z)) :-- (),.(z)-az+ fl cos t) dt

/(z)- z.

We note that the same result obtains for/3 0 or/3 # O. We also check that

(6.5)
0(f, f)

3x2 1
O(x,y)

is strictly negative on N, since the middle root of (6.3) lies in the range (-1/x/, 1/v)
for -2/3x/< z < 2/3x/-J.

From (6.4), for a zero of 3 we require z y(z)/a, and thus, using (6.3), we must
solve

(6.6) x3+(T----l)x--O, :=x=0 or x=+x/1 -, < 1.
\a /

Also, note that the derivative

d
(6.7) dz3 1-3)

z 2/3

FIG. 4. The unperturbed phase space of (6.1).
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takes the values y-a for x=0 and 2a(a-y)/(3y-2a) for x=+/1-y/a. Thus, for
simple zeros we require y#a at x=0 and 2a/3< y<a at x=+/1-y/a. If these
conditions are met, then Proposition 2.2 guarantees that the perturbed Poincar6 map
has hyperbolic fixed points near (0,0,0) and (+#l-y/a, 0, +(y/a)/1-y/a).
Examination of the sign of dg3/dz shows that the dynamics on is as sketched in
Fig. 5.

z___qa < <a 7<->a 3

FIG. 5. Dynamics on J/g, e O.

We next apply the perturbation theory of 3, computing the Melnikov functions
for z =0 and z +(y/a)x/1- y/c. The unperturbed solutions on these z-planes are
given by

(6.8)

(6.9a)

qo(t) (x, y, z)(t) (+v/2 sech t, q=,,/ sech tanh t, 0),

q-( t)
\ 2bS- a (2bS- a)2’ a

and

(6.9b) q(t)=(2cS-ab 2ad3ST Y/1-)2bS + a (2bS + a)’ a

on the plane z y/i- y/a a. Here we define

a=-, b=/1 y 2y /---, c=l---, d= -2,

(6.10)
S=sech(dt) and T=tanh(dt).

On z=-y#l-y/a/a we have 1o =-qo and l=-qo. Note that, as y/a-l,
(6.9a, b) - (6.8).

The Melnikov integral is

(6.11) I (VH. g)(qo(t), t+O) at= I_ (-6y+yx-,xz+x cos (t+o)) at.

In the first case this yields

M I

_
(-26 sech tanh2 + 2y sech + ,f/3 sech cos (t + 0)) dt

(6.12)
t- 4y +/lr sech cos O.

3
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In the second case, on the plane z (y/a)j(1 (y/a)), we obtain the expressions

M=-4 + b2d2+-[sin b+
(6.13)

[ ( / 7r)] sinh(1/dsin-Jda/)
sinh (Tr/d)

+2y 2d +x/b sin- 2a

b+- 2x/rfl cosO,

where the upper choice of sign refers to the larger homoclinic loop q and the lower
choice to the smaller loop, q (cf. Fig. 5). On z =-(y/a)x/1 (y/a), we find

M-4[d---+b:Zd:Z’’ybd( 2. 7’ 1sin- b
(6.14)

+2y[2d+b [(sin_ 2b)]2flsinh (lid sin-ldda/y)
sinh (/d)

cos 0.

In a!l four cases the principal value 0_-<sin-(.)_-< r/2 is to be taken. We note that,
when y/a 1, so that b =0 and d 1, both (6.13) and (6.14) reduce to (6.12).

We lresent the bifurcation results that follow from these computations and
Theorem 4.2, for the autonomous case, (/3 =0) in Fig. 6(a), where we show the
bifurcation sets M(, y)=0 for fixed a 1 computed from (6.12)-(6.14) using the
definitions of a, b, c, d in (6.10). The linear set (6.12) 3y and the two curves from
(6.13) are indicated on the figure. For/3 0 (6.14) gives curves coincident with those
of (6.13) +/-. Note that as y/a 1- (where the three fixed points on Me coalesce) all
three curves meet, and also that the curves for the homoclinic orbits near z
+(y/a)(1-(y/a))/2 go to infinity as y 2/3+ (where the two nontrivial fixed points
reach the boundary of Me). We remark that a branch of the curve labeled (6.13)- and
(6.14)- has not been shown in Fig. 6(a) since it assumes values outside the range
of our graph for y values of physical interest. Figure 7 gives schematic phase portraits
corresponding to parameter values labeled in Fig. 6(a).

In the nonautonomous case (/3 # 0) we see that the effect of the nonautonomous
perturbation/3 cost is to open each of these curves into a band of width (/3) (see
Fig. 6(b)). By Theorem 4.1 we conclude that quadratic homoclinic tangencies occur

O,
0.6 0.7 0.8 0.9 .0

Y
(a)

t0

FZG. 6. Homoclinic bifurcation sets: (a) autonomous; (b) nonautonomous.
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(A)

(C)

FIG. 7. Phase portraits at points A, B, C, D of Fig. 6(a).

on the boundaries of these bands with transversal intersections inside. Therefore, from
Theorem 5.3 we know that the points on the boundaries of these bands are countable
limits of saddle-node bifurcation points of periodic orbits to higher and higher periods.
In this case, then, we have deterministic chaos for parameter values in the bands
indicated in Fig. 6(b).

We conclude this section by remarking on the situation that occurs when the gain,
y, goes to zero. From (6.1) we see that the z component of the vector field decouples
from the x and y components. Thus z can be solved for as an explicit function of time
which is asymptotically periodic (z eft sin / O(e2) as --> oo), and this solution can
be substituted into the x and y components, resulting in an equation for a planar
forced oscillator. Then one would expect to recover the usual Melnikov function for
the equation

y, ) X- X3- E[ sin + 8y] + O(e2)

as studied by Greenspan and Holmes [1983], and inspection of (6.12) shows that this
is indeed the case. In this respect, we note that the gain y acts as a destabilizing
influence resulting in the effective damping ((48/3)-4y) in (6.12) in comparison with
the term 48/3 in the uncoupled "planar" Dufling equation. Consequently the critical
force level for the appearance of transverse homoclinic orbits and chaos is

crit
((46/3)4y)x/Tr cosh ()

rather than

1crit-- 3,/---- cosh

These results go some way in explaining the destabilizing effect of gain observed in
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numerical integrations of this and similar systems by Moon (see Holmes and Moon
[1983]).

7. Conclusions. In this and the preceding paper we have developed a global
perturbation theory for slowly varying oscillators that collapse to one parameter families
of Hamiltonian systems in the limit e 0. As such, they typically possess two parameter
(a, z) families of periodic orbits and one parameter (z) families of homoclinic orbits
to hyperbolic manifolds of equilibria. The perturbation theory we have developed uses
these highly degenerate structures to seek isolated periodic and homoclinic orbits for
e S0, small. We have given existence, stability and codimension one bifurcation
theorems for periodic orbits in resonance with an external forcing and an existence
theorem for transverse homoclinic orbits in the nonautonomous case and homoclinic
bifurcation theorems for both cases. The hypotheses of the theorems can be checked
explicitly in examples by computations involving integration around the unperturbed
closed orbits. We have illustrated such computations with examples of a nonlinear
oscillator subject to weak feedback control and external forcing.

In the interests of providing detailed results and specific applications, we have
chosen to limit our analyses to three-dimensional systems, but we remark that the
methods generalize in a natural way to systems in which x and y are each n-dimensional
and z is m-dimensional: i.e., slowly varying perturbations of m-parameter families of
n-degree of freedom Hamiltonians (see Wiggins [1986]).
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Abstract. In this paper we use topological transversality to obtain existence theorems for certain classes
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a priori bounds on solutions.
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1. Introduction. In this paper we study the existence of solutions to third order
boundary value problems of the form

(1.1) y’"=f(t,y,y’,y"), t[0, 1],yB

where f: [0, 1] x R R is continuous. Here B denotes suitable boundary conditions.
In 2 results of Granas, Guenther and Lee [4], [5] on second order boundary

value problems are extended so that existence theorems can be obtained for a certain
class of third order boundary value problems. The existence theorems obtained in 2,
however, are rather specialized. In 3 by placing different types of monotonicity and
growth conditions on the nonlinearity f, we obtain new and interesting existence
theorems for a wide class of problems.

2. The Bernstein theory of the equation y’" =f(t, y, y’, y"). In this section we extend
the Bernstein theory and results of Granas, Guenther and Lee [4] to discuss problems
of the form (1.1). Fix a point c in [0, 1]. Let B denote either the boundary conditions

or

(i) y(c) 0, y’(0) 0, y’(1) 0,

(ii) y(c) 0, y"(0) 0, y"(1) 0

(iii) sy( c) + dy’( c) O, s O,

ay’(O) + fly"(O) O, a, fl > O,

ay’(1)+by"(1)=O, a,b>O.

Theorem 2.1 of [5] was proved for two point boundary value problems; however,
no change in the proof is necessary if we consider multipoint boundary value problems.
Hence, specializing Theorem 2.1 of [5] for the case n 3 we obtain the following.

THEOREM 2.1. Let f [O, 1]x R3-> R be continuous and 0-<A _-< 1. Suppose there is
a constant K independent of A such that Ilyll-< Kfor each solution y(t) to

(2.1)a y’"-y’=A[f(t,y,y’,y")-y’], [0, 1], yB.

Then the boundary value problem (1.1) has at least one solution in ca[0, 1].
Suppose y(t) is a solution to (1.1) and [y’(t)]2 has a maximum at toe (0, 1). Then

(2.2) y"(to) 0 and y’( to)f( to, y( to), y’( to), O) <-_ O.
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THEOREM 2.2. Suppose there is a constant M >-0 such that

pf(t,u,p,O)O forlPlM,
and t, u) in [0, 1 x R.

Then any solution y to (1.1) satisfies
ly’( t)l <= M for [O, 1].

Furthermore, there exists a constant M1--M[1 + Id/ sl] such that

ly( t)l <= M1 for [O, 1].

Proof. Suppose first lY’I achieves a maximum at toe (0, 1). Assume ly’(to)l> M.
Then y’(to)f(to, y(to), y’(to), 0) > 0, which contradicts (2.2). Thus lY’(to)l =< Mo.

Now if y satisfies (i) or (iii), an easy argument shows lY’I cannot have a nontrivial
maximum at 0 or 1.

Finally, if y is a solution to (ii) and if lY’I assumes its maximum at to- 0 or to 1,
then lY’(to)l--< M. To see this suppose lY’(0)I is the maximum value of lY’I. If we assume
ly’(0)l > M, then y’(0)y’"(0) > 0. Now if y’(0) > 0, then y’"(0) > 0, so y"(t) o y’"(z) dz
is strictly increasing near 0. We then have y"(t) > y"(O) 0 for > 0 and near zero
and so ly’(0)l y’(0) is not the maximum of lY’I on [0, 1], a contradiction. We obtain
a similar contradiction if we assume y’(0)< 0. Hence lY’(t)l --< M for [0, 1]. Finally,
integration yields the stated bounds on lYl immediately.

We couple the monotonicity condition in Theorem 2.2 with the analogue of the
Bernstein growth condition to obtain our basic existence theorem.

THEOREM 2.3. Let f [O, 1]x R3-> R be continuous.
(a) Suppose there is a constant M >-0 such that

pf(t, u,p, 0)>0 forlPl> M
and (t, u) [0, 1]xR.

(b) Suppose that

If(t, u, p, q)l <- A( t, u, p)q2 + B( t, u, p)
where A t, u, p), B t, u, p) >= 0 are functions bounded on bounded t, u, p) sets.

Then the boundary value problem (1.1) has at least one solution in C3[0, 1].
Proof. Existence follows immediately from Theorem 2.1 once a priori bounds are

established for solutions y to (2.1)a. If A =0, y=0. Otherwise for 0<A=<I,
pf( t, u, p, O) > O for IpI>M implies Apf(t,u,p,O)+(1-A)p2>O for Ipl>M. Thus
Theorem 2.2 yields a priori bounds M, M1 for ly’l and lyl respectively. Finally we
obtain a priori bounds on y" and y’". Now each of the boundary conditions (i), (ii),
or (iii) implies that y" vanishes at least once on [0, 1]. We also have

If(t, u, p, q)] _-< mq2 + B
where A and B denote upper bounds of A(t, u, p), B(t, u, p) respectively for (t, u, p)
[0, 1 x I-M1, M1] x [-M, M]. Now each point [0, 1] for which y"(t) #. 0 belongs
to an interval I/z, v] such that y" maintains a fixed sign on I/x, v] and y"(/z) and/or
y"(v) is zero. Assume that y"(/z) 0 and y" -> 0 on I/z, v]. Now with Ao A, Bo B +M
the differential equation yields

2Aoy"y’"
<-_ 2Aoy".

Ao(y")2 + Bo
Integrating from/x to we obtain

1/2BO e4AM --1] =-- M2.lY"(t)l--<
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The other cases are treated similarly and the same bound is obtained. With these
bounds the differential equation yields a priori bounds independent of A for lY’"I.

COROLLARY 2.4. Let f" [0, 1] x R - R be continuous.
(a) Suppose there is a constant M >= 0 such that

pf(t,u,p,O)>=O forlpl>M
and (t, u) in [0, 1]xR.

(b) Suppose (b) of Theorem 2.3 holds.
Then the boundary value problem (1.1) has at least one solution in C3[0, 1].
Proof. Consider

(2.3) y’"=f,(t,y,y’,y"), re[0, 1], yeB
where f, =f+ y’/n, n an integer. Apply Theorem 2.3 to (2.3) to obtain solutions y, to
(2.3) for n 1, 2, . Now a simple compactness argument implies that a subsequence
of {Yn} converges to a solution of y’"=f(t,y,y’,y"), y eB and the proof is
complete. [3

To conclude this section we examine the inhomogeneous boundary value problems

(2.4) y’"=f(t,y,y’,y"), t[0, 1], yB

where B denotes either the boundary conditions

(iv) y(c) r, y’(0) l, y’(1) T

or

(v) sy( c) + dy’( c) r, s O,
-ay’(O) + fly"(O) l, or, fl > O,
ay’(1)+by"(1)= T, a,b>O.

Here c is a fixed point of [0, 1].
THEOREM 2.5. Letf: [0, 1] x R R be continuous. Suppose (a) and (b) ofCorollary

2.4 are also satisfied. Then the boundary value problem (2.4) has at least one solution in
C3[0, 1].

Proof Consider the family, of problems

(2.4) y’"= Af(t, y, y’, y"), 0 -< A <- 1, y

The existence of a solution in C3[0, 1] follows immediately from Theorem 5.1 of [7]
once a priori bounds independent of A are established for solutions y to (2.4)x. We
assume at first that pf(t, u,p, 0)>0 for Ipl> M and (t, u) in [0, 1]R. Now if A =0
we have a unique solution, and thus ly’(t)l--< L for some constant L <. Otherwise
for 0 < A =< 1, it follows immediately from Theorem 2.2 that ly’l --< Mo max {M, I/I, TI},
if y satisfies (iv) and ly’l--< M1 max {M, Ill a], IT al} if y satisfies (v). As an example
suppose y satisfies (v) and ly’(t)l assumes its maximum at 0. Then y’(0)y"(0)=< 0 so

2[ ]0 >- y’(O)fly"(O) a[y’(0)]
ay’(O)

+ 1

and consequently ly’(0)l--< It 1- Hence a priori bounds for lY’I and lYl are immediate.
A priori bounds for y" and y’" follow exactly as in the proof of Theorem 2.3 once we
observe that

ly"()l _-< K,
K => 0 a fixed constant independent of A, for some point/z [0, 1].

Now assume pf(t, u,p,O)>=O for Ipl> M and (t, u) in [0, 1]R. The existence of
a solution in this case follows by an argument similar to Corollary 2.4.
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Example 1. (Sandwich beam). Beams formed by a few lamina of different
materials are known as sandwich beams. In the analysis of such beams Krajcinovic
[9] found that the distribution of shear deformation is governed by the differential
equation

,’"- k(x, )’+ a(x, ) O.

Here k2# 0. For further information on k2 and a see Krajcinovic [9].
For the case of free ends, the condition of zero shear bimoment at both ends leads

to the boundary condition ’(0)=$’(1)=0. Also symmetry considerations yields
$(1/2) =0. Thus we are interested in solving the boundary value problem

(2.5)
0’’= k2(x, 0)0’-a(x, ),

’(0) ’(1) 0(1/2) 0.

x[O, ],

Now we make the following assumptions on k and a.
Suppose k2(x, to) and a(x, ) are continuous functions on [0, 1] x R. In addition,

suppose there exists a constant L < oo such that

a(x,)
k(x, ) for(x, ) [0, 1]x R.

Then O’f(x,O,O’,O)=O’(kb’-a)>O for I’I>L and (x,O)e[O, 1]xR, and so
Theorem 2.3 implies that (2.5) has at least one solution in C3[0, 1].

3. Another approach to third order boundary value problems. In this section we
place essentially different types of monotonicity and growth conditions on the non-
linearity f to obtain existence theorems for a wide class of third order problems. We
consider problems of the form

(3.1) y’" =f( t, y, y’, y"), e [0, 1 ], y e Bo

where f: [0, 1] x R --> R is continuous. Here Bo denotes either the boundary conditions

(vi) y(0) 0, y(1) 0, y’(0) 0,

(vii) y(0) 0, y’(0) 0, y’(1) 0,

or

(viii) -ay(0) + fly’(0) 0, a,/3 > 0,

ay(1)+by’(1)=O, a,b>O,

y"(0)--0.

Remark. It should be noted here that many of the boundary conditions in 2 will
also be considered in this section. The behaviour of the nonlinearity f will determine
which existence theorem to use.

The following theorem, although not the main result in this section, is a powerful
existence theorem in its own right.

THEOREM 3.1. Let f [O, 1]x R3- R be continuous and 0-<A _--< 1. Suppose

If(t, u, p, q)l [A(t, u)lpl / B(t, u)][ C(t, u)lql / D(t, u)]
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where A(t, u), B(t, u), C(t, u), D(t, u) >- 0 arefunctions bounded on bounded (t, u).sets.
Finally, we assume that there is a constant M such that

lY(t)l --< M, [0, 1

for each solution y(t) to

(3.1)x y’"=Af(t,y,y’,y"), t[0, 1], yBo.

Then the boundary value problem (3.1) has at least one solution in ca[0, 1].
Proof. To prove existence of a solution in ca[0, 1] we apply Theorem 2.1 of [5].

To establish a priori bounds for (3.1)x, let y(t) be a solution to (3.1)x. All that remains
is to obtain a priori bounds for y’, y" and y’". We first observe that boundary conditions
(vi), (vii) or (viii) imply that y" vanishes at least once on [0, 1]. We also have

If(t, u, p, q)l <- [ALP[ + B][ C[ql + D]

where A, B, C and D denote upper bounds of A(t, u), B(t, u), C(t, u), D(t, u)
respectively for (t, u) [0, 1] x [-M, M], and so

lAY(t, y, y’, y")l--< (Aly’] + B)( Cly"l + D).

Now each point [0, 1] for which y"(t) 0 belongs to an interval [/, v] such
that y" maintains a fixed sign on [/, v] and y"(/) and/or y"(v) is zero. Assume
y"(/) 0 and y"=>0 on I/x, v]. Then the differential equation yields

(3.2)
Cy" +---- <- Aly’[ + B.

Also since y">-O on [/.q v] we have y’ increasing on [/x, v], so in particular y’(s) >- y’(Ix)
for s [/.q v]. At this stage of the proof the argument breaks up into two cases, y’(/x) _-> 0
and y’(/) < 0. Assume at first y’(/)-> 0, and so y’(s)>-O for s [/, v]. It follows from
(3.2) that

<-ACy’+ BC,
Cy"+ D

and so integrating from/x to we obtain

D
ly"(t)l--< -[exp (2ACM + BC) 1] Mo.

On the other hand assume y’(/z)< 0. Again the argument breaks up into two subcases,
y’(s)<-O for s[/x, t] or there exists ’ (/z, t) such that y’(sr) =0 and y’(s)>0 for
s(sr, v]. Suppose at first y’(s)<-O for s I/z, t]; then (3.2) implies

<--ACy’+BC,
Cy"+D

and so integrating from/x to yields

[y"(t)l--< M0,

as before. Finally suppose there exists ’e (/, t) such that y’(’) =0 and y’(s)>0 for
s e (’, v]; then for r/e [/x, st], (3.2) implies

<--ACy’+BC,
Cy"+ D
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which yields [y"(sr)[ _-< Mo. So for s e [’, v], (3.2) again implies

<= ACy’ + BC,

and thus

CMo+ D] exp (2ACM + BC) D
ly"(t)l < -= M1.C

Thus ly"(t)[ =< M1. The other cases are treated similarly and the same bound M
max{Mo, M1} is obtained. Thus ly"l_-<M1 for each solution y to (3.1)x. Now if y
satisfies (vi) then

ly’(t)l.= y"(z) dz <= M1,

while if y satisfies (vii)

ly’(t)l y"(z) dz

Finally if y satisfies (viii)

ly’(t)l <-- y"(z) dz + ly’(0)l -< M+=M2.

Thus ly’l -< M for each solution y to (3.1)x. With these bounds the differential equation
yields a priori bounds independent of A for ly’"l i.e. ly’"l_-<max {If(t, u, p, q)l}-= M3
where the maximum is computed over [0, 1] x I-M, M] x [-M2, M2] x [-M, M].
Thus ly13<_-K =max {M, M, M2, M3} and the existence of a solution to (3.1) is estab-
lished.

For notational purposes, let (3.1)(vi) denote the boundary value problem y’"=
f(t, y, y’, y"), [0, 1], with y satisfying (vi). Similarly, define (3.1)(vii)and (3.1)(viiO.
Next sufficient conditions on f are given which imply a priori bounds on any solution
y(t) to (3.1)(vi), (3.1)(vii) or (3.1)(viii). Suppose y(t) is a solution to (3.1) and [y(t)]2

has a maximum at to (0, 1). Then y’(to) 0 and y( to)y"( to) <= O.
THEOREM 3.2. Suppose there is a constant M >-0 such that

oU’(z)[f(z,

u(z), u’(z), u"(z))+ L(u’(z))"u"(z)] dz>O

for ]u(t)[ > M, where L and n >-2 are constants, with u C2[0, 1] and u’(O)= O.
Then any solution y to (3.1)(vi) or (3.1)(vii) satisfies

]y(t)]<=M fort[O, 1].

Proof Suppose lyl achieves a positive maximum at toe (0, 1), then y’(to)=0.
Assume ]y(to)l > M, and so

[y’(z)y’(z)+ L(y’(z))"+ly"(z)] > O.dz

Integration by parts together with y’(to)= 0 yields

Io’ (y"(z)) dz > o,

a contradiction. Thus, [y(to)l--< M.
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At this stage we divide the proof into two cases. Suppose first y is a solution to
(3.1)(vi). If lY] assumes its maximum value at either 0 or 1 then trivially ]y(t)l _-< M
for e [0, 1]. So the conclusion of the theorem follows for (3.1)(vi). Now suppose y is
a solution to (3.1)(vii). If y assumes its maximum value at 0 then trivially ]y(t)] _<- M
for e [0, 1]. On the other hand, suppose lY] achieves its maximum value at t-1.
Suppose lY(1)[ > M; if so,

[y’(z)y’"(z) + L(y’(z))"+ly"(z)] dz > O,

which yields

[y"(z)]- dz > O,

a contradiction. Thus [y(1)[ _-< M and the conclusion of the theorem follows for (3.1)(vii).
Remark. M is independent of L in Theorem 3.2.
An analogous theorem holds for (3.1)(viii).
THEOREM 3.3. Suppose there is a constant M>-_ 0 such that

U’(z)[f(z, u(z), u’(z), u"(z))+ L(u’(z))"u"(z)] dz> O

for ]u(t)[ > M, where n is an even integer greater than or equal to zero and L >-_ 0 is a
constant, with u e C2[0, 1] and u"(O) O.

Then any solution y to (3.1)(viii) satisfies
]y( t)[ <-_ M forte[O, 1].

Proof. Suppose [Yl achieves a positive maximum at toe(0, 1) and assume
[y(to)l > M. Then y’(to) 0 and

’[y’(z)y’"(z)+ L(y’(z))"+ly"(z)] dz>O
o

yield

[y"(z)]2 dz L
(Y’(0))"+

>0,
n+2

a contradiction. Thus [y(to)[--< M.
On the other hand [y[ cannot have a nontrivial maximum at 0 or 1. For suppose

the maximum of [y[ occurs at 0. Then y(0)y’(0)_-< 0. However, from (viii), y(0)y’(0)=
(/a)[y(O)]2>O, a contradiction. A similar argument works for the case 1. Thus

[y(t)}<-M forte[O, 1].

We are now in a position to prove our main existence theorems for this section.
THEOREM 3.4. Let f [O, 1] R3-> R be continuous.
(a) Suppose there is a constant M >-0 such that

ot
U’(z)[f(z, u(z), u’(z), u"(z))+ L(u’(z))"u"(z)] dz>O

for [u(t)[ > M, where L and n >-2 are constants, with u e C-[0, 1] and u’(O)= O.
(b) Suppose

if(t, u, p, q)l [A(t, u)Ipl + B(t, u)][ C(t, u)lql + D(t, u)]

where A t, u), B t, u), C t, u), D( t, u) >-_ 0 arefunctions bounded on bounded t, u) sets.
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Then the boundary value problem (3.1)(vi) and (3.1)(vii) have at least one solution
in C3[0, 1].

Proof. To prove existence of a solution in C3[0, 1] we apply Theorem 3.1. We
need to establish a priori bounds for any solution y(t) to (3.1)x. Now if A 0 we have
the unique solution y 0. Otherwise for 0 < A -< 1

o’
U’(z)[f(z, u(z), u’(z), u"(z)) + L(u’(z))"u"(z)] dz > O,

for ]u(t)l > M implies

o
U’(Z)[hf(z, u(z), u’(z), u"(z))+AL(u’(z))"u"(z)] dz>O

for [u(t)l > M. So Theorem 3.2 together with its remark implies [Yl =< M for any solution
y to (3.1). Hence the existence of a solution to (3.1)(vi) and (3.1)(vii) is established.

COROLLARY 3.5. Let f [O, 1Ix R3---> R be continuous.
(a) Suppose there is a constant M >-0 such that

o
U’(z)[f(z, u(z), u’(z), u"(z))+ L[u’(z)]"u"(z)] dz>-O

for lu(t)l> M, where L and n>-2 are constants, with u C[O, 1] and u’(O) O.
(b) Suppose

If(t, u, p, q)[<=[a(t, u)[pl+ B(t u)][C(t, u)lql+ D(t u)]
where A(t, u), B(t, u), C(t, u), D(t, u)>=O arefunctions bounded on bounded (t, u) sets.

Then the boundary value problem (3.1)(vi) and (3.1)(,,ii) have at least one solution
in C3[0, 1].

Proof Let us consider

y’"=f,(t,y,y’,y"),
(3.3)

y 6 (vi) or (vii)

where fn(t, y, y’, y")=f(t, y, y’, y")+(y/n) for n= 1,2, . Clearly

y(z), y’(z), y"(z))+ L(y’(z))ny"(z)] dz

y’(z)[f(z, y(z), y’(z), y"(z)) + L(y’(z))"y"(z)] dz +-
1 y2(t)
n 2

>0

for lY(t)l > M since y(0) 0.
Thus Theorem 3.2 implies ly.I--< M for any solution y, to (3.3) and n 1, 2,. ..

Also

If(t, y, y’, Y")I--< [A(t, Y)IY’[ + B(t, y)][ C(t, Y)IY"I + D(t, y)] + M.

Now we can apply Theorem 3.4 to (3.3): If y, is a solution to (3.3) for n 1, 2,
we have lynl3 <- K for some constant K independent of n. By the Arzela-Ascoli Theorem
there is a subset N ofthe natural numbers and a function y C2[0, 1 so that lY, YI - 0
as n--> in N. If G(t, z) is the Green’s function for (L, Bo) where Ly y’" and Bo
denotes the boundary conditions (vi) or (vii) then

ioly,(t) a(t, z)f,(z, y,(z), y’n(z), y",(z)) dz.
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Let n--> oo through N to obtain

y(t) G( t, z)f(z, y(z), y’(z), y"(z)) dz.

Thus y C3no and y satisfies y"’ =f(t, y, y’, y").
We can obtain a similar result to Theorem 3.4 for (3.1)(viii).
THEOREM 3.6. Letf:[O, 1] x R3--> R be continuous.
(a) Suppose there is a constant M >-0 such that

u(z), u’(z), u"(z))+ L(u’(z))"u"(z)] dz>O

for [u(t)[ > M, where n is an even integer greater than or equal to zero and L >= 0 is a
constant, with u C2[0, 1 and u"(O) O.

(b) Suppose

If(t, u,p, q)l<[A(t, u)lPl/n(t, u)][C(t, u)lql/D(t, u)]
where A( t, u), B( t, u), C( t, u), D( t, u) >= 0 arefunctions bounded on bounded t, u) sets.

Then the boundary value problem (3.1)viii) has at least one solution in C3[0, 1].
Remark. We can obtain similar results to those in Theorems 3.4 and 3.6 if the

boundary conditions (vi), (vii) or (viii) are replaced by any of the following:

or

(ix) y(0) 0, y(1) 0, y"(0) 0,

(x) y(0) 0, y’(1) 0, y"(0) 0,

(xi) y(1) 0, y’(0) 0, y’(0) 0,

(xii) y(0)=0, y(1)=0, y’(1)=0,

(xiii) y(0)=0, y(1)=0, y"(1)=0,

(xiv) y(1)=0, y’(0)=0, y"(1)=0,

(xv) -ay(O) + fly’(O) O, a, fl > O,

ay(1)+by’(1)=O, a,b>O,

y"(1) =0.

An example of this is the following theorem.
THEOREM 3.7. Let f [O, 1]x R3-> R be continuous.
(a) Suppose there is a constant M >= 0 such that

’l

u’(z)[f(z, u(z), u’(z), u"(z))+L(u’(g))nu"(g)] dz>O

for lu(t)l> M, where n is an even integer greater than or equal to zero and L<=O is a
constant, with u C2[0, 1 and u"(1) O.

(b) Suppose

If(t, u, p, q)l--< [A(t, u)lpl + B( t, u)][ C(t, u)lq[ / D(t, u)]
where A t, u), B t, u), C t, u), D( t, u) >- 0 arefunctions bounded on bounded t, u) sets.

Then the boundary value problem

y’=f(t,y,y’,y"), t[0, 1], y(xv)
has at least one solution in C3[0, 1].
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The following example illustrates the ideas and results of this section.
Example 2. Consider the boundary value problem

y’"(t) Ao+ Bo[y( t)]p + Co[y(t)]my’(t) + Doy"( t) + Eoy’( t)y"( t), [0, 1 ],
(BVP)

y(O)-y(1)=y’(O)=O

where Ao, Bo> 0, Co_-> 0, Do, Eo are constants with m _-> 0 even and p > 0 odd.
We will now show that (BVP) has a solution in ca[0, 1] via Theorem 3.4. Now

iff(t, y, y’, y") Ao+ Boyp 4- Coy y + Doy"+ Eoy’y" and L -Eo, n 1, L -Do, r 0
we have

y(z), y’, y")+ L(y’(z))"y"(z)+ dz(y’(z))’y"(z)]

(Aoy’(z) + Bo[y(z)]Py’(z) + Co[y(z)]m[y’(z)]2) dz

>- [Aoy’(z)+ Bo(y(z))Py’(z)] dz

y(t) Ao+p+ i[y(t) since y(O) 0

>0 for ly( t)l > [ -(P + l)A ] lip

no
Finally it is clear that we can find constants A, B, C, D such that

If(t, y, y’, y")l--< (AIy’I + B)(fly"l + D)
for (t, y) in a bounded set.

Hence all conditions in Theorem 3.4 are satisfied, so (BVP) has at least one
solution in C3[0, 1]. I3

To conclude this section we examine the inhomogeneous boundary value problem

y’=f(t, y, y’, y"), [0, 1],
(3.4)

y(0)=r, y(1)=s, y’(0)=l,

or

y’"=f(t,y,y’,y"), t[0, 1],
(3.5)

y(0) r, y(1)= s, y"(0)= l,

and establish the existence of a solution to (3.4), (3.5) in C3[0, 1] under essentially
the same hypothesis on f used in Theorem 3.4.

THEOREM 3.8. Let f [O, 1]x R3- R be continuous.
(a) Suppose there is a constant M >-0 such that

U’(z)[f(z, u(z)+ Iz, u’(z)+ l, u"(z))+ L(u’(z))"u"(z)] dz> O

for [u(t)l > M, where L and n >-2 are constants with u C2[0, 1] and u’(O)= O.
(b) Suppose

If(t, u, p, q)l < [A(t, u)lpl + n(t, u)][ C(t, u)lql + D(t, u)]

where A( t, u), B( t, u), C( t, u), D( t, u) >- 0 arefunctions bounded on bounded t, u) sets.
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Then the boundary value problem (3.4) has at least one solution in C3[0, 1].
Proof. Consider the family of problems

y’"= Af(t, y, y’, y"), 0_--<A_--<I,
(3.4)x

y(0)=r, y(1)=s, y’(0)=l.

The existence of a solution in C3[0, 1] follows immediately from Theorem 5.1 of [7]
once a priori bounds independent of A are established for solutions y to (3.4)x. To
establish a priori bounds for (3.4)x, let y(t) be a solution to (3.4)a. Now if A 0 we
have a unique solution and thus [y(t)l-< Mo, for some constant Mo. Otherwise for
0 < A _-< 1, let w y lt, so w(0) r, w(1) s and w’(0) 0. Now

w(z)+ lz, w’(z)+ l, w"(z))+ L(w’(z))’w"(z)] dz>O

for [w(t)[ > M implies

w(z)+lz, w’(z)+l, w"(z))+hL(w’(z))"w"(z)] dz>O

for Iw(t)l > M. It follows from Theorem 3.2 and its remark that

Iw(t)l<=max{M, Irl, ls-ll}- for [0, 1].

Thus ly(t)l<=Ml=max{I+llI, Mo} for any solution y to (3.4)x, 0=<A=<I. A priori
bounds independent of A for y’, y", y’" will follow from a slight modification of the
proof in Theorem 3.1 once we observe that ly"(z )l --< K, K => 0 a fixed constant indepen-
dent of A, for some /x[0,1]. We accomplish this by letting v(t)=
y(t)-(1- t2)r t2s+ It2 and noticing that v(0)=0, v(1) l, v’(0)=/. Hence by the
Mean Value Theorem there exists/x (0, 1) such that v"(/x) 0, i.e. y"(/.) 2s 21- 2r.
The existence of a solution to (3.4) follows from Theorem 5.1 of [7].

We can obtain a corresponding existence theorem for (3.5).
THEOREM 3.9. Let f [O, 1]x R R be continuous.
(a) Suppose there is a constant M >-0 such that

Iz2
"(z)+ l))+ L(u’u’(z)[f(z, u(z)+m, u’(z)+ lz, u (z))"u"(z)] dz>O

z

for lu(t)]> M, where n is an even integer greater than or equal to zero and L>-O is a
constant, with u C[0, 1 and u"(O) O.

(b) Suppose

If(t, u, p, q)l [A(t, u)lpl / n(t, u)][ C(t, u)lql / D(t, u)]

where A( t, u), B( t, u), C( t, u), D( t, u) >->= 0 arefunctions bounded on bounded t, u) sets.
Then the boundary value problem (3.5) has at least one solution in C3[0, 1].
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STRICTLY COOPERATIVE SYSTEMS WITH A FIRST INTEGRAL*
JANUSZ MIERCZYIQSKIf

Abstract. We consider systems of differential equations dx/dt--Fi(x,’", xn) in the nonnegative
orthant in the n-space satisfying the following hypotheses: i) F(Q) 0; ii) if x Yi and xj yj for j then
Fk(x) Fk(y) for k i; iii) F possesses a first integral with positive gradient. We prove that every solution
to such a system either converges to an equilibrium or eventually leaves any compact set.

Key words, equilibrium, first integral, Lyapunov function, co-limit set, nonnegative orthant, order
preserving, strictly cooperative system

AMS(MOS) subject classification. Primary 34C05

1. Introduction. The purpose of the present paper is to study the limiting behavior
of solutions of systems of ordinary differential equations possessing a first integral,
where the right sides of equations as well as the first integrals are subject to some
monotonicity conditions. We prove that any solution to such a system either converges
to an equilibrium or eventually leaves any compact set.

Particular classes of systems of differential equations F(x), x U c ", satisfy-
ing conditions OFi/Oxj>-O for ij, were studied by many authors (see references in
1 ]; see also [3, Chap. III]). Recently, in 1 and [2], M. W. Hirsch initiated investigation
of systems of that type (which he calls cooperative systems), using ideas taken from
the dynamical systems theory. Such systems may describe, for instance, competition
between biological species or chemical reactions. In cooperative systems it is natural
to expect convergence of bounded solutions to an equilibrium or to a closed orbit. A
decisive step toward answering this conjecture was made by M. W. Hirsch, who in [2]
proved that, for systems that are cooperative and irreducible (that is, the matrices
[(OF/Oxj)(p)] are irreducible), almost all (with respect to the Lebesgue measure) points
whose forward orbits are bounded approach the equilibrium set. In 11 J. Smillie has
found a class of cooperative irreducible systems for which the following holds: every
solution either converges to an equilibrium or eventually leaves any compact set.

To our knowledge, a general class of first integrals for cooperative systems was
considered only in [2, Thm. 4.7]. However, that result is negative: if the set of equilibria
is countable then every continuous invariant function is constant. On the other side,
many authors (e.g. [5], [6], [7], [9], [10]) considered cooperative (or related) systems
on the nonnegative orthant g having Yi xi as a first integral. For such systems it was
proved that every solution converges to an equilibrium. In [9] and [10] these results
were extended to the case of nonautonomous cooperative systems periodic (resp.
almost periodic) in t.

The results contained in the present paper are a generalization of the theorems
mentioned above to the case of not necessarily linear first integral. Methods used here
are geometric, and the only nonelementary tool made use of is the Brouwer fixed-point
theorem. The exposition is independent of any other work on this subject; however,
the idea of a Lyapunov function L is taken from the author’s previous work [8].

2. Definitions and preliminary lemmas. We define R_={x"" xi>0},= 0"-+-
{X" Xi--O for some i}, Int"+=Rg\0"+. Moreover, we denote ei-
(0,-.., 0, l, 0,..., 0)--the ith vector ofthe standard base in ’, B {x "" 0 <- xi <- 1

* Received bythe editors February 25, 1985; accepted for publication (in revised form) January 13, 1986.
f Institute of Mathematics, Technical University of Wroclaw, PL-50-370 Wroctaw, Wybrzee Wyspiafi-

skiego 27, Poland.
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for each i}, B+ {x B: xi 1 for some i}, x < y if xi < y for each i, and x <iY if x <y
and xj yj forj i. (.,.) will denote the usual inner product in Rn, [[. [[--the correspond-
ing norm.

Let H" R_-> be a C function. By a gradient of H at p we mean the vector
((OH/OXl)(p), (OH/Oxn)(p)) (written grad H(p)).

Let F:

_
->" be a vector field. By a first integral for F we understand a function

H’->R+, of class C 1, such that gradH(p)#0 at each p and
(gradH(p),F(p))=O.

A point p e

_
for which F(p)=0 is called an equilibrium.

Let x: [0, T)-> be a nonextendible solution to the initial value problem dx/dt
F(x), x(0) x. We say the set {x(t): 0 -< < T} is a forward orbit of x.

The set to(x) consists of those points y for which there exists a sequence
tk -> T such that X(tk)-> y. This set is called an to-limit set of x. The following facts are
well known.

THEOREM 2.1. Ifto(X) {y} then the solution x is defined on [0, +o) and converges
to an equilibrium y.

THEOREM 2.2. If tO(X)= then x(. eventually leaves any compact set.
The set A c R_ is called positively invariant if for each a A its forward orbit is

contained in A.
We consider a system of ordinary differential equations in defined by a C

vector field F: II" -dxi(2.1) -F/(x,’’’,x,,)=F(x), x_, F=(F,’’.,F,,),
dt

satisfying:
(A1) F(0) 0;
(A2) If x <iY then F(x) < F(y) for j i;
(A3) There exists a first integral H for F such that grad H(x)> 0 for x e R_ and

(for convenience) H(0)= 0. Systems satisfying (A2) will be called strictly cooperative.
Let M denote the least upper bound of the values of H. From (A3) it follows that

H is onto [0, M), where 0 < M-<
By Int H-l(h) we denote the set {x e Int _: H(x)=h}.
LEMMA 2.1. Let c be an equilibrium. Then c+_ is positively invariant. Moreover,

c is a unique equilibrium on c + O_.
Proof. By performing, if necessary, the change of coordinates i xi c, we reduce

a general case to the case c 0. Let x e. Then let I denote the subset of {1, , n}
such that xi- 0 exactly for e I. If x 0 then x > 0 for indices j belonging to some
nonvoid subset J of {1,...,n}. For convenience assume I={1,...,k}, J-
{k+ 1,..., n}. By (A2) we obtain

Fi(O, O, Xk+l, x,) > Fi(O, O, Xk+E, x,) > > Fi(O) --O .foriI.

Therefore on the boundary of R_ (except 0) the vector field F is directed inward,
which in a standard way implies that

_
is positively invariant. Q.E.D.

LEMMA 2.2. Let c be an equilibrium. Then for every e > 0 there exists 8 > 0 such
that for each h H(c) 8, H(c) + 8 f’l [0, M) there exists an equilibrium Ch such that
H(Ch) h, ch > c for h > H(c) (resp. Ch < c for h < H(c)) and IIc -cll--<

Proof. We consider the case h > H(c). From (A3) it follows that H(c+ n-1/ei) >
H(c). Set mini H(c + n-1/e)- H(c). For x
Let for a moment h (H(c), H(c)+ ) be fixed. By g(x) we denote the straight line
passing through c and x. Let the mapping K: (c+n-I/B+)-->H-l(h)fq(c+_) be
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defined in the following way: K(x) is the unique point on e(x) at which H(K(x)) h.
The existence and uniqueness of this point follow from (A3). Having in mind our
choice of h, we infer that K is in fact onto H-l(h)fq(c+ n-I/EB) H-l(h)f’l(c+R).
The definition of K implies that K is one-to-one. Moreover, K-1 is continuous as a
"central projection" onto (c / n-/EB/). Therefore, from the compactness ofthe domain
of K, K is a homeomorphism. Thus H-l(h)fq(c+g_) is homeomorphic to the (n-
1)-dimensional disk. This set, as an intersection of positively invariant sets, is positively
invariant. The Brouwer fixed-point theorem tells us that there is an equilibrium
Ch H-l(h)f’l(c+Rg). From Lemma 2.1 it follows that (Ch)i > Ci. Moreover, for every
y c+ n-1/2B we have [[y-cl[ _-< e, so [ICh-Cll <-- e. The case h < H(c) is treated in an
analogous way. Q.E.D.

PROPOSITION 2.1. The set S of equilibria is linearly ordered by <.
Proof. Suppose there exist c, d S such that c d for I, cj < dj for j J, c > d

for L and at least two of these sets are nonempty. Consider the point z, zk
max.{ck, dk} for 1 _--< k_-< n. Proceeding as in the proof of Lemma 2.1 we obtain F(z) >
F(d) =0.for i/, F(z)> F(d)=0 forjJ and Ft(z)>F(c)=O for lL. But from
this it follows that (F(z), grad.H(z))>0, a contradiction. Q.E.D.

COROLLARY. For each h [0, M) there is at most one equilibrium on H-l(h).
PROPOSITION 2.2. There exists U, 0 < U <-M, such that there is an order-preserving

homeomorphism between [0, U) and the set S of equilibria of F.
Proof. The function H S is continuous. From the corollary and Proposition 2.1

it follows that H S is one-to-one, so Z, the function inverse to HI S, exists. Lemma
2.2 implies that Z is continuous and preserves order. Therefore Z is a homeomorphism.
The statement on the domain of Z also follows from Lemma 2.2. Q.E.D.

Let Z denote, as in the above proof, the function inverse to HIS. We define the
function L: R +, L(x)= min {Z-(xi) z?l(xi) is defined}, where Z? denotes the
function inverse to the ith coordinate of Z.

LEMMA 2.3. L is well defined and continuous.

Proof. Suppose that for each i, Zi(h)-ai as h- U. Then a=(al,’’ ", an) would
be an equilibrium, and H(a)= U. But by Lemma 2.2 there would exist an equilibrium
b> a and H(b)> U. Thus for some i, Z(h)-oo as h- U, so L is well defined.

In order to prove the continuity of L notice that, by Lemma 2.2, the image of Z
is a right-open interval. Therefore if in the definition of L(x) the minimum is realized
exactly by indices I then for y belonging to some sufficiently small neighborhood
of x the minimum is realized by indices from some subset of I. The minimum of a
finite family of continuous functions is continuous, so we have obtained the desired
result. Q.E.D.

Remark. As we have said in the Introduction, L has a simple geometric interpreta-
tion. Namely, the level surface corresponding to h is equal to the set Z(h)+ Og_.

LEMMA 2.4. For h [0, U), sup {L(x)" x H-l(h)} is attained only at Z(h). For
h U, M), sup {L(x)" x H-l(h)} is attained nowhere.

Proof. First assume h [0, U). It is easy to check out that L(Z(h)) h. Suppose
that for some xZ(h), xH-l(h), we have L(x)>-_h. From the definition of L it
follows that x >= Zi(h) for every i. But for some j, x Z(h). (A3) implies that H(x) > h,
a contradiction.

Now we assume h U, M). Let x be any point of H-l(h). Denote L(x) by g.
This means that xZ(g)+O (of course g<h). Let I stand for the set of indices
for which x Z(g). Define the point in the following way: x + 1 for /, x
for j I. From (A3) it follows that H()> h. Considering, as in the proof of Lemma
2.2, the straight line passing through Z(g) and x, we can find a point y Z(g) + Int R_
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such that H(y) h. But the fact that y Z(g) + Int R_ means that H(y) > h, a contra-
diction. Q.E.D.

3. The main result.
THEOREM 3.1. For x

_
we have either to(x)= {Z(H(x))} or to(x)= .

Proof Let I denote the set of indices realizing the minimum in the definition of
L(x(t)). Analogously, as in the proof of Lemma 2.1 we can show that i(t)> 0 for
i L Hence L is strictly increasing along the forward orbits of (2.i), except for the
constant solutions. Let x be fixed, and let E denote the set H-l(n(x)). H is a
first integral, so the forward orbit of x is contained in E. Furthermore, from the
closedness of E it follows that to(x)c E. Now it suffices to show that to(x)c
{y E: L(y)=supze L(z)}. Suppose not. Then there exists y to(x) such that L(y)<
SUpze L(z). From Lemma 2.4, y is not an equilibrium, so L strictly increases along
the orbit of y. Let v be any point.on the forward orbit of y, distinct from y. Obviously
L(v) > L(y). Choose neighborhoods V of v, Y of y, such that infz v L(z) > SUpz v L(z).
From the very definition of the to-limit set we can find moments tl < t2 such that
X(tl) V x(t2) Y. From this we deduce that L(x(tl))<L(x(t2)), which contradicts
our choice of V and Y. Q.E.D.

The following example shows that the case to(x)- is possible.
Example. Consider the nonnegative quadrant +. As a first integral choose a

function H(Xl, x2) Gl(X) + G2(x2), where G2(x2) x2, and G: R+R+ is a function
of class C2 such that G(0)= 0, G is positive and limx,_,oo Gl(X)= 1. Let W: R+ +
be a function of class C such that W(0)= 0, W’ is positive and limx_ W(x)= 1. As
the equilibrium set S we choose the graph of W, i.e., S {(xl, x2): x2 W(x), Xl R/}.
We define

f2(xl, x2)- .W(Xl)-x2, Fl(Xl x2)-- -(F2(Xl x2))/(G(Xl))-- (x2 W(Xl))/(a(xl)).

It is easy to check out that F is C and that H is a first integral for our system. Moreover

(OF2/OXl)(Xl, x2) W’(Xl) > O, (OF1/Ox2)(Xl, x2) 6(Xl)]-1 > O,

so that the system is strictly cooperative. From the choice of W it follows that
supxsH(x)=2. Hence the level surface H-(3) does not intersect S, so for each
x e H-’(3), to(x) .

Remark. Professor Morris W. Hirsch has informed the author that he obtained
the same result under slightly different hypotheses [4].

Acknowledgments. The author would like to thank Professor M. W. Hirsch for
sending him a preprint of the paper [2]. He is also indebted to Professor G. R. Sell
for calling his attention to [9] and [10].
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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A
REACTING-DIFFUSING SYSTEM:

A TWO PREDATORS-ONE PINEY MODEL*

L. HSIAOf, Y. SU" AND Z. P. XIN*

Abstract. We discuss a predator-prey system consisting oftwo predator species and a single prey species
which obeys Michaelis-Menten dynamics. We establish global existence for different initial-boundary
conditions by either the semigroup approach or the comparison method. Furthermore, we investigate the
asymptotic properties of the solutions.

Key words, predator, prey, reaction, diffusion, sectorial operator, fractional power, linearization, spec-
trum, monotonicity
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1. Introduction. Evolution equations of reaction-diffusion type enter a wide
number of phenomena in ecology, biology, biochemistry, chemistry and physics. An
important and interesting problem about these systems is the time evolution of the
various density distributions and their relations to the corresponding stationary distribu-
tions. This kind of problem has been discussed quite a lot in various fields for a single
reaction-diffusion equation. In recent years, attention has been given to coupled
reaction-diffusion equations from various fields of applied sciences, but mostly to two
equations. For instance, the question as to whether one prey can support two predators
is an intriguing one in ecology. But very little theoretical work has been done on such
systems, although competition between species exploiting a common prey population
is of frequent occurrence in nature.

The present paper discusses a predator-prey system consisting of two predator
species, V1 and V2, and a single prey species, S. We assume that the predator species
compete purely exploitatively, with no interference between rivals. Both species have
access to the prey and compete only by lowering the population of shared prey. For
death rates it is assumed that the number dying is proportional to the number currently
alive. We also assume that there are no significant time lags in the system, that growth
rates are logistic in the prey species in the absence of predation, and that the predators’
functional response obeys the Holling "nonlearning" curve (for an ecological problem)
[5], [6], or Michaelis-Menten Dynamics (for enzyme reactions). The model is given by

0__S: k,AS+ TS[1-]-(y) (aVISI+S/ -(-2 ) ( V2S
Ot \a2+S]’
o v MVS

(1.1) k2A VI+-D1V1,
Ot al+S
ov MVS

k3A V2+-D2V2,
Ot a2+S

with initial conditions

(1.2) S(X, O) So(X), V(X, O) Vo(X), i= 1, 2, X l-I

* Received by the editors October 1, 1984; accepted for publication (in revised form) January 13, 1986.
Academia Sinica, Institute of Mathematics, Beijing, People’s Republic of China.
Department of Mathematics, Northwest University, Xian, People’s Republic of China.
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and boundary conditions

(1.3)i Dirichlet conditions (S, V1, Vs) (0, 0, 0) on 01 x R/, or

(oS oV oV(1.3)ii Neumann conditions , On’ ]
(0, 0, 0) on 01-1 x R+,

where 3’ is the growth rate and K the carrying capacity for the prey s, while yi, Mi,
Di, ai are the yield constants, the intrinsic growth rate, the death rate and the
Michaelis-Menten constant, respectively, for the ith predator V, i- 1, 2. kl, ks, k3 are
nonnegative diffusion coefficients, respectively, for S, V1 and Vs. ll is an open bounded
set of R with boundary 01l.

When the effect of diffusion is not considered, namely, (kl, k2, k3)= (0, 0, 0), this
system (1.1) becomes an ordinary differential equation. Hsu, Hubbell and Waltman
[7], [8] and Butler and Waltmann 1 analyzed the behavior of solutions of this system
of ordinary differential equations in order to answer the biological question" Under
what conditions would neither, one, or both species of predator survive? If only one
predator survives, how do we determine the limiting behavior of the surviving predator
and its prey?

In this paper we analyze the behavior of solutions of system (1.1) with (1.2), (1.3)i
(Case I) or (1.2), (1.3)iI (Case II). In 2 we deal with Case I. As for the existence
and positivity properties of the solutions of (1.1)-(1.3)1 we shall prove Theorems 2.1
and 2.2 by a semigroup approach. Our results on the asymptotic stability of the
equilibrium solutions are summarized in Theorems 2.3-2.6. In 3 we consider Case
II. By employing a monotonicity argument we establish existence-comparison
Theorems 3.1 and 3.2. We investigate the asymptotic properties of the solution in
Theorems 3.3-3.8.

2. The case of Dirichlet conditions. We are interested in the nonnegative solution
of problem (1.1), (1.2), (1.3)i. In view of the special form of the reaction terms in
(1.1), it is easy to know that 12] (1.1) has the following invariant region E:

(2.1) x:{(s, Vl, vg: s->0, Vl_->0, v_>-0}.

We change the form of (1.1) into

OS (klAS+3"S)+( 3"S2 M1V,S _MaysS
0--" \ -’- yl(al-t- S)-ys(a2+ S)]’

(2.2)
Ot

a1/2

(_ a.;_M_,_v,.)(k2A V1 +/31 V1) +
al + S ]’

(k3A V2 +/32 V2) + ],

where/3 M D, 1, 2.
It will be convenient to think of system (2.2) as an evolution equation for the

unknown U( t) (S( t), Vl(t), V2(t)) in a Banach space X.
Define X=(L2(f)) with norm IIull=(llsll/llvll/llv=ll)/- for any U=

(S, V1, V2) X, where I1" I1= denotes the usual norm in L2(f/). Clearly, X is a Banach
space.

If one chooses the above Banach space X to work with, system (2.2) can be
rewritten as follows.
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Let S(t)=S(., t), V(t)= VI(’, t), V2(t)= V2(’, t), U(t)=(S(t), Vl(t), V2(t)).
Then (2.2), (1.2), (1.3)i is changed into the form

(2.3) dU_ AU+F(U), U(O) Uodt

where

(2.4) ti, 0 00tt ,i  0 0 tA= A2 k2A+fll 0

0 A 0 k31 + f12

D(A,) {u e L(I2), uloa O, A,u LZ(12)},

_rs2 MVS M2V2S
K yl(a,+S) y2(a2+S)

Mla V(2.5) F(U)=
al+S

a2+S
It is well known that D(Ai)_ H(II) and is dense in L2(12).

Suppose Y, Z are Banach spaces; we shall denote the norm of a linear bounded
operator T: Y Z by [1TII -.z. For a closed operator T, the spectrum, resolvent set and
resolvent operator will be denoted by the usual symbols tr(T), p(T) and R(, t)=
(T-/.t)-1

LEMMA 2.1. A generates an analytic semigroup e’ on .
Before we prove the lemma, let us recall the following definition and Theorem

[4], which is written down as a proposition.
DEFINITION 2.1. We call a linear operator A in a Banach space X a sectorial

operator if it is a closed densely defined operator such that, for some 0 in (0, (7r/2))
and some M_-> 1 and real a, the sector

S.,o {zlo --< larg ( a)l =< r, a}

is in the resolvent set of A and

M
R(/z, A)

a
for all/z e S o.

PROPOSITION 2.1. IfA is a sectorial operator, then -A is the infinitesimal generator
of an analytic semigroup {e-’a},_>o, where

e_tA 1 fr-2ri (/z + A)-1 e’’ d,

and F is a contour in p(-A) with arg/z + 0 as [l o for some 0 in ((r/2), 7r).
Furthermore, e-A’ can be continued analytically into a sector {t O" larg tl< e}

containing the positive real axis, and if Re tr(A) > a; i.e., if Re A > a whenever A tr(A),
then for > 0

e_at

for some constant c.
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Finally

d -At -A e-At for > O.

The proof of Lemma 2.1. Due to the above proposition, it suffices to prove that
-A is a sectorial operator. In view of D(Ai) H2() fq H(f), where Hi(I) Wi’2(f),
i->0; H(I) W;2(I), it follows that D(A)=(H2()f’IH(I)))3, which implies -A
is a closed densely defined operator on X. Since -A is a self-adjoint densely defined
operator in L2() and is bounded below, it is easy to show that -A is a sectorial
operator on Xi. Namely, there exist M >- 1, a and 0 satisfying 0 < 0 < 7r/2 such that

p(-A,) = Sa,,o, {/xl0,--< larg (tz a,)l r}

and

IlR(m -A,)[I:;:--[z a,[ Vz S,,o,, i= 1, 2, 3.

Clearly, ai can be taken as the smallest eigenvalue h of (-A) [14]. (-ho is the
largest eigenvalue of A.)

Define yo=min {h, h, h3o}, 0=max {01, 02, 03}. It is easy to show, by the form
(2.4) of A, that

(2.6) R(/z,-A) 0 R(/x,-A2) 0 Vtz e p(A).
0 0 R(/z, -A3)

Therefore, it can be claimed that

and there exists Mo=> 1 such that

p(-A)=Svo,O

< Mo

This means -A is a sectorial operator on X, so that by Proposition 2.1, it follows that
A generates an analytic semigroup eAt on X and satisfies

(2.7)

where M denotes a suitable constant.
In order to investigate the existence and asymptotic properties of the solution to

(1.1), (1.2), (1.3)I, we recall the concepts of fractional powers of operators and some
results concerned with them [4].

DEFINITION 2.2. Suppose T is a sectorial operator and Re tr(T) > 0, then for any
a>0

1 ta-1 Tt

r(a)
e- dt.

DEFINITION 2.3. With T as above, define T =inverse of T (a >0), D(T")
R(T-a); To= identity on X.
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DEFINITION 2.4. If T is a sectorial operator in a Banach space X, define for each
a->0,

X= D(T) with the graph norm

x T’x II, x X,
where T1 T+ aI with a chosen so Re tr(T1) > 0. It can be shown that different choices
of a give equivalent norms on X, so we suppress the dependence on the choice of a.

PROPOSITION 2.2. If T is sectorial in a Banach space X, then X is a Banach space
in the norm I1" for a >= O, X= X, and for a >-fl >-O, X is a dense subspace ofX
with continuous inclusion.

DEFINITION 2.5. Suppose there is an extension map E" cm(12) cm(R"), SO E (b)
restricted to I) is b, such that for the norms of any of the spaces C" or Wk’q (0 <= v,
k <- m and 1 =< q <) there is a constant B > 0 with

B-’ I1 II. -< IIE()ll -< nll
When such an extension map exists, we say f has the Cm-extension property.

PROPOSITION 2.3. Suppose c " is an open set having the C extension property,
1 <-_p < m, and T is a sectorial operator in X Lp(f) with D(T)= XIc wm’P(f) for
some m >= 1. Then for 0 <- a <- 1.

XWk’q() whenk
n n

--<m<-, qNp
q P

n
X c C (f) when 0 <- v < ma --.

P

Furthermore, these are continuous inclusions, provided a > O, where 0 is the number in
Nirenberg-Gagliardo inequalities.

Remark. Such an extension map is easily constructed if f is bounded-and 0f is
a C hypersurface separating 1 from n\I [3], and a more complicated construction
shows 0f needs only to be Lipschitzian [13].

LEMMA 2.2. Let 0 <--_ a <-- 1. Suppose X is a Banach space defined as Definition 2.4
with T =-A. Assume a ao > . Then

xo (-(f) w,:()),
continuously.

Proof In view of the form of Ai, it is easy to see that D(Ai) W2’2(f) f) W’2(f),
1, 2, 3. By using Proposition 2.3 for T =-Ai with m 2, p 2, n 3, it follows, for

ao> that

Furthermore, taking k 1, q 2 in Proposition 2.3, it turns out that

X c wl,2(").

Thus,

XTL() f’l W’2(l), i= 1, 2, 3.

The continuity is easily checked. Then, by the special form of A, we obtain Lemma 2.2.
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Define

{ min (al, a2)}=+x (s,v, v)x"o,s>-
2

LEMMA 2.3. The nonlinear operator F is locally Lipschitz continuous on .
Proof. Since F does not depend on explicitly, it suffices to prove that for any

U {S(0, V0, V(2)} with

min (a,, a2)
and u, II.o-Si>-- <R*, R*>O,

2

(2.S) IIF( U,)- F( U2)II <-- cII u,- ull.o
where C depends only on R* and the parameters in F.

Set

F(U)=If2(U)
\f(U)
[fl(Ui)-fl(U2)

F( U1)- F(U2) If2(U,)-f2(U2)i.
\f(u,)-f(U:)l

By Lemma 2.2, there exists R1 depending on R* such that

IU,IuR,.
From (2.),

If,( u,) -f,( )l 1v?)- v?)l + v7
Yl Y:

M, al V1) V2) Ma+ +
Yl a + S(1)

al + S(2) Y2

Since

V1) V2)

a + S(1) a + S(2)

V(21) V(22)
a2 + S(1) a2 + S(2)

it follows that

i= 1,2,

’ S(1)

V(21) V(22)
a2 + S(1) a2 -- S(2)

4R1< -I v1)- v?)l+ls
al al

Similarly,

ly,(u,)-f,(u_)l =< 3M______A(I vi’)- v?)l +l v(:1)- v(?)i/
Yl

(-- 4M1 -I- 4,M2’+ R, + S(1) S(-)[.
al a2 ]

IA(U1) -A(U)I-<- 2M11V1)- v)l +

IA(U1) -A(U:)I--< 2M:I V(21)- v=)l +

4MIK1 Is(l) s()l,

a2
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Then, IIF( U1)- F(U)II= cII u,- u=ll = which, together with Proposition 2.3, implies
(2.8). Therefore, F" X is locally Lipschitz continuous.

By Lemmas 2.1 and 2.3, the local existence result follows.
LEMMA 2.4. For any Uo (So(x), Vlo(X), VEo(x)) X%, there exists T> 0 such that

a unique classical solution t- U(t)=(S(t), Vl(t), V(t)) of (2.3) exists in [0, T).
Proof. In view of Lemmas 2.1 and 2.3, it can be proved, by local contraction

arguments (cf. [4, Thm. 3.3.3]) that for any (to, Uo) there exists T(to, Uo) > 0 such
that (2.3) has a unique solution U(t) on (to, to+ T) with initial value U(to) Uo,
where to 0. Namely, U(t) is a continuous function: (0, T)X such that U(0)- Uo,
and on (0, T) we have (t, U(t)), U(t)D(A). (dU(t)/dt) exists, tF(U(t)) is
locally n61der continuous, and IIF( u(t))ll dt <+ for some p > 0, the differential
equation (2.3) is satisfied on (0, T). In addition U(t) can be expressed as

(2.9) U(t)=exp(At)Uo+ exp(A(-s))F(U(s)) ds.

But, in fact when >0, (dU(t)/dt)eX% is locally H61der continuous due to
Lemmas 2.1 and 2.3 (cf. [4, Thm. 3.5.2]), so (t, x)- U(t, x), (0 U/Ot)(t, x) are also
continuous on 0<t<T and xf. Since U(t)D(A) implies U(t)
(W2’2(’) f’) W’2(’))3, it can be shown, by the embedding theorem, that there exists
v>0 such that U(t)(C(f))3. Then, F(U(t))(C(f))3 follows easily. Therefore
we obtain that U(x, t) C2+(f). Thus, for > 0, (t, x) U(t, x) is continuously
differentiable in t, twice continuously differentiable in x and we have a classical solution.

Now, we are ready to prove the following.
THEOREM 2.1. For any Uo X, Uo >- O, the corresponding solution exists globally

and is nonnegative for any >-O.
Proof. Due to Uo>_-0 and (2.1), it follows that

U(t)>-_O, 0_--<t< T.

In addition, since -R(/x, A,) maps nonnegative elements of Xi into themselves for
real/z p(Ai), -R(tz, A) does the same for real/z p(A). On the other hand, for any
t>0

(2.10) e’x lira I--tA x.

In view of -A being a sectorial operator, it can be shown that for any fixed > 0,
n o(A) if n is suciently large. Then e. U >_- 0, > 0, if U >_- 0 by (2.10). This,
combined with the fact of F(U) N 0 for U _>-0, implies the estimate

U(t) _-< exp (At) Uo for all e (0, T).

Therefore, by (2.7), we have

(2.11) g(t)ll-<- Me-’ll goll for all t (0, T),

which provides an a priori estimate for U(t), whence the global existence of U(t) and
its nonnegativity follow in a standard way, together with the validity of (2.11) on R+.

Next, we prove an existence theorem for nonnegative and bounded solutions of
(1.1), (1.2), (1.3)i.

Let Ao denote the principal eigenvalue of Laplace operator A on -2 with
homogeneous Dirichlet boundary condition. Then Ao < 0. Set A =max {klAo+ ),, kEAo+
ill, k3A0 d-/2}.
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THEOREM 2.2. Suppose A <0. Then, for any Uo X%, Uo>-O, there exists globally
a unique classical solution to (1.1), (1.2), (1.3)i that is nonnegative and bounded in the
sense of Loo.

Proof. Recalling the special form of A and the property of the spectrum for the
operator Ai which is strongly elliptic, we may take A as -yo in (2.7), i.e., -Yo A < 0.

From the proof of Theorem 2.1, we read ott the estimate

which implies that

O <- U( t) <= exp (At) Uo,

U(t)l()3 lexp (At) Uol(c)3.
For Uo X, it has been shown that exp (At) Uo X and U(t) Xo. By Lemma 2.2,
X(L()) continuously. Therefore, by a known estimate with fractional powers
of operators (cf. [4, Thm. 1.4.3]),

u(t)l()-< Cllexp (at)Uo[lo Cl[(-a) ea’[I Uoll
(2.12)

Ct-% e-o for > 0.

Thus, the theorem is proved.
It is easily seen that the state (0, 0, 0) is an equilibrium solution for (1.1)-(1.3)i.

Now, we will discuss the stability of the solution.
THEOREM 2.3. Suppose A <0. en the unique equilibrium solution (0, O, O) of

(1.1)-(1.3)1 is globally stable. Namely, for any UoXo, UoO, assume U(t) is the
corresponding solution of (1.1), (1.2), (1.3)1 as investigated in eorem 2.2; then
limt U(t) 0 in the sense ofL, uniformly for x.

oof Since -yo A < 0, (2.12) gives the result.
Next, we analyze the possibility of relaxing the assumption A < 0.
LEMMA 2.5. Assume klAo+ T < 0; then there exists a unique nonnegative equilibrium

solution for (1.1)-(1.3)i that is (0, O, 0).
Proof Let U*= (s*(x), V(x), V(x)) be another nonnegative equilibrium solu-

tion. Namely,

( Y S*- M1V- M2V )=0,klAS*+ S* y- yl(al+ S*) y2(a2+ S*)

(2.13) k2A V; + k,A V; + vi.-D, =0,

X,

a+S-D =0,

which means S*(x) is a nonnegative solution of the following linear problem

where

kaAS+a(x)S=O, xfl,

3’S._ M1V* M2V*2a(x)= y--- y,(al + S*) y2(a2+ S*)"
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Due to S*(x) >= O, V*l (X) >= O, V*2 (x) >- O, it follows that

a(x)<-,
which, combining with klAo+ y < 0, implies

-Xo>a(x)/kl.

Therefore, it can be shown that S*(x)=0, x 1. Then it turns out that V*(x)=0,
xII, i= 1,2.

THEOREM 2.4. Assume klAo+ y < 0. Then the unique nonnegative equilibrium state

(0, O, O) is globally stable in X; namely, for any Uo X, Uo >= O, suppose U(t) is the
corresponding solution for (1.1)-( 1.3)I, then

lim u(t)II 0.

Proof. In view of klAo+ y < 0 and the fact U(t)-> 0, it is easily proved that

(2.15) lim S(t) 0 in L(II).
t--

Define a Lyapunov functional as

.( t) L( VI, V2) - V(x, t) + V(x, t)] dx.

Then

Noticing the following

d..( t)
dt

we find that

dt V----+V at jdx.

3 V1 k2A VI + V1(M,._.__S D1)at al+S
0 V2 k3A Vz + V2 D2
Ot a2+S
Vl(0) rio(X), v(0) Vo(X),

Vl(t) V2(t) on all,

al+S] -D,

a2+ s] D2 V22] ax.

For the first term, we have, by using the Poincar6 inequality

2[ M1S \ VI] dxIi.[k’2glAgl+glal._S) -o’
k Vl k VV d- 01 V dx + V a; dx

-k= <v1)=-D v dx+lsl v dx

/=o- D, +ls(t)l vl= dx,
a
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Similarly,

k3V2AV2+ V22
a2+ S]

D2 V2 dx N k3Ao- D2+ M2 ISlLoo V21 dx.
a2

In view of limt_oo S(t)=0 (in the sense of Loo(f)), it is known that there exists to> 0,
tr > 0 such that

max NEAo-DI+ISI, NaAo-DE+MEIsILoo N- for teto.
1 a2

Thus,

d.( t)-_< -2crY(t) for >- to.dt

This implies that

( t) (to) e-2(’-’),
so

lim (t) lim L( V1, V2) 0,

which with (2.15) gives the result.
We will show that the theorem is not true, if the assumption klAo+ y < 0 does not

hold.
THEOREM 2.5. Assume klAo+ y>--0. Then there exist at least two nonnegative

equilibrium solutions for (1.1)-(1.3)1. Therefore it is impossible for the solution (0, O, O)
to be globally stable.

Proof. It suffices to prove that there exists a nontrivial nonnegative solution for
the following problem:

y
klAS + S y --S- MI V1 M2 V2

y(a+S) y2(a2+S)
0,

(2.16)

In fact, we may take V(x) as V(x)-=O, i= 1, 2, and S(x) as the nonnegative
solution of the following problem:

k3A V2+ V2( M2S D2) _.0
a2+S

S(x) V(x)= Vz(x)=0 on

ioeo

klAS+S y---S --0, x,

sIon 0,

k2AV1 + VI(M1---S -D1) =0, X,
al+S
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Due to klAo/ T->0 it can be shown, by comparison theorems and monotonicity
methods, (cf. [12]) that there exists a unique solution S*(x) for (2.16) such that
0< S*(x) <- K, x fl. Thus, (S*(x), 0, 0) is a nontrivial solution for (1.1)-(1.3)1 which
is nonnegative. Therefore, (0, 0, 0) cannot be globally stable.

We discuss the stability of U* (S*(x), 0, 0) now. We adopt a standard "lineariza-
tion procedure" relative to the nontrivial equilibrium solution U*. In doing so, we
take the linear expansion of F at U*, i.e., F( U* + U) F(U*) + BU+ g(U) and make
a careful analysis of the spectrum of o?/= A + B.

Consider

where

[fl( U* + u)
F( U* + U)=/f( U* + U)

\f3( U* + U)

M1 Vial M2Vzafl(U*+ U)--- M1V1 MzV2 y (S+S,)Z+ +
Yl Yz K yl(al + S+ S*) y2(a2+ S+ S*)

A( u* + u)=

Thus

(2.17)

M1 V1 M2V Y Su __23/3/S* Mlal
Yl Y2 K -KS*S-K /yl(a + S*) Vl

Mlal MEaz
VlS"{- V2yl(al / S*)(al + S+ S*) yE(a2 + S*)

(2.18)

f3( u* + u)

M2a2

g(U)=

y2(a+ S*)(a2 + S + S*)
S*M1V1 S*M2 V2 2Ys.S-’fl(U*)

yl(al/ S*) y2(a2+ S*) K

Mlal VIS M2a2 V2S
yl(al + S*)(al + S* + S) y2(a2+ S*)(a2+ $* + S)’

Mlal V1
al/S/S*

Mlal Mlal V1S,
al / -* V1 / (al / S*)(al / S* / S)

M2a2 V2
a2 / S / S*

Ma2 M2a2
az+ S* Vz+ (az+ S*)(az+ S*+ S) VS.

M1S* M2S*
Yl(al + S*) y2(a2 + S*)

Mlal 0
al+S*

Mlal V1S

M2a2
a2 / S*

Ma:VS
yl(a,+S*)(al+S*+S) y2(a2+S*)(a2+S*+S)

Mlal VIS
(a / S*)(a / S* / S)

MaVS
a2/ S*)(a2 / S* / S)
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Let us recall a theorem about stability by the linear approximation [4].
Let A be a sectorial linear operator in a Banach space X, and let f" U X where

U is a cylindrical neighborhood in RxX (for some c <1) of (z, oo)x {Xo}. We say
Xo is an equilibrium point if x(t) =- Xo is a solution of (dx/dt)+Ax-f(t, x), t> to, i.e.
if Xo D(A) and Axo =f(t, Xo) for all > to.

A solution g(. on [to, c) is stable (in X) if, for any e > 0, there exists 8 > 0
such that any solution x with []X(to)- g(to)l[ < exists on to, ) and satisfies [[x(t)-
g(t)l[ < e for all -> to; that is, if Xox(t; to, Xo) is continuous (in X) at Xo g(to),
uniformly in ->_ to. The solution g is uniformly stable if x-x(t; t, Xl) is continuous
as x-g(tl), uniformly in => tl and tl => to.

The solution g(. is uniformly asymptotically stable if it is uniformly stable and
[Ix(t; tl,Xl)-g(t)[[-O as ]t-tl[-+oo, uniformly in tl to and [[Xl-g(tl)[[ <t$ for
some constant 8 > 0.

PROPOSITION 2.4 (of. [4, Thm. 5.1.1]). Let A, f be as above and let Xo be an
equilibrium point. Suppose

f(t, Xo+ z)=f(t, Xo)+ Bz + g(t, z)
where B is a bounaea linear map from X to X ana g(t, z)ll o(11 z ) as z - 0,
uniformly in > z, andf( t, x) is locally H61der continuous in t, locally Lipschitzian in x,
on U.

If the spectrum of A-B lies in {Re A >/3} for some fl > O, or equivalently if the
linearization

+Az Bz
dt

is uniformly asymptotically stable, then the original equation has the solution Xo uniformly
asymptotically stable in X. More precisely, there exist p > O, M >- 1 such that if to > z
and IIx -xoll --< p/2M, then there exists a unique solution of

dx
--/Ax =f(t, x), > to, X(to) x1dt

existing on to <-- < o and satisfying for >- to
IIx(t; to, xl) Xoll,, -<- 2M e-<’-’o)llx- xoll

From (2.17), (2.18), it is easy to check the validity of Proposition 2.4 for our case.
Then, in order to investigate the stability property of U*, it suffices to analyze the
spectrum of 0//= A+ B.

Let us write down the resolvent equation for

(A+B-II)U= V, IxC, VeX,
where

Namely,

u= (u,, u, u), v= (v,, v, v).

2YS, )AI-- -/z Ul--
M1S* M2S*

y(a + S*) u2 y2(a2+ S*) u3 VI’

(2.19) (A2 Ma’-’---L )a + S,-tz U2 V2,

A3- M2a2 )a2+ S-----’-- tz u3 V3
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As

tx p a2-al + S,]
f) p a3- ff,],

the system (2.19) can be written as

A-- - u=l/+

Denote

"1 A1-2T ._--S /J,, A2__ A2 Mlal MEa2
al + S*’ A3 A3

a2 + S*"
Set {/x"/x s P(,2)f’)p(3), l(/X) is invertible in L2(12)}. The following lemma is
easily proved.

LEMMA 2.6. p(ll) and R(Ix, all) is given by

R(br,

for l p ll ).

Thus, in order to analyze the spectrum of 0//, we have to discuss the invertibility
of Al(/X). Clearly, the following lemma can be obtained.

LEMMA 2.7. The operator Al(/x), /x p(A2) fqp(3) is invertible in LE(f) if and
only if zero is not an eigenvalue ofAl(pr).

Set K* max {Re A, A o’(/2) [,.J o’(/3)).
LEMMA 2.8. Assume K* <0; then there exist 0" (0, (7r/2)) and y*>0 such that

(see Fig. 1)

S*={/z [arg(/z+y*)[<E+=2 0").

FIG.
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Proofi Due to Lemma 2.7, it suffices to show that there exist 0*e (0, (r/2)) and

7* > 0 such that fi,,(/x) does not have zero as an eigenvalue whenever/ belongs to S*.
Denote an arbitrary eigenvalue of AI(/x) by ’(/z) and any eigenfunction belonging

to the corresponding eigenspace by W(), normalized to 1 in the L2-norm. Let
us put Re , U2 Imp, 1(1, 2)= Re ff(), 2(1, 2)= Im (). Due to

A(g) W() (g) W(),
(AI() W(), W()) (),

s*

+(-S*W( W( ) ,
it turns out that

’l(/X../z2) A1----S* W(/x). W(/x) + -- W(/x). W(.) -/Xl.

72(/"1’1 jtL2)--"--j[2"
Since S*(x)>0, xl) satisfying (AI-(T/K)S*)S* =0, S*10n=0, which means that
the second order elliptic operator A-(y/K)S* has S* H() as positive eigenfunc-
tion with zero eigenvalue, it follows that the pure point spectrum of A-(y/K)S* is
localized on the nonpositive half-axis, and

A-S* u,u N0 for anyueH(a).

Therefore, (I,)--((/K)S*W(), W())<O for any 0. In view of
the inequality (0, )<0 and the continuous dependence of () on , it turns out
that there exist c > 0, > 0, - e (k*, 0) such that

(,)< 0 for any e o(A) 0(A3) with e (-, 0),

121 C, while 12(1, 2)1 121 > C > 0 when > c These facts show that 1(),
g p(A2) p(A3) has possibly zero as an eigenvalue only for such kind of belonging
to the subset{ p(d2) p(d3) with Re < -a, [Im #l < C}. Then the lemma is proved
for any 0"(0, arctg (a y*/C)), y* (0, a). (See Fig. 2.)

It is easily seen from Lemmas 2.6-2.8, that [10]
LZMMh 2.9.

tr(//) {h cC, Re A <-y*}.
This implies, by Proposition 2.4, the next theorem.

/2,2

FIG. 2
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THEOREM 2.6. Assume k1Ao+ ’}’ -> 0 and k* < O. Then the equilibrium solution U*
(S*(x), O, O) is uniformly asymptotically stable in X%. Namely, there exist p > O, M >- 1

<-- /2M, Uo>=such that if Uo u*ll o p o, then there exists a unique solution U(t) of
(2.3) on 0 <- < +oo satisfying

<-2Me-v*t U* - 0 as +o.u(t) u* Uo-

3. The case of Neumann conditions. We deal with problems (1.1), (1.2) and (1.3)ii
in this section. First, consider the following general form.

Ult--klAu -fl(Ul, u2, U3),

(3.1) u2t-k2Au2=f2(ul, u2), in R+xO,

U3t- k3Au3 ---A(Ul u3)

together with the boundary and initial conditions

OUi+(3.2) B,[u,]= oli(x i(X)Ui "-’0 on 0a x R+

(3.3) ui(O, x) Uoi(X) on f/

where 1-1 is a bounded domain in R (n 1, 2,...), 01/is the boundary of 1"1, ai -> 0,
fli _-> 0 with a + fl > 0 on 01"1, 1, 2, 3. 0/0n represents the outward normal derivative
at the boundary.

Assume that a, fl, Uoi are smooth nonnegative functions with Uo0, fl is
continuously differentiable in R/x R/x R/ and f2, f3 is continuously differentiable in
R/x R/. 1-/is smooth, 011 belongs to C1+ (a >0). In addition, in order to employ
the monotone argument to establish an existence-comparison theorem in terms of
upper and lower solutions for (3.1)-(3.3), we assume

(H)
(Ul, U2, U3) 0, (Ul, U2, U3) 0,

0U2 0U

0f20, 0f30 for u=>0, i= 1,2,3.
0U 0U

Obviously, the reaction terms in our model (1.1) satisfy (H). The precise definition of
upper and lower solutions are given as follows.

DEFINITION 3.1. Let U-(ffl, if2, ff3), _U-(_Ul, _u2, _u3) be an ordered pair of
smooth functions in Dr satisfying the following inequalities (3.4), (3.5), (3.6). Then
U, _U are called upper and lower solutions of (3.1)-(3.3), respectively.

/lt- klatil -->fl(til, _u2, _U3)

(3.4) fi2t k2Aa2 >=f2(a,, t2), t, x) e Dr,

a3t--/3A/3 A(lil,

-Ult- klAl A(-Ul,/2,/’3),

(3.5) _ut k2A_u2 A(_Ul, 2), (t, x) e Dr,

_U3t k3A_u A(_Ul, _U3),
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(3.6)
n,[a,] -> o->_ n,[_u,], (t, x) s,
a(o, x) _-> U,o(X) _-> _u,(O, x), x , i= 1,2,3,

where Dr (0, T] x D, Sr (0, T] x 01, T < but can be arbitrarily large.
Suppose that for given reaction functions fl, f2, f3 satisfying the above assumptions

there exists an ordered pair of upper and lower solutions U=(ffl, 02, a3), _U=
(_Ul, _u2, _u3). Define

and set

(DT) {(Ul, U2, U3)" Ill - C(DT), g_i <= tli <= ai on DT, 1, 2, 3}

(3.7) li sup

To establish an existence-comparison theorem we consider the sequence { U(k)}
{uk), u(2k), u(3k)} obtained from the linear problem.

(3.8) (uk>)+ kiAu," (k> + liuk> liuk-l> +fi(uk-l>, u(2k-l>, u(3k-l>), (t,x) Dr,

(3.9) Bi[uk)]=O, (t,x)Sr,

(3.10) uk>(0, x) Uio(X), x D

where i= l, 2, 3 and k= l, 2,
For each k, the above system consists of three linear uncoupled initial-boundary

value problems. Therefore the existence of {uk, u(2k, u(3k} follows from the standard
existence theorem for scalar systems. To ensure that {uk, u(2k, u(3k} is a monotone
sequence and converges to a unique solution of (3.1)-(3.3) we use the initial iteration
(00), -//(20), -/’/(30)) (01,-//2,-/’/3) to construct the sequence {0k), (2k), _/./(3k)} from the

-(k) klAOk)_l_llOk) llOk-1)+fl(ok-1) u(2k-1) u(3k-1)),.l lt

(3.11) _u(2t-k2/_u2 + +f2(_uk-l,
b(k_ k3hu_ (3k + 13U_ (k 13U_ (3k-l +f3(_uk-l, _u(3k-l),3t

while the sequence {_uk, 0(2k, 0(k} with (_u, 0(, 0(3) (_Ul, 02, 03) is determined
from the equations

b(k)_ klA_gk)+ lluk) llgk-1) +fl(gk-1), 0(k-1) 0(3k-1)),It

(3.12) (k (k 120(2k 120(2k-1) 0(2k-1)),,,:, k:aa: + +f:(a-,
-(k)
t/3t k3A03 + 1303k 1303k-l +f3(ok-1), 0(3k-1)).

In each system, the boundary and initial conditions are (3.9), (3.10). These two systems
are interrelated. With this construction we prove our existence-comparison theorem.

THEOREM 3.1. Suppose the pair ofupper and lower solution (01, 02, 03), (_Ul, _u2, _u3)
can be chosen. Then the sequences

0 } {a, a, a}, { v_ } {u_, _’?,
obtained from (3.11), (3.12), (3.9) and (3.10) converge monotonically from above and
below, respectively, to a unique solution {Ul, u2, u3} of (3.1)-(3.3) such that

u_,(t,x)<=u,(t,x)<-_a,(t,x), (t,x)eD, i=1,2,3.

equations
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Proof. Let u* =/1- ffl), U2
$ (21)__

(3.11) and (3.12), it follows that
_u2, //35= _/./(31)- _U Then by (3.4), (3.5), (3.6),

(3.13) + l,u*, >- o,
(3.14) B,[u*]_-> 0,

(3.15) u* (O, x) >= O, i=1,2,3.

By the maximum principle, the above inequalities imply that u* => 0 on Dr, 1, 2, 3;
namely, 1 >= 1), _u2<__ _u21), _u3<= _u31. Similarly, it can be shown that _ul <= _u 02 >/(21)

Now let u* al- _ull; then the assumptions (H), (3.7) and the relations in (3.11)
and (3.1 2) imply that

u k,Au* + l,u* >-- O, i= 1,2,3.

Since Bi[ u*] 0, u*(0, x) 0 by using the maximum principle we obtain u* -> 0, i.e.,
_u)_< al 1 2, 3 The above conclusions lead to the relation

i= 1,2,3.

Then, by induction, it is not difficult to show that

_U i(k-1) =_<uk) =< ak) =< ui=(k-1), i= 1, 2, 3, k 1, 2,"

It follows from this monotone property that the pointwise limits limk_ tk)(t, X)
ai(t, X), limk_ _uk)(t, X) .ui(t, X), 1, 2, 3, exist and .u <= a on /)T.

By a standard regularity argument and the similar approach used by Pao in 11 ],
it can be shown that (.u, .u2, .u3)= (tl, a2, a3)= (ul, u2, u3) is the unique solution of
(3.1)-(3.3). Obviously, the solution (Ul, u2, u3) satisfies _u-< u-< , 1, 2, 3. Theorem
3.1 is proved.

For our problem (1.1)-(1.3)ii, we choose the pair of upper and lower solution as
follows:

Set

sup So(x), V sup Vo(X), 1, 2.

Then solving the following problem:

(3.16)

we obtain

(t) "yS-S2, S(O) s,

(3.17)

S(t)
K

IV/(t) V/exp a,+ S(7) -D,) dr/], i= 1, 2.
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Clearly, (0, 0, 0) and (S(t), Vl(t), V2(t)) are a pair of lower and upper solutions of
(1.1)-(1.3)ii. Thus, Theorem 3.1 implies the following.

THEOREM 3.2. There exists a unique solution of (1.1)-(1.3)n for (t, x) R+ x fl,
such that

0 -<_ S( t, x) <= K 1+ exp(-yt) =S(t),
(3.18)

0<= V(t, x) <- V exp [B,(t)]
where

Iot[ MiS(rl)-Di] drl, i=1,2.Bi(t)
ai+ S(.rl

We next investigate the asymptotic properties of the solution.
From (3.16), (3.17) it is easy to see that S(t) is increasing with S(t)<K and

S(t) --> K as -> +o if g < K, while S(t) is decreasing with $(t) > K and S(t) --> K as
t-->+ if g> K.

We consider the case g =< K first.
THEOREM 3.3. Let MK/(ai + K) < D (i= 1,2) and O< So(x) <- Kfor x l). Then

the unique global solution (S, V1, V_) to the Neumann problem (1.1)-(1.3)i satisfies
(3.19) lim S(t, x) K, lim V(t, x) 0, 1, 2.

t--->

Proof. Instead of (3.16) we consider

,(t) 0, S(0) K,

(3.20) (/’i( t) ( M’K D,) , (0) 1
ai+K

In view of So(X)<= k, the solution {K, Vl(t), V.(t)} of (3.20) is also an upper solution
of (1.1), (1.2), (1.3)ii. This implies

lim V(t, x)=0, i= 1,2.
t->

Let _So= infa So(x)> 0 and define _S(t) as follows

dS_(t)_ yS__ Y__s_M____ VI(t)S__M2 V2(t)_S
dt K- Yl al+_S y2 a+_S’

(3.1)
_s(0) =_So

where Vl(t) and V(t) are determined by (3.20).
To show the first relation in (3.19) we recall the following definition and a theorem

of Markus [9].
DEFINrrION (Markus). Let A" x=fi(x, t) and A: x[ =f(x) (i= 1, 2,..., n) be

a first order system of ordinary differential equations. The real-valued functions f(x, t)
and f(x) are continuous in (x, t) for x G, where G is an open subset of Rn, and for
> to and they satisfy a local Lipschitz condition in x. A is said to be asymptotic to
A(A-->A) in G if for each compact set K c G and for each e>0, there is a
T= T(k, e) > to such that If(x, t) -f(x)[ < e for all 1, 2,. ., n, all x K, and all
t>T.

THEOREM (Markus). Let A --> A in G and let p be an asymptotically stable critical
point ofA. Then there is a neighborhood N ofp and a time T such that the omega limit
set for every solution x( t) ofA which intersects N at a time later than T is equal to p.
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Now let us turn to (3.21). Since V(t) - 0 as - c, (i 1, 2) and S-- K is an
asymptotically stable solution of

(3.22)
dS y
d--; s

regarding the equations in (3.21) and (3.22) as A and A in Markus theorem respec-
tively, it follows that _S(t) K as t- +. On the other hand, it can be shown that
(_S(t), 0, 0) is a lower solution, which, together with the upper solution (K, Vl(t), VE(t)),
leads to

lim S(t, x)= K.

Now we consider the general case without the restriction S <-K.
THEOREM 3.4. Let MiK/(ai + K) < D (i 1, 2) and infa So(X) > 0. Then the

solution of (S, V1, V2) to the Neumann problem (1.1), (1.2) and (1.3)11 satisfies
limt_,oo S(x, t) K, limt_, V(x, t) O.

Proof. Take a lower solution (_S(t), O, O) and the upper solution (S(t), V(t), V2(t))
as follows:

dS y_ y
dt

g’ S(O) S,

(3.23)

d_S
y_S- 3/S2

dt- -------dV, [ M2g
dt al+S
dV2 ( Mg
dt

M, V1S_ M2 V2S_

Yl (a, + _S) Y2 (a2 + _S)’

Vl, v(o)

8(0) _So,

S(t)<k+e for t>To.

exp -D, dr/ by A(To),
a, + S(r/)

it follows by (3.24) and (3.25) that

V(t) <_- V(0)A(To) exp / M(K + e)
ai+(K+e) -D,](t-To) for t> To.

Hence, V(t) ---> 0 as +cx3. Then, the theorem of Markus leads to limt_ _S(t) k. By
Theorem 3.1, it is known that

O Vi( t, x) - Vi( t), _S( t) <- S( t, x) <- S( t).

(3.25)
Denote

where the definitions of , _So, are the same as before. Namely

sup So(x) < +o, _So inf So(x) > 0, sup Vo(X) > 0, 1, 2.

Since MK/(a + K) < D, there exists e > 0 such that

(3.24)
M(K + e)

< D,, i= 1, 2.
ai+(K +e)

On the other hand, in view of the property of the solution of (3.23)1, there exists To > 0
such that
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Therefore

lim S(t,x)=K, lim V(t,x)=0
t+oo t-+o

(i 1, 2) uniformly for x

Next, we consider the case when one of the assumptions MiK/(ai + K) < D does
not hold, namely, either

(3.26) MK M2K>-_D <D2a+K a2+K

or

(3.27) MIK M2K<D1, --> D2.
al+K a2+K

For (3.26), the same argument used in the proof of Theorem 3.4 shows that
V2(x; t)--> 0 as --> +oo. Then it is natural to investigate the stability of (A1, VI*, 0), which
is a solution of (1.1), (1.3)ii. Where AI=alD1/(M1-D1)>O (this is guaranteed by
M1K/(al + K) >- D,), V* (yl y/M1)(1 A1/K)(al + A) -> O, which becomes equality
if and only if K A1, i.e. M1K/(al + K) D1.

To analyze the stability of (A1, VI*, 0), we recall linearized stability.
Consider the Neumann type initial-boundary problem

OU
m=DAu+F(u) inR/xf,
Ot

(3.28)
On

u(O,x)=uo(x), x.
Suppose u o(x) is a stationary solution of (3.28), namely,

(3.29)
-DAo(x) F(o) in f,

On on

Let S denote the differential operator obtained by formally linearizing the right-hand
side of (3.28) about the given solution 0"

S(fi) -= DAt + 0_2_ (q(x))tiF
3u

where OF/Ou denotes the Jacobian matrix.
We consider S as an operator on the space C(l)) of bounded vector functions,

continuous on 1), with domain consisting of functions in C2(I)) and satisfying the
given Neumann boundary conditions. Let tr(S) denote the spectrum of S.

DEFINITION 3.2. 0 is stable according to the linearized criterion (1.c.) or called
linearly stable if tr(S) is in the negative half-plane and is bounded away from the
imaginary axis. Namely, there exists a negative number a < 0 such that Re z =< a for
any z tr($). o is marginally stable (1.c.) if Re z =< 0 for any z tr(S) and there exists
a Zo such that Re Zo 0. o is unstable (1.c.) if tr(S) contains a point in the right open
half-plane.
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DEFINITION 3.3. Let ff be a solution of (3.29). Then ff is stable if there is a
neighborhood N of fi and positive numbers C, a such that if u is a solution of (3.28)
with u(0) N, then u exists for all > 0 and

u(t)- ,711 c e-’ u(O, x)- ,711, t>0

where I1" denotes the usual L2-norm on C(fi).
It is known that (cf. Smoller [12]) if ff is a linearly stable solution of (3.28), then

ff is stable.
Now we analyze the stability of (A1, VI*, 0). Let T be the linearization of the

right-hand side of (1.1) about (/1, V1, 0).

M1 al Vl* D1S klA+y- Y2A1 )2K y(al+A1 Yl

Mlal V*T V
(al + A 1)2 k2A

0 0

MEAl
y2(a2+A1)

M2A1kaA- DE+
a2WA1

S

We need to investigate the spectrum tr(T). Let tr(A) denote the spectrum ofthe Laplace
operator as acting on C(l)) with domain consisting offunctions in C2(,) and satisfying
no-flux boundary conditions.

It is well known that 0 tr(A) and tr(A) consists of an infinite but discrete set of
simple real eigenvalues, bounded from above, namely, < r, <. < r2 < Zl < ro 0.
Define

C Mlal V*
(al+A1)2’

CE=y-Y2A---,
K Yl

P(s,/x) PI(,/x). P:(s,
P1 s,/z ( k3/z D2 - OlP2(:,/x) :2- (kl/Z + k2/x + E)+--C + (kl/X + E)kEtZ,

Yl

and

A= {r/: P(7,/z) =0 for some/x r(A)}.

Our first result is that

(3.30) (r(T) c A.

To prove this, suppose that r/ A. Then P(r/,/z) 0 for all/z (r(A), so 0 p(r/, (r(A)).
Now consider the sixth order differential operator p(r/, A). It is known that for such
polynomials p, (r(p(A)) =p(tr(A)) [2], so that in our case we deduce 0 (p(r/, A)).
Therefore p(r/, A)-1 exists as a bounded operator on C(fi), which implies that both
pl(r/, A)-1 and pE(r/, A)-1 exist as bounded operators on C(). For any given f, g,
h C(), we can solve the equations

(T-qI) V
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explicitly as follows"

s Da pE( rI’ A g + kEA "q )PE( "q’ A)-
l_Yz( aE + h Pa (’q’ A h +f

Vl=(klA+E-n)p2(n,A)-lg-Cp2(n,A)-l[ M2l ’h

V2=p(n, a)-h.
This shows that (T), and this conclusion in turn proves (3.30).

Our problem has been reduced to analyzing the propey of A. Suppose A;
then there exists (A) such that

n -(k +k+)n C+(k +)k =0.
aE+A y

Let (i 1, 2, 3) denote the roots of the above equation. Clearly,

MEAlk3 D2 aEWAl’

n.3 2 w-2 (kl +k + -4x. +(kl +)k

Due to MK/(a+K)D, MK/(a+K)<D, it can be shown that -D+
((Ml)/(a+)) <0, which implies, since N0, that <0.

Assume K < a + 21, which shows < 0; then it turns out that Re ,3 < 0. Thus,
it ends up that (I, g, 0) is a linearly stable solution of (1.1)-(1.3). We obtain the
asymptotic propey of the solution (s, v, v) in this case as follows.
TOM 3.5. Suppose MK/(a+K)D, MK/(a+K)<D and K<

a +2 (namely, aD/(M-D) N K < (aD + aM)/(M- D)). en there exists
e > 0 such that

gf o(x) 11 < , lo(X vWll < . Moreover, lim, V(, x) 0, uniformlyforx e a.
Similarly, we obtain the following result for case (3.27).
ToM 3.6. Suppose MK/(a+K)<D, MK/(a+K)D and K<

a+21 (namely, aD/(M-D)N g < (aD+aM)/(M-D)). en there exists
e > 0 such that

gf o(x < , o(x v <
here (,0, V) is a solution of (1.1), (1.3)n, I=aD/(M-D)>O,
(y/M)(1-/K)(a+)O which becomes equality if and only if K=I, i.e.,
M/(a+=.

Finally, we consider the case when both of the assumptions MK/(a + K)<D
do not hold, namely,

(3.31) MK e D,, 1, 2.
a+K

Clearly, (3.31) is equivalent to 0< I N K, 1, 2. Bythe same argument as used before,
we obtain the following results.
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THEOREM 3.7. Suppose 0<A1 <A2<K < al+2A1; then there exists e >0 such that

lim IIS(t,x)-All-o, lim I[Vl(t,x)- V*I[-0 lim IIv=(t,x)ll-o
t- t-O t-O

if IISo(X)- AII < , vlo(x)- vll < , V=o(x)ll < .
The last theorem is similar.
THEOREM 3.8. Suppose 0 < A2 < A < K < a2 + 2A; then there exists e > 0 such that

lim IIS(t,x)-A=ll-o, lim IIVl(t,x)ll=O, lim IIv=(t,x)- v*ll-0

if IISo(x)- A=II < , Vo(x)ll < , V=o(X)- v*ll < , where ’1, VI and A2, V’22 are the
same as in Theorems 3.5 and 3.6, respectively.
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Abstract. The persistence and smoothness of hyperbolic invariant manifolds is established for small
perturbations of retarded functional differential equations. Properties of exponential dichotomies and of
spectra of invariant manifolds, which are established here for semiflows, form the basis for proving the
results. The analysis uses a moving system of coordinates, around the original hyperbolic invariant manifold,
consisting of coordinates along the tangential, unstable and stable manifolds of the linearized equation
along solutions of the unperturbed equation which lie on the original hyperbolic manifold.
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1. Introduction. The study of invariant sets is of fundamental importance in the
geometric theory of dynamical systems. Since, in general, these sets can have a wild
topological structure, it is of interest to identify situations where they have the par-
ticularly simple structure of differentiable manifolds. Especially important in this
context are those manifolds that persist under small perturbations, a situation that
leads naturally to the study of hyperbolic invariant manifolds.

There is an extensive literature on hyperbolic invariant manifolds for ordinary
differential equations, cf. [1]-[3], [6], [8], [9], [13], [14]. In the context of infinite-
dimensional dynamical systems, the study of hyperbolic invariant manifolds was
pursued for certain parabolic partial differential equations [7] and for particular cases
of functional ditterential equations 10]-[ 12].

The studies of Kurzweil 10], 11 on hyperbolic invariant manifolds for functional
differential equations (FDE) rely on establishing fixed points for maps which corre-
spond to discrete dynamical systems obtained by discretization of the semiflow induced
by the equations. The approach in this paper is, in contrast, based directly on the
semiflow and uses techniques of exponential dichotomies for obtaining bounded
solutions, following the work of Hale, cf. [3], for hyperbolic invariant manifolds of
ordinary differential equations (ODE). It is believed that this approach is simpler than
methods based on discretization.

The paper begins by establishing the concept of exponential dichotomies in the
context of skew-product semiflows in Banach vector bundles, and the concept of
hyperbolicity using the notion of spectrum of an invariant manifold, developed by
Sacker and Sell for flows [15]-[19]. Here, the numerous discussions with George Sell,
while this work was in progress, played an important role, in particular in connection
to work of his in collaboration with Sacker [18]. A short reference is then made to
FDEs on manifolds, based on the work of Oliva, cf. [5], referring the reduction of the
general situation to the case of FDEs on euclidean space Rq. These are basically the
contents of 2, 3 and 4.
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The main difficulty in establishing the persistence and properties of hyperbolic
manifolds for FDEs is related to the impossibility of extending backwards in time all
the solutions. It is useful to linearize the equation around the original invariant manifold
and to consider the corresponding tangential, unstable and stable manifolds, which
are themselves invariant under the linearized semiflow. As it turns out, one only needs
to extend the solutions backwards in time along the tangential and unstable directions.
That involves no difficulties because both the tangential and unstable manifolds are
finite-dimensional and, therefore, the semiflow for the linearized equation can be
extended on them to a flow of an ODE. This leaves out only the evolution on the
stable manifold to be considered as an FDE, but we do not need to extend the solutions
backwards there. These ideas are pursued in 5 by the introduction of a moving system
of coordinates centered at solutions of the unperturbed equation lying on the original
invariant manifold. The perturbed equation in these coordinates is given by a family
of systems of two perturbed ODEs describing the evolution of the tangential and
unstable variables, and an FDE for the stable variable. These systems are written as
perturbations of the linear variational equation around the given hyperbolic manifold,
using the variation of constants formula introduced by Hale for FDEs, cf. [4]. The
analysis is actually based on the existence of exponential dichotomies for the linear
variational equation which split the solutions with initial conditions in the tangential,
unstable, or stable spaces.

In 6, we study the persistence and the smoothness of integral manifolds for
FDEs of the form obtained by application of the system of coordinates around the
original invariant manifold, and we also study the structure of the semiflow around
the integral manifolds, under general assumptions of global Lipschitzian nonlinearities
with sufficiently small Lipschitz constants. The persistence of the integral manifolds
is established using techniques of exponential dichotomies for the determination of
bounded solutions, following an approach introduced by Hale, cf. [3], and also applied
by Sell [ 19] in the context ofODEs. The smoothness properties ofthe integral manifolds
are established by a modification of the method developed by Fenichel [2] also in the
context of ODEs.

Finally, the results obtained for systems in coordinate form are applied, in 7,
to prove the persistence and smoothness of hyperbolic invariant manifolds for FDEs,
and to study the local geometric structure of the orbits around them. Using "cut off"
functions around the original invariant manifold, in a similar way as it is usually done
for center manifold theory, one can get a system that agrees with the original system
inside a neighborhood of the invariant manifold, and whose nonlinear terms satisfy
the global Lipschitz conditions assumed in 6. Thus, finding an invariant manifold
for the perturbed equation, in such a neighborhood of the original manifold, amounts
to finding an invariant manifold for the auxiliary system which is obtained through the
application ofthe "cut off" functions mentioned above. The results obtained for systems
in coordinate form are only good to get patches of the invariant manifolds which occur
under perturbations. These pieces have to be patched up in order to obtain the perturbed
manifold, but this can be easily done using the uniqueness properties established in
6 for the integral manifolds of systems in coordinate form.

The system of coordinates which is introduced in this paper, around the original
hyperbolic invariant manifold, is redundant, in the sense that each point close to the
manifold can be represented by infinitely many combinations of the coordinates. In
fact, the system of coordinates is centered at points of the invariant manifold, which
therefore account for some of the coordinates used, and also involves coordinates
along the tangential, unstable and stable spaces of the linearized equation around the
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manifold. The redundancy comes from the fact that the coordinates giving the point
on the manifold where the coordinate frame is centered and the tangential coordinates
eventually play against each other when describing neighborhoods of a particular point
on the manifold. This situation is not different from many other cases where moving
systems of coordinates have been used with the intent of simplifying the analysis, as
for instance in certain situations describing the movement of bodies in the context of
Newtonian mechanics. It is, of course, true that a nonredundant system of coordinates
could be introduced leaving out the tangential components. However, the use of the
redundant coordinates described above simplifies the analysis for two reasons: (i) it
allows the separation of the dynamics of the linearized equations around the original
manifold from the dynamics on the manifold itself, in particular the tangent bundle
is invariant under the linearized equation, and (ii) it avoids the introduction of abstract
equations to describe the evolution of the different coordinates, because, in this way,
they can be given by FDEs in euclidean space.

Some of the ideas introduced in this paper are new and useful even in the case
of ODEs. In particular, the use of the redundant system of coordinates described
above, although most useful in the case of FDEs, is also natural in the context of
ODEs since it simplifies the description of the linearized equation around the original
invariant manifold and considerably simplifies the analysis.

2. Spectrum of a linear skew-product semiflow. Let W be a topological space. A
flow on W is a continuous mapping r:Rx W- W such that 7r(0, w)-w and
7r(t, 7r(s, w)) r(t + s, w) for all w W and t, s R. A semiflow on W is a continuous
mapping 7r: [0, oo) x W-> W satisfying the preceding conditions for t, s >_- 0.

Let X be a smooth Banach manifold without boundary and let E be a Banach
vector bundle over X with fiber projection p’E -> X, i.e., E is a vector bundle over X
with each fiber E(x)=p-l(x), xX, being a Banach space. Points in E can be
represented by ordered pairs (x, z) with x X, and z a vector in the fiber E(x). A
semiflow 7r on E is said to be a skew-product semiflow on E if there is a flow th on X
such that the fiber projection p commutes with 7r and , i.e., 7r can be represented as

(,x,z)=((,x), q,(,x,z)), >=o
and @(t, x, z) is in the fiber E((t,x)). Such a skew-product semiflow r is a linear
skew-product semiflow if the mapping z --> ( t, x)z ,( t, x, z) is a linear mapping from
the fiber E(x) to the fiber E((t, x)). One defines analogously skew-productflow and
linear skew-product flow. When r is a semiflow on E, zr(t, x, z), ,(t, x, z) and (t, x)
are only defined for t-> 0. However, they can be extended for <-0 at those points
(x, z) through which there is a backwards continuation defined for all <_-0. Let us
define the set B by

B {(x, z)E: there is exactly one continuous function (u, v): (-o, 0]--> E
such that u(0) x, v(0) z and zr(t, u(s), v(s))=(u(t+s), v(t+s))
for all s _-< 0 and all [0, -s]}.

The set

S {(x, z) E: [,(t, x, z)[-> 0 as --> +o}

is called the stable set of X under r, and the set

U {(x, z) B: ]q,(t, x, z)l--> 0 as --> -oo, for the continuation of q,(t, x, z) for _-< 0}

is called the unstable set of X under 7r. A set I c E is said to be positively invariant

under r if zr(t, x, z) I for all => 0 and (x, z) /, and ! is said to be invariant under
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7r if I c B and the preceding condition holds for all R, for the continuation of
7r(t, x, z). The sets S and U are both positively invariant under 7r, and the sets B,
S f’] B and U are all invariant under 7r. It is easy to see that these sets are vector
subbundles of E.

The linear skew-product semiflow 7r (b, $) on E is said to admit an exponential
dichotomy on X if there exist linear projections P(x) defined on E (x) and depending
continuously on x X, and there exist constants K, a > 0 such that

(i) N(P)= {(x, z) E: P(x)z=O}c B,

(ii) ]q’(t,x)P(x)l<-Ke-’, t_>0, xX,

(iii) [(t,x)[I-P(x)]l<=KeTM, t<--_O,
for the continuation of (t, x)z for t-< 0 with (x, z) B.

We note that condition (iii) makes sense because (i) implies that the range of the
mapping (x, z)--> (x, [I- P(x)]z) is contained in B. Whenever zr admits an exponential
dichotomy on X we have U=N(P)={(x,z)E:P(x)z=O} and S=R(P)=
{(x, z) E: z P(x)z’ for some z’ E(x)}. Then, the stable and unstable sets are
complementary subbundles of E.

Given a linear skew-product semiflow 7r (4, q) on a vector bundle E, and a real
number A, we define a mapping 7rx by

rx (t, x, z) (6(t, x), e-Xt(t, x, z)).

It is easily seen that 7rx is also a linear skew-product semiflow on E and that the
invariant sets under r and under zrx agree for all A R. We also define

t, x)z e-’tp( t, x, z)= e-Xt( t, x)z.
The stable and the unstable sets ofX under 7rx are denoted by Sa and Ua, respectively.
Clearly, if/x < h then S, c Sx and U, Ux. The set of all h R for which rx admits
an exponential dichotomy on X is called the resolvent set of r on E and is denoted
by p(E, r). The complement of the resolvent set on R is called the spectrum of 7r on
E and is denoted by E(E, 7r).

A skew-product semiflow zr (b, tp) on the vector bundle E is said to be uniformly
completely continuous if for each x X there is a neighborhood V, of x in X and a
real number rx ->- 0 such that, for all >= rx, the mapping (y, z) r(t, y, z) maps bounded
subsets of Evx {(Y, z) E: y V} into relatively compact subsets of E.

The following theorem contains the properties of the spectrum E(E, 7r) which are
used in this paper.

THEOREM 2.1. Let 7r=(b, q) be a uniformly completely continuous linear skew-
product semiflow on a Banach vector bundle E defined over a compact, connected, smooth
Banach manifoM X. Then the spectrum E(E, r) is a closed set of real numbers which is
bounded above, and, consequently, it is a union of closed intervals, the spectral intervals
(an interval a, b] is allowed to degenerate to a point when a b ).

Associated with each spectral interval there is a spectral subbundle V of E, which

satisfies the following properties:
(1) If tx, h p(E, 7r) and (/x,A)E(E, zr)=[a,b], then the spectral subbundle

V associated with [a, b] has finite dimension, satisfies V U, f-] Sx, and is invariant
under

(2) Ifh p(E, 7r) and (-c,)t) f’) E(E, 7r) (-o, b], then the spectral subbundle V
associated with (-o, b] satisfies V Sx and is positively invariant under r.

Moreover, if h p(E, 7r), then the number of spectral intervals included in (h, +o)
is finite.
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Proof Let h p(E, -). Then r admits an exponential dichotomy on X. There
exist a linear projection P (x) on E(x) and constants K, a > 0 such that N(Pa) c B, and

Ix(t,x)P(x)l<=Ke-’’, t>--O, xEX,

[x(t,x)[I-Px(x)]l<-KeTM, t--<0, xX,

where the last inequality holds for some backwards extension of xltx (t, x). If/z satisfies
[h -/z </3 a/2, then

I,,(t,x)P(x)l<- ge-’, t>-O, xX,

[,,(t,x)[I-P(x)]l<- ge+’, t_<0, xX.

Therefore, with P, Px, r, admits an exponential dichotomy on X. It follows that
tz p(E, 7r), U, Ux and S, Sx, for all/z such that [h-/z] < a/2. This implies that
p(E, r) and {/z R: U, Ua, S, Sx}, for any h p(E, 7r), are open sets. Thus (E,
is a closed set.

The fact that E(E, 7r) is bounded above results from the compactness of X and
the semigroup property of 7r. In fact, let k sup {[xlt(t, x)[: x X and 0 =< =< 1 }. Since
xlt is continuous and the supremum is taken over a compact set, the constant k is finite.
Fix _-> 0 and let rn be the largest integer smaller or equal to t. Then, with xi b (i, x),
we have

xlt( t, x) ( m, Xm).It(1, Xm-) Xlt( 1, X)

and, consequently,

Iv(t, x)[ <- k’’+1 <= kk’ k ea’,

where a log k. Therefore, zrx admits an exponential dichotomy on X for h > a, with
a h-a and P;(x) equal to the identity on E(x). This proves that (a, +)c p(E,
and E(E, r) c (-oo, a ].

Since E(E, 7r) is a closed set of real numbers which is bounded above, it is a
union of compact intervals with, possibly an interval of the form (-oo, b]. Let
be real numbers in p(E, 7r) which separate one of the closed intervals that make up
p(E, 7r) from the others, i.e., the intersection of the interval (/z, A) with p(E, zr) is
precisely one spectral interval [a, b]. With this spectral interval we can associate the
spectral bundle V U, f’)Sx. In order to prove the properties (1) and (2) we need to
show that V is independent of the points /x, A, provided they satisfy the properties
indicated. More precisely, we need to show that for/x, h p(E, 7r) with/x < h we have
U, U and S, S if and only if (/x, h p(E, 7r). Assume that U, U or S, S.,
with (/x, h c p(E, r), and define # sup {tr e p(E, 7r): U U., S, S,}. Because the
set {/x e R: U, Ua, S, Sa}, for any h e p(E, r), is an open set, and because U
depends monotonically on or, we get a contradiction. This shows that U,- Ua and
S, Sa. To prove the converse, let/x, h e p(E, r) and assume that U, Ua and S, Sa.
Then r, and ra admit exponential dichotomies on X, with projections P,, Pa and
constants K,, Ka and a,, aa, respectively. Let K max {K,,, Ka } and a min {a,, aa }.
For either cr =/x or tr h, we have

I(t,x)p(x)[=Ke-’, t>=O, xX,

[(t, x)[I- P,(x)][ -< K eTM, t<_-0, xX.
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Since U, U and S, S, we have P, Px P. Consequently

e-’l(t,x)P(x)l<=Ke-’, t>=O, xX,

e-’lI’(t,x)[I-P(x)]l<=Ke+’, t<0,= xEX,

for o- equal to either/x or A. This implies that these inequalities must also hold for all
tr E I/z, A ], proving that each one of the 7r, for tr I/z, A l, admits an exponential
dichotomy, and, therefore, I/z, A ]c p(E, r).

The invariance properties of the spectral subbundles follow from the positive
invariance of the Sa and the invariance of the Ux and Sx fq B, for every A p(E, 7r).

It remains to prove that the spectral bundles associated with compact spectral
intervals have finite dimension. For this we use the complete continuity of the semiflow.
The semiflow rx is uniformly completely continuous for each A p(E, 7r). Thus, for
each x X there is a neighborhood Vx of x in X and a real number rx -> 0 such that,
for t>=rx, the mapping (x, z) --> r( t, x, z) maps bounded subsets of Evx
{(y, z) E’y Vx} into relatively compact subsets of E. Since X is compact, we can
extract a finite subcovering Vx, of X and define r max {r,}. Then, for all x X, ->_ r,
the mapping z-->x(t,x)z maps bounded subsets of E(x) into relatively compact
subsets of E(ch(t,x)). Since A p(E, r), rx admits an exponential dichotomy on X
with projection P and constants K, a >0. Then Ua(x)= N(P(x)) is a closed linear
subspace of E(x). Let us denote S={z Ua(x)" [zl<-l). For each zES, the mapping

(t, x)z has one backwards extension defined for all =< 0 and such that

[x(t,x)zl<-ge+’, t<=O.

For each z S, define the set S’ { z’ E (b(- r, z))" z’ x(- r, x)z with z S}. For
each z’ S’ we have Iz’l <-_ K e and, consequently, the set S’ is bounded. Therefore,
the mapping z’-> x(r, b(-r, x))z’ maps S’ into a compact subset of E(x). Since S is
the image of S’ under this map, it follows that S is a compact subset of the Banach
space Ux(x). The only Banach spaces which have the closed unit ball compact, are
the finite dimensional spaces. Consequently, dim Ux (x) <. Clearly, if/x, A E p(E, r)
then V(x)= U,(x) Sx (x) is also finite dimensional and, because X is connected, the
dimensions of all fibers V(x), for x X, are the same.

Finally, if A p(E, 7r), then dim Ua is finite and the preceding properties of Ux,
Sx, with the monotone dependence of Sx on A, imply that the union of the spectral
subbundles associated with spectral intervals contained in the interval (A, +) is equal
to Ua and, consequently, the number of such spectral intervals is finite. QED

The evolution on the spectral subbundles associated with compact spectral intervals
can be given by ordinary differential equations (ODE).

PROPOSITION 2.2. Let r be a skew-product semiflow on a Banach vector bundle E
defined over a connected, smooth Banach manifoldX. IfVis afinite-dimensional subbundle
of E which is invariant under r, then the restriction of 7r to V can be extended to a

flow on V.
Moreover, if the mapping --> r( t, x, z) is differentiable at O, for every. (x, z) V,

and its derivative at 0 is locally Lipschitzian in (x, z) V, then the flow ofr on V can
be given by an ODE.

Proof. Since V is invariant under r, through every point of V there is one
backwards continuation of r. Consequently, 7r(t, x, z) is well defined and belongs to
V, for all E R, (x, z) V. It is clear from the definition of backwards continuation that
r is a flow on V.

If the mapping t-> 7r(t, x, z) is differentiable at =0 with the derivative being
locally Lipschitzian in (x, z) V, then we can define a vector field on V by assigning
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to each point (x, z) V the derivative 07r(t, x, z)/otl,=o. Initial value problems for the
ODE defined by this vector field have unique solutions and define a flow which
coincides with or. QED

3. Hyperbolic invariant manifolds. Let X be a smooth Banach manifold without
boundary and let b be a continuously ditterentiable semiflow on X. Let Y be a smooth,
compact, connected submanifold of X and assume that Y is positively invariant under
the semiflow b. Denote by E the subset of the tangent bundle TX defined by
E [_Jy y TyX and suppose that there exists a subbundle N of E which is complemen-
tary to the tangent bundle T TY. Then E, T and N are vector bundles over Y. Since

b is continuously differentiable, we can define

g,( t, y, z) ( t, y)z D2dp( t, dp( t, y))z, t>_O

for all y Y and z E (y), and

7r(t,y,z)=(dp(t,y),tp(t,y,z)), t>--O.

Then 7r is a linear skew-product semiflow on E. It is called the linearized skew-product
semiflow around Yinduced by the semiflow dp. The vector bundle T is positively invariant
under the semiflow r (4, g’). The semiflow 7r induces, by restriction, a semiflow on
T which is denoted by zr r and is called the tangential flow induced by 7r on T

7rr(t,y,z)=(b(t,y), d/r(t,y,z)), t>-O

defined for (y, z) T. Analogously, 7r induces a semiflow 7r
N on N. In fact, if P(y)

denote projections on E(y) which depend continuously on y and are such that
T(y) =null space of P(y) and N(y)=range space of P(y), we can set for (y, z) N

7rV(t,y,z)=((t,y),P(dp(t,y))O(t,y,z)), t>=O.

Since T is a positively invariant set for 7r, the mapping zr is a linear skew-product
semiflow on N. It is called the normalflow induced by r on N. Let E(E, 7r), E(T, zr r)
and E(N, 7rs) denote the spectra of the semiflows zr, 7r

r and zr on the vector bundles
E, T and N, respectively. We say that Y is a k-hyperbolic invariant manifold under b
if there exists an a>0 such that E(T, 7rr)c (-a, a) and ,(N, 7rS)fq(-ka, ka)=(.
A hyperbolic invariant manifold under b is simply a 1-hyperbolic invariant manifold.

THEOREM 3.1. Let X be a smooth Banach manifold without boundary and let dp be
a continuously differentiable semiflow on X. If Y X is a connected k-hyperbolic invariant

manifold under dp and 7r d?, is the linearized skew-product semiflow around Yinduced
by the semiflow dp, then the tangent bundle of Y, T TY, the unstable set U and the
stable set S of Y under 7r decompose the tangent bundle of X as a Whitney sum
TX T+ U+ S, and the restrictions of 7r to U, of zr to T and of dp to Y can be extended
to flows on U, T and Y, respectively. Furthermore, if er u (dp, u), err (d, q 7") denote
the skew-product flows on U, T obtained by extension of the restrictions of 7r to U, T,
respectively, and ifrs dp, bs) denotes the restriction of7r to S, then there exist K, a > 0
such that

(3.1)

I u t, x, z)l <-_ K e’lzl,
Is(t, x, z)l<-_ K e-’lz I,
I0 T t, X, z)l K el’llz I,

t<=O, (x,z)U,

t>-_O, (x,z)6S,

R, (x, z) T.

Proof. We can write

7r( t, y, z)= dp( t, y), d/( t, y, P(y)z)) + dp( t, y), g/( t, y, [I-P(y)]z)).
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Consequently, if d/(t,y,z)=(t,y)z, d/T(t,y,z)=T(t,y)z and N(t,y,z)=
N t, y)z, we have

(t, y)z rv(t, y)P(y)z + T(t, y)[I- P(y)]z.

Since E(N, 7rv) f’)E(T, 7r) , it follows directly from the definitions of spectrum
and dichotomy that

E(E, 7r) E(N, 7r) CI E( T, 7rT).
If we denote Vo U_, f’) S, V/ Uk, and V_ S_ks it follows from Theorem 2.1 that
Vo and V/ are unions of a finite number of compact spectral subbundles and V_ is a
countable union of spectral subbundles such that TX- Vo+ V_ / V+, as a Whitney
sum. Since E(T, 7rr)c (-a, a), we have Vo T, and it is also clear that V_ S and
V/- U. Thus, T and U are finite-dimensional, and Proposition 2.2 implies that the
restrictions of 7r to T and U can be extended to flows on T and U, respectively. It is
clear that( U, 7rU) (ka, +o),,(T, .T) (-a, a),,(S, 7rS)c (-o, -ka), and, there-
fore, the inequalities (3.1) are valid.

The dimensions of Y and TY T are the same. Consequently, Y is a finite-
dimensional manifold invariant under b. It follows that the restriction of b to Y can
be extended to a flow on Y. QED

4. Functional differential equations on manifolds. Let M be a separable smooth
finite-dimensional connected manifold without boundary, and let TM be the tangent
bundle of M, that is, TM is the union of the tangent spaces TyM TM(y) of points
y M, with PM" TM- M denoting the projection that maps each TM(y) onto the base
point y. If I denotes the closed interval I I-r, 0] for r > 0, C(/, M) denotes the set
of continuous functions from I to M and p:C(I, M)- M is the evaluation map
p(b)=th(0), then a retarded functional differential equation (RFDE) on M is a
continuous function F: C(I, M) TM such that P4 F p.

The tangent bundle TM can be identified with M x R where m dim M. Then,
for any RFDE F, there exists a function f: C(/, M)- Rm, such that F(b)_can be
identified with ((0),f(:)), for all sc C(/, M). The RFDE (F) is frequently represen-
ted as (x(t), (t)) F(x,) (x(t),f(x,)) or, simply, (t) =f(x,), where, given a function
x of a real variable and with values in the manifold M, we denote x,(O)= x(t + 0),
0 e/, whenever the right-hand side is defined.

Given a locally Lipschitzian RFDE (F) on M, its maximal solution x(t) satisfying
the initial condition : at to (which necessarily exists and is unique) is sometimes
denoted by x(t; to, , F) and x, is denoted x,(to, , F). The solution map or semiflow
of F is then defined by b(t, :)= x,(0, :, F). The arguments :, F are dropped when
confusion may not arise, and to is dropped when it is equal to zero. If F is bounded
and has bounded continuous derivative, then the solution map is a smoothing operator,
in the sense that if it is uniformly bounded for in compact sets of [0, oo), then for
t_-> r, the function b(t,-): C(I, M) C(I, M) maps bounded sets into relatively
compact sets.

We denote by BCk the set of bounded continuous functions from C(I, M) into
TM which have bounded continuous derivatives up to order k-> 1. The RFDEs on M
we consider in the sequel will always be taken from BCk for k-> 1. Each such RFDE
(F) induces, by linearization, another RFDE (L) on the tangent bundle TM, which is
called the linear variational equation. Being an RFDE on TM, the linear variational
equation is a map L: C(/, TM)- T-M. The double tangent bundle T2M can be
identified with M x R"x R"x Rr, and, therefore, if the given RFDE (F) on M is
represented as (t)=f(xt), as done before, then the linear variational equation of F
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can be represented, in an analogous fashion, as (x(t), y( t), :( t), )(t))= L(x,,y,)=
(x(t), y(t),f(xt), Df(xt)y,) or, simply, as a system of the two equations (t)=f(xt)
and )(t)= Df(xt)y,, where Df denotes the derivative of f. The solution maps b of F
and h of the linear variational equation L are then related by h (t,.) Db(t, ).

It is clear from the preceding discussion that we can, without loss of generality,
restrict the study of the persistence of hyperbolic invariant manifolds, under small
perturbations of RFDEs on a manifold M, to the particular case where the manifold
is euclidean, i.e., M Rq, for some integer q.

5. System of coordinates around hyperbolic invariant manifolds for FDEs. For a
fixed real number r > 0, let C C([-r, 0]; Rq) denote the Banach space of continuous
functions from the interval I-r, 0] to Rq, taken with the uniform norm. Given a Banach
space B and positive integers k, p, the set

BCk(B; Rp) {f: B RP,f is continuously differentiable and has
bounded derivatives up to order k},

taken with the usual addition and multiplication by scalars and the uniform Ck-norm,
is a Banach space. By uniform. Ck-norm we .mean

sup {[D(:)[: i= 1,..., k and s B}.

We are interested in discussing functional differential equations (FDE) defined
by functions f Bck(c; R") with k >= 1, as

(5.1) ti(t) =f(u,),

where ut denotes the segment of the function u defined over the interval t-r, t], i.e.,
u,( O) u( + O) for O[-r, 0]. The solutions of (5.1) define a semiflow (t, :)
on C, with Uo sc. The mapping u(.):C C is Ck for all t->0 and is completely
continuous for t->_ r.

Let M c C be a compact, connected, Ck-manifold which is k-hyperbolic under
the semiflow defined by the solutions of (5.1). The vector bundle E t-Jo,M TO,C can
be identified with M C, since C is infinite-dimensional and M is a finite-dimensional
manifold.

We will also consider the linear variational equation around M

(5.2) (t)= Of(u,(,o))v,

for each to M. The linearized semiflow around M which is induced by (5.1) is the
linear skew-product semiflow defined, for (to, s) E, by

to, ) (Ut(to), /)t(to, )), t>0,

where v,(to, s) C denotes points in the orbit of (5.2), which passes through the point
s at t=0.

Because M is a k-hyperbolic manifold under (5.1), the vector bundle TM is
invariant under the skew-product semiflow or, and TM has a complementary subbundle
N of E, i.e., E TM + N. Let U, S denote, respectively, the unstable and stable
subbundles of N. The fibers To ToM, Uo, and So, can be identified with linear
subspaces of C, and one can write C To, + Uo, + So. Because M is connected, the
dimensions of these fibers are independent of to M, and because M is hyperbolic
and the semiflow 7r is completely continuous for t-> r, it follows that both To, and Uo,
are finite-dimensional, with dimensions that we denote dr dim To, and dv dim Uo,.
We can choose bases for To, and Uo, consisting of vectors of unit length that depend
on to in a Ck fashion. These bases are arranged as columns of q x dr matrices and
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q x do matrices . To each point (to, sc) E, we can associate coordinates x RdT

yRd%C by the relations so= sc+:v+scs where SCT To,, sC Uo,, scs So,, sor=
r uo,x, : =o,y and . :s. These relations associate a unique quadruple (to, x, y, ’)
M x RaT x Rd, x C to each point (to, sc) E. This system of coordinates (to, x, y, ’)
around the hyperbolic invariant manifold M is redundant. In fact, the same point in
a neighborhood ofM can be represented in several ways in these coordinates, according
to which point to M is taken as origin of the coordinate system. In spite of this
redundancy, the use of these coordinates facilitates the study of the persistence of
hyperbolic invariant manifolds under perturbations.

Given a FDE

(5.3) i,(t) f(wt)+ g(wt),

where g BCk, and defining v(t)= w(t)-u(t), we can write it as a perturbation of
the linear variational equation (5.2") in the form

(5.4) iS(t) Of(u,(to ))v, + G(u,(to ),

with to M, by defining

G(, )=f(+)-Df()b-f()+g(+).

Equation (5.4) defines a skew-product semiflow on E by

(t, o, )= (u,(o), v,(,o, )),

where v,(to, :) denotes points on the orbit of (5.4), which satisfies the initial condition
Vo . The variation of constants formula for (5.4) can be written (see [4]) as

(5.5) v,= T(t, s)v+ T(t, S)XoG(u(,o), v) as, >-_ ,,
where To,(t, tr) denotes the solution operator of the linear variational equation (5.2)
and Xo(O) is defined to be the identity Iq at 0 =0 and to be zero for 0 I-r, 0] (notice
that the columns of Xo do not belong to C, but the formula still makes sense if
interpreted as suggested by Hale in [4]).

As M is an hyperbolic compact manifold under the semiflow defined by (5.1),
which is completely continuous for t>= r, it follows that (5.1) defines an ODE on M.
The points vt(to), which must satisfy (5.5), can be represented in the system of
coordinates introduced above as (u,(to), x(t), y(t), z,), where x(t), y(t), z, satisfy the
variation of constants formulas obtained by projecting both sides of (5.5) along the
"coordinate directions." More precisely, we have the following result.

THEOREM 5.1. Letf Bck( c, Rq), k >= 1, and assumeM c C is a compact connected
Ck-manifold that is k-hyperbolic under the semiflow defined by the solutions of

(5.6) ft(t)=f(u,).

Then there exists a system oflocal coordinates aroundM, (to, x, y, ’) M x RaT x Rdt C,
where dr- dim M and dv is the dimension of the unstable bundle associated with the
linear variational equation (5.2), such that, for each to M, there exist two matrix-valued
functions ( t, tr) and v t, tr), which are continuously differentiable in t, tr R, a
linear subspace L ofC with codimension dr + dr, a linear operator TS, t, r) acting on L
which is continuously differentiable in >= tr, a q x q matrix-valuedfunction ..,v’s’o,’o defined
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on [-r,0] which is continuous on r, andfunctions n, u, s definedfromM x Rdr X Rat: C x
Bck( c, R) into, respectively, Rd, Rd% Rq which are bounded and, for eachfixed to M,
are of class BCk in the remaining variables, such that

(i) q,(t,t)=I, .(t,t)=I, TS(t,t)=I foralltR;
(ii) there exist K, t, ao> 0 with a > kto such that

e-oltll(t r)l0 as Itl- for all re R,

I(t, )l<- ge’-, t<- ",

[To(t,’)4,l-<_Ke-’(’-)14,l, t->-, 4,S,o(.),

where S denotes the stable bundle associated with the linear variational equation of (5.6)
around M;

(iii) [Xos....[_-<1, wM, zR;
(iv) the functions n, u, s and their partial derivatives relative to x, y, vanish at

the points (w, 0, 0, 0, 0) M x Rd x R% x L x BCt:(C; Rq), and each one of them
assumes related values at all points (to, x, y, ) that represent the same point of C;

(v) for each g Bck(c; Rq), the perturbed equation

(5.7) v0(t) =f(wt) + g(wt)

is, in the new coordinates and for >-o’, equivalent to the system

-’Xo’ s(u(to), x(r), y(r), z, g) dr.

Proof. We need to project both sides of the variation of constants formula (5.5)
in the tangential, unstable and stable directions along the points ut(to) M, as indicated
in the discussion preceding the theorem. Forgetting, for the moment, the ditterentiability
properties of the functions involved, and recalling that T and U are invariant under
the skew-product semiflow associated with the linear variational equation, we see that
the introduction of bases for the finite-dimensional fibers T,,(to) and U,,(to) and the
representation of the projected equations in terms of these bases lead to the first two
equations in system (5.8).

The linear spaces S,,(to) have codimension dr + dtj in C and can be one-to-one
mapped onto a fixed subspace L of C of the same codimension. Projecting (5.5) onto
S and representing this projection in the subspace L, we obtain an equation of the
form of the last equation in system (5.8). The term Tto(t, r).o" needs some explana-
tion. First, we notice that To, (r + r, r)Xo is a matrix with columns in C because of the
smoothing action of To, (t, r). In fact, though Xo(0) is a matrix valued function defined
for O[-r, 0] and discontinuous at 0=0, the solutions of the FDE with initial
conditions equal to each one of the columns of Xo are continuous for t_>-0 and,
consequently, after r units of time all the segment of the solution from t- r to is
continuous, showing that the columns of Tto(r+ r, r) do, indeed, belong to C. This
matrix can be projected onto T (to) and Ut+r(to to give components [To(r+
r, r)Xo] +,(to)r and [Tto(r+r, r)Xo]+r(to),sr respectively. Since Tto (r + r, r) is a homeo-
morphism from T.to> to T.+to) and from Uto> to U+rto, because T and U are
invariant under the semiflow, it follows that there exist unique matrix-valued functions
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X’’* and Xou’’* whose columns belong to T(o) and U(o), respectively, and are
such that

To(r+ r, r)X’’* To(r+ r,’)X0] Tu+,(w),
T(+ r, )X’’ T(+ r, )Xo] u+,().

es.... er,, ’’ and it becomes clear that the lastNow, we can define ,o =Xo-o --o
equation in system (5.8) is correct, provided T(t, r)X.... is understood in the same
sense as T(t, r)Xo was (notice the -o does not belong to L, as Xo does not belong
to C; for an explanation of this notation refer to [4]).

Propeies (i) and (iii) are easy to verify, propey (ii) is a consequence of the
hyperbolicity of M through Theorem 3.1, and propey (iv) results from the positive
invariance of T, U, L under the skew-product semiflow associated with the linear
variational equation around M and the invariance of M under (5.6).

It remains to establish the smoothness propeies of the functions n, u, s. For this
we need to show that the normal bundle N, the projections associated with the
decomposition C T,,()+ U,,()+ Su,(), the vectors forming the bases for T,,() and
U,(o) and the one-to-one mapping from S,(o) onto L can all be chosen to be C-smooth
in t. The possibility of choosing a C-smooth normal bundle N can be proved by a
slight modification of the proof given by Whitney [20] for the case when the manifold
M is modeled in a finite-dimensional euclidean space. In fact, a "natural" choice of
the normal bundle would only be C- smooth, but the procedure introduced by
Whitney in the cited paper can be used to smooth it to be of class Cg. It follows that
the projections associated with the decomposition C T,(o)+ U,(o)+ Lu,(o) are of
class C in t, provided U,,(o) and S,(o) are C in t. These are defined in terms of the
null space and the range, respectively, of the linear projections P(u,(o)), defined on
N,(o), which are associated with the dichotomy ofthe linearized skew-product semiflow
around M induced by the given equation. Although these projections are, at the outset,
only required to depend continuously on the points in the manifold M, they are in
fact of class C in because their null spaces are related, forwards and backwards in
time, by a semiflow of class C. More precisely, the null space of P(o) is mapped
onto the null space of P(u,(o)) by the map v,(w, ) given by the solutions of
equation (5.2). Since this map is of class C in t, due to the general results on smoothness
of solutions of FDEs (see [4]), and N is a C vector bundle, it follows that P(u,(o))
is C g

in t. The possibility of choosing the one-to-one mapping from S,(o) onto L to
be C-smooth in is a direct consequence of the C-smoothness of P(u,(w)). In order
to get the C-smoothness in for the bases taken for T,(o) and U,(o), we only need
to choose them to be mapped one to each other by the flows on these bundles, since
these flows are of class C in t. QED

6. Functional differential equations in coordinate form. Under ceain general con-
ditions discussed in the preceding section, the linearization of a given FDE around a
hyperbolic compact manifold M, and the introduction of local coordinates around the
manifold lead to a family of systems parametrized by M and of the form

(6.1) x(t) x(t)x(t) + n( t, x( t), y( t), z,, ),

(. y(=(,)(l+ (,u(,x(,y(,,,,,,

(.3) = r(, )+] r(, )x;.’s(, x(), y(), ,, ) ,,
where I is a parameter in a Banach space A, x() e Re y(t) e ReL e L, L is a linear
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subspace of C C([-r, 0]; Rq) of codimension (dv + dts), dv, do, q are nonnegative
integers with dv => 1, X’* is a q x q matrix-valued function defined on [-r, 0] and
continuous in z with its columns belonging to L and satisfying IXo ,*l <_- 1 for all z R,
N(t) and W(t, z) are matrix-valued functions defined for t, - R, T(t, -) are linear
operators acting on L for t-> z, and the following hypotheses are satisfied:

(H1) The function N of is bounded and continuous for all R;
(H2) The functions n, u, s of (t, x, y, sr, h are bounded, continuously differentiable

in x, y, " and their partial derivatives relative to x, y, " as well as the functions
n, u, x themselves are all bounded by some B(/z, e) > 0 over the region R,
.Ixl, lY[, I1--< --< IAI -<- -< with the function B(/x, e) being nondecreas-
ing in g and e, and approaching zero as , e --> 0;

(H3) The matrix-valued function (t, z) is continuously ditterentiable in t, - R,
satisfies (t, z)(-, tr)= (t, tr) for all t, -, tr R and (t, t) is the identity
matrix for all R. The linear operators T(t, r) defined on L are continuously
ditterentiable in t, - such that _>- -, satisfy T(t, z)T(r, tr)= T(t, tr) for all
t-> "-> tr, and T(t, t) is the identity operator on L for all R;

(H4) There exist K => 1 and a > ao> 0, such that

IT(t, ’)bl--<Ke-"t-)lbl, >= z, ck L

and the principal matrix solution O(t, z) of : N(t)x satisfies

I(t, z)l-<geo1’-*1 for all t, zR.

In this section we consider a more restricted situation, which will be used later
on to establish the general result on the persistence of hyperbolic manifolds. More
precisely, the hypothesis (H2) is replaced by

(H) The functions n, u, s of (t, x, y, ’, A) are bounded and continuous, vanish
at all points where x, y, " are simultaneously zero, and are globally Lipschit-
zian in the coordinates x, y, ’, in the sense that there exists a D > 0 such that

In(t, x, y,

for all R, x, Rd, y, Rd, ’, L, , A, and similarly for u and s.

In the proofs of the results of this section on the persistence of hyperbolic invariant
manifolds for system (6.1)-(6.3) with Ixl small, we use the following property of
solutions (x(t), y(t), z,), R, which have y(t) and z, bounded.

LEMMA 6.1. Assume the hypotheses (H1)-(H4) hold. Then (x(t), y(t), zt), R, is
a solution of the system (6.1)-(6.3) with y(t) and z, bounded if and only iffor some
belonging to the interval (ao, t) the function
(6.4) w(t, x(0)) e-vl*l(x(t), y(t), zt), g

agrees, when x(O) b Rd, with a fixed point of the transformation T defined on the set

of bounded continuous functions w: R x Rdra -> Ra x Rdo x L by

T(t, b)= e-’l’l(t,O)b+e-’11 q(, z)n(-, e’l’l(-, b),1) dr,

(6.5) e-’1’1 *(t, z)u(z, e’l’lw(z, b),A) dr,

e-,ltl
/
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If (H2) is replaced by (H) the same holds.
Proof. If (x( t), y( t), z,) is a solution of (6.1)-(6.3) which is defined for all t R

and has y(t) bounded, it follows from hypothesis (n4) that for tr =>

y(t)- *(t, z)u(z,x(z), y(z),z,A) dr II,(t, r)y(r)l<-Ke<’-)ly(r)

and, letting tr--> +c, we get

(6.6) y(t)= (t, z)u(’,x(z),y(7"),z,A) dT’,

where the improper integral converges because u is bounded and satisfies the
exponential estimates in assumption (H4). Analogously, if (x(t), y(t), z,), R, is a
solution of (6.1)-(6.3) with z, bounded, then

(6.7) zt T(t, -)X"s(%x(z),y(-),z,A) dr.

Conversely, if (x(t), y(t), z,), e R, is a given continuous function satisfying
equation (6.1) and (6.6)-(6.7) then it is a solution of the system (6.1)-(6.3), with y(t)
and zt bounded, because of hypotheses (H1) and (H4).

The variation of constants formula for (6.1) gives

(6.8) x(t)=dP(t,O)x(O)+ dP(t, ’)n(,,x(7"),y(7"),z,,A) dr.

From hypothesis (H2) or (H) there exists B > 0 which bounds n, and from hypothesis
(n4) we get

Ix(t)l<-Keol’llx(O)l+n ge o1’-’1 -< Ix(o)l+ ge

Consequently (6.1) is equivalent to (6.8) and e-vltllx(t)[, R, is bounded. This finishes
the proof of the statement. QED

THEOREM 6.2. Ifthe hypotheses (H1), (H), (H3) (H4) are satisfied and the constants
ao, a, K of hypothesis (H4) and D of hypothesis (H) satisfy the inequality

(6.9) DK(K+I)[ 1 + 2 1]+ < 1
T-ao a-Y a+

for some 3’ in the interval (ao, a), then there exist continuous functions hi, h2 defined
on R x RdN X A and with values in Rat: and L, respectively, which are bounded and such
that thefunction x -> (h t, x, A ), hE( t, x, A )) is Lipschitzian with Lipschitz constant (K + 1
and with h(t, 0, 0) 0, h2(t, 0, 0) 0 for all R, x Ra, A A, such that the set

Mx {(t, x, y, ’)s R x RdN x Rat: x L: y- hi(t, x, A), = hE(t, x, A)}
is an integral manifoldfor system (6.1)-(6.3), in the sense that if (to, x(to), y( to), z) Mx
then the solution of (6.1)-(6.3) with this initial data stays in Mx for all time.

Furthermore, Mx is the maximal integral manifoldfor system (6.1)-(6.3) contained
in R x RaN x V, for any bounded neighborhood of zero Vc Rat: x L.

Proof. The preceding lemma indicates that finding integral manifolds Mx for
(6.1)-(6.3), which belong to R x RaN x V for some neighborhood of zero Vc Rat: L,
amounts to finding fixed points of the mapping T in the lemma. These fixed points
are studied, in the present proof, by an application ofthe contraction mapping principle
to a specific set of continuous functions w" R x RaN --> RaN Rat: L taken with a
metric generated by a suitable family of pseudonorms.
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Let us denote by W the set of bounded continuous functions w’R x RaN

RaN x RaU x L that satisfy

Iw(t,b)-w(t,)l<-_(g+l)lb-l forall b, ERaN, tER,

where K _-> 1 is the constant in the hypothesis (H4). The set W is a complete metric
space with the topology generated by the family of pseudonorms

(6.10) Ilwll,-sup(Iw(t,b)l: t g, lbl<-n}, n-l,2,....

It is clear that, for each wE W, Tw is a continuous function from R RaN into
RdN x Rd, x L. Using the hypotheses (H) and (H4) we get

Irw(t, b)[ e-’1’1 eoltlKlb[+e-’1’1 Keolt-’lDe "1"1 dr

+ e-ltl K e(’-’D e1-1 dr

W e-vltl f] K e-(t-’)D eVl’l dz] sup lw(z’ b)]

Consequently, as y (ao, a), we obtain

This shows that Tw is bounded for each w e In a similar way, and using (6.9), one
obtains

sup

On the other hand, if w, # e W, we have

k

which implies that

,,Tw TO[ DK[ 2 1 ]y-ao a-y

Since Condition (6.9) is satisfied, then T is a uniform contraction from W into itself,
in the given family of pseudonorms. The contraction mapping principle implies that
there exists a unique fixed point of T in the set W and that this fixed point depends
continuously on .

Let w*= Tw* be the fixed point of T in W and define the functions h and h2 by
b, h t, b, a h2 t, b, )) w* t, b

It is clear that h, h2 are defined for R, b Ra, e A, that they are continuous
bounded functions which are Lipschitzian in the variable b with Lipschitz constant
(K + 1) and that they vanish at the points (t, 0, 0).

Suppose (x( t), y( t), zt), eR, is any solution of (6.1)-(6.3) with y(t) and
bounded, and denote b x(0). Lemma 6.1 implies that w(t)= e-l’l(x(t), y(t), z,) is a
fixed point of the map T defined on the set B(R) of the continuous bounded functions
w" R Ra x Ra x L by the same formula (6.5) as in the definition of T, but replacing
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W(t, b) by w(t). The argument used above for T also shows that Tb maps B(R) into
itself and is a contraction in the supremum norm on B(R). Therefore Tb has a unique
fixed point in B(R) which must satisfy w(t) w*(t, b). It follows that Mx is the maximal
integral manifold in R x RdN x V, for any Vc .Rd, x L which is a bounded neighbor-
hood of zero. QED

Remark. The functions hi, h2 of the previous theorem do not depend on the
particular value of y
and the function w(t, x(0)) is bounded and given as in (6.4) with y= 1, then the
function w(t, x(0)) also given as in (6.4) but with y= y is also bounded. The
uniqueness of the fixed point of the mapping T implies that Wl w.

The structure of the solutions around Ma is preserved under small peurbations,
as is illustrated by the following result.

THEOREM 6.3. Assume the same hypotheses as for eorem 6.2. en the manifoM
Mx is the intersection of two manifolds Sx, Ux R x Rd Rdv X L which are positive
integral manifolds for (6.1)-(6.3), and are such that solutions with initial data in Sa
approach Mx as + and solutions with initial data in Ux are globally defined and
approach Mx as -. Moreover Sx, Ux are homeomorphic to R x L, R gdv, respec-
tively, and have the forms

Sx {(t, x, y, ) g x gd x gd x L: y= hS(t, x, , A)}
and

Ux {(t, x, y, ) R gd x gd x L: = hV(t, x, y, A)},
where the functions (x, ) hS(t, x, , A) and (x, y) hV(t, x, y, A) are Lipschitzian
homeomorphisms from, respectively, Rd x L to Sx and Rd x Rdv to Ux, with Lipschitz
constant K + 1) and satisfy h s t, x, , O) O, h t, x, y, O) O. In addition, there exist, C>O such that, if (x(t), y(t), z) is a solution of (6.1)-(6.3) with initial condition in
Sx, then

[(x( t), y( t), z)l C([x(O)l + ]Zo[) e, 0

and, if (x(t), y(t), zt) is a solution of (6.1)-(6.3) with initial condition in Ux, then

[(x(t), y(t), zt)l C(Ix(o)l+[y(o)l) e-t, tO,
where

Proo If (x(t), y(t), zt) is an arbitrary solution of (6.1)-(6.3) which is defined for
all 0 and has y(t) bounded for 0, we find, as in the proof of Lemma 6.1, that

y(t):

Consequently, based on the discussion in Lemma 6.1 and Theorem 6.2, we expect that
looking for the set Sx will amount to finding fixed points of the transformation Ts

defined on the set of bounded continuous functions w R+ x Rd x L Rd x Rd x L,
by

TSw(t,b,)= e-’(t,O)b+e- (,)n(r,e’w(r,b,),)dr,

(6.11) e

e Xo" s(r, eV’w(r, b, ), A) dr

where 7 (So, a).
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We denote by Ws the set of bounded continuous function w" R+x Ra’ xL
RaN x Rd, x L which satisfy

Iw(t, b, C)-w(t, , ()l (r + 1)(Ib- b-] + IC- q)
for all b,/e Rd, ’, [e L, e R+, where K _-> 1 is the constant in the hypothesis (H4).
The set Ws is a complete metric space with the topology generated by the family of
pseudonorms

Ilwll,=sup{Iw(t,b,)l: teR+,lbl<-n,ll<=n}, n-l,2,....

Similar to what was done in the proof of Theorem 6.2 for the mapping T on W, it can
be shown that Ts is a uniform contraction on Ws and, therefore, there exists a unique
fixed point of Ts in Ws and it depends continuously on h.

If we let Ws= TSws be the fixed point of Ts on Ws and define the function h s

by

(b, hS(t, b, , A), )= wS(t, b, ),
it is clear that the set Sx, defined as in the statement of the theorem, is a positive
integral manifold for system (6.1)-(6.3) and is homeomorphic to RdN x L.

Next, we will show that ]ws (t, b, ’)1 0 as +. Let tx lim sup,_+oo ]wS(t, b, ’)1.
Because of (6.9), we can choose 6 > 1 so that

1 1 1 ]KD + + 8<1.
T-ao ’y-a T+a

If Ix > 0, then there is atr > 0 so that [wS(t, b, )1 =< Ix6 for t-> tr. Then, using formula
(6.11) and the estimates available for its terms, we get for t-> tr

+ KD 1 1 1++ Ix6.y-ao y-a

Letting +, we get

Ix_KD[1 1 1 ]y-ao y-a y+a

which is a contradiction. Hence Ix O. This proves that [wS(t, b, ’)1 0 as +c.
Now we derive the exponential rate of decay of ws as +. Let v(t, b, )=

sup__>t [ws(z, b, ’)[. Since Iws(z, b, ’)[ 0 as z +oo, for every _-> 0 there is a r ->
such that

v(z, b, ) v(r, b, ) [wS(r, b, ’)l,
On the other hand, estimates using formula (6.11) give

IwS t, b, ’)l <-- K e-(-o’lb + K e-(+’[ + K e-(-o(’-DlwS z, b, )l dz

-boo

K e-(-(’-DlwS(z, b, ’)1 dr

+ K e-(+’(t-’DlwS(-, b, sr)[ dr.
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Consequently,

v(t, b, ) v(tr, b, ) <_ K e-(’-o)tlbl+ K e-(’+)’ll+ K e-(,-%)(’-’)Dv(z, b, )

+ K e-(-%)(-)Dv(, b, ) dr

+ K e(’-v)’-)Dv(z, b, ) dr

+ K e-(+")-Dv(z, b, ) dz

+ K e-(V+)(-)Dv(’, b, ) dr

and, therefore,

v(t, b, ) <- K e--o’(lbl/l’l)/ K e-(-%)(’-)Dv(z, b, ) dz

1 1 1 )+ KD++ v(t, b, ).
T-ao a--T

Due to (6.9), we can write

e(V_%,v(t,b,)<_[l_KD(++1 1 1 )] -1

3’-ao a-T T+a
K Ibl / / D e(-’*v(r, b, ) dr

Applying the Gronwall inequality we obtain

Iv(t, b, ’)l -< C(Ibl+ Il) e-m,
where

++ and B=T-ao-CD.
T-ego

From (6.9), noting that K >- 1, it is easy to verify that C, B are positive. It follows that
there exist C, B > 0 such that

(6.12) [(x(t), y(t), z,)l<- c(lx(o)l+lzo[) e(-)’, t>--O

for every solution (x(t), y(t), z,) of (6.1)-(6.3) which has initial data on Sx.
In a similar way, we obtain the manifold U. Now, we look for fixed points of

the mapping defined on the set of bounded continuous functions w R- x RdN x RdU -RaN x RclU x L by

rUw(t,b,c)= e’(t,O)b+e’ (t,z)n(z,e-"w(z,b,c),)dz,
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et(t, O)c+ evt V(t, -)u(% e-"w(% b, c), A) d%

e’t T(t, "r) s.Xo’ s(r, e-w(r, b, c), A dr

Similarly, we obtain for some constants C, B > 0

(6.13) I(x(t), y(t), z,)l_-< C(Ix(o)l+ly(O)[) e-‘v-Bit, t<o=

for every solution (x(t), y(t), zt) of system (6.1)-(6.3) which has initial data on Ua.
It is clear, from the above construction and the proofs of Lemma 6.1 and Theorem

6.2, that Ma =S 7l U and the trajectory of any solution (x(t), y(t), zt) for which
e-’ltl[(x(t), y(t), zt)l is bounded for 6 R lies necessarily on M. Consequently, (6.12)
and (6.13) imply the exponential-estimates in the statement of the theorem. QED

The following result establishes the smoothness properties of M, S and U.
THEOREM 6.4. If the hypotheses (HI), (H), (a3) (H4) are satisfied, the functions

n, u, s are continuously differentiable with bounded derivatives up to order k >- 1, relative
to x, y, , and the constants ao, a, K ofhypothesis (H4), and D ofhypothesis (H) satisfy
the inequalities

(6.14) a > kao
and

(6.15) DK(K+I)
1 2 1
++ < 1

y-ao

for some y in the interval (kao, a), then thefunction x (hl(t, x, A), h2(t, x, A)), defined
as in eorem 6.2, is ofclass C k, and the same is trueforthefunctions (x, ) hS( t, x, , A
and (x, y) h t, x, y, A of eorem 6.3.

Proof We recall from the proof of Theorem 6.2 that h, h2 were defined in terms
of the fixed point of the transformation T in the set Consequently, if w denotes
this fixed point, in order to prove that hi(t, x, A), h(t, x, A) are C functions of x, we
only need to show that the function b w(t, b) is of class C k. This will be done by
induction.

Let us assume the hypothesis of the theorem is satisfied for k 1. If the derivative
Ow(t, b)/Ob exists, it must satisfy the equation obtained by formally differentiating
w= Tw relative to b. In paicular, Ow/Ob must be a fixed point of the map-
ping F defined for functions taking R Rd to linear transformations of Rd into
RdN x Rdv x L

Fv(t, b)= e-vltl(t, 0)+ e-vIiI (t, r) O evl,lw evl,lv
ow (’ (, b), ) (, b) d,

(6.16) e

e ’ T(t, )X" (, e b),Z) e b) d

We remark that the improper integrals converge because of hypothesis (Ha), the
boundedness of the paial derivatives of u, s and the assumption a > ao. Let Z denote
the set of all functions continuously differentiable in the second argument and defined
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from R x Ra, to the set of all linear transformations of Ran into Ran Ra L which
satisfy Iv(t, b)[ _-< K + 1, for all R, b Rd,,. If v Z then

IFv(t, b)l<-Ke--%)l’l+e-1’1 KeoI’-’IDeII(K+I) dr

+ e ’1’1 K e’(t-’)D e,II(K + 1 dr

(6.17)

-4- e-11 | K e-’(t-)D e/ll(K + 1) dr
d-

+-- <K+I.
7-ao a-7

Therefore, F maps the set Z into itself. Let us consider the sequence {vi} of functions,
taking R x RdN into the linear transformations of R into R x R x L which is
defined recursively by

v =0 and Di+ F(oi), i 1.

Since F maps Z into itself, we have {v} Z. The set Z with the metric inherited from
the usual uniform norm is a complete metric space. As in (6.17), we get

(6.18) [[Vi+l vii] [IFui FVi-ll[ DK[ 1 2 1 ]
y-ao a-y

It follows from (6.9) that {v} is a Cauchy sequence in Z and, consequently, converges
to some v Z as . Clearly v is a fixed point of F.

Now, we can prove that v is, indeed, the derivative Ow/Ob. Fix R, b Rd and
let g be a function defined for small values of e > 0 by

[w(t, b+ w(t, b)-v(t, b)h[
(6.19) g(e) sup,R ]h[

h=

In order to prove that Ow/Ob exists and is equal to v we need to show that g(e)0
as e 0. From formulas (6.5) and (6.16), using the first order Taylor expansion and
hypotheses (H) and (Ha) in a similar way as for inequalities (6.17) and (6.18), we get

Iw(t, b+h -w(t, b h]

DK++
-o - +sup [lw(, b+ h)- w(, b)- v(, b)hl+ o(Iw(, b+ h)- w(, b)l)].

Recalling from Theorem 6.2 that w(t, b) is Lipschitzian in b with Lipschitz constant
equal to (K + 1), we get

as e 0. Applying (6.9) we get (e) o(e), proving that w(, b) is differentiable in b
and the derivative Ow(t, b)/Ob is the continuous function v defined above. The pre-
ceding reasoning shows that the function b w(t, b) is continuously differentiable and,
consequently, also b(h(t, b,), h(t, b,)) is.



690 LUIS T. MAGALH/ES

Now, let us assume that b w(t, b) is of class C for a certain j-> 1 and the
hypothesis of the theorem is satisfied for k =j+ 1. Let v =OwJ/Ob. Differentiating j
times both sides of equation w Tw, we get

v(t, b)= e-1’1 (t, z) ww (z, e b),A) ellv(r, b) d,

f+ b), A) b) dz,e ylzlw( z, el]v(-,
(6.20)

e-ltl T(t, z)X"-w(Z e b),h) ellv(b) d"

+ (terms not involving v).

The terms not involving v contain derivatives of n, u, s relative to w up to order j,
derivatives of w up to order j-1 and exponential factors of the form eill for
i= 1, 2,...,j. The improper integrals in these terms converge because of hypothesis
(H4), the boundedness of all the partial derivatives of n, u, s up to order j, and the
assumption a > kao. We can let T be the mapping transforming v to the function T(v)
of (t, b) according to the right-hand side of (6.20) and define recursively the sequence
{vi} by

v=0 and v/l=T(vi) fori=>l.

As in the first part ofthe proofwe have that { vi} is a Cauchy sequence and, consequently,
it converges to a fixed point of T which must be v=Ow/ob . Clearly, the functions
v(t, b) are differentiable in b, and Ov+i/Ob is given by the right-hand side of (6.20)
with v replaced by Ovi/Ob. Proceeding as for (6.18), we get

Ob Ob y-ao t-y a+y Ob Ob

From (6.9), we get that {Ova is a Cauchy sequence. Arguing as in the first part of
the proof, where the first derivative was handled, we can show that ov/Ob ow+a/ob+1
exists and is equal to the limit of {Ov/Ob} as i--> oo. This completes the induction.

The smoothness of h u and h s can be handled in a similar way. QED

7. Functional differential equations with hyperbolic invariant manifolds. As before,
consider r>0 and let C C([-r, 0]; Rq) denote the Banach space of continuous
functions from the interval I-r, 0] into Rq, where q is a positive integer and C is taken
with the uniform norm. Let us consider a FDE

(7.1) ft(t) =f(ut),

where f BCk(C, R") with k => 1, and suppose that M c C is a compact, connected,
Ck-manifold which is k-hyperbolic under the semiflow defined by the solutions of
(7.1). It is known from 5 that the equation can be linearized around the manifold
M and a system of coordinates can be introduced around M so that the equation
becomes of the form discussed in 6. The aim of the present section is to show how
the results on the persistence and smoothness of integral manifolds for systems in
coordinate form, as presented in the previous section, can be applied to (7.1), yielding
the persistence of an hyperbolic invariant manifold close to M, under small perturba-
tions of (7.1).
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THEOREM 7.1. Let f BCk( C, Rq), k >- 1, and assume that MoC C is a compact,
connected, Ck-manifold which is k-hyperbolic under the semiflow defined by the solutions

of the equation

(7.2) i(t) =f(u,).

If g BCk(C, Rq) and IIglll=sup{lg()[, IIg’()ll: c} is sufficiently small, then
there exists a Ck-manifold Mg c C that is invariant under the perturbed equation

(7.3) fi(t) =f(u,) + g(u,).

There exists a neighborhood 0 C of Mo such that, for I]glll sufficiently small, the

manifold Mg is the maximal invariant setfor (7.3) which is contained in O. The manifold
Mg depends continuously in g, in the sense that Mg can be made arbitrarily close to Mo
in the Hausdorff metric by choosing IIglll sufficiently close to zero. Furthermore, there
exist Ck-manifolds Ug, Sg with Ug fq 0 negatively invariant and Se. VI 0positively invariant
under (7.3) such that Me, Sg [ Ug [’] 0 and

[u,(4,,g)l<=cl4le’, t>=O, fordp6(SgVlO),

lu,(4,g)l<-cl4,le-’, t<=O, fordp6(UgfqO)

for some constants C, (r > O.
Proof First, we introduce a system of coordinates around Mo as indicated in 5.

For each fixed (o Mo, the system in coordinate form (5.8) can be written as an equation
(6.1)-(6.3), where we take for A the Banach space of bounded continuously differenti-
able functions from C into Rq which have bounded first derivative, taken with the
uniform Cl-norm and take A =g. As a consequence of Theorem 5.1, the hypotheses
(H1) to (H4) of 6 are all satisfied with a > kao. The only hypothesis which is necessary
for applicability of the results in 6 and is not necessarily fulfilled is that contained
in (H), namely that the functions n, u, s of (t, x, y, sr, A) are globally Lipschitzian in
x, y, ’, and the requirement that they admit a Lipschitz constant D satisfying (6.9).
Consequently these functions have to be "cut-off" and replaced by functions t, u, s
which agree with n, u, s for Ix], ]y], ]r[ sufficiently small and are globally Lipschitzian
in x, y, " with a Lipschitz constant satisfying (6.9).

Let ao, a, K be as in Theorem 5.1 and let D > 0 be chosen to satisfy (6.9). Assume
0 </z _-</Zo, 0 < e _-< eo and B(/z, e) is as in hypothesis (H2) of 6. Let us consider a
C function v: R+--> [0, 1] such that

f{1} if p/[/z2(2 + r)] --< 1/4,

u(p)(O, 1) if<p/[tz2(2+r)]<l,
[{0} if 1 <-- p/[/z2(2 + r)]

and O<-_-u’(p)<-2/[tz2(2+ r)] for p->0, and a Coo function R+ --> [0, 1] such that

f(1} if p <= e/2,
tr(p)(O, 1) ife/2<p<e,

({0} if e _-< p.

We define the function t: R x RaN x RaU x L x {h A: Ilh 11-< Co} so that it satisfies

( )a(t,x,y,,A)=tr(e)u Ixl=/lYl=/ I()l=d n(t,x,y,,Z)

for t R, Ixl, lYl, I1, IIA , vanishing outside this region, and define t, g in a
similar way. Then, over the region s R, Ixl, lyl, I1 -<- ,/2, IIAII--< /2, we have -n,
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ff u, g s. It remains to show that , a, g are globally Lipschitzian in x, y, r with
Lipschitz constant D.

Let R, IIA II--< and V= {(x, y, ) RaN x RdU x L" Ixl, lyl, I1--< ). if (x, y, ),
(, , )e v, then

I(t, x, y, , A)-(t, , fi, A)I

Ixl=+ly[=+ Iff()l= d I1=+1;=+ I((,)1= d In(t, x, y, if,

+ I1=+1;1=+ I(,)l=d, In(t,x,y, ff, A)-n(t, Zfi,A)l

2

=/z(2 + r) 2/z (2 + r)(lx l + ly Yl + I" -])B(x, e)3/x

13B(, e)(Ix 1 + ly Pl + I
If (x,y, )e V and (, fi, ff) V then there exists a point (x*,y*, *) lying in the
intersection of the boundary of V and the straight line joining the points (x, y, if) and
(, fi, ). Thus a(t, , fi, if, A a(t, x*, y*, if*, A 0 and

Iff( t, x, y, , A ( t, , fi, A )l Iff(t, x, y, , A if( t, x*, y*, *, A )1

If (x, y, if) V and (, , if) V, then a(t, x, y, if, A) a(t, , , L A 0. It follows that
is globally Lipschitzian in x, y, ff with Lipschitz constant D, provided and e are

taken so small that 13B(, e) < D.
The preceding reasoning also applies to a, g. Consequently, the functions if, a, g

satisfy the hypothesis (H) of 6 with a global Lipschitz constant D which satisfies
(6.9). We are now in a situation where the theorems of 6 can be applied to the system
in coordinate form, with n, u, s replaced by , a, g. It remains to see what these
theorems imply for the system (7.3) in the phase space C. For this we need to take
into account the redundancy built into the system of coordinates introduced around
the manifold Mo.

Each point of C lying close to Mo is represented, in the system of coordinates
around Mo which was introduced in 5, by a set of points (, x, y, if) which contains
exactly one element with the second coordinate equal to zero. Because the integral
manifold introduced in Theorem 6.2,

Mx {( t, x, y, if) R x Ra x Ra x L: y h(t, x, A ), h(t, x, A )},

is, for the system in coordinate form, the maximal integral manifold contained in sets
with the y, r-coordinates bounded, and because the functions n, u, s and ri, u, s agree
for x, y, " sufficiently small, it follows that there exists a neighborhood of zero
Vc R x RdN x Rd, x L such that M f’l V is the maximal integral manifold contained
in V. Therefore Mx f’l V represents in coordinate form a patch of a submanifold Mg
of C which is invariant under (7.3). We recall that the system (7.3) is represented in
coordinate form by a family of systems of the form (6.1)-(6.3), one for each toe M
which is taken as initial condition for the solution of ti(t)=f(u,) used as center of
the moving coordinate system. Based on this and on the redundancy built in the
system of coordinates used, we can consider a function H defined from MoX
{ge Bck(c; R"): Ilgll_-< } into C so that H(to, g) is the point of C represented in
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coordinate form by (to, 0, h’(0, 0, g), h’(0, 0, g)) where h h’, h2-- h’ are the func-
tions considered above for Ma for the particular system in coordinate form which
corresponds to take the moving coordinate system centered on the solution of ti(t)=
f(ut), Uo to. Then Mg {H(to, g)’to Mo}, and its properties stated in the theorem
follow directly from the theorems of 6 about the properties of the functions hi, h2,
if we recall the redundancy built in the system of coordinates, namely that changes of
h’(0, 0, g), h’(0, 0, g) with to can be identified with changes of hi(0, x, g), h2(0 x, g)
with to fixed and x changing.

The manifolds Ug and Sg can be treated in a similar way. QED
Remark. The persistence of hyperbolic invariant manifolds for FDEs was studied

above for the case of retarded FDEs on euclidean space R q. As indicated in 4, the
same result for retarded FDEs on a smooth, finite dimensional, separable and connected
manifold follows from the result in euclidean space.
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ON PERIODIC SOLUTIONS OF A THERMOSTAT EQUATION*

GUSTAF GRIPENBERGt

Abstract. An equation describing the regulation of, for example, temperature with the aid of a thermostat
is studied with emphasis on the question whether there are periodic solutions and if there can be several
solutions with different periods.

Key words, thermostat, periodic solutions, Volterra equation
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1. Introduction. The purpose of this paper is to study periodic solutions of
equations describing, for example, temperature regulation by a thermostat. Therefore
one considers a situation where a heater is turned ON if the temperature at some fixed
point drops to a level 0low and is turned OFF if the temperature rises to a level 0hagh
where one has 0low < {ghigh. Thus it will be a basic assumption in this paper that the
control-function can only take two values. We will not go into further details about
how the heating process affects the temperature since one can show that under quite
reasonable assumptions one obtains an equation of the form

(1) y(t)= I a(t-s)u(s) ds, tR
d-

where y(t) is the normalized temperature at the thermostat at time t, u(t)= 1 if the
heater is turned ON at time t; otherwise u(t)= 0 and a is an integrable real function
on R/= [0, co) so that a/ a(t)dt 1. The temperature has here been normalized in
such a way that without heating it approaches 0 and with uninterrupted heating it
approaches one. If one considers the heating process known for time < 0 and also
allows some additive external influence on the temperature, then (1) becomes

(2) y(t)=[ta(t-s)u(s)ds+f(t), tR+, u(0)=Uo{0,1}.
Jo

For some derivations of equations like (1) and (2) where diffusion and other effects
are taken into account, see e.g. 1] and [2].

The equations (1) and (2) do not involve the crucial part of the formulation of
the problem, i.e., the thermostat control or the dependence of u on y. In this paper
the relation is taken to be the following one: If u(t)= 1 and y reaches the value 0high
at time t, then u(t+) =0 and conversely at the lower limit. Below we will also use a
weaker formulation of this condition.

Concerning the question of existence of solutions we take a much more straightfor-
ward approach than the one used in [1] and [2], since here we avoid multivalued
functions completely. The main problem addressed is therefore whether there exist
periodic solutions and ifthere can be periodic solutions with different periods. Concern-
ing the first question it is intuitively clear that periodic solutions should exist and
concerning the second one a reasonable guess (that turns out to be correct) is that it
all depends on the function a. The question of existence of periodic solutions is also
considered in [3] but there much stronger assumptions are made on the function a
and the limits 0high and 0low. It should, however, be pointed out that here only the

* Received by the editors October 31, 1985; accepted for publication (in revised form) May 13, 1986.
t Helsinki University of Technology, Institute of Mathematics, SF-02150 Espoo 15, Finland.
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existence of so-called weak solutions (to be defined below) is established in the general
case.

The stability of the periodic solutions will not be studied in this paper.

2. Statements of results. First we define the concepts related to the thermostat
regulation.

DEFINITION 1. If I c R is an interval and y" I R is a continuous function, then
a function u: I- {0, 1} is weakly thermostat controlled by y with respect to the higher
limit 0high and the lower limit 0low on the interval I provided that u is left-continuous
with right-hand limits on/, and for each I the following conditions hold:

(i) u(t) 1 if y(t) < 0,ow,
(ii) u(t) 0 if y(t) > 0high,
(iii) if u( t) u( t+) 1, then 0high {y(s)ls I, s<-t and u(r)= 1 for all re (s, t]},

and
(iv) if u(t) u(t+) -1, then 0ow (y(s)ls I, s <- and u(r) 0 for all r (s, t]}.

The function u: I {0, 1 } is strictly thermostat controlled by y with respect to the limits
0high and 0ow if it is weakly thermostat controlled by y with respect to these limits and
in addition for every I the following conditions hold:

(iii’) If y(t)= 0high and u(t)= 1, then u(t+) =0, and
(iv’) if y(t)-0ow and u(t)-0, then u(t+) 1.
From this definition one sees that if u is weakly but not strictly thermostat controlled

by y, then y must at some time have a local maximum equal to 0high (or minimum
equal to 0ow).

The reason for introducing the concept of a weakly thermostat controlled function
is that in the general case we only obtain the existence of periodic solutions where u
is weakly controlled by y. But this seems to be more of a mathematical than a real-world
problem.

For convenience we define exactly what we mean by solutions.
DEFINITION 2. A pair (y, u) is a strict/weak thermostat controlled solution of (1)

with respect to the limits 0high and 0ow if y C(R; R), u is strictly/weakly thermostat
controlled by y on R with respect to these limits and (1) holds. Similarly a pair (y, u)
is a strict thermostat controlled solution of (2) with respect to 0high and 0,ow if
y C(R+; R+), u is strictly/weakly thermostat controlled by y on R+ with respect to
these limits and (2) holds.

Now we can give our basic existence result formulated for (2).
THEOREM 1. Assume that 01ow<0high are real numbers, aLoc(R+’, R), f

C(R+; R) and let Uo {0, 1} be such that Uo 1 iff(O)< 0low and Uo-0 iff(O)> 0high.
Then there exists unique functions y C(R+; R) and u:R+->{0, 1} such that (y, u) is a
strict thermostat solution of (2) with respect to the limits 0high and 0ow.

Observe that the theorem says nothing about the uniqueness of weakly thermostat
controlled solutions; in fact it is easy to see that if there exists such a solution that is
not thermostat controlled in the strict sense, then this solution cannot be unique.

Next we consider the question of existence of periodic solutions and here we use
the further normalization that the 0 < 01o < 0high ( 1 and that i+ a(s) ds 1.

TrtEOREM 2. Assume that 0 < 0ow < 0high < 1 and that a LI(R+; R) satisfies
R+ a(s) ds 1. Then there exists periodicfunctions y C(R; R) and u: R {0, 1} (having
the same period) so that (y, u) is a weak thermostat controlled solution of (1) with respect
to the limits 0high and 0ow.

Next we investigate further some simple cases where we can prove that the periodic
function u is strictly controlled by y. Note, however, that we in each case claim that
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every weak solution is in fact a strict one (which is not true in general), and not that
there always exists a strict thermostat controlled solution (which one would expect to
be the case for all kernels a).

THEOREM 3. Let the assumptions of Theorem 2 hold. Assume in addition that a is

nonincreasing on (0, o) and not equal to a nonzero constant on any open interval Then
every periodic weak solution (y, u) of equation (1) is a strict solution.

The previous result is quite trivial. The next one is slightly harder to prove. Recall
that a function c is completely monotone if it is infinitely many times ditterentiable
and (-1)JcJ)(t) =>0 for all j_->0.

THEOREM 4. Let the assumptions of Theorem 2 hold. Assume in addition that
a(t) to al(t s)a2(s) ds, > 0 where al and a2 are locally integrable on R+, and com-
pletely monotone on (0, c). Then every periodic weak solution (y, u) of (1) is a strict
solution.

Unfortunately, the assumption above on the function a is apparently not satisfied
in the example given in [2], but if in that example the thermostat measures the
temperature at an endpoint of the rod studied there, then it will be satisfied.

Finally we consider the question of existence of several periodic solutions with
different minimal periods. This will be done only in the symmetric case 1- 0high 0ow
and for the very special kernels am(t)=(1/m!)t" e-t but these results can of course
be slightly extended with the aid of perturbation arguments. (It] is the largest integer
=<t.)

TI-IOM 5. Let m>--O and a(t)=(1/m!)t" e-t, t>=O. Then there exist numbers
> 0 such that (1) has m/4J + 1 different strict periodic thermostat controlled solutions

(y, u) with respect to the limits 1/2+ a and 1/2-.

3. Proof of Theorem 1. We take u(0)= Uo, y(0)=f(O). Next we define two se-
quences of numbers {%}jo and {t}=o as follows: If y(O)= 0high then Co=0 and if
y(0) 0ow, then ao 1 and else Co Uo. Let to 0 and assume that we have already
defined the numbers aj and t for j 0, 1,-.., k. As one would expect, we define

u(t) o (tj, tj+l] j0.

NOW let the function v be defined by

to a(t- s)u(s) ds +f(t) when [0, tk]’,
Ok( t)

[ a(t-s)u(s) ds+ttk a(t--s)akdS+f(t) when t> tk.

We see that /)k is a continuous function and we define tk/l by

def

tk+ inf { > tklOlk( l)k( t) 0high) -- (1 Ok) l)k( t) 0low) 0}.

Thus tk+ is the first time /)k(t) reaches 0high if Ok 1 and otherwise the first time v(t)
reaches 0low. Finally we define ak+ 1 ak. If tk+ (20, then we do not have to choose
any further points.

We define y to be equal to the right-hand side of (2) and we immediately see that
u is strictly thermostat controlled by y on its domain of definition. It remains to prove
that limj_ tj--CX3. To see this we observe that when j> 1, then Ivj_l(tj)-Vj_l(b_l)l
0hagh 01o Furthermore, since f is continuous, a is locally integrable and u only takes
the values 1 and 0 we see that on each bounded interval the functions {vj}j=l are
equicontinuous and as 0high > 01o this implies that inft<r,> (t- t:l)> 0. Therefore
limj_oo t . This completes the proof. [3
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We remark that one can have another notion of strict solution if one defines the
switching times to be the last time before the temperature rises above the upper limit
if the heater is ON or drops below the lower limit if the heater is OFF, that is, one
would define the numbers {tj} by

def

tk+l inf { > tkl Olk( l)k(t) 0high) + (1 Olk) 01o Vk(t)) > 0}.

4. Proof of Theorem 2. The proof will be based on the following idea: Assume
that u is given on R- so that it is periodic with period T+ S, u(t) -0 when (-S, 0]
and u(t)= 1 when t(-T-S,-S]. Now take u(0+) 1 and solve equation (1) with
u as given on R-. At some T’ the function y reaches 0high, and the value of u is
switched to zero. At some later time T’+ S’ the function reaches 0low again. If we can
find a fixed-point of the mapping (S, T)- (S’, T’), then we have also found a periodic
solution. Now the problem is that this mapping could conceivably be discontinuous
and therefore an approximation argutnent must be used.

Let us for the moment assume that

(3) a E CI(R+; R) and a’E LI(R+; R).

For each pair of nonnegative numbers T and S, define the set ET,s as follows:

(4) ET-,s [.J (rn (S + T), rn (S + T) + T]

so that XT,s is a function that is zero on intervals of length S and one on intervals of
length T. Now define the function ’7-,s by

br,s( t) j-_ a( s)x,T,s(s) ds, R+
It follows from (3) that $r,s is Lipschitz-continuous. In fact the Lipschitz-constant will

def
always be less than the number c a/ la’(s)l ds + 1.

Let e be a number so that 0 < e < (0high--0Zow) and define

fh(e, S)= c max {O, l--Ohigh--S}"
fll(e,s)=cmin{O,-1 0low- s}E

Now let v be the solution of the equation

v()= A(, v(s) ds+ a(s) cls+4,,s(t, e/.

It follows from standard results that this equation has a unique solution. If v(O) _-> Ohigh
then we define T’= 0; otherwise we let

det
T’ inf { > 01 v (t) 0high}.

To see that we always have T’< we have only to recall that ,7;s(t)->0 as t->,
fh(e, V(S))>--O and that l+ a(s) ds= 1 > 0high.

To obtain S’ we let w be the solution of the equation

w(t) fl(e, w(s)) as+ a(t-s) ds+7;s(t), t>= T’
T’
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and define S’ 0 if w(T’) _-< 0ow and otherwise

def
S’ inf{t> r’lw(t)= 0ow- r’.

Again we conclude that the number S’ must be finite.
Now we have constructed a mapping G T, S)- T’, S’). To see that the mapping

G is continuous we have only to cheek that @r,s(t) depends continuously on T and
S for each t, use a standard result about the continuous dependence of solutions of
ordinary differential equations upon data and finally note that it follows from our
definition of the functions fh and J that v’(T’) 1 and w’(S’)-1.

We claim that there exist positive numbers B and z (independent of e) such that
G maps the set {(T, S)10 S z, T+S} into itself. Clearly it is sucient to
choose r so large that la(s)l as <min {1-0hgh, 0low}. Fuhermore we always have

var r.s(t)+ a(s) ds; [0, T’]

+vat r,s()+ a(t-s) ds;[T’, T’+S’] 0h-0o-2e,

and hence we can see that we can choose (0-0o-e)/I* la’(s)] ds.
Now it follows from Brouwer’s Fixed-Point theorem that the mapping G T, S)

(T’, S’) has a fixed point that we call (T, S). It is easy to check that neither of these
numbers can be zero.

We define the function u to be the characteristic function of the set r.,s and
let y be defined by

y(t)= ft a(t-s)u(s) ds, teR.
d-

Obsee that u is not thermostat controlled by y. We do however know that

Ue( < Ohigh, t[0,
(5)

y(t)> O,ow, t[S,S+ L],

as one can easily see from the definition of the mapping (T, S) (T’, S’) and the fact
that S and T are positive.

Next we let e0 and observe that due to the compactness we may choose a
subsequence {e} such that the numbers T and S converge towards some positive
numbers T* and S*. We define the function u by

and

u(t)=XE..s.(t), tR,

y(t)=I a(t-s)u(s) ds, tER.

Now it is quite obvious that the functions uj converge in Loc(R; R) towards the
function u and also that the functions yj converge uniformly on compact subsets
towards the function y. It remains to prove that u is weakly thermostat controlled by
y. It follows from inequalities (5) that we must have y(t)<= 0high on [0, T*] and
y(t) -> 0ow on T*, T* + S*]. If on the other hand there is no point [0, T] for which
y(t)=Ohigh, then it follows that for sufficiently small numbers ej we have y(t) <-

Ohigh--Ej for all [0, T]. This implies that v(t)= y,(t) for all [0, Tj] which is
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impossible. A similar argument for the lower bound 0low shows that we actually do
have a weakly controlled solution.

It remains to remove the differentiability assumption and this can be done by
approximating the original kernel with differentiable ones. Thus one gets a sequence
of weak solutions and an argument similar to the one used above shows that it must
have a limit that is a weakly controlled periodic solution of equation (1) on R.

5. Proof of Theorem 3. Let T> S be two points such that u(s) 1 when s (S, T]
and u(S)=0. Let - (S, T) be an arbitrary point. From (1) we have

() y(r)-y(r)= a(s) ds- /(a(s)-a(r-r+s))u(,-s) ds.

Since I/(a(s)-a(T-+s))ds=I-’a(s)ds this equation shows that y is non-
decreasing on the intervals where u is 1 (and by the same argument nonincreasing
when u is 0). If a(s)=0 when s> --S, then y(-)= 1 which is impossible. Hence it
follows from our assumptions that a(s)-a(T-+s)>O if se(r-$, r-S+e) for
some positive number e. But this implies by (6) and the fact that u(S)=0 that

y(r)-y(r)> a(s) ds+ /(a(s)-a(r-+s)) ds=O

and since r was arbitrary it follows that u is strictly controlled by y at the upper limit.
A similar argument can be applied to the lower limit to complete the proof, l-]

6. Proof of Theorem 4. We consider first the case when the functions al and a2
are of the form al(t) 0-1 e-%t and aE(t) 0"2 e -crEt for some positive numbers 0"1 and
0"2. Assume that u takes the value one on intervals of length T and is equal to zero
on intervals of length S, that is u(t)- XET,s(t) where Er,s is given in (4). Let us denote

v(t) Ja al(s)u( t- s) ds, R.

Now it is obvious that v is increasing on the intervals where u takes the value 1 and
decreasing elsewhere. Differentiating both sides of (1) we have

y’(t)=0"2(v(t)-y(t)), tR.

We see that on the intervals where u is 1 the function y can have only one point where
the derivative vanishes and that point must be a minimum. Hence we conclude that

(7) y(t) < y(T), [0, T],

provided we can show that y(0)< y(T). Suppose for the moment that this has been
done. Since completely monotone functions are limits of sums of exponentials we see
that the relation (7) must hold in the general case too and hence the solution (y, u) is
a strict solution.

Thus it remains to prove that y(0)< y(T). We know that

V’(t) O’l(U (t) V(t))

and since v is periodic with period T+ S one can easily solve the differential equation
above and from the periodicity condition conclude that

1 e-’’ T
v(O)=e-,s

1 e-(T+s)

v(r)=
1 e-(T+S)"
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Now we proceed to solve the function y and using the fact that this function is periodic
too, we get

y(O) (1 e-2T) + e-27"y(O) -(1 v(O)) 0-2 (e-,_ e_:),
0-2 0-1

y(T)=e-Sy(T)+v(T) 0-2 (e-ls_e_%S).
0-2 0-1

(Here we assume that 0-2 0-1, the case when they are equal is treated in the same
manner.) If we solve y(O) and y(T) from these equations and insert the values of v(O)
and v(T) obtained above, then we get the relation

(1 e-’(r+s)) (1 e-2(r+s))(y( T)- y(O))

(8)
(1 e-T)( 1 e-:s)( 1 e-r(T+s))

_(l_e-,qT)(l_e-:T) 0-2 (e-ls_e_:s)
0-2 0-1

(1 e-r,S)(1 e-:s 0-2 (e-,r,C_ e-27-).
0-2 0-1

Next write

(9) 1 e-‘r’r+s) 1/2( 1 e-, r)( 1 + e-’s) +1/2( 1 e-’s)( 1 + e-r,)
and then observe that it is easy to verify that

1
-(1 e-’r:S)(1 + e-’s) 0-2 (e_,s e_:s)

0-2 0-1

e-(’l+E)S/2(sinh((0-1+0-2)s) 0-1 + 0-2 sinh ((0-1 0-2)S)) >0.
2 0-1-0-2 2

A similar result holds of course with S replaced by T and if these together with (9)
are used in the right-hand side of the relation (8), then we obtain the desired conclusion
that y(T) > y(0). [3

7. Proof of Theorem 5. Let T be positive, am(t)=(1/m!)t e-t and define

1 ift(mT, mT+T],m even,
uT-(t)=

0 otherwise.

Let

Ym,T( t) am(S)UT-( t-- S) ds,

and

hm( T) ----1 mTm+ dm (1m(-1)
dT T e

T>O.

A straightforward calculation shows that

Ym,T(O) hm(T), m >- O, T> O.

We need some further information about the function hm.
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LEMMA 1. Let h, be thefunction defined above. Then for each m >-0, hm(O) =1/2 and
(i) (-1)t"/21(h,(T)-1/2) is negative and decreasing when T (0, t,,,),
(ii) h/(T)= h(T)-(/(m+ ))Th’(T) when T>0,
(iii) the function hm has ]m/2J local extrema on (0, ) and no other points where

the derivative vanishes.
Proof. Let us first define the functionf: R+ --> R+ byf(T) 1/(e 7- + 1). A calculation

shows that

1 mTmf(m+l)(h’m(T) . (-1) T), T_>_O

and from this relation we get the claim (ii) with the aid of a partial integration.
Next let us define

def
go(s) s(1-s), seR,

def
g,(s) s(1-s)gm_l(S), m>=l, sR.

Again it is straightforward to check that

T g, T >0.
m! eT+

By induction it is easy to prove that the function g, has exactly [m/2J zeros in the
interval (0, 1/2) and all of these zeros are simple. This gives the assertion (iii) about the
number of extreme points. To establish (i) we have only to observe that

0 ifrn=0mod4, =0 ifrn=0mod4,

gin(1/2)
0 if rn 1 mod 4, < 0 if rn 1 mod 4,
0 ifm=2mod4,

g"*(1/2)
=0 ifm=2mod4,

0 ifrn=3mod4, >0 ifrn=3mod4.

This completes the proof of Lemma 1. D
Our next lemma says for how many values of T we get the same value for y,,T(0).
LEMMA 2. Let y,,,T be the function defined above. If m >-0 and a is a sufficiently

smallpositive number, then there exists rn/4J + 1 different values T so thatYm,T (0) 1/2 Ot

and y,.-1, (0) < 1/2- if rn >-_ 1.

Proof. From Lemma 1 (i) and (iii) and the fact that hm(OO)--0 we see that the
extreme point of h2 must be a maximum. Then it is possible, using induction and (ii)
in Lemma 1 to show that at all local maxima of h,(T) the value of the function is
larger than 1/2 and at all the minima smaller. Furthermore it follows from (i) and (iii)
in Lemma 1 that, h, has exactly [m/41 local maxima on R/ (note that for some values
of m there is one at 0). But then the desired conclusion follows directly from (ii) in
Lemma 1 since immediately to the right of each maximum there is a point where
h,,(T)=1/2-a and h’(T)<0. Iq

If now 0low=1/2- c and 0high 1- 0low, rn => 0 and T is such that ym,7-(0)=--a,
then (y,,r, u) is a periodic strict solution of equation (1) if we can show that

(10) max Ym,T(S) Ym,T(T) > Ym,T(t) [0, T).
s[0,T]

This is of course the case if rn =0 and we will show that it is also true if y,,r(0)>
Ym-I,T(O). First we need a simple lemma.
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LEMMA 3. Let m >-- 0, T> 0 and let Ym,T be as defined above. Then Ym,T can have
at most one local extreme point on the interval (0, T).

Proof. We use induction to prove the stronger claim that there cannot be two
extreme points in (0, T) or one extreme point if the derivative is zero at 0. It obviously
holds for rn 0. Assume that it also holds for rn k-1. We will show that it is true
for m k. Suppose that Yk,7" has at least two local extreme points in (0, T). Since

(11) Y’k,T( t) Yk-l,7"( t) Yk,( t),

and by symmetry

y’k-l,7"(O) --y’k-,7( T),

this assumption implies that Yk-l,r must have two extreme points in (0, T) or one
extreme point and vanishing derivative at zero. If Yk,T has derivative equal to zero and
one extreme point on (0, T) then a similar argument shows that we again get a
contradiction. ]

To complete the proof of the theorem we see that if (10) is not satisfied then either
y’,,,T(0) _-> 0 which is impossible if y,,(0) > Ym-I,T(O) by (11) or there are at least two
local extreme points on the interval (0, T). But this is impossible according to Lemma
3 and therefore the desired conclusion follows from Lemma 2. 1-1
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Abstract. The main result is a proofofthe existence of solutions which are global in time for a.differential
equation arising in the theory of myelinated nerves. The equation differs from the usual reaction-diffusion
equations occurring in nerve models in that the second derivative operator in the spatial direction is replaced
at a sequence of discrete nodes by an operator defined as the jump in the first derivative in the spatial
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existence of solutions is obtained via semigroup theory; global bounds and hence global existence via energy
or Lyapunov methods.
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1. Introduction. The study of mathematical models of nerve impulse conduction
has proved to be a fruitful source of interesting problems in differential equations.
The purpose of this article is to prove the global existence of solutions to one such
model that arises from a consideration of the effects of myelination on conduction of
impulses in a nerve axon. Myelinated nerves, which include many human nerve
processes, are wrapped in periodic bands of fatty myelin tissue, which acts as an
insulator in damping the dynamics of the nerve axon. The dynamics of the myelinated
nerve occur primarily at the gaps (known as nodes of Ranvier) between the myelin
bands. The model considered here is the myelinated analogue of the simplest model
for conduction in a uniform axon, the so-called reduced FitzHugh-Nagumo equation

ut Uxx +f(u) on (0, ) x (0, ),

(1.1) ux(O+,t)=I(t),

u(x, O)= 4,(x)

where u represents the potential across the axonal membrane, I(t) a current stimulus
at the end of the axon,b(x) the initial state of the axon, and f(u) describes the
dynamics of the excitable membrane. The corresponding myelinated model, which we
shall study in the present article, assumes nodes at integer values of x and is given by

Ut U,, gU, x (0, c)\Z+, > O,

V=[U,]]j+f(Vi), j7/+, t>0,
(1.2)

Ux(O+,t)=I(t),

U, g)lt=o- (o, o)

where V (V)j=l and [F]I F(j+)-F(j-). In (1.2), the myelin is assumed to have
the effect of limiting the dynamics of the nerve to the nodes. A discussion of the
modeling leading to (1.2) is given in [2]. References on (1.2) and on models related
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Study.
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to (1.2) are given in [2]. Another class of models for myelinated nerves is discussed
in [6]. We shall impose the following conditions on f:
(1.3) f(0)-0, f CI() with f’(x)-fo one,
and assume that f can be extended to a function on C which, if viewed as a function
of two real variables, is C . In the actual model, f is often taken to be a cubic
f(u)-bu(a-u)(u-1), b>O, a(O, 1).

For purposes of applications, the most interesting questions about (1.2) involve
threshold phenomena and propagation of impulses; those questions for the pure initial
value problem are discussed in [2] and for the initial boundary problem (1.2) in work
in progress by Jonathan Bell and the author. However, it is not entirely satisfactory
from a mathematical point of view to leave the question of existence of solutions open;
thus the question of existence is discussed here. The main result is the existence theorem
for (1.2) stated at the end of 3. To obtain a local existence result, we cast (1.2) in
terms of the operator A given by A(u, v)=(-u+u, (--Uxj’qt-l.)j)jC=l) where as in
(1.2) u is defined on (0, c)\Z+ and v=(v)_, then show that when given the
appropriate domain the operator A is such that abstract results from the theory of
semilinear evolution equations can be applied to (1.2). The appropriate spaces on
which to consider A are slightly nonstandard; those spaces and the properties of A
are studied in 2. To obtain global existence in time, a priori bounds on solutions are
needed; those bounds are obtained by a Lyapunov or energy method in 3. The
analysis is somewhat similar to those done for various models of uniform (i.e.,
nonmyelinated) axons in [1], [3], [8]. The analysis can be extended to models more
complicated than (1.2); for example it is clear from an examination of the proof that
the scalar equation V U]] +f( V) could be replaced by a vector equation of the
form

’, Pou+f( ’, q/), , ( ’, V)
(where Po is a constant vector with positive components) with only minor changes in
the analysis under appropriate hypotheses on f and h. Thus, we could replace the
reduced Fitzhugh-Nagumo dynamics with Hodgkin-Huxley or other more complicated
dynamics at each node. The mathematical novelty of (1.2) comes mainly from the
existence of nodes at which O2/Ox is replaced by [[O’/Ox]. Thus we limit our attention
to (1.2) for the sake of brevity and simplicity; our methods are adequately illustrated
by that simple case. In studying the operator A, we use some rather "soft" or noncon-
structive methods. The author would be very interested in seeing an explicit construction
of a Green’s function for the linear problem (u, v)+A(u, v) (p, q), (u, v)]=o (4, )
with (p, q), (b, ) given; such a construction appears to be computationally tricky.
Another approach to (1.2) might be via some sort ofmethod of lines; however, obtaining
the appropriate estimates for the convergence of line methods also seems to be a
delicate problem. Thus, although the methods used here are nonconstructive, they
have the advantage of simplicity.

2. Linear theory. Our analysis will use some slightly unusual spaces, all consisting
of pairs (p, q) where p is a complex valued function on (0, oo)\7/ and q- (qJ)il with
qJ C. Let H ((p, q)" p L2[(0, oo)\7//], q 12) with inner product

((Pl, q,), (P2, q2)). Pli02 + Z
0,c)\7/+ j=l

The space H is a complex Hilbert space and can be viewed as an L2 space generated
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by the appropriate measure. Let

X {(p, q) H" p’,p L2[(0, / p’)\’ ], absolutely
continuous on (j- 1,j) forj 27+, (P’]]j)jI 12, lim p(x)= qJ, and p’(0+)= 0}.

x-->j

It is a fairly straightforward exercise in the theory of functions of a real variable to
show that X is dense in H. Finally, let

Y= {(p, q) H" p’ L2[(0, )\7/+], p absolutely
continuous on (0, )\7/+, lim p(x)

with inner product

<(P,, ql), (P2, q2)>v (PP+P,P)+
(0,cx3)\Z j=l

Clearly X Y___ H, with II(u, v)ll,, --< II(u, v)ll for (u, v) Y. Let A be the operator
defined by A(p,q)=(-p"+p,-p’]]j+qJ)j=l, with domA=X. We will show that A
generates an analytic semigroup; to see that, we will first show that A has a bounded
inverse so that A is closed (since dom A X is dense in H), then calculate the numerical
range to see that A is m-sectorial so that A generates a holomorphic semigroup.
Inverting A is equivalent to solving

A(u, v) (p, q) H, (u, v) X

-u"+u=p on(0,)\Z+,
(2.1)

--U’J-]"1)J-" q j’ J Z+,
u’(0+) =0

in X with I[(u, v)ll. -<- gii(p, q)ll. for some constant K. To solve (2.1) we first obtain
a generalized solution in Y and then show that such a solution must belong to X.

We define a generalized solution of (2.1) to be an element (u, v)e Y.such that
for any (w, y) Y,

(2.2) ((w, y), (u, v)), ((w, y), (p, q))H.

Since I((w, y), (p, q)),[_<--II(w, y)ll,-,ll(p, q)ll, --< I](w, y)llll(p, q)ll,,, the right side of
(2.2) defines a bounded linear functional on (w, y)e Y. By the Riesz representation
theorem, there exists a unique (u, v)e Y such that (2.2) holds for any (w,y)e Y.
Thus, for any given (p, q) Y we can define B’H--> H by taking B(p, q) to be the
generalized solution to (2.2) corresponding to (p, q). If (u, v) B(p, q) e Y,
then by (2.2), liB(p, q)ll 2 ]<(u, v), (u, v))yI ]((u, v), (p, q))HI <- ]l(u, v)ll ll(p, q)llH-
liB(f, g)ll ll(p, q)ll. so that liB(p, q)llY =< II(p, q)ll,,. Hence B" H--> Y,--> H is bounded.
It remains to show that B maps H into X and that any solution (u, v) to (2.2) in X
satisfies A(u, v) (p, q). Showing that B maps H to X is essentially a matter of proving
the regularity of generalized solutions to (2.1). Let Hk[12] denote the L2-Sobolev space
of functions with k weak derivatives in LZ[12]. If (u, v) e Y then UI(j_I,j) H[(j 1,j)]
for all j7//. We may follow the analysis in [4, 1.15] to conclude that
H:[(a, b)] for any a, b with j-1 < a < b <j, j ;+, provided we can show that if
(u, v)e Y satisfies (2.2) for a given (p, q)e H, there exists a constant C such that for
any e C[(j- 1,j)] we have

(2.3) f ’’ _-<
j--l,j)
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(Inequality (2.3) is essentially inequality (15.6) in [4, 1.15]; the verification that the
results in [4] carry over to our situation is routine and hence omitted.) Suppose that
(u, v) Y satisfies (2.2) and b C[(j- 1,j)] with supp b

_
[a, b]

_
(j- 1,j). If we

extend b to (0, o)\Z+ by taking b-=O outside [a, b] and let 0--- (k)7=l with I]tk 0
for all k, then (4, q) Y and (2.2) yields

(2.4) I q’ti’=I (/-t
j--l,j) j--l,j)

so that

which establishes (2.3) since B" H H is bounded. Hence, u"l(a,b) L2[(a, b)] for any
[a, b] (j- 1,j), so by taking complex conjugates in (2.4) we have

(2.6) -(l/h) f (x-j-h)u+v
j,j+h)

U"
(a,b)

d,b(p- u)

for any b e C[(a, b)]. Since C is dense in L2, we have for any h e L2[ (a, b)]

(-u")h
a,b) a,b)

(p-u)h.

Thus, any bounded linear functional acting on L gives the same result for -u"
as for p-u, so -u"--p-u or -u"+u =p on (a, b). Since a and b may be chosen
arbitrarily as long as j- 1 < a < b <j, and (p- u)l(j_l.j) L[(j- 1,j)], we have -u"
p-u on (j-l,j). Since j7/+ was arbitrary, -u"+u=p on (0, c)\7/+ and u"
L[(0,)\7/+], which establishes the first equation in (2.1). Since L2[(j-I,j)]_
LI[(j 1,j)] it follows that u’ is absolutely continuous on (j-1,j), and that u’(b)-
u’(a) (a.b) U" for any (a, b)

_
(j- 1,j). Hence we may let a j- 1 or bj to see that

u’(j- 1+) and u’(j-) are well defined. Also, since u and u" belong to L2[(0, c)\7/+],
so does u’. Since (u, v) Y it. remains only to verify the last two equations in (2.1).
Given j7/+, define (wj, y) Y by yk.=6kj and W’=(1/h)x(j_hd on (j-h,j), w=
--(1/h)x(d+h) on (j,j+h), and w-0 otherwise, where h>0 is arbitrary; then w=
(1/h)(x-j+h) on (j-h,j), w=-(1/h)(x-j-h) on (j,j+h), and w=0 otherwise.
Clearly (w, yj)e Y, and (2.2) yields

(1 / h) I(j-h,j)

=(1/h) f( (x-j+h)p-(1/h) I( (x-j-h)p+q.
j-h,j) j,j+h)

UNoting that (i/h) -h.) =(1/h)[u(j)-u(j-h)] u’(j-) and (i/h) d+h)U’
u’(j+) as h-0, that I(1/h).j_h.)(x-j+h)ul<-_$_n,)lul-O as h-0 and similarly
for the remaining integral terms in (2.6), we may let h - 0 in (2.6) to obtain the equation
u’(j-)-u’(j+)+v=q, which is equivalent to the second equation in (2.1), and
implies that ([[u’]])jl v-q 12.

u’ + (1/ h I(j-h,j) (x-j+ h)u-(1/h) I u’
j,j+h)

(ll(p, q)ll- + liB(p,
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The last equation in (2.1) follows as above by taking w-(1/h)(-x+ h) on (0, h),
0 < h < 1, w 0 otherwise, yk 0 for all k, using (2.1) and letting h - 0.

We have shown that B" H X
_
H so that B(p, q) satisfies AB(p, q) (p, q) for

any (p, q) H. Also, B" H+ H is bounded and by our construction BA(u, v) (u, v)
for (u, v)X. Since B A-1 is a bounded operator defined on all of H and X =dom A
is dense in H, it follows that A is closed. (See the discussion in [7, III.5.2].) We have
thus proved the following:

LEMMA 1. The operator A defined by A(u, v)=(-u"+u,(-[[u’]j+vJ)j=l) with
dom A X is a closed operator from X to H with A-1" H H bounded.

To apply semigroup theory in our nonlinear problem, we will show that A satisfies

(2.7) II(A -3)-111 =< C/(1 /IAI) for Re A =<0

for some constants C, e > 0, where denotes the operator norm on (H). (In fact,
(2.7) turns out to hold for [arg h[> (r/2)- e for any e (0, r/2), but we will not need
that stronger result.) Let O(A) C denote the numerical range of A; that is,

O(A) {(A(u, v), (u, v))/_/" (u, v) dom A, II(u, v)IiH- 1}.

Let F denote the closure of O(A), and let A C\F. We shall use the following lemma,
which is essentially a special case of Theorem V.3.2 in [7] applied to A.

LEMMA 2. Suppose that A is closed and A is connected. For A A, A- A has nullity
0 and constant deficiency. If the deficiency is O, then A is contained in the resolvent set

ofA and

(2.8) II(A -A)-111--< 1/dist (,X, F)

where dist (A, F) is the distance from A to F in C.
To apply Lemma 2, we must calculate the numerical range of A. We have for

(u, v) X that

(A(u, v), (u, v)>= (u"+u)a+ Z (-u’]j+v)
0,oo)\’+ j=l

(lu’l = + lul=) + 2 u’(j + )a(j+)
O,oo)\E j

E u’(j-)fi(j-)- E [[u’]+ E Iv l =.
j=l j=l j=l

Since u(j+) u(j-) v for (u, v) X, the middle three terms on the right side of the
second equation drop out, leaving

(A(u, v), (u, v))= (lu’l=/lul=)/ Z Iv l=
0,oo)\’ j=l

Since II(u,  )ll.-1 in the definition of O(A), we have 0(A)_ [1, ) and r_[1, ).
Hence A =C\F is connected, and since A-1 (H), A has deficiency zero on A. Thus
Lemma 2 applies, and (2.7) follows immediately from (2.8) and some elementary
geometry.

3. Existence. To solve (1.2) we recast it in terms of the operator A defined in 2
and apply a result from the theory of abstract evolution equations. First, we rewrite
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(1..2) as a pure initial value problem. Let tr(x) C[[O, )\7/+] be such that tr’(O+) -1
and supp r [0, 1/2). Let u U+ o’(x)I(t) and v V; then (u, v) satisfies

ut- u,,,, + u (1 -g)u + (gtr-tr,,,,)I + trIt,

v-u,,]] + v v +f(v),
(3.1)

(u, v)l,=o (b, q,)---(bo+ r(x)I(O), q’o),

u(O+) =o.
Letting h(x, t)=(gtr-o’,,,)I+o’I,, we may rewrite (3.1) as

d(u, v)+a(u, v)= F(t, (u, v))
dt

(3.2)
(u, v)l,=o (b, q,),

where F(t,(u, v))=((1-g)u+h, (vJ+f(vJ))j=l). We will want (b, q,) dom A= X;
also, we will want to differentiate (3.2) with respect to t, so we require

(3.3) (4o, q,o)X, b(0+)= I(0), I(t) C3[[0,)].
To solve (3.2) we use a form of a resalt due independently to Sobolevski and

Tanabe (see [4, II.16] and [5]); the present formulation is taken from [3, Thm. 1].
LZMMA 3. Let A be a closed linear operator on a Banach space E such that (2.7)

holds. Suppose that F(t, p) is a function on [0, To) E such that for some constants

a, q (0, 1) and for any R > 0 there exists a constant C(R) for which

(3.4) IlF(tl,A-p,)-F(t2,a-p2)ll<=f(R)[ltl-tzl’+llpl-pz]]]

for all tl, t2 [0, To], Pl, p26 E with IIpll, IIp=ll < R. Thenfor anypo6 dom a and each
R > [IaPoll, there exists a t* t*(R, IIa"poll)> 0 such that the problem

(3.5)
dp+ Ap F( t, p), p(O) Podt

has a unique solution in [0, t*]. Furthermore, if there exists a constant R’> 0 such that

for any solution p of (3.5) in [0, T1], T1 <- To, we have IIAp I1 < R’, then we may choose
R > R’ and thus apply the local existence assertion of this lemma on [0, t*], It*, 2t*],
and so on until [0, To] is exhausted.

Since the operator A in (3.2) was already shown to be closed and to satisfy (2.7),
we need only establish (3.4) for the function F in (3.2) to conclude the local existence
of solutions to (1.2). Let (Wk, Yk) a-" (Uk, Vk) for k 1, 2. If II(u, v)ll, < R for
k 1, 2, ly/,I =< Ily = --< I1( w, Yk)ll , <= a- R, so

II(f(y{)-f(y))j=llll2<= sup If’(Y)l Ilyl-y21l,
lYl<lla-"llR

(3.6) <- Co(R)ll(w,- w=, y- Y=II,
<--Co(R)lla-ll II(Ul, Vl)-(u=,

We have

(3.7)

+ I1(o, (Y{ Y+f(Yl) -f(Y2))= 1) H.
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Since II(w, 0)11, < II(w, y)ll,, I1(0, y)ll < II(w, y)ll, and I1(0, y)ll II(yJ)j,ll/, it fol-
lows from (3.6) and (3.7) that

IlF(tl,A-(u,, Vl))-F(t,A-(u2, v))ll II(h(t)-h(t), 0)11
(3.8)

+(11 + gl+ Co(R))[[A-ll II(u, y)-(uz,

Since e C([0, )Z+) with supp e [0, 1/2] and I(t) e C3([0, )), (3.4) follows from
(3.8) with e (0, 1) arbitrary. Thus, the local existence of solutions to (1.2) is estab-
lished.

To obtain global existence we must bound IIA(u, v)[[ for any solution to (3.2).
Since only the situation with (, ) real valued is of physical interest, we shall
assume that to be the case, so that (u, v) is real valued also. To bound IlA(u, v) it is
sufficient to bound II(u, )11, II(h, 0)11 and [[(ut, vt)lln, since if II(u, v)llM then
IvJIM so by (1.2)[f(vJ)lsupy<lf’(y)llvJ and thus [](0,(f(oJ))jlllH
sUplyI< If’(Y)l tt0, v)ll. Because we assume the initial data (, if) dom A, the proof
of Lemma 3 and the smothness of F imply the existence of continuous first and second
time derivatives in H for any solution (u, v) of (3.2); see the discussion following
Theorem 2 in [5]. We obtain the necessary bounds via a Lyapunov or energy functional;
the method is similar to those used in [1], [3], [8]. Let

1
E(t)=(ll(u, o)11+ II(u,

2 (o,)

E’(t)= (uut+ututt)+ E vtvtt+vJvt
0,oo)\7/+ j

[ u (uxx gu + h) + ut(Uxxt gut + ht). 0,o)\.

(3.9) + _, [v[ut]]j+f’(vJ)(v)’+vJu]]j+f(v)v j]
j=l

u2 + gu2 + ux, + gust]
o,)\’

+ [hu+ htut]+ 2 f’(vJ)(v)+f() vj
0,oo)\7/ j=l

where we have used the fact that (u, v), (u, v)t X, so that u(j+, t) u(j-, t) v(t)
and ut(j+, t)= ut(j-, t)= vt(t) as in the computation of the numerical range of A
following Lemma 2. Using Cauchy’s inequality and (1.2) we have from (3.9)

E’(t)-<-J (u+u$,)+[(1/2)-g] J (u+ut)
Io,)\. o,oo)\.

(3.10)

+(1/2) hE+ hat)+fo E (vJ)2+(v)2]
0,oo)\7/+ j=l

From (3.10) and the properties of h, it follows immediately that E’(t)<=KI+ K:E(t)
for some constants K1, K2 that do not depend on (u, v), as long as (u, v) exists. We

We have
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already have the existence of a local solution to (3.2); so choose e > 0 such that a
solution to (3.2) exists on [0, T2) for some T2 > e. We can now apply Lemma 3 again
with initial data (u(e), v(e))X. By our differential inequality for E, we have E(t) <-

Ka(t) + E(e) ert with ga(t) bounded on any fixed interval in t. By our assumptions
on tr and I, I](h, 0)l]n is bounded on any fixed interval [0, T1]. Since 2E(t) bounds
I1( u, V)IIH and I(u, v)tlIn, we have as noted above that IIA(u, v)ll, is bounded on any
subinterval of e, To] for which the solution exists; the bound depends only on K2, K3,
and E(e). Hence we have the necessary bound for global existence of solutions on
e, To] and hence on [0, To] by Lemma 3. Since To > 0 was arbitrary, our solution must

exist for all > 0. We have thus proved the following.
THEOREM. If (0, bO) X and conditions (1.2), (3.3) hold, then the problem (1.2)

has a unique solution (U, V) for all > O.

Acknowledgment. The author wishes to thank Jonathan Bell for much useful
discussion and correspondence.
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THE BLOW-UP TIME FOR SOLUTIONS OF NONLINEAR
HEAT EQUATIONS WITH SMALL DIFFUSION*

AVNER FRIEDMANf AND ANDREW A. LACEY:

Abstract. Consider a nonlinear heat equation ut-eAu=f(u) in a cylinder {x[l, t>0}, with u
vanishing on the lateral boundary and u= b(x) initially (b,_->0). Denote by T the blow-up time for the
solution. Asymptotic estimates are obtained for T as e--> 0.

Key words, nonlinear heat equation, blow-up of solutions
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Introduction. Consider the system

(0.1) ut-eAu=f(u) (x[l, t>0),

(0.2) u(x, t) 0 (x 01, > 0),

(0.3) u(x, O) ok(x) (x

where b(x) is continuous and nonnegative, f(s) is positive and increasing for s-> 0,
and 1/f is integrable. Denote by T the time when the solution blows up. Denote by
To the time when the solution of

(0.4) v’(t)=f(v(t)) (t>0),

(0.5) v(0) (Xo)

blows up, where b(Xo)= maxxa b(x). We are interested in estimating T as e-->0. If
Ab(Xo) < 0 then we prove that

(0.6) ce < T To < Ce

where c, C are positive constants. More generally, if

4’ (x) 4’ (Xo) colx xol2’ as x --> Xo

for some positive numbers Co and c, then

(0.7) ce

The forms of the constants c, C in (0.6), (0.7) will be given quite explicitly.
We also consider the case where b(x) varies with e. Suppose

bo(X) + * -ff if -e B1,
4,(x)

X

16o(X) if --J B
where B1 {y; lyl< 1}, (y)->_ o, (y) o if ydB1, dp C(/1), and let

bo(0) rnax b, (0) max
B1
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supported by National Science Foundation grants DMS-8420896 and DMS-8501397.

" Department of Mathematics, Purdue University, West Lafayette, Indiana 49707., Heriot-Watt University, Edinburgh, Scotland.
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Denote by T* and T, the blow-up times for the solutions of (0.4), (0.5) corresponding
to bo(0) and bo(0)+ (0). Then if/3 # 1/2, T --> To as e --> 0, where

1.(0.8a) To T, if fl < 1/2, To T* if fl > ,
also

(0.8b) T, < lira T =< lim T < T* if/3 1/2.
e--Oe--O

Notice that if 4o(0)< maxn bo then the asymptotic behavior of T does not depend
on .

The assertion (0.6) is proved in 1, (0.7) is proved in 2 and (0.8) is proved in 3.
We finally mention that recent literature on blow-up of solutions of nonlinear

hoat equations can be found in [1]-[5] and in the references given there.

1. The estimate (0.6). Let 12 be a bounded domain in R whose boundary 0fI is
locally a Lipschitz graph. For any s > 0 set

f, x {0 < < s}, a, a x {0 < < s}

and consider the parabolic problem

(1.1) Lu=---eAu-f(u)=O in
Ot

(1.2) u 0 on 01200,

(1.3) u(x,O)=qb(x) for xe12

where

(1.4)
e c(n) c(fi),

4, 0 on af

6(x)->_0,

and f(s) satisfies

(1.5)
f(s)>O, f’(s)>O, ff(s)>--O if s->0,

at the end of 3 we shall extend all the results to the case where f(0)= 0.
It is easily seen that there exists a unique function ’(s) and a positive number So

such that

(1.6)
ds

-f() if0<s<so,

r(s)-oo if s-O, st(So-0)=0.

Clearly

(1.7)

The inverse function ,-1 satisfies ’ < 0, st"< 0.

(1.8)
1(--l)t(S)

f(s)
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The most interesting examples for f are

(1.9)

(1.10)

f(s)- es, and then st(s)= -log s, sr-l(s)= e-s,
f(s) (s + A )P (A > 0, p > 1), and then

(s) as-/<p-)-A, -(s) 1

p-1
(S + A)I-P

the case A 0 is considered at the end of 3.
For any g fl consider

dv
d---=f(v) for t>0, v(0)

ot (p --1)-l/(p-1));

where U(x, r) satisfies

Taking

V(x, t)= U(x, et)

we conclude that w is a subsolution.

and denote the solution by u(t). The solution must blow up in finite time T and

(1.11) u( t) ( Tg t).

Taking =0 we get b(g)= ’(T), or

(1.12) T ’-(b (9)).

Notation. We denote T by T(4(:)), and we denote the blow-up time for the
solution u of (1.1)-(1.3) by T,.

THEOREM 1.1. Let b (Xo) maxima 4(x), Xo f: Then

(1.13) T >- T(b(Xo)).

Proof. The function v(t) Uxo(t) satisfies

vt-Av=f(v) in flrxo,
and v >_-u on the parabolic boundary. Hence, by comparison, v > u in flrxo- Since
u => 0 it follows that u cannot blow up in time smaller than Txo.

In the sequel we shall obtain a much more refined estimate than (1.13).
THEOREM 1.2. Let Xo be any point in fl such that b(Xo)- maxxc b(x). Then

as e-->O.
Proof. We shall construct a subsolution of the form

w(x,t)=(V(x,t)-t).

Using (1.6) and the fact that ’"> 0, we have

wt eAw-f(w) ’( V- t)( Vt 1 eA V)- e"( V- t)lV vlE-f(sr( V- t))

<=-f((V-t))(Vt-eAV).
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We choose the initial and boundary conditions for U such that

(1.17) U(xo, et)= U(xo, 0)+ etU(xo, 0)+ o(e)

where o(e)/e -> 0 as e --> 0, uniformly in if 0 < < C.
The function w blows up at time _<-" where [ satisfies

U(xo, e?)- ?=0.

Choosing C> U(xo, 0)+ 1 we see, upon recalling (1.17), that ? is determined by

?(1-eU,(xo, 0))= U(xo, 0)+ o(e)

or, since U, A U,

?= U(xo, o)+ U(xo, o)a U(xo, o)+ o().

In view of (1.16) we also have T =< ?, and recalling (1.15), (1.12) and the fact that

A._((x) A4,(x)
at x Xof((x))

(by (1.18) and V(Xo) =0), the assertion (1.14) follows.
THEOREM 1.3. Let 4 achieve its maximum at the unique point Xo D, and suppose

that A (Xo) < O. Then

(1.18) I8 >= T((x))+ ((Xo))la(Xo)l / o()
as e O, where T(dP (Xo)) is defined by

(1.19) y((Xo)) max A/f((-((Xo))-A)).
o<x <-t(4,(Xo)

Remark 1.1. In case (1.9), the combined estimates (1.14) and (1.18) become

(1.20) e--*<xo)lA(xo)l+ o() <--_ L <-- e e-=<Xo)lA(xo)l+ o(e).

Proof. Taking Xo 0 we first construct a supersolution of the form

w (-((o))- t)+ W(x, t), o< < c

Hence we can write

U(x, 0) ’-l((x)) if x e
(1.15)

T
U(x, z)=-+So if xeO12, 0<z<Ce

e

where C is a positive constant. Then

( U(x, 0)) ok(x) u(x, 0) if x e

,(U(x,r)-)=O if x01, 0<r<Ce,

so that w u on the parabolic boundary of flc. The maximum principle then gives

(1.16) u(x, t) >- ( U(x, et) t) if < C.

Notice that the boundary values of U are bounded, i.e.,

O<- U(x, r)<=C+so ifx01), r<-Ce.
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where C e (0, T(,b(0))) is to be chosen,

W(x,t)=Z(x, et)

and Z(x, z) satisfies

Z=AZ ifxO, 0<z<Ce,

Z(x, 0) (x)- (0) if x 1,

Z(x, 7.) (x)- (0) if x

Clearly Z <-0, whence

Also

and

0< 7-< Ce.

Lw=wt-eAw-f(w)

=f(sr(’-’( (0)) t)) + W-eAW-f(w)
=f(’(’-1((0))- t))-f(sr(sr-l(b(O))- t)+ W)=>O.

w(x, o)= 6(o) + ((x)-6(o))= u(x)

w(x, t)= (-’((0))- t)+ 6(x)= 6(0)>_-0

if xe

if x e 0,

since ’(’-’((0))- t) => (0) and (x) =0 for xaO.
It follows that

(1.21) u<=w ifxf, O<t<C.

We now choose Ix arbitrarily small and r small enough depending on Ix so that

-A(x) > -A(O)- Ix if Ix[ <
Then

Z=<(A(0)+Ix)z+o(7.) as 7.-0 forlxl<,,
while Z =< 0 if Ixl It follows that, for e 0,

u(x, c)<-w(x, c)=(-’((o))-c)+ W(x, c)

_-< (-’((0)) c) + (a(0) +)c + o().

Denote.by tT(x, t) the solution of (1.1), (1.2) for > C with t(x, C) w(x, C) and
denote by T the blow-up time for t. From a comparison of the form (1.13),

T -> => C + ’-{max u(., C)}

_-> c + -’{(-1((0))- c + (a(o) +)c+ o()}

C+(-((O))-C)-eC(h(O)+Ix)/f((-((O))-C))+o(e) (by(1.18))

T((0)) eC(A(0) + Ix)/f(’(’-’((0))- C))+ o(e).

But as this holds for Ix arbitrarily small and Ab(0)< 0,

T ->_ T((0)) + elA(o)lc/f((-’((O)) c))/ o().

Choosing C CM(0, sr-l((0))), which maximizes the coefficient of e, assertion
(1.18) follows with T((Xo)) defined by (1.19).
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Remark 1.2. Theorem 1.1 does not require the assumption that C2(");
Theorems 1.2 and 1.3 require only that C2 in a neighborhood of Xo.

Remark 1.3. If (x) achieves its maximum at several points xi, then in assertion
(1.18) one should replace IA (xo)l by mini IA(xi)l; the proof is the same as before.

2. The cases Ao(Xo) = 0 or -. Consider the case where at a point Xo ofmaximum
of

(2.1) (x) (Xo) colx xol2 if x Xo

where Co is a positive constant and a > 0, a 1; the assumption that C2(fl) made
in 1 is dropped (cf. Remark 1.2). The inequality (2.1) is taken in the usual sense that

lim inf
(x)- (Xo)

>

THEOREM 2.1. If (2.1) holds then

(2.2) T N T((Xo)) + rcoe {-l((Xo)}/f( (Xo)) + o(e

as e 0, where is a universal positive constant, defined by (2.3) below.
oof We proceed as in the proof of Theorem 1.2. The only difference occurs

when we analyze the behavior of the function U(xo, r). Using the relation

fa e-(Ix-Vl2/4")
(2.3) (4z)./2 I-xol=dV=+o(

in the representation of U(xo, z) by means of Green’s function, we get

U(Xo, T)-I((XO))--KaCoa+O(a) as r0.

The blow-up time for the subsolution w is where

?= U(xo, e?) T(6(Xo)) + Co-’(6(Xo))e? + o(?),

from which the asseion (2.2) follows.
We next obtain a lower bound on T, assuming that

(2.4) 6(x) 6(Xo)- ColX- Xol as x Xo.

As before, the assumption C2() is dropped.
THEOREM 2.2. Assume that achieves its maximum at the unique point Xo and that

(2.4) holds for some Co> 0 and a > O. en
(2.5) L T(6(Xo)+ Coy(O(Xo)) + o()
as e O, where y((Xo)) is defined by

(2.6) y(O(Xo)) max Z/f((-l(O(Xo))-A)).
o<x <-(O(Xo))

oo We proceed as in the proof of Theorem 1.3, modified as in the proof of
Theorem 2.1, to obtain the local behavior of Z"

Z(x, r)=-CoZ"+o(z) as r0.

The blow-up time for the supersolution , applicable for T> C, is

= T(6(Xo)) + Co/f(C(-’(6(Xo))-C))+ o();

the asseions (2.5) and (2.6) now readily follow.
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Remark 2.1. If

(x)-- (Xo)- ColX- xol
then from Theorems 2.1 and 2.2 we obtain

as x-> xo

T((Xo)) + K,,,coe’y,,,((Xo))+ o(e") <= T
=< T((Xo)) + ro,coe’{-l((Xo))}’/f((Xo))+ o(e’).

In particular, for the special case f(s) es,

e-(x) +
(1 + a )l+a KaCoe e-(l+’)4"Xo)+o(e)<= T

<= e-4,,,o)+ rCoe e-+’)’Xo) + o(e).

3. Proof of (0.8). In this section we consider the case where depends on the
parameter e, say . The function is a sum of two functions:

(3.1)

where

(3.2)

and

if Ixl <
if ix > e ’,

(3.3) o(0) max (x), 0ea.
xl

We assume that

fl>O,

e C(,), cp => 0, q)(0) max I,(x),
xc

(3.4) P 0 on OB1,

P e C(B,) for some p > 0

where B, {x; Ixl < p}, and set

o (o), o (o).

To avoid a trivial case we assume that o> 0.
Introduce the blow-up times

(3.5) T*= T(o), T.= T(6o+o);

clearly T. < T*.
THEOREM 3.1. (i) Iffl < 1/2 then T -> T, as e --> 0; (ii) iffl > 1/2 then T --> T* as e --> 0;

(iii) if fl 1/2 then T =-lim_o T and Tg-- lim_,o T satisfy T, < T-.<_-_ T- < T*.
Proof. For simplicity consider first the case where o= 0. Let (x) be a function

satisfying: (0) (0), _->, 0 on 01"l. By comparison
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where Uo,, Ul,e are the solutions of (1.1)-(1.3) corresponding to b--0 and b--
respectively. Since, by Theorems 1.1 and 1.2, the blow-up times T, corresponding to
ui satisfy

it follows that

(3.6)

To,e-> T*, TI.-> T. as e-->0,

T, _-< lirn T _<- lim T _-< T*.
e-0 e-0

In order to prove (i) it suffices to show that

(3.7) lim T -<_ T,.
e-0

To do this we construct a subsolution w of the form

w(x,t)=(V(x,t)-t)

where

and U(u, z) satisfies

U=AU ifyRn, ’>0,

(U(y, 0)) (y) if lY[ < 1,

(U(y, 0)) 0 if lyl > 1,

(U(y, z))=0 if lyl- 1.

As in the proof of Theorem 1.2, w is a subsolution and u -> w. Hence T _-< ’. where
is the blow-up time for w. Fuher, where satisfies

V 0, -1(o) + O(e

since Vt is continuous about (0, 0). The estimate (3.7) now immediately follows.
To prove (ii) it suffices, in view of (3.6), to show that

(3.8) lim T T*.
eO

We proceed similarly to the proof of Theorem 1.3, to construct a supersolution w of
the form

w W(x, t)+ ta

where a is a positive constant,

and U(y, ’) satisfies

U=AU ifyRn, z>0,

U(y, O)= gP(y) if [y[ < 1,

U(y, O) 0 if lyl > 1.
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By the maximum principle 0-< W =< o. Hence

w,- eAw-f(w) a -f( W+ ta) > 0

if a > 1 +f(o), <-b, provided b is some small positive number. It follows that

u<=w in l’lb.

Since U(y, ’)<= Cz-"/2, we have

w <= at + C(te1-28)-n/2.

Noting that

if e is small enough, we get

0 e (2-l)n/(n+2) < b

(3.9) u(x, to)<= w(x, to)< Ce(2-1)"/(+-).

Using comparison for > to, we conclude from (3.9) (by (1.8), (1.9)) that

u(x, t) <= (-1( CE(2fl-1)n/(n+2))_ + to).

The right-hand side blows up at time " where
?-- to+ -l(ce(2-l)n/(n+2))

to+ T* +(-)’(O)Ce(23-)"/("+2).

Consequently

T > T* + O(e(2’-)/("+e)),

from which (3.8) follows.
To prove (iii) let v(x, t)= u(xx/, t). Then

1Ov---Av=f(v)ot ifxfl=eefl’ 0<t<T,

(3.10) v(x, O) dp(x) if [x < 1,

v 0 on the remaining part of the parabolic boundary of fl x (0, T).

It is clear that v, ’ W where

Wt AW=f(W) in "x(0, T),

(3.11) W(x, 0) (I)(x) if Ixl < 1,

w(x,O)-O if Ix[>l
where is the blow up time of W, and T, To where To >_- . We shall first prove that

(3.12) > T.
and, consequently, To> T..

Let (x)=-o(lXl)>-(x) be such that o(1)=0, 6(r)-<_0 and o(0)=o.
Denote by ff the corresponding solution of (3.11 which is obtained by limit of problems
analogous to (3.10). Then is symmetric about the origin, i.e., ff- U(r, t), and it is
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decreasing in r, by the maximum principle applied to Off Further, by the maximum
principle applied to O6/Oxi we get that O6/Oxi < 0 in (xi > O} x (t > 0}, and

in particular,

oX---, < O on

Ate(0, t) < 0.

It follows that (t)= U(0, t) satisfies

u’ <f(u).

Hence the blow-up time ’ of U satisfies

?> ’--I(xI(0))--- --l((I)0)-- T,.
Since W =< t (by comparison), it follows that >_- ’> T., and (3.12) is thereby proved.

In order to complete the proof of (iii) it remains to show that To < T.. We proceed
as in Theorem 1.2 with e 1, taking

w=(V(x,t)-t)

where

Vt=AV ifJx[<l, t>O,

V(x, O) ’-’((x)) if Ixl < 1,

V(x,t)=o if IxI=1, t>0.

Then w is a subsolution and u _-> w in {Ix] < 1, > 0}. It follows that T _-< ? where

(3.13) V(0, ’)= ?.

Since => 0 we have

--l((I)) --1(0)
Also, ’-1((0))< T* since (0)>0. Applying the strong maximum principle we
conclude that

V(x,t)<T* iflxl<l t>0

and, in particular,

(3.14) v(0, ?) < 7"*.

Combining (3.13), (3.14) we deduce that ’< T* and, consequently,

lim T <- < T*.
e-0

So far we have proved Theorem 3.1 in the case bo 0. The same proof extends
with minor changes to the case bo 0. The only difference is that now we cannot assert
that the corresponding function v(x, t)= u(xv/-, t) is monotonically increasing to W
and that consequently lim T exists (if b(x) is decreasing in every radial direction
then v(x, t) is still increasing in e).

Remark 3.1. If condition (3.3) is not satisfied, then the blow-up times correspond-
ing to bo and b coincide, i.e., the "spike" does not affect the blow-up time for
small e.
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Remark 3.2. Theorem 3.1 clearly extends to the case of several spikes of the type
with different fl’s.
Remark 3.3. The case f(O)=0. So far we have assumed that f(0)> 0 and con-

sequently So < o. This was needed in the proofs for upper bounds on T (e.g. Theorems
1.2 and 2.1). Consider now the case f(0)- 0 and assume that for all e small enough

(3.15) f(ck)+eAck>-O in ft.

Then, by the maximum principle Ou/Ot >-O. It follows that for some small ball Bp(xo)
with center Xo and radius p we have

(3.16) u => >0 on the parabolic boundary of B,(Xo)x (0, T).

We can now modify the proofs of Theorems 1.2 and 2.1 by constructing subsolutions
w only in Bp(xo)x (0, t); since ,-1() is well defined, the proofs can be extended with
just trivial changes.
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A CRITERION FOR BLOW-UP OF SOLUTIONS TO
SEMILINEAR HEAT EQUATIONS*

HAMID BELLOUT

Abstract. We prove that for the parabolic initial value problem ut=Au+f(u) there is a finite time
blow-up of the solution, provided is greater than the upper bound to the spectrum of the steady state
problem and (f/f’) is concave. An upper bound of the blow-up time is given. The proof is based on a
comparison with a subsolution to the parabolic initial value problem.

Key words, blow-up, parabolic, comparison, supersolution
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1. The main result. We are interested in the finite time blow-up of the solution
to the .problem:

(1.1) ut Au + 15f(u).. in QT,

(1.2) u(x, O) Uo(X) in D,

1.3) au,, + flu 0 on F

where D is a bounded domain in R" with C2’’ boundary and

QT-- Dx (0, T), r=aDx (0, T),

Uo is a positive continuous function on D, , is the outward normal to D, 8 is a positive
number (which is called the scaled Damk6hler number in the combustion theory
[3, p. 3]) and a,/ are real numbers satisfying

a>_-0, />-0, a+/3>0.

Let R+ {0< s < }. We shall need the following conditions"

(1.4) f C3([0, oo)), f(0)>0, f’>0 on R+,

io(1.5) =<0 and M= f-<oo,

(1.6)
\ f(s) ]

>=0 on R+.

By standard results (see, for instance, [7]) there exists a unique positive solution
u (x, t) of (1.1)-(1.3) for 0 -< < T with either T finite or +. If T< oo then

Ilu(’, t)ll co()--> as t--> T;

in this case we say that there is a finite time blow-up.
Under assumption (1.4), it is well known (Amann [2]) that there is a critical value

8* such that, for any 8 less than 8", there is a positive classical solution to the steady
state problem"

(1.7) Au+Sf(u) =0 in D,

(1.8) au,, + flu 0 on OD,

* Received by the editors June 17, 1985; accepted for publication (in revised form) May 13, 1986.
t Department of Mathematics, Purdue University, West Lafayette, Indiana 47907.

722



BLOW-UP OF SOLUTIONS OF SEMILINEAR EQUATIONS 723

while, for 8 greater than 8*, such a solution does not exist. We will need the following
definition.

DEFINITION. The spectrum of (1.7), (1.8) is the set of numbers 8>0 such that a
positive classical solution of (1.7), (1.8) exists.

THEOREM 1.1 Assume thatf satisfies conditions (1.4), (1.5), and that if a 0 and
SO then f also satisfies (1.6). If8> 8" then the solution of (1.1)-(1.3) blows up in

finite time T, and

(1.9) T 1-k2-, where 8’=8-8".

The proof is given in 2 and is based on comparison of u with a subsolution to
the problem (1.1)-(1.3).

The conditions on f are satisfied by a large class of functions such as e and
(A+u) p (p> 1, A>0), as well as functions with growth like u. (Lnu)2.

A. A. Lacey proved that
(i) If 8 < 8" then there is blow-up infinite time if Uo is not "too small" in the

average norm;
(ii) If 8 > 8" and 8" is in the spectrum, then the solution of problem (1.1)-(1.3)

blows up in finite time.
Although he does not require that (f/f’)" O, as we did, his condition that 8" be

in the spectrum has been proved only for "small" dimension n, and then only for the
Dirichlet problem (see [4]). us, in the case of (A+ u) p, he requires that n4 and,
for e, that n 9.

2. Auxilia lemmas. Let

g(t)=a2t2,

1

and consider the problem

(2.1) v, v + g( t)f( v) in Qr,

(2.2) av +v 0 on F,

(2.3) v(x, 0)=0 in D.

The local existence, uniqueness and regularity of a solution v to the problem
(2.1)-(2.3) follow from eorem 6.1 of[7, p. 452]. Fuhermore, v ceases to exist only
by becoming infinite. We want to prove that v blows up at finite time T. Without
loss ofgenerality, we can assume that v is finite in D x [0, T) then v is 63C:,(D x[0, r)),
and v/f(v) is in C]:(Ox[0, Ta)).

LMMh 1. ere holds

In the special case f(s) s the lemma is due to F. B. Weissler [8]. However, our
method of proof is different.

The author expresses his thanks to Professor A. Friedman for suggesting this theorem.
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Proofi Dividing (2.1) by f(v) we get

vt Av
f(v) f(v)

Taking w o ds/f(s), we have that w satisfies

--+ 6g.

(2.4)

Since

w, Aw+(Vw)2f’(v)+ 6g(t).

((Vw)-f’(v)),=(2Vw,. Vwf’+(Vw)=w,f"f),

2Vw,,. Vwf’+2(Vw,)Zf’+4Vw, Vww,f’f

+ (V w)2w,,f"f+ (7 w)2( w,)2f"f+ (7 w)2( w, )zf,,f,f

if we differentiate (2.4) twice with respect to t, we find that the function

Z Wtt

satisfies

L(z) z,-az-2f’. Vz. Vw-f"f(Vw)z

g"+(Vw)2(w,)2(f’"f2+f"f’f)+2(Vw,)2f’+4Vw, Vwwf"
Using

Ivw,.Vw. w,l_<- (Vw) w, +-(Vw,

we obtain

L(z) >- tSg"+ (V w)2( wt)2(f"f2+f"f’f-2ef"f)+ 2(V w,)2 (f,_f,,f).
Taking e (f"f/f’) we get

L(z)>-g"+(Vw)2(w,)2 f’"f+f"f’-2 f,

=6g"-(Vw)Zf

and by assumption (1.5),

(2.5) L(z) >- t3g"> O.

From (2.3) and the definition of z we have that

(2.6) z(x, O) O.

If a 0 (respectively,/3 =0) then z(x, t)=0 (respectively, z(x, t)=0) on F.
Since the coefficients of L remain bounded as long as v is bounded, we conclude

by the maximum principle that

z(x, t)>--O Vt < T,.
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Consider now the case a 0,/3 0 and let b =/3/a. Then from (2.2) we have

v,, by.

Ditterentiating with respect to and dividing by f we obtain

(.7) v,_ _v_,.
f f

On the other hand,

so that

,,= f f2 -+ bv -f --f

Substituting into (2.7) we obtain

Since w, vt/f, we then have

and differentiating with respect to we get

( ) [=bw, v]-I +bw, w,f’+Wtt,

=bw, vf-I +b(w,)2f l+vf,-
Since z w,,, this yields

where condition (1.6) was used.
Since v(x, 0)=0, there exists an e >0 such that the coefficient of z in (2.8) is

negative in D x (0, e). From (2.5), (2.6), (2.8) we deduce by the strong maximum
principle that z > 0 in D x (0, e).

Suppose z takes negative values in D x (0, T). Then let t* be the smallest positive
time where z has a zero. By (2.5), z(x, t*)> 0 in the interior of D. Thus z(x, t*) has
a zero at a point x*e OD, and by the maximum principle

z,(x*,t*)<O.

On the other hand, from (2.8), z(x*, t*) 0, a contradiction. This completes the proof
that

z0 in Dx(0, T).

LEMMA 2. ere exists a point Xo in D such that

V(Xo, t) as t T.
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Proof. Let

Then

and, at to, we have

1[ 4;*+’ ]1/2t LE(-g;-’)a

g(to) 6" + 6" +--
4

(2.9) v, Av+ 6"+ f( v) +-g( to)f( v).

Since 6’> 0, the steady state problem (1.7), (1.8) has no solution for 6" + (6’/4).
By Theorem 1 of [1] the problem (1.7), (1.8) has no positive subsolution; thus there
exists Xo such that at the point (Xo, tg),

Av+(6*+)f(v)>O.
From (2.9) we therefore have that

Vt >----g( to)
f(v)-- 2

at the point (Xo, to). Also, by Lemma 1

(2.10) >=--g(to)
f(v) 2

at (Xo, t) for any => to.
Integrating (2.10) with respect to t, (to, T), we get

(xo’r,) ds 6’
-->--g(to)( T1 to).

o f(s)-- 2

By the choice of T, we have that

g(to)( T1 tO) M

and thus V(Xo, t) o as t T.
2.1. Proof of Theorem 1. Since g(t)_-< 1 for <- T, v satisfies

v, _<- Av + 6f(v) in Qr.
The function w u-v satisfies

w,>=Aw+yw, w(x,O)=O, aw,,+w=O,
where y =f’(Ou + (1- O)v), and y is a bounded function as long as u and v are both
bounded. By the maximum principle, we conclude that w >= 0 and u >- v. Consequently,
u blows up at some time =< T.

Remark. Theorem 1 holds for more general equations such as

u,=Au+ a,(x)i,+,f(u)+y]Vulz (’yGR1);
i=0

the result of [1], [2] used in the proof of Theorem 1 has been generalized to the
quasilinear case in [5].
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LIMITING PROFILES IN CONTAMINANT TRANSPORT THROUGH
POROUS MEDIA*

C. J. VAN DUYN" AND J. M. DE GRAAF$

Abstract. In this paper the following degenerate nonlinear diffusion problem is investigated:

(u),+u,,=u,,, t>O, -c<x <o,

u(x, O) Uo(X), -< x < o.

For a special choice of fl (fl(u)= u+uv, p >0) the equation describes the one-dimensional transport of
contaminant in a fluid flow through a homogeneous saturated porous medium.

Here the large time behaviour of the solution of the above problem is studied for more general ft. It
turns out that, depending upon the shape of fl (convex or concave) and the values Uo(-O) and Uo(+C),
the solution converges to a travelling wave g ofthe form g(x at) or to a function eo * ofthe form o*(x/ + ).

Key words, degenerate diffusion, large time behaviour, porous media

AMS(MOS) subject classifications. Primary 35B40, 35B50

1. Introduction. Consider the flow of an incompressible fluid through a
homogeneous saturated porous medium. It is assumed that the flow is steady-state,
one-dimensional and directed in what is chosen to be the positive x-axis. Suppose the
fluid is contaminated by a solute, whose concentration C is defined as the mass of
solute per unit volume of solution.

If no chemical reactions occur between the solute and the surrounding solid part
of the porous medium, then the transport of the contaminant is determined by convec-
tion, molecular diffusion and mechanical dispersion; see Bear [1] or Freeze and
Cherry [5].

But when chemical reactions do occur, this has to be taken into account when
describing the transport process. In this reactive case, let S denote the mass of chemical
constituent adsorbed on the solid matrix per unit mass of solid. If the boundary
conditions and flow conditions are such that both S and C can be assumed constant
in planes perpendicular to the x-axis, which implies C C(x, t) and S S(x, t), then
mass-conservation for the contaminant leads to the equation (see [1])

(1.1) Ct -]- P.__b St + l)Cx DC,,,,

where and x denote, respectively, a time and a space coordinate, the subscripts
and x denote differentiation with respect to these variables, Pb is the bulk mass density
of the porous medium, n is the porosity, v is the average fluid velocity and D is the
coefficient which incorporates molecular diffusion and mechanical dispersion.

In view of our assumptions, all coefficients in (1.1) can be viewed as being constant
and positive. The term (pb/rl)St in (1.1) represents the change in concentration on the
porous matrix caused by adsorption or desorption.

The adsorption reactions for contaminant in groundwater are normally considered
as being very rapid with respect to the flow velocity. In view of this, the amount of

* Received by the editors November 5, 1984; accepted for publication (in revised form) April 8, 1986.
Department of Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands.

$ Mathematical Institute, University of Leiden, Leiden, The Netherlands.
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contaminant that is adsorbed by the solid is commonly assumed to be a function of
the concentration in the fluid:

(1.2) S=f(C).
For a particular contaminant and porous material, (1.2) is determined by laboratory

experiments. Since these experiments are normally carried out on soil-samples at
constant temperature, relations such as (1.2) are known as isotherms. An important
example is the Freundlich isotherm, when (1.2) is given by

1.3) S KdCP,
where Kd and p are positive constants.

Substitution ofthe isotherm 1.2) into 1.1 leads to the partial differential equation

(1.4) (c +Pbf(C)) +vC=

This contaminant transport equation is frequently encountered in the groundwater
literature (e.g. Bolt [2], further references given there). In particular many numerical
models, which are often designed for prediction capabilities, are based on (1.4) or on
higher dimensional and more complicated versions of it. When the first author was at
the Delft Soil Mechanics Laboratory, he did contaminant transport calculations with
a model which is based on a numerical approximation of (1.4) with f given by (1.3).
He made the following observations.

Let p (0, 1) and let C be kept at some positive value far upstream and at zero
far downstream. Then the numerical results indicate that when increases the con-
taminant profile C converges towards a travelling front, which moves at a constant
velocity. However, reversing the boundary conditions, thus keeping C at zero far
upstream and at a positive value far downstream, the numerical results show a flattening
profile when increases.

Note that the first choice of boundary conditions describes the situation where
polluted groundwater is contaminating the (originally clean) soil. The second choice
corresponds to the situation where polluted soil is washed by uncontaminated
groundwater.

For values of p > 1, the situation seems to be the reverse of the case p (0, 1).
Then the numerical calculations indicate a travelling front, which increases from zero
(upstream) to some constant positive value (downstream) and a flattening profile when
the boundary conditions are reversed.

Inspired by these observations, we study in this paper the large time behaviour
of solutions of the initial value problem and of a boundary value problem related to
(1.4). We do this for more general isotherms f.

Before we proceed, notice that when f is given by (1.3), (1.4) can be rescaled to
an equation with only one parameter. For general f this cannot be done. However,
the coefficients in (1.4) are constant and positive and remain fixed throughout this
paper. Therefore, we set all coefficients in (1.4) equal to one. Furthermore, let C be
denoted by u and define

(1.5) fl(s)=s+f(s) for s>-0.

We consider two problems.
The Cauchy problem.

(1.6) f((u)),+u,=uxx in ST,
I

(1.7) u(., 0)= Uo(" on R,
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where Sr {(x, t)’x R, 0< t=< T} in which T is some fixed positive number which
eventually will tend to infinity.

The Cauchy-Dirichlet problem.

(1.8) ((/3(u)), + ux u,, in HT,

(1.9) Iil u(0, t) u 0 < _--< T,

(1.10) u(., 0)= Uo(" on R+,
where HT {(x, t)" x +, 0 < =< T}.
With respect to the function/3 we assume the following hypotheses.

H1. /3 "[0, M] o [0, oo) for some M > 0 satisfies
(i) /3 C([0, M]) f’l C((0, M]);/3(0) 0 and/3(s) > 0 on (0, m];
(ii) /3’(s)>0 on (0, M] and limso (1/(/3’(s))) exists;
(iii) B" exists and is locally H61der continuous on (0, M] with exponent/x (0, 1);
(iv) (/3./3")/(/3’)2 L’(0, m].

The initial function Uo from Problem I is chosen such that H2 is satisfied.
H2. Uo’R--> [0, M] is uniformly Lipschitz continuous on R.

With respect to the initial function Uo from Problem II we assume the following.
H2/. Uo" [0, oo) --> [0, M] satisfies
(i) Uo C([0, oo));
(ii) Uo is uniformly Lipschitz continuous on +;
(iii) Uo(0) u, where u [0, M] is constant.
Equation (1.6) is a nonlinear second order equation of parabolic type. Since/3’(s)

may tend to infinity when s tends to zero, this equation can degenerate at points where
its solution vanishes. Therefore we cannot expect Problem I and Problem II to have
classical solutions for all admissible choices of/3 and thus we introduce the notion of
weak solutions.

DEFINITION I. U’ST I is a weak solution of Problem I if
(i) u C(ST) and u is uniformly bounded and nonnegative;
(ii) u has a bounded generalized derivative with respect to x;

(1.11) (iii) sT{ck,(u-u,,)+cktB(u)}dxdt+Rck(x,O)B(Uo(X))dx=O
for all b C I(ST) which vanish for large Ixl and T.

DEFINITION II. u’HT- is a weak solution of Problem II if
(i) u C(HT) and u is uniformly bounded and nonnegative;
(ii) u(0, t) u for all [0, T];
(iii) u has a bounded generalized derivative with respect to x;

(1.12) (iv) HT{ck,,(U-Ux)+CktB(u)}dxdt+R+(x,O)B(Uo(X))dx=O
for all b C (/rT) which vanish for x 0, for large x and
for t= T.

The hypotheses on/3 and u0 assure the existence of a unique weak solution of
Problem I and Problem II in ST and HT, respectively, for every T> 0. This solution
is a classical solution of (1.6) in a neighbourhood of a point in ST or HT where u > 0,
see Gilding [7] and Gilding and Peletier [8].

To study the asymptotic behaviour for - oo of solutions of Problem I and Problem
II we set M 1 in H1, H2 and H2+, for convenience. With respect to the initial function
Uo’- [0, 1] from the Cauchy problem we assume the following.

H3. The limits limx_,_ Uo(X) u- and limo+oo Uo(X) u+ exist.
In particular we consider the following two eases"

BCI"u-=0 and u+--1,
BC2"u-=I and u+=0.
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Similarly, the initial function Uo’[0, oo)--> [0,1] from the
problem satisfies"

H3/. The limit limx_/o Uo(X) u/ exists.
As for the Cauchy problem, we consider the following two cases:

BC1/’u=0 and u/=1,

BC2/’u=1 and u/=0.

Cauchy-Dirichlet

In 2 we study the existence of travelling wave solutions of (1.6). In particular
we look for solutions g of the form g(x- at) (a > 0) with g(-oo) u- and g(+oo) u/.
It will turn out that for given u- and u/ the existence of such travelling waves depends
critically upon the shape of/3. In fact we shall show that (1.6) has a travelling wave
solution g with u-=0 and u/= 1 (respectively u-= 1 and u/=0) if and only if
/3(s) </3(1). s for all s (0, 1) (respectively fl(s) >/3(1). s for all s (0, 1)). This
travelling wave solution is unique modulo translations.

The convergence of solutions of Problem I towards these travelling waves was
studied by Osher and Ralston in [10]. In fact, making the additional hypothesis

(1.13) 113(Uo(X))-/3(u-)l dx <c and 113(Uo(X))-13(u+)l dx <

Osher and Ralston proved the next theorem with semigroup methods.
THEOREM 1. Let assumptions H1, H2, H3 and (1.13) hold and suppose Uo and

are such that there exists a travelling wave g(x-at). Then the solution u of Problem I
converges to g in the following sense:

]ina f?oo ]fl(u(x, t))-fl(g(x-y-at))] dx=O,

where yR is such that

_
{fl(Uo(X))-fl(g(x-y))} dx=O.

The convergence of solutions of Problem II, with Uo satisfying BC2/ and with
such that 0</3’< oo, was studied by Khusnytdinova in [9]. She obtained exponential
convergence towards a travelling wave. However, her proof depends critically upon
the upper bound of/3’ on [0, 1].

In 3 and 4 we study Problem I when Uo and/3 are such that no travelling wave
exists. To be definite we shall assume that Uo satisfies BC1 and that fl" < 0. To investigate
the behaviour of the solution of this problem as --> oo it will be convenient to change
to the new independent variables

X
r/:= z:= log (t+ 1).

t+l’

Then u(x, t) is a weak solution of Problem I if and only if w(r/, ’):= u(x, t) is a weak
solution of the transformed problem;

(1.14) P((fl(w))+(1-rlfl’(w))w" e-wnn in S,,

(1.15) w(., 0)= Uo(" on g

where St, {(r/, -)" r/ , 0 < r -< T’} and T’= log T+ 1).
Here a weak solution is a function that satisfies the following.
DEFINITION. w’Sr,’-> is a weak solution of Problem P if

(i) w C(Sr,) and w is uniformly bounded and nonnegative;
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(ii) w has a bounded generalized derivative with respect to
(1.16) (iii) s,{(w)dp+tw-rlfl(w)-w,e-]dp,-fl(w)dp} drld"

0) =0
for all b C(T,) which vanish for large r/I and for - T’.

To prove our results we need the following additional hypotheses on the functions
and Uo.

S4. (i) / C" ([0, 1]) for some (0, 1);
(ii) -fl"/(fl,)2__> > 0 on (0, 1) for some , > 0;
(iii) /3’" exists and (fl’". fl’)/(/3")2 < 2 on (0, 1).

H5. There exist constants k > 1/c, k2 > 1 such that
(1.17) (i) Uo(X) O((-x)-k’) when x- -.c,
(1.1S) (ii) Uo(X)- 1 O(x-k) when x-)

Here a is the HSlder exponent defined in H4.
We shall show that w(r/, -) converges, as r-)cc, to a function w* which is a

solution of the reduced problem:

(1-r/fl’(w))nn=0 onlY,

w(-oc) 0, w(+oc) 1.

Using the notation u*(x, t)= w*(r/) we prove the following theorem.
THEOREM 2. Suppose fl and Uo satisfy HI and H4, respectively H2 and H5. Let

u(x, t) be the weak solution of Problem I. Then the following estimate holds"

sup Ifl(u(x, t))- fl(u*(x, t))l <- (t + 1)-"/("+I)(A + A2 log (t + 1)) "/("+1)

for all >-0, where A and A2 are positive constants.
Remark. In the case of the Freundlich isotherm, with Kd in (1.3) for con-

venience, fl (s) s + sp. Then when p (0, 1) Theorem 2 implies that

sup Ifl(u(x, t))- fl(u*(x, t))l <-_ + 1)-P/(P+I)(A + A2 log (t + 1))P/(P+l)

for all _-> 0.
For this choice of/3 the function w* is explicitly known and is given by (3.8) in 3.

In terms of the variables x and t, u* behaves as in Fig. 1. Indeed this gives a limiting
profile, which becomes flatter when increases.

12"

u*(x, 1/2)

u*(x, 2)

2 x

FIG. 1. The function u* for the case (s) s + $1/2.
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For the Cauchy-Dirichlet problem we have a similar result. We make the following
assumption on the initial function u0.

H5/. There exists a constant ko> l!a such that

(1.19) Uo(X)- u/= O(x-k) when x--> +.

Then the following theorem can be proved.
THEOREM 3. Suppose satisfies H1, H4 and Uo satisfies H2/, H5/. Let u(x, t) be

the weak solution of Problem II. Then the following estimate holds:

sup [fl(u(x, t))-(u*(x, t))l<-(t + l)-’/+l)(A- + A- log (t+ l))/+1)

for all >-O, where A- and A- are positive constants and u*(x, t)= w*(r/) with w* the
solution of P.

Finally note that Theorems 2 and 3 only partially answer the questions raised by
the numerical computations. In particular, when Uo satisfies the boundary conditions
BC2 or BC2/ and when (s) s + sp with p > 1, our results do not apply. With respect
to the convergence towards travelling waves, it is of interest to generalize the results
of Khusnytdinova [9] for the Cauchy-Dirichlet problem and to obtain convergence
estimates for the Cauchy problem studied by Osher and Ralston [10]. We leave these
questions for future study.

2. Travelling waves. In this section we study the existence and uniqueness of
travelling wave solutions of Problem I.

DEFINITION. The pair (a, g) with aR and g:R-[0, 1] is called a travelling
wave solution of Problem I if

(i) /3(g) and g’ are absolutely continuous on ;
(ii) a(fl(g))’-g’--g" a.e. on ;
(iii) g(-) 0; g(+o) 1 (in case BC1);

g(-) 1; g(+o)=0 (in case BC2).
THEOREM 4. Let fl satisfy assumption Hl(i). Then
(i) Problem I has a unique travelling wave solution (a, g) satisfying BC1

if and only if fl (s) < fl 1 ). s for all s (0, 1 ).
(ii) Problem I has a unique travelling wave solution (a, g) satisfying BC2

if and only if fl (s) > fl 1 ). s for all s (0, 1 ).
Remarks. (1) The uniqueness in the theorem must be understood modulo

translations. (2) The unique speed a of the travelling wave in the theorem is given by
a 1/(/3(1)).

Proof We shall only prove part (ii) of the theorem because part (i) can be handled
in exactly the same way.

Define r/:= x- at. Then if (a, g) is a travelling wave solution of Problem I, a and
g satisfy

(2.1) a(fl(g))’-g’=-g" a.e. on ,
(2.2) g(-) 1, g(+c) O,

where primes denote differentiation. Integration of (2.1) yields

(2.3) a(g())-g(q)+A=-g’(rl) for

where A is a constant. Because g’ is continuous we have

g( r + h g( rl hg’( r + Oh)= h(-afl(g( r + Oh))+ g( r + Oh A)

(0< 0(r/) < 1, h > 0).
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Taking the limit r/--> +o respectively r/-->-o in this expression we find

O=afl(O)-O+A and O=a(1)-l+A.

Since/3(0) =0, A =0 and hence for the speed a we have

1
(2.4) a

fl(1)"

Substituting a and A in (2.3) we derive the following equation for g

1
(2.5) g’=g-, fl(g) on .

fl(1)

Since fl C((O, 1]) it follows from (2.5) that when g(r/o)>O for some /o, there
exists a neighbourhood of the point o where g is a classical solution.

Suppose that

(*) /3(s)>/3(1)" s on (0, 1).

Then (2.5) has a unique (modulo translations) solution given by

g(n) ds

,/2 s-(fl(s)/fl(1))- q’

where we have chosen g(0)= 1/2.
Note that the solution vanishes for finite r/>0 if and only if (/3(s)-s/3(1))-

L(0,1/2). Furthermore, since ((s)-s(1))-C:L(1/2, 1), g(n)<l on and g(rl) tends
to 1 as r/-->-.

Next suppose that there exist points where (.) does not hold. It is clear from (2.5)
that if/3(if) </3(1). ff at some point ff (0, 1), then a travelling wave which satisfies
(2.2) cannot exist. If/3(if) =/3(1). ff at some"point ff (0, 1), then it follows from the
local uniqueness of solutions of (2.5) that the only solution for which g(r/o)= ff at
some point r/o is the constant solution g ff and hence (2.2) is not satisfied.

Finally note that if (a, g) is a travelling wave solution, then g is the weak solution
of Problem I (for an appropriate choice of Uo). The proof follows by direct calcu-
lation.

Remark. Suppose there exists a So (0, 1) where /3’ does not exist and where
/3(So) =/3(1) So. Then if/3 is Lipschitz continuous on [0, 1], the standard uniqueness
result for ordinary differential equations gives that a travelling wave does not exist. If
on the other hand fl(s)- fl(1)s O([s- Sol) with (0, 1), then a travelling wave can
still be constructed. However for this case there is no uniqueness.

In the case of the Freundlich isotherm f(s)= s", we have the following.
Example. Choose (s)= s+ sp with 0<p < 1. Then /3 satisfies H1 and /3"<0.

Therefore we are in case (ii) of Theorem 4, so we know that a travelling wave solution
(a, g) exists with g(-oo)= 1, g(+oo) 0 and a 1/2.

For this choice of/3 we can explicitly calculate the travelling wave

g(rl)={[ol-e’(n-n)]/(-P) if<r/o
for some

if r/>-

where r/= x t/2 and h 1 p)/2.
A trivial consequence of Theorem 4 is the following.
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COROLLARY 1. Suppose fl satisfies Hl(i) and fl" exists and is of one sign. Then
(i) Problem I has a unique travelling wave solution (a, g) satisfying BC1 if and

only if fl"(s) > 0 for all s (0, 1).
(ii) Problem I has a unique travelling wave solution (a, g) satisfying BC2 if and

only if fl"(s) < 0 for all s (0, 1 ).

3. The function w*. In this section we study the problem:

1-*//3’(w))--=0 on R,
P

lw(-oc) 0, w(+oc) 1,

where the prime denotes differentiation with respect to the argument of/3. The solution
of this problem arises in the study of the large time behaviour of solutions of Problem
P (or Problem I) in the case where Uo satisfies BC1 and fl"< O. This will be treated
in 4.

DEFINITION. W*’R-> is a weak solution of Problem P if it satisfies
(i) w* is absolutely continuous on and 0 -< w*_-< 1;
(ii) w*(-o) 0; w*(/) 1;
(iii) u {( w* */fl( w*))b, fl(w*)qb} d*/ 0

for all b CI() which vanish for large I*/I.
THEOREM 5. If fl satisfies Hl(i, ii) and fl’ is monotone decreasing, then Problem

Poo has one and only one weak solution.
Proof. Let w* be a weak solution of Problem P. Then it follows from (iii) and

the continuity of/3 that

d
(3.1)

d*/
(w* */fl(w*)) =-fl(w*) on a

and (w*-*/fl(w*)) CI(R). Integrating (3.1) with respect to */from */1 to */2 gives

(3.2) [Wg(*/2)--*/2[3(W*(*/2))]--[Wg(*/1)--*/I(Wg(*/1))]---- (Wg(S)) as.

Suppose that w*(*/1) w*(,/2) and w*(*/) > w*(*/1) on (*/1, */2) (respectively w*(*/) <
w*(*/1) on (*/1, */2)). Then (3.2) yields

(*/2--*/1)(Wg(*/1)) [3(W*(S)) as,

which gives a contradiction. This means that w* is nondecreasing, i.e.,

(3.3)
dw*
->0 a.e. on.

Next we assume that w*(*/o) > 0 for some */o < 0. Then w* > 0 in a neighbourhood N
of */o with N c -. Using the smoothness of/3 in (3.1) it follows that

dw*
(1-*//3’(w*))-V =0 a.e. in N.

But 1- *//3’(w*)> 1 in N. Therefore (dw*)/dr/= 0 a.e. in N, which implies that w*= 0
on -.
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Define

(3.4) r* := sup {7 " w*(r/)= 0}.

Then */*-> 0 and w* satisfies

=0 if*/=<*/*,
(3.5) w*(*/)

>0 if*/> */*.

Furthermore

dw*
*,(3.6) (1-*/[3’(w*))--=O a.e. on (*/

Finally we show that w* is strictly increasing when 0 < w* < 1. Suppose not; then there
exist points */*< */1 < */2< */3< */4 such that (dw*)/d*/>O a.e. on (*/1, */2) kJ (*/3, */4),
and w*(*/)---ao>0 on [*/2, */3]. Then from (3.6) we have

1 1
--=/’(w*(,)) ’(o)=/’(w*(,7)) =--,
*/2 */3

which proves the assertion.
Thus if is such that 1-/3’(1)=0, we may conclude that a weak solution of

Problem Po is of the form

(3.7)
0 on (-(x), */*],

satisfies 1-*/fl’(w*)=0 on (*/*, ),
=1 on [, c).

Remark. The number */* in (3.4) is given by

1

o/3’(s)"

Example. In the case fl(s)= s + sp with 0<p < we can calculate w* explicitly
and find

(3.8)

0

(p*/)l/(1-p) 1
if0< */< .,

w*(*/) 1-*/ l+p
1

1 if
l+p

4. Convergence to the function u*(x, t) for the Cauchy problem. In this section we
study the asymptotic behaviour as t-> of the solution u(x, t) of Problem I when Uo
satisfies BC1 and/3"< 0. From the corollary in 2 we know that Problem I does not
have a travelling wave solution in this case.

Throughout this section we assume that/3 satisfies H1 and H4 and Uo satisfies
H2 and H5.

Set

X
(4.1) */- and z log (t + 1)

t+l
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and consider the transformed problem

+ (1 -)rl w wv e w,,P
w(., 0): Uo("

The main result of this section is the following.
PROPOSITION 1. Let w(rl, ’) be the weak solution of Problem P with fl satisfying

HI, H4 and Uo satisfying H2, H5. Let w*(rl) be the weak solution ofProblem Po. Then
the following integral estimate holds:

(4.2) I_,(w(rl, ’))-(w*(rl)),drl<-(Cl+C2-) e

for all " [0, T’], where C and C2 are positive constants.

Proof. The proof consists of two parts. In the first part we approximate the initial
function Uo by a sequence of smooth positive functions {Uon}. Then we consider the
family of problems {Pn} obtained from Problem P by using Uon as the initial function.
Next we show that the classical solution wn of the corresponding Problem P converges
towards a function w* as " o, where w,* is an approximation of w*.

In the second part we let n tend to infinity and obtain the desired integral
estimate (4.2).

Without loss of generality we may assume that Uo is nondecreasing. In the case
where Uo is nonmonotone, two nondecreasing functions 1 and can always be found
such that 1=< Uo=< 2 on R. Then if Proposition 1 holds for the monotone initial
functions 1 and 2, it follows by a maximum principle argument (see [7]) that the
integral estimate (4.2) also holds in the case of arbitrary initial functions Uo.

Part 1. Because the initial function Uo is uniformly Lipschitz continuous and
nondecreasing on we can construct a sequence of smooth functions {Uo,},=l such
that Uo Uo as n - c, uniformly on , and where every function Uo, satisfies

(i) Uo, C() and 0-< un -< M* (for some constant M* > 0, independent of n),
(ii) Uo,(-c)= I/n; Uo,(+o)= 1.

Now consider for each n the approximate problem"

(/3 (w)) + r/fl’(w)) w, e-w, in
4.3 P. w(’,0) Uo,(’) on .
This problem has a unique solution wn C3+"(7-,), with/z (0, 1) as given in Hl(iii),
and 1/n <= w <= 1. This follows directly from the observation that w, is the transformed
of u,, where u, is the unique classical solution of Problem I with initial function Uo,
(see e.g. van Duyn and Ye [4]).

We want to show that w, tends to an approximation of w* as " o, where this
approximation is defined by

(4.4) w,* max {w*, },
Note that the function w* satisfies

dw*(1 Tfl’(w*))- 0

(4.5)
1

w.*(-) =-,

n E Il.

a.e. on R,

w*(+) 1.

In order to prove the convergence of wn to w,* we need the following lemma.
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LEMMA 1. There exists a constant Mo> 0 such that for all n [

0 <- wn <-_ Mo in S,.

Proof. Differentiate (4.3) with respect to r/. Then v :-w. satisfies the following
problem;

,
fl(wn)v { /3"(wn),( }+(1-qfl’(w,))vn+ -fl’(w,)V-fl w,) v

+"(w.)P fl’(W) e-vv’ e-v in

[,v(’, O)= u,,(" on R.

It is known that 0-< un <-M*. Then obviously _v- 0 is a subsolution for Problem P’.
Furthermore the function ---Mo, with Mo max {M*, 1/,}, is a supersolution for
Problem P’.. This follows from H4(ii). Then Cosner [3, Lemma 1] implies that
0-< w,, =< Mo, where the constant Mo does not depend on n and ’.

To investigate the asymptotic behaviour of w, for large In we construct a time-
independent sub- and supersolution.

LEMMA 2. (i) There exist constants />0, 1 < k < k2, r/o> 1 such that the function
_s. (,1), for each n defined by

1

n’ rl <-- q
(4.6) _s.(r/) :=

max{,l-y(n-no)-’} n>no

satisfies: _s. is continuous on and w.( ., -) >= _s.( on forall 0<= <= T’ andforall n
(ii) There exist constants "> O, 1/a < k < k, 1 <-1 such that thefunction g.(rl),

for each n defined by

i1, { }(4.7)
min 1, 33(-B + r/l)-+ r/<

satisfies: g,, is continuous on a and w. (., -) <- g. (.) on afor all 0 <- z <-_ T’ andfor all n
Proof For each n the approximating initial functions Uo., used in Problem

P., are given by

Uo.(X) fa p.(x-y)u(y) dy.

q_Here Uo =max {Uo, l/n} and p.(x)= np(nx), where pc C() is such that Supp
[-1, 1], p(x)>-O on a and 1,

Below we use the following property of the functions Uo." for any increasing
function f defined on , let f+= max {f, 1/n}. Then for each Xo_-> 1 we have:

(a) If Uo>-f on a, then Uo.(X)>-f+(x-xo) for all n and for all x
(b) If Uo<-f on a, then Uo.(X)<=f+(x + Xo) for all n and for all x
We shall only prove part (i) of Lemma 2. The proof of part (ii) is almost identical

and is therefore omitted.
Choose constants ,>0, k> 1, >-_(fl’(1))-l(l+(k+l)’},-l/k) such that/Zo(r/)_->

1- y(r/- )-k for r/> . Because/Zo satisfies H5 this is possible if we choose k < k2.
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Next let r/*= _.yl/k and define

-s (T) :- {’_ y(T )-k

From property (a) we know that there exists a constant o> 1 such that Uo.(r/) ->

_s(r/-:o) on . Thus if we choose in (4.6) r/o=+:o, then Uo.(r/)=>_s.(r/) on .
Furthermore if

u := (fl(u)) + (1 qfl’( u))u. e-run.,
then an elementary computation shows that _s. <=0 for > . Applying [3, Lemma
1] to the difference w.-_s., part (i) of the lemma follows immediately.

Thus Lemma 2 gives

(4.8) _s.(.)_-<w.( .,z)_-<g.(.) on

for all z [0, T’] and for all n .
From (4.8) and Hl(i) we may now conclude that (fl(w,,(., z))-fl(w*.(. ))) LI()

for all z [0, T’].
To estimate

IIt(w"())- t(w"*)ll’<> := I It(w.(, ))-t(w.*(n))l an
it will be convenient to consider the following auxiliary problem:

f((w)).+(1-rt’(w))w, e-’w,n in H},,
P.w(,’)=I, O<r<-_T’,

[w(., 0)= ao.(’) on (-o, ),

where H-,= {(r/, z): r/ (-o, ), 0< z=< T’}. In this problem is chosen such that
w*()= 1 and w*() < 1 if r/< r, thus r= 1//3’(1) (see 3). The function o. is given
by 6o. max {uo., w.*}.

We want to transform Problem P. into one in which the differential equation has
bounded coefficients and in which the boundary condition is essentially unchanged.
To this end we set

y=(r/-)e" and t=e’-l.

Then w(r/, z) is a classical solution of Problem/3. if and only if h(y, t):= w(r/, z) is a
classical solution of the problem

((h)),+(h-fl(h))y=hyy in H-=(-,0)x(0, T],

h(0, t) 1, O<t<-_T,

h(y, O)= ao.(y+ ) on (-, 0).

Now this problem has a unique classical solution h. C2’(Hr)f3 C(Hr) (see e.g.
[7]). Then v.(rt, ’):= h.(y, t) is the unique solution of Problem P. such that v.
C2’(H,) 0 (H},) and 1/n -<_ v. =< 1.

If we define the function ft. as

v.(n,.)
ft.(n, z):=
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then by a maximum principle argument we have

(4.9) , ->_ w, in St,.

Furthermore it can be proved by direct calculation that w,* is a subsolution for Problem
P,, where we use the fact that/3 satisfies H4(iii). Also it can be shown that gn(rt) is
a supersolution for Problem Pn. Therefore

(4.10) w,*(.)=<ft.(., z)_-<g,(.) on

for all z [0, T’] and for all n .
Now it follows from (4.8), (4.10) and the definition of_s,, g, that (fl(ff,(., r))-

fl(w,,(. r))) LI() and (/3(ft,(., z))-/3(w,*(.))) LI(R) for all re[0, T’].
Since

(4.11)

it is sufficient to find estimates.for the norms on the right-hand side of (4.11).
LEMMA 3. (i) 11/3(w())-/3(,())IIc<><=(Bo/B)e-for all ’ [0, T’], where

Bo and B are constants independent of n. (ii)IIt(,())-t(w.*)llc<>_-< (n=/ n) e

for all r [0, T’], where B2 and B3 are constants independent of n.

Proofi (i) The function ft, satisfies

(fl(ff,,)) +

The function w, satisfies

on RI{} x (0, T’].

((w,)),+(1-rt’(w,,))w,,,=e-w,,,, on R(0, T’].

Subtraction and integration with respect to r/ from - to yields

(4.12) {/(.)-/(w.)}l_-_+ I1(.)- (w.)ll,)

--e-{(ff,-w,),[ z- +(ff,-w,) 1,=+}
Because (4.8) and (4.10) hold and because k,/> 1 in (4.6), (4.7) respectively, the third
term on the left-hand side of (4.12) vanishes. Then, using Lemma 1 and Lemma 2, we
find

d

(4.13) - e-{.(,-, )- .(-, )/ Co)

for all z (0, T’], where the constant Co does not depend on n. For each n t the
solution v of Problem /5, satisfies v,(, z)_>-0 for -[0, T’] and v,,(,0)_->0 for

(-c, ], except possibly at the points where Uo w,*. It then follows from a
maximum principle argument that v,n -,, =>0 in H,. Moreover, using (4.10), we
see that

dw*.(-),. -,
d

for all r (0, T’] and for all n
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Therefore the right-hand side of (4.13) can be estimated uniformly with respect
to n, which implies that there exists a constant C such that

d
(4.14) d--- 11/3(,) -/3(w,) LI<R) / IIt() t(w)II <>--< c e

for all z (0, T’] and for all n
From this, inequality (i) follows immediately.
(ii) The proof of this inequality is almost identical and will be omitted. E1
Next use (4.11) and Lemma 3 to find

(4.15) II(w.(-))-t(w*.)ll,,<> <-(Cl/C=-) e

for all r [0, T’], where C1 and C2 are constants independent of n.

Part 2. The convergence of {w,} to the weak solution w of Problem P as n--> c.
From Lemma 1 it follows that

(4.16) Iw,(*/1, z)-w,(*/2, z)l =< Mol*/1-*/21
for "all (,/1, z),

Next consider the sequence of rectangles Dm :-- (-m, m) (0, T’) with rn . Then
by a result ofGilding [6] about the H/51der continuity ofsolutions ofparabolic equations

(4.17) Iw,(*/,-l)-W,,(,.-u)l<-f(m)l---=l/ in Dm
for all n and for all (*/, Zl) and (*/, z2) Dm with IZl r2l =< 1. Thus, for each rn -> 1,
the set of functions {w,(*/, -)} is bounded (0=< w,(*/, z) <- 1 in St,) and equicontinuous
on D,,. Hence the Arzela-Ascoli Theorem implies the existence of a subsequence {w, }
and a function w,, C(D,,) such that w,,,,--> Wm as nk "> 0, uniformly on D,,. Then, by
a diagonal process, it follows that there exists a function w, defined on ST,, and a
convergent subsequence {w,j(*/, z)} such that w,j --> w as j--> oo, pointwise on ST,. Since
this convergence is uniform on every bounded subset of ST,, the limit function w is
continuous on

To show that the function w(*/, z) is a weak solution of Problem P we must check
properties (i), (ii) and (iii) in the definition of weak solution. Because the proof is
standard (see e.g. [4]), we shall omit it here.

Finally we derive the integral estimate (4.2).
Because I(w,,)-(w*.)l<-_((,,,)-(w,,))+((,,)-(w*.)) and (4.8), (4.10)

hold, we have

(4.18)

Using the assumptions Hl(i), H4(i) on/3 and the definition of _s,, g, (given in (4.6)
and (4.7)) it is clear that the right-hand side of (4.18) can be est.imated, uniformly in
n, by an Ll-function which is O(*/-) for */--> cxz and O((-*/)-) for */-->-o. Then
if we take the limit n-->c in the estimates in Lemma 3 and use the Dominated
Convergence Theorem, we find

<-_ (Cl / e

for all r [0, T’], where C1 and C2 are positive constants independent of n.
This proves Proposition 1. El
To derive a pointwise estimate from the integral estimate (4.2) we need the

following lemma.
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LEMMA 4. Let qb be a function defined on , satisfying qb (x) >-_ 0 on and qb (x)
b(Xo)l <- AIx-Xo[" on , where A and a are positive constants. Furthermore, suppose

Then

SUPxa (x)-<-
Proof The proof is similar to the proof of Lemma 3 in Gilding and Peletier [8]. I-1
PROPOSITION 2. Let and uo satisfy HI, H4, respectively, H2, HS. Then if w(q, z)

is the weak solution of Problem P and w*(rl) is the weak solution of Problem P, the
following estimate holds:

sup ]fl(w(r/, z))-t(w*(q))l<=[e-’(al + a2’r)] /(a+l)

for all r [0, T’], where A and A2 are positive constants.

Proof Because w is uniformly Lipschitz continuous with respect to r/, which is a
direct consequence of (4.16), and fl satisfies H4(i), we have

I(w(
for rt, r/o and for all z [0, T’], where C is a positive constant. The same is true
for the function w*

I/3 (w*(w))- t(w*(wo))l--< c*lw
for r/, rio and for some positive constant C*.

Now apply Lemma 4 with (n)=lfl(w(n, r))-/(w*(n))l and Proposition 2 is
proved, l-1

Finally, let u*(x, t)= w*(rt), where w* is the weak solution of Problem P.
Since the result of Proposition 2 does not depend on T’, Theorem 2 follows

immediately.

5. Convergence to the function u*(x, t) for the Cauchy-Dirichlet problem. In this
section we give results on the asymptotic behaviour of the solution of the Cauchy-
Dirichlet problem II when Uo satisfies the boundary condition BC1+ and "0.

Furthermore we assume that satisfies I-I1, I-I4 and Uo satisfies H2+, I-I5+.
As in 4 we use transformation (4.1) and consider the transformed problem:

((w)l.+(1-rl’(w)lw,=e-’w,. in Hr,,
P+ w(0, z)=0, 0< r_<- T’,

w(’,0)=Uo(’) one+,
where Hr, {(r/, z) r/ +, 0 < z =< T’}, T’= log T+ 1) and w(r/, z) u(x, t).

The reduced problem

.+f(1-r/fl’(w)) dw 0 on [+-nroo[ w(0) 0, w(+oo) 1

has a unique weak solution w* (as in 3).
The following proposition holds.
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PROPOSITION 3. Let w be the weak solution of Problem P/ and let w* be the weak
solution of Problem P+oo. Suppose fl satisfies H1, H4 and Uo satisfies H2+, H5+. Then

sup Ifl(w(r/, z))-fl(w*(q))l<-[e-*(Al++ A2+z)] "/’+1

for all z [0, T’], where A1+ and A2+ are positive constants.

Proof. The proof is essentially the same as the proof of Proposition 2. The main
difference is the following. When introducing the approximate Problem P, in HT,,
with solution wn, one needs a uniform bound with respect to n on wn, at r/= 0. This
bound is obtained by observing that

--N w,,(r, r)_--< rain +M, 1

for all (7, r)e Hr, and for all n e N. Here the constant M is chosen such that M
max {M*, (1/)}, where 1/(fl’(1)) as defined in 3. The rest of the proof will be
omitted, l1

Again define u*(x, t)= w*(r); then an immediate consequence of Proposition 3
is Theorem 3.

ekledge. The authors are greatly indebted to Professor L. A. Peletier for
his assistance with this work.
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REACTION-DIFFUSION SYSTEMS*
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Abstract. In many applications, systems of reaction-diffusion equations arise in which the nature of
the nonlinearity in the reaction terms renders ineffective the standard techniques (such as invariant sets and
differential inequalities) for establishing global existence, boundedness, and asymptotic behavior ofsolutions.
In this paper we prove global existence and uniform boundedness for a class of reaction-diffusion systems
involving two unknowns in which an a priori bound is available for one component as long as solutions
exist. Among this class of systems is the so-called Brusselator, a model from the study of instabilities in
chemical processes.

Key words, reaction-diffusion systems, global existence, stability
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Introduction. It is well known that the addition of diffusion in a reaction system
can cause the loss of stability properties of equilibrium solutions. This follows from
the fact that the subtraction of a positive diagonal matrix from a square matrix can
increase the maximum real part of the eigenvalues. In general, it does not seem to be
known whether adding diffusion in a reaction system (or changing the diffusion
coefficients in a reaction-diffusion system) can affect the global existence of solutions.
In some situations general results on invariant sets and differential inequalities may
be applied to establish global existence as well as estimate the growth of solutions.
However, the class of equations under consideration here cannot be effectively analyzed
by these general methods.

A typical type of system that can be studied with the methods of this paper is a
reaction-diffusion equation of the form

(1) ut dlAu uvt, vt dzAv + uvt

with various homogeneous boundary conditions and nonnegative initial data, where
[l is a bounded region in Rn, A is the Laplacian, fl-> 1, and dl, dE > 0. N. Alikakos
[1] established global existence and -bounds of solutions when 1 <-_ fl < (n + 2)/n.
K. Masuda [8] shows that solutions to this system exist globally for every fl _>- 1 and,
in addition, shows that the solutions converge as -> o. One should note that the global
existence assertion is immediate if fl 1 and also if dl dE (for if dl= dE and w u + v,
then wt dlAw, and it easily follows that u and v remain uniformly bounded since
u, v _-> 0). On the other hand, if dl d2, the global boundedness is not obvious; one
can even show that there is no global 0oo estimate in terms of []Uo[[oo and vol]o for
large if d2 0 (see 5).

A second illustration is the Brusselator, a model of a certain chemical mor-
phogenetic process due to Turing [12], which has the form

(2)

ut dlAu uD
2 "[" By,

vt dzAv + ut2 B + 1)v+ A,
x fl, t>O,

u(x, t) B/A, v(x, t) A, > O, x 01"1
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UER Sciences Mathematiques, Universit6 de Nancy I, Nancy, France.
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with nonnegative initial data where A, B, dl and d2 are positive constants. This system
is discussed for f (0, 1) in Prigogine and Nicolis [10]. Except for inhomogenous
boundary conditions, (2) is very similar to (1) with/3 2. In [6], H. Lange proved that
solutions to (2) with 12 (0, 1) exist globally, provided that the diffusion coefficients
satisfy

(dl- d2)2/(4ala2) <[1 + B2/(4A2)]-1.

Observe that this result may be regarded as a perturbation of the routinely deduced
fact that nonnegative solutions to (2) exist globally when dl d2 (for if dl d2 and
w u + v, then w, dlw +A- v <-_ dl Wxx + A). Auchmuty and Nicolis [2] proved the
global existence of solutions to (2) for spatial dimension 1 and arbitrary dl, d2 > 0. A
proof ofglobal existence and boundedness for solutions of (2) with Neumann boundary
conditions; dl, d2 > 0; and spatial dimension n <- 3 may be found in Rothe [11]. Our
results show that nonnegative solutions to (2) exist globally and remain uniformly
bounded for the stated boundary conditions, arbitrary spatial dimensions, and dl,
d2>0.

The present paper is organized as follows: 1, The main results; 2, Semigroup
formulation and local existence; 3, Preliminary estimates; 4, Proof of the theorems; 5,
An example and a counterexample.

1. The main results. Throughout this paper it is assumed that 12 is a bounded
domain in R" with smooth boundary 012. Also, A is the Laplacian operator on 12 and
O/On denotes the outward normal derivative on 012. We consider the reaction-diffusion
system

U dlAtt +f(t, u, v),
(a) x612, t>0,

V, d2Av + g(t, u, v),

OU
CI U - (1 CI) ’- 31(1.1)

(b) x012, t>O,

(c) U=Uo, V=Vo, x12, t=0

where the following basic hypotheses are assumed to hold:
(HI) dl, d2, al, a2,/31 and/32 are constants with dl, d2>0; /31, /32>-0; and either

0< al, a2< 1, al a2 1, or al a2=0. Also,/31=/32=0 if al= a2=0;
(H2) f and g are continuously differentiable functions from [0, 0) into R with

f(t, 0, r/)->0 and g(t, :, 0)->0 for all t,
(H3) Both Uo and Vo are measurable on 12 and there is an Mo> 0 such that 0=< Uo(X),

Vo(X) -<- Mo for all x 12.
PROPOSITION 1. Suppose that (H1)-(H3) are satisfied. Then (1.1) has a unique,

noncontinuable (classical) solution (u, v) on 12x[0, T*), and there are continuous

functions N1, N2: [0, T*) [0, c) such that

(1.2) O<-_u(x, t)<=Nl(t), O<-v(x, t)<-N2(t) for (x, t)12x[0, T*).

Moreover, if T* < then

(1.3) lim sup {lu(x, t)l/lv(x, t)[}- c.
tT*
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This local existence result follows from the basic existence theory for abstract
semilinear differential equations (see, e.g., Henry [4] or Pazy [9]). Since some
modifications of these results are needed, the ideas of the proof are included in {} 2.
In general, (H1)-(H3) are not sufficient to insure that solutions to (1.1) exist for all
>= 0. The purpose of this paper is to give sufficient conditions guaranteeing that T* oo

in Proposition 1. In addition, we establish a result on the uniform boundedness of
solutions on f x [0, oo).

THEOREM 1. In addition to (H1)-(H3) suppose that
(H4) The function N1 in (1.2) is bounded if T* < oo;
(H5) There is a ), >- 1 and a continuous Lo" [0, oo)2--> [0, oo) such that [g(t, :, rt)[--<

Lo( t, r)(1 + rl) for all t, , q >= 0 with <= r;
(H6) There is a continuous tZo" [0, oo)2--> [0, oo) such that f(t, , q) + g(t, , ) <-_

tZo( t, r) for all t, , rl >--0 with <-r.
Then the solution (u, v) exists on f x [0, oo) and (1.2) holds with T*= oo.

Remark 1. Condition (H4) says that in each bounded interval, u(., t) remains
uniformly bounded so long as the solution to (1.1) exists. This is the case, for example,
if f(t,,rl)<-_tz(t)+tz2(t) for all t,:, r/_->0, where /z,/z2-[0, oo)[0, oo) are con-
tinuous.

THEOREM 2. In addition to the suppositions in Theorem 1, suppose that there is an

N > 0 and for each r > 0 there are numbers. Loo( r) and tzoo(r) such that

N(t)<=N, Lo(t,r)<-Loo(r), tZo(t,r)<--tzoo(r) forallt>-_O.

If2 O, assume also that tzoo(r) O. Then, there is an N2 such that N_(t) <= N2 for all
>-_ O, and so the solution to (1.1) is uniformly bounded on f x [0, ).

2. Semigroup formulation and Ideal existence. For each p (1, do) and j {1, 2}
define A.p on () by

(2.1)
A.w 4Aw for w (A,p), and

(Ajp) { w,W2’p (I1)" ajw+(1-a)O---W=oonogl}On
where W2’P(I’I) is the usual Sobolev space and d, a are as in (HI). It is well known
that A., generates a compact, analytic semigroup ,p {,p(t): >-0} of bounded
linear operators on P(fl), and that

(2.2) for t_>0,

where o < 0 if aj > 0, o 0 if a 0, and

For each > 0 and A > o the fractional powers (II-A,p) exist and are injective,
bounded linear operators on ’(ll) (see Pazy [9]). For each >0 define B,-
(-A,I,)-’ if aj > 0, Bj,p (I A,p)-’ if a 0, and B,p B,p Recall that 9(Bhp)
is a aanach space with the graph norm [w[,, and that, for a >/3 _->0, (B,p)
is a dense subspace of (Bp) with the inclusion .(B,p)c .(Bp) compact (we use
the convention o(B,I,) P(D,)). Also (see nenry 4, p. 40]),

(2.3) if a > n/(Ep) then (B,p) c ?oo(f), and
Iwl =< for all w (/,p).
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In addition, the following properties are satisfied by ,p and B,p; a proof can be
found in Pazy [9, p. 74].

LEMMA 1. Suppose that 3),p and B,p are as above. Then
(i) 3r,p(t): P(f) (B,) for all t>0,
(ii) In..(t)wl <- c,t e"lwlp for t>0 and w P(f), and
(iii) ,p(t)B.w= B..(t)wfor t>0, we (B.).
In order to use a modification of a local existence result in Henry [4], we write

(1.1) as an integral equation system via variation of constants. So define F and G on
[0, 00) X ,(x(-)2 by

IF(t. w. w)](x)=f(t, w(x), w:(x))
(2.4) for xsf, t>0, wl, w2(f),

[G(t, wl, w2)](x)= g(t, w(x), w2(x))

and let z satisfy

Oz(2.5) Az=0 on f, %z+(1-a)n=flj on0f

where zj 0 if % 0 (and hence/3 0---see (H1)). By variation of constants (see Pazy
[9]) it follows that if (u, v) is a solution in P(f)xP() to the system

(2.6)
u(t)=’,p(t)(Uo-Z)+z+ ffl,p(t-s)F(s,u(s),v(s))ds,

v(t)= r_..(t)(Vo-Z)+z_+ e%(t-s)G(s, u(s). v(s)) as

then u(x, t)=[u(t)](x), v(x, t)=[v(t)](x) is the solution to (1.1). Of course, zx and
z2 reflect the possibility of the inhomogeneous boundary conditions in (1.1b), and
clearly z 0 whenever fl 0.

Proof of Proposition 1. Select a (0, 1) and p > 1 so that (2.3) holds and use the
techniques in Henry 14, 3.3], modified to take into account the inhomogeneous terms,
to show the existence of a unique noncontinuable soltuion (u, v) to (2.6) for

(Uo- z, Vo- z2) (B’,p) x (B2,p).

Also, u(t) and v(t) have nonnegative values on f since f(t, 0, r/)_>-0 and g(t, , 0)>=0
for all t, so, r/_>-0 (see, e.g., Lightbourne and Martin [7]). Application of the results of
Ball [3, Thm. 3.1] shows that (u, v) is defined on an interval of the form [0, T*), and
that

(2.7)
if T* <, then In,,,(u(t)-z,)ln+lB=,,(v(t)-z)l,o as t’ T*, and
lim sup ’o s)-’[IF(s, u(s), v(s))[p + IG(s, u(s), v(s))lp] ds .
t T*

For each T, R > 0 there is an M( T, R) > 0 such that

If(t.. n)l. lg(t.. q)I<-M(T, R) for t[0, T], :, r/[0, R].

Hence,

(2.8) IF(t, w, w=)loo, IG(t, Wl, w:3I<-M(T, R)
whenever [0, T] and w1, W2 ,.oo(,) with Iw loo, Iw=l  R.
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Since the function $(t)-= 3r,p(t)(wj-zj)+ zj satisfies,, dA, on f x (0, oo),

czj, + (1 cej) 0.___
On=fl on Oflx(O, oo),

4,(0) wj on f,

application of the maximum principle yields

(2.9) Iffj.p(t)(w-zj)+zloo<=R for all t>-0 whenever

If 0_-< tl < T*, Izloo_-< R1 < Re and lu(h)l, ]v(h)lo-< R1, then by (2.8) and (2.9)

[u(t)[o=[l,p(t--tl)(U(tl)--Zl)+Zl+ -l,p(t-s)F(s, u(s), v(s)) ds[oo

<[]-l,p(t--tl)(tl(tl)--Zl)+Zl[oo+ [l,p(t-s)F(s, u(s), v(s))[ ds
tl

----< R1 + (t- tl)M( T*, R)

so long as lu(s)L, Iv(s)l -< R= for s [h, t]. A similar estimate holds for Iv(t)[, and,
taking R2 R1 + 1, it follows that

if 0_-< tl < T* and lu(tl)[oo, Iv(t,)l<-R where Rl>-max
(2.10) then T*-h>M(T*,kl +1) -1, and lu(t)loo, lv(t)loo<-R,+l

for h, tl + M( T*, R1 + 1)-1].
Now suppose that T*< oo. Then (2.7) implies that

oo lim sup ]F(t, u(t), v(t))l,/lG(t, u(t), v(t))l,
t’ T*

<= C lim sup IF(t, u(t), v(t))i+lG(t u(t), v(t))l.
T*

Hence by (2.8)

lim sup lu(t)l+ [v(t)l c.
t’ T*

This, combined with (2.10), shows that

[u(t)loo + Iv(t)[o- oo as ’ T* if T* <

Each of the assertions in Proposition 1 follows whenever

(ito Z,, V0 Z2) (Bla,p) (B2a,p).

Suppose now that (Uo, Vo) (f)2 and let {(Uo, Vo)}, be a sequence in (B,,)x
(B2,,) such that Uo, VOW=>0 and

lug-uol , Ivo -vol - 0 as ko.

By the first equation in (2.6) and the properties of Bl.p stated in Lemma 1, it follows
that
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for all [0, Tk*). If R1-->-[Zl[, Iz[ is chosen so that R1 -> for all k_-> 1,
then it follows from (2.10) that if 8 M(R1, R1 + 1) -1 then Tk* > 8 for all k_-> 1. From
these estimates one can deduce the existence of a C such that

[Bf,,(u(t)-z,)l,<-,t- for all t[0,8],k_>-I and

and, similarly,

IB,p(vk(t)--z2)lp<=tt-t forall t[0,8],k_->l and a<-_fl<l.

Because of the compact embedding of @(Bp) in (B,p) for a </3 < 1 and the
compactness of T,p, it follows, by selecting a subsequence and relabeling if necessary,
that

lim luk(t)--u(t)lp lim [vk(t)--v(t)lp=O
k- k-->

for t6[0, 8] and that (u, v) is a solution to (2.6) on [0, 8] with ti(t)-ZlG(Bl,p) and
v(t)-z2 (B2.,) for 0< t<-8 (see, e.g., Lemmas 6 and 7 in Lightbourne and Martin
[7]). By replacing [0, T*) with [8, T*) and (Uo, Vo) with (u(8), v(8)) and using the
results already established when Uo-Zl @(BI.,) and Vo-Z2 (n2,p), Proposition 1
follows.

3. Preliminary estimates. For 0-<_ r< T< let Q,.r 12 x (-, T) and for qe[1, )
let q(Q,.7-) be the space of measurable b Q,.T--> R with

II I(x, t)[ q dx dt <.
QnT

Obsee that if e q(Q,.r) then (., t) e q(fl) for almost all e (r, T), (., t)
is measurable, and that

IIl[o,,: I( ", t)l dt

Throughout this section we assume that 0 q(Q.r) and that Q.r is the
solution to

b, -d2Ab 0, x 6 l-l, (% T),

(3.1) a2b+(1-a2) ,,bO__r_=0, xOfI, t(% T),

b=0, x6[l, t= T

where d and a2 are as in (H1). If b(x, t) th(x, T-t) and O(x, t)=-O(x, T-t) for
(x, t) f x (0, T- -), then

bt dEAth + 0, x l’l, (0, T- ’),

04’(3.2) a26+(1-a:0n-n=0, x 6 OIl, 6 (O, T-r),

4=0, xf/, t=0.

The maximum principle implies that b-> 0 (and hence b => 0) whenever 0 => 0. Thus it
follows immediately that Odp/On <-0 on 0II x (z, T) whenever 0 =>0.
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LEMMA 2. Suppose that q (1, ), o q(Q,,r) and dp is the solution to (3.1). Then
there is a constant C( q, T--) (independent of O) such that

(3.3) I111.., Ilall.,--< C(q, T- )11011,..
Also, C(q, T-r) can be chosen so that

(3.4) 1(., r)lq C(q, T--)IIoII,,.T.
oo e estimates in (3.3) follow directly from Theorem 9.1 of Ladyzenskaja

et al. [5, p. 341]. Applying variation of constants to (3.2) and using (2.2) and Hrlder’s
inequality we have, taking p conjugate to q,

I&(’, ")l I(’, T- ")lq ff,q(T- ,- s)ff(-, s) as
q

0

(T-,)I/’IIOII..
and (3.4) follows by taking C(q, T-r)(T-r)TM.

In order to obtain uniform boundedness of solutions to (1.1), we need to ontrol
the dependence on T-r of the constants in Lemma 2.

LZMMa 3. Under the assumptions of Lemma 2, there is a C(q) such that

IP@(.,)l,, IIP@ll,.:., I1@11,.:. e(q)lloll,.,.
where we set

t)

I.
if: o,

P4b(’, t)=
4b( t)-In1-1 @(x, t) ax if=o

for t(r, T). Thus, if a2#O, one can assume that C(q, T-r)(q) in Lemma 2.
oo Note first that C can be chosen so that

(3.5) C(q, T-z) C(q, T’-z) if T’ T> z0.

Suppose that 0 q(Q.T) and define 0e q(Q,r) by 0z= 0 on Q,T and 02 =0 on
Or,r’. en II011,,= II0=11,,, and if @ and @ are solutions to (3.1) with 0= 0 and
0 02, respectively, then 2 on Q.T- Thus, by (3.3),

I1111,., I1@11,.,, C(q, T’- )110=11,,,, C(q, T’- )110111,.,.
Since the same estimate holds for Ila@lll.,:, and I@(’, z)lq, we see that (3.5) is true.
Let us first assume that a 0. en (2.2) holds with =- <0. By variation of
constants

I(., )1 I(., r-,)l .,(r- z- s)(., s) ds

e-"-’-l(’, s)l ds
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where p-1 -i- q-1 1. Therefore,

(3.6) [b(’, )1 --< k I1011,,.
This shows that the constant in (3.4) may be chosen independent of T-r. Again by
variation of constants

I111 ,, I(" t)l dt

ff2,q(t- s)O(’, s) ds dt
q

Let us set y(s)= I(., s)lo, By Halder’s inequality

io [io o,e-’-y(s) ds e-’-y(s)q ds e-’- ds

and the last integral is bounded above by -1. Hence

o,.,r= e- (s)O ds dt

io--q/P y(s)q e-(’-s) dt ds

where the last integral is bounded above by 8-1. This implies that

(3.7) [[[[q < 8-q,. troll q,z, T

and shows that the constant in the estimate for [[[[q,, in (3.3) may be chosen
independent of T-z.

To show the same for [[AIIq,., we argue as follows. Let A be an even regular
function on R such that

0AI, AI on(0,1), A0 on[2,).

For to2, set (t, x)= A(t-to)(t, x) where is defined for 0 by (3.2). en, dA+A( to)O + A’( to)6, x , > to- 2,

32+(1-32)=0, xO, t>to-2,

(to-) =0.

Set C(q) C (q, 4). By Lemma 2,

IIll g.,o-=,,o+= C(q)(ll ll,,o-=.,o+= IIA’llll 11,,o-=,,o+=)
2C(q)(ll fill g,,o-=,,o+= IIA’ll ll ,,o-=,,o+=).

By the choice of A,

iill iill iillq, to--2, to+2 q, o- 1,to+ q, o- 1,to+

Applying these inequalities with to 2, 4, , 2k, and summing over k, we obtain

IIll 2C(q)(llffll,o,+ IIA’llllll,o,).q,l,m
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Using again Lemma 2 on (0, 1), we deduce that

Ilall --<(2/l)C(q)a(llill /lla’,o, ,o,

Combining this with (3.7) yields

IIAll,o,--< ((q)llffllo,o,
where t(q)= (2q+ 1)’/qC(q)(q+llA’llq6-q)l/q: Applying this with if=0 for t>= T-r
yields the required estimate.

Assume now that a2=0. For q(fl) set

 =lal- Io and P, -.
If b and 0 are as in (3.1), then ( =-- since Ock/On =0 on Of, and

(Pb)t=-d2A(Pdp)-PO, xel), re(O, T-z),

0
--(Pth)=0, xOl2, t(O, T-r),
On

PO(T) O.

Moreover, there exists 6 > 0 such that

< e-’lWlq for w e q(fl) > 0.IP3%,(t)Wlq-
Arguing as for a2 # 0 but with b replaced by Pb completes the proof of Lemma 3.

Our final estimate relates b and 0 to the solution (u, v) of (1.1)"
LEMMA 4. Let the supposition ofProposition 1 be satisfied, let 0 <-r < T < T*, and

let q, 0 and dp be as in Lemma 2 with 0 >-O. Then there are constants E,(r, T), E_(’, T)
and Po(q) such that

(i) I( uO<-I( qbf(t’u’v)+I, ch("’)u("’)+E’(r’T)’

(ii) fo vO<-Io dpg(t,u,v)+Iab(.,r)v(.,r)+E2(r,T),
r,T

(iii)

where N, (r, T) sup {N, (t)" r _<- < T} and lip + 1/ q 1. Moreover, if T* < and
sup{N,(t).O<-t< T*}<oc, then (i), (ii), and (iii) hold with T= T*.

Proof. Integrating bu, over fl, we obtain

(3.8)

=dlIaUAqb+IadPf(t,u,v)+I,(t)
where I,(t) oa (6(Ou/On)- u(O6/On)).

If a,=0, then re2=fl,=fl2=0 (see (H1)) and so Ii(t)=0. If re,= 1 then re2 1,
and so

,(t) u--=-,

Finally, if 0 < re, < then 0 < re_ < I, and so (since ock/on <-_ O)
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/(t)
( 1u)(2 1) Ob u

n (1 01)02

o{(fll+lNl(,, T))(1- a2)[(1- a)a2]-l+ l(Z, T)t
n On

Thus, in each case, I,(t)Nco[1 + N(, rll. I1 for some constant coe0.
Now integrating u from to T we obtain

4u, =-(’, )u(., )-

-4(., )u(., r) + u + uo

using the fact that (., T) 0. Now by integrating each side of this equation over
and each side of (3.8) from to T and interchanging the order of integration,
we see that (i) holds with

El=(dl-d2) uA4+ Ii(t) dt

[Idl-dEll(% T)+co(l+l(% r))l I1

(Idl- dl+ Co)J1 + 1(,, T)](

where is the measure of ft. Therefore, by Lemma 3, there is a cl(q) such that

E1 c(q)[1 + 1(% T)](T-,)l/’llOll.,..
In the same manner, one can show that (ii) holds with E2 Jf I2(t) dt where 12(t)=
on Or v O$/On. Estimates similar to those for ii(t) reveal that for each boundary
condition there is a constant o such that I2(t) eo n Il for all (, T), and hence
there is by (3.3) a c2(q) such that

E2 c2(q)( T- )1/ 0 II.,..
Asseion (iii) now follows, and the proof is complete.

4. Proof of the theorems. Theorems 1 and 2 are proved in this section, and it is
assumed throughout that (H1)-(H6) hold and that (u, v) is the noncontinuable solution
to (1.1) on fl x [0, T*) guaranteed by Proposition 1. A crucial estimate is the following.

LEMMA 5. Suppose that 0 < T < T* and 1 < p <. en v P(Q,,r) and the
estimate

(4.1) Iv(’, t)l dtRp(Nl(% T), C(q, T-,))P[I+lv( ., y)Ip+(T-y)I/PlP
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is valid where Rp’[O, 00)2--> [0, (13) is continuous, q is conjugate to p, C is as in Lemma
2, and

Nl(Z, T)=sup {Nl(t): ’_-< < T}.

Moreover, if T*< then (4.1) holds with T T*.
Proof. Inequalities (i) and (ii) in Lemma 4 imply that

Qz, Qr,T Qr,

+| 6(., )[u(., )+ o(., )]+(, T) +(, T)

where oq(Q,T), 0>=0, and b satisfies (3.1). By (H6) and (1.2),

V0 -< bp,o(t Nl(’r T))+ b(’, Z)Nl(Z)
r,T

+ / 4)(" )v(-, z) + E(, T) + E2(7", T).

Applying H61der’s inequality,

vO <= go( t, 1 z, T))P at ,,-+ N,()lsal’/l@(’, )1 +Iv(,, )11,#(’, )1 + E,(, T)+ E(z, T).

Now using the estimates in Lemma 2 and (iii) in Lemma 4 we have that

Io oo<-{R,, 73, Cq, T-[1 +Iv(’, .)lp / T- )l/p]}ll Ollq,,r.

Since this holds for eve 0 s q(Q,r), 0 0, we have by duality that v P(Q.r)
and that the term in the braces is an estimate for Ilvllr,,r. Thus (4.1) holds and since
N is assumed bounded on [0, T*) if T* <, the final asseaion is immediate from (4.1).

Combining Lemma 5 with assumption (H5) gives the following estimate:
LEMMA 6. With the suppositions of Lemma 5, suppose that r > 1 and T is as in

(H5). en there is a constant L(T-z, Nl(Z, T)) such that

(4.2) Ig(t, u(. t), v(. t))] dt < (T-z, l(r, T)) 1 + Iv(" t)l "r dt

whenever 0 z < T< T*. Also, this estimate is valid for T T* if T* <.
Proo By (H5),

Ig(t, u(x, t), v(x, t))lLo(t, ,(, T))[l+lv(x, t)]]
2rLo(t, (, T))[1 +Iv(x, t)l]

and, integrating over ,
[g(t, u(’, t), v(’, t))lrr<-2Lo(t, 1,(, T))r[ll+lv( ., t)l,r].

Now (4.2) follows by integrating each side of this inequality from - to T.
ProofofTheorem 1. Suppose, for contradiction, that T* < 43. From (H4) and (1.3)

it follows that

(4.3) lim Iv(., t)[oo o.
t’ T*
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Let a (0, 1) and select p > 1 large enough so that a > n/(2p) (see (2.3)) and aq < 1
where p-1 + q-1 1. Since T* < oo and Iool -< Il’/lool for each r > 1, we have by (4.1)
that

o

*
Iv(’, t)l: dt Ml(r).

Hence, by (4.2) there is an M(p) such that

(4.4) Ig(t,u(’,t),v(",t))ldtM2(p)P[l+M(yp)VP]p.
o

Using the second equation in (2.6) and the propeaies of B2p in Lemma 1 we see that

In,,(o(t)-z=)l, C,pt e’lo-z=l,+ C,,(t-s)-lG(s, u(s), v(s))lpds

C,,t ezlVo

+ cx,(-s- la(, u(s, v(sl as

By (4.4) and the definition of G in (2.4)

fo’ Ior*lG(s, u(s) v(s))lg dsIs, <), os))lg as

M(p)P[1 + M(yp)Y’]",
and since aq < 1 it follows that

lim sup IBp( v( t) z)[, <.
t T*

Since a > n/(2p), we have by (2.3) that

I t) zl,, "L,<< t) z) I,,
which contradicts (4.3). us T* =, and the proof of Theorem 1 is complete.

Now assume that the suppositions of Theorem 2 are satisfied, and hence that
(u, v) exists on x[0, ) by Theorem 1. If a 0, by Lemma 3 one can assume that
C(q, T-z)C(q). Since NI(t)N for all t0, from (4.1) we obtain

(4.5) Iv(’, t)l dt[1 +Iv(-, z)I,+(T-z)I/’]" for Te

for some Rp > 0. If 2 0 and :(r) 0, then (4.5) remains valid. Indeed, from Lemma
4, we have

r,T

whr hr =0 ana ,la,-al$o.. la@l. y emma 3,

E1 la, al, T )’/"InI’/’ q)ll 0 0,,.
Using again that (r) 0 and a 0, we have

f [u( +, z)+ v(’, z)] I Uo+ Vo.
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Thus, if b and Pb are as in Lemma 3, we have

fn b(’, r)[u(., r)+ v(’, z)]= fl [(’’ r)+ Pb(’, z)][u(’, z)+v(’, z)]

=< I. Uo+ +  ,lnl ’/" + Iv(.,

where

Recalling Lemma 3 to estimate ]Pb(., "r)lp and combining these inequalities yields (4.5).
LEMMA 7. Let the suppositions of Theorem 2 be satisfied. For each p (1, oo) there

are constants Ao(p) and Fo(p) and a sequence {tk} in [0, oo) such that to=0 and for
each k >= O,

(i) 1 --< tk+l- tk <- Ao(p),
(ii) Iv( tk)ip <- .p + 1,
(iii) jftk+’tk iV( ", t)l; dt < Fo(p)

where Rp is as in (4.5).
Proof. We assume without loss that iqp + 1 => Vol and that/ => 1. For notational

convenience set S R,(R + 2). Note first that

if r_-> 0 and Iv(’, r)l =</,p + 1, then there is a
(4.6)

t* (r, r+ Sp] such that Iv(., t*)lp _-< R, + 1.

For if this were not the case, then Iv(’, t)l,>/p+l for all t(r, r+,q,) and so

Iv(’, t)l; dt > ,. (/. + 1)".

However, by (4.5) with T= r+ S.,

f+ iv(’, t)ipp dt <- iffpP[1 + iffp + 1 + tlp/p]p

R[Rp + 2 + Rp(Rp + 2)]"

which is impossible. Thus (4.6) is valid. Now set Ao(p)= 2S, and inductively define
{tk} by to 0 and

tk+, sup { T => t" T- t -< 2, and Iv(’, T)I, --</, + 1}.

By the continuity of t-+iv(. t)lp we have that iv(’, tk+l)ip </p -f" 1 and iv(’, tk.+l)ip
Rp + 1 if tk+l < tk + 2Sp. Moreover, tk+- tk >= Sp >= 1, for if tk+l- tk < Sp then (4.6) implies
that there is a t*(tk+,tk+l+p) such that I(., t*)l,_-<q,/l. But t*<-_t//,,<
tk+2Sp, and this contradicts the definition of tk/l. Thus {tk}o is well defined and
satisfies (i) and (ii). Since (4.5) implies that

f"<+’ dt<[l+lv(, t)l,+(tk+l-t)’/"]"Iv(’,t)l,"

<-/[/p + 2 + (2g.)’/"]"
we see tlaat (iii) laolas witia Fo(p): J[/, +2+ (2g,)’/’}".
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LEMMA 8. Suppose that the assumptions in Theorem 2 are satisfied, p (1, o), y is
as in (HS), and that {tk} is the sequence constructed in Lemma 7 corresponding to TP.
Then there is a F1 P, TP such that

tk+
(4.7) Ig(t, u(’, t), v(’, t))l; <-- F,(p, yp) for allk >= O.

tk

Proof The boundedness assumptions on /o, Lo, and N applied to (4.2) and
Lemma 7 imply that

Ig(t, u(’, t), v(" t))lPpp dt< 1+ Iv(" t)l "p,p dt
tt lt

<-_ M(p)[ + Fo( yp)]

r(p, vp).

Ma(p) and consequently FI(p, yp) are independent of k, and the proof is complete.
Proof of Theorem 2. Select a(0, 1) and pc(l, oo) so that a> n/(2p) and q<l,

where p-i+ q-l= 1. Then (B_.p) is continuously embedded in (1) (see (2.3));
thus to establish the boundedness of Iv(., t)[ on [0, ) it suffices to show that

(4.8) sup{l=%(v(t)-z)l," t0}<.
So let {tk} be the sequence constructed in Lemma 7 corresponding to yp and note
that for k 2 and tk, tk+l],

%(v(t) ) %y,v(t- t_)(v(t_) z)

+ %,(-sa(s, u(sl, v(s s

(replace by -_ and vo by V(t_l) in (2.6)). By (ii) in Lemma 1,

+ c,( s-la(s, u(s, v(sll .
Since t t_ + 1, we have from (ii) in Lemma 7 that

C,p(l(t_) + ll+
C,,p[([V(tk_l)lvp + [ltvp) v + Iz21.]
c.,[(., + 1 + lal/") +

m4.
Also, by H61der’s inequality and Lemma 8 and since aq < 1, we have

ds
k--I

k-1 k-1

M, G(s, u(s), v(s))l ds
dtk

2/PMF(p, yp)l/p.
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Thus, for [ tk, tk+l] with k => 2,

o(t) z2)l, =< M4+ 21/pMsFI(p, Tp) ’/p.

So (4.8) holds, and the proof of Theorem 2 is complete.

5. An example and a counterexample. We begin this section by showing how the
preceeding results apply to the Brusselator mentioned in the introduction:

(5.1)

Ut dlAU uo2 4- Bv,
(a) xf, t>0,

vt dAv + uv B + 1 v + A,

(b) u(x, t) B/A, v(x, t) A, x Ofl, > O,

(c) u(x, o) Uo(X), v(x, o) Vo(X), x ft.

It is assumed that A, B, dl, and d2 are positive constants and that Uo and Vo are
nonnegative, uniformly bounded, measurable functions on 11. The following result is
valid for the solution to (5.1).

PROPOSITION 2. The system (5.1) has a unique solution (u, v) on Ox[0, ), and
there is a constant M > 0 such that

O<=u(x,t), v(x,t)<-M forallt>-Oandxf.
In order to establish this result we show that (5.1) satisfies the suppositions of

Theorem 2 with

f(t,, r/)-= -sr/2+ Br/, g(t,, r/)-- sr/2- (B+ 1)r/+A.
It is immediate that (H1)-(H3) are satisfied, and that (HS) holds with T=2 and Lo
independent of => 0. Moreover, since

f(t,, /)+g(t, s, l)=A-q<-A
for all t, sc, r/_-> 0, we see that (H6) is valid with/zo(t, r) A. Therefore, Proposition 2
will be established once it is shown that u remains uniformly bounded on f x [0, ).

ProofofProposition 2. As asserted in the preceding paragraph, we need only show
that lu(., t)lo remains uniformly bounded so long as the solution to (5.1) exists. Since
the suppositions of Proposition 1 are satisfied, there is a T*> 0 such that (u, v) exists
on f x [0, T*). So let N1, N2 be as in (1.2) in Proposition 1 and let 0 < to < T*. Define

min { v(x, to)" x f} and note that $ > 0. For if $ v(x*, to) 0 then x* , and
so Av(x*, to) >_-- 0. By substitution of (x*, to) into the second equation in (5.1a) it follows
that vt(x*, to) -> A > 0, which is impossible since this implies v(x*, t) < 0 for
to- e, to) where e > 0. To complete the proof we show that

(5.2) u(x, t)-<max{lu( ., to)I,B/$,B(B+I)/A}=-NI(t) forall(x, t)lX[to, T*).
First, however, observe that

(5.3) v(x, t)>-min{i,A/(B+l)} for all (x, t)l)X[to, T*).
For otherwise, if to < tl < T* and

v(x*, t*) min {v(x, t): (x, t) 1)x [to, tl]}

<min{$,A/(B+l)},

then v(x*, t*) < A and so x* ft and Av(x*, t*) _--> 0. Thus

vt(x*, t*)>--(B+ 1)v(x*, t*)+A

>-(B+I)A/(B+I)+A=O,
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and so it follows that t*= to. But if t*= to then v(x*, t*)_-> 6 by the definition of 6,
and we have a contradiction. This establishes (5.3). Now assuming for contradiction
that (5.2) is not true, it follows that there is a tl (to, T*) such that

u(x*, t*) max {u(x, t)" (x, t)12x [to, tl]}
> max {[u(., to)[, B 6, B(B + 1)/a}.

Then t*> to since u(x*, t*)> [u(., to)l, and x* 12 since u(x*, t*)> B/A. Thus
Au(x*, t*) -< 0. Therefore,

u,(x*, t*) <-_ -u(x*, t*)v(x*, t*)2+ By(x*, t*) v(x*, t*)2[Bv(x*, t*)-1- u(x*, t*)].
By (5.3), max {B/6, B(B + 1)/A} > By(x*, t*)-. Thus u(x*, t*) > By(x*, t*)-1, and so
ut(x*, t*)< 0. This is not possible, since t*> to. Thus (5.2) holds, and hence Theorem
2 implies the boundedness of solutions to (5.1).

We remark here that even though uo(r)= A > 0, our techniques can be used to
show that the solution to (5.1) exists and is uniformly bounded on II x [0, 03) when
the boundary conditions are Neumann type rather than Dirichlet (cf. Rothe 1 1]). This
is accomplished by incorporating the -v term in the equation for v into the differential
operator. The semigroups T2,p, 1 < p < 03, generated by the corresponding perturbations
of the operators A2.p are contractive rather than nonexpansive. Hence the estimates
in Lemma 3 hold for the solution tr of

trt=-(d2Ao’-)-O on Qz,T,

-0 on 012 x (-r, T),
On

tr(-, T) 0 on 12

without the aid of the operator P. Using tr in place of b in Lemmas 4 and 5 yields
similar results, and hence (4.5) holds. The proof then proceeds exactly as before.

Let us now consider the model

Ut dlAU uv13,
x 12, > O,

Vt d2Av + uv,
(5.4) Ou Ov

On an --0, x O, > O,

U=Uo, V=Vo, x12, t=0

where 0 <-Uo, Vo=< M and dl, d2 > 0. It is easy to see that this model (with these and
other boundary conditions) fits into our result ofTheorem 2, since lu( t)l is obviously
a priori bounded for t-> 0. As mentioned in the introduction, global existence and
uniform boundedness of solutions to (5.4) were proved by Masuda [8].

It is interesting to notice that the assumption d2> 0 is essential here. Indeed,
although the situation is good when either dl, d2 > 0 or d d2 0, one can prove that,
if dE--0 and/3 > 1, there is no -estimate of the solution of (5.4) in terms of
and ]Voloo for large. More precisely we have

PROPOSITION 3. Assume dE O, dl > O, and fl > 1. Let a, b > 0 and suppose thatfor
all Uo, Vo satisfying

0 <- Uo<-_ 1, 0<-_ Vo <- b

there exists a solution to (5.4) on [0, T) such that for each [0, T),

Iv(’,t)l<c(T,a,b).
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Then

T<=[(fl-1)bl3-1a]-1.

Proof. Let Vo be a nonnegative and compactly supported function on Ft. If
(5.4) has a solution on [0, T), since d2-0, the equation in v can be explicitly solved
as

(5.5) v(x, t)= Vo(X)[1-(fl 1)v(x)- U(x, t)]-1/-l

where U(x, t)=-o u(x, s)ds (we use here the uniqueness of bounded solutions of
(5.4)). Let us now consider (Uk, Vk) the solution of (5.4) with the initial data

Uk(X, O) =-- a for all x Ft

and Vk(X, O) a compactly supported function on 1) satisfying

(5.6) 0 <- Vk(X, O) <-_ b,

(5.7) Vk(Xo, O) b for some Xo Ft independent of k,

(5.8) Vk(X 0) 0 for X Xo as k o.

Assume that Vk(X, t) remains uniformly bounded on Ft x [0, T). Then by (5.5) and (5.7)
we have

(5.9) (fl --1)b-l Uk(Xo, T) <- 1.

Now, by (5.5) and (5.8) and the fact that Uk(X, t) is uniformly bounded on Ft x [0, T),
Vk(X, t) tends to 0 for all [0, T) and x ,.Xo. As Uk and Vk are uniformly bounded,
UkVk tends to 0 in any P(Ft x (0, T)) for 1 _-< p < o. But for p large enough, the mapping

" - w where

wt =dlAw + ’,

Ow
0 on OFt,

On

w(x, O)= a onf

is compact from P(Ftx(0, T)) into ([0, T]xl2) (see Ladyzenskaja et al. [5]).
Therefore, Uk converges uniformly on Ft x [0, T] to the constant solution u--a of

Ut dlAU,

Ou
0 on OFt,

On

u(x, O)= a onFt.

Passing to the limit in (5.9) yields (fl-1)bt-lTa <= 1.

Acknowledgment. We would like to thank Professor L. C. Evans for his helpful
suggestions regarding the estimates in 3.
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ASYMPTOTICS AND AN ASYMPTOTIC GALERKIN METHOD FOR
HYPERBOLIC-PARABOLIC SINGULAR PERTURBATION PROBLEMS*
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Abstract. A composite asymptotic expansion including initial layer corrections is developed for treating
initial boundary value problems for hyperbolic equations with a small parameter multiplying the second-order
time derivative term. Proof of uniform asymptotic validity is given a Hilbert space setting. The expansion
forms the basis of a continuous-time Galerkin procedure for which error analysis based on the finite element
method is included. This work extends recent results of Hsiao and Weinacht in two directions, one toward
greater abstraction and one toward greater utility.

Key words, asymptotics, Galerkin method, singular perturbation
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1. Introduction. Let 12 be a bounded domain in R n, a generic point of which will
be denoted by x (Xl,’’’, xn), with smooth boundary 012 and let to> 0 be arbitrary.
We shall be interested in approximating the solution u(x, t) of the initial-boundary
value problem (P)"

(1.1) e2utt(x, t) + ut(x, t) + Au(x, t) =f(x, t), fI x (0, to),

(1.2) u(x, t) 0, 01" x [0, to],

(1.3) u(x, O) Uo(X), x 12,

(1.4) eut(x, O) ul(x), x 12,

using a combination of asymptotic and numerical techniques.
In (1.1) and (1.4) the parameter e is assumed to be small, 0< e << 1. Here A is

the second-order uniformly strongly elliptic operator in L2([) defined on D(A)-
HE(12) f’) Ho1(12) by

(1.5) Au Z Oi(aij(x)Dju)+ c(x)u,

in which aj=ajeC (12) for i,j= 1,..., n, c(x)eC(fi), c(x)>-O and D denotes the
derivative O/Ox, 1,. ., n. We assume the ellipticity condition

aij(x)i6 >---- r
i,j=l i=1

holds for all :=(:1,’", ,)eR" and xl. The e-independent data {f, Uo, Ul} is
subject to certain regularity conditions specified later (see Theorem 2.1).

Problem (P,) is a singular perturbation problem of hyperbolic-parabolic type that
has been investigated by many authors. In [21] Zlamal has used Fourier integral
methods and in [22] has used eigenfunction expansions. The method of energy integrals
has been exploited by Bobisud [2] and Hsiao and Weinacht [9]. In the terminology
of singular perturbation theory, there is initial layer behavior in a neighborhood of
-0. The solution of (P) is dominated by the solution Uo(x, t) of the reduced problem

(Po), an initial-boundary value problem of parabolic type, obtained by setting e 0.

* Received by the editors April 8, 1985; accepted for publication (in revised form) February 19, 1986.

" ’Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, Virginia 23284.
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The solution Uo(x, t) cannot generally be expected to satisfy the initial condition (1.4),
so one is led to consider initial-layer correction terms, which appear in higher order
expansions.

For the proof of uniform validity of the expansion, we reformulate the problem
in a Hilbert space setting in {} 2. The result to first order for a closely related problem
was obtained by Kisynski [13] using semigroups in Hilbert space. For related results
see Nur [16] and Schoene [17]. Fattorini [4], [5] has recently used cosine families in
Banach space to obtain an N-term composite expansion. Our development extends
the work of Hsiao and Weinacht [9] to an abstract setting relying heavily on the positive
definiteness of A and the inner product induced norm on the Hilbert space.

For the numerical solution of (P) one may be tempted to solve the singular
perturbation problem directly by means of standard methods such as the Crank-
Nicolson-Galerkin scheme since this is a linear hyperbolic problem for each e > 0.
However, because of the presence of e, the usual schemes will not yield meaningful
numerical results without reducing the mesh size in the initial layer. This, of course,
requires considerable computational effort. Also, the discrete problems involved may
become ill-posed numerically when mesh sizes get to be too small. (See [8] and [12].)

In this paper we present a continuous-in-time numerical procedure for treating
singularly perturbed problems such .as (P), which does not require a very fine mesh.
The procedure uses singular perturbation theory to construct problems for the leading
terms in the formal asymptotic expansion, which are then solved numerically by the
Galerkin method with finite elements as the trial functions for the space variables.
This leads to an initial-value problem for a system of ordinary differential equations
for which explicit solutions can be constructed. We refer to this approximation as the
asymptotic Galerkin approximation. Preliminary numerical implementation of the
problems show that very accurate results may be obtained in an efficient way. (For a
similar approach to singular perturbation problems of parabolic-elliptic type see [8]
and 12].)

In 2 we prove the uniform validity ofan N-term composite asymptotic expansion.
In {} 3 we formulate and describe the approximation scheme in detail. Section 4 contains
error estimates for the continuous-in-time asymptotic Galerkin approximation using
finite element methods. The results of some numerical experiments are given in 5.
Throughout this paper, C will denote a generic constant, not necessarily the same in
any two places. Also, sums over empty index sets are zero.

2. The asymptotic expansion. In this section a procedure is developed for the
construction of an N-term asymptotic expansion with initial layer corrections for the
singularly perturbed Cauchy problem (P*)"
(2.1) L[u] := e2u"(t)+u’(t)+Au(t) F(t),
(2.2) u(O) Uo, e.u’(O) u,
in a Hilbert space H, with inner product (.,.), norm I1" II, and zero element 0. The
linear operator A is assumed to be positive-definite and self-adjoint in H. Problem
(P*) is an abstract analogue of problem (P) specified in (1.1)-(1.4) of 1.

A formal asymptotic expansion may be obtained in the form of a composite
expansion familiar from singular perturbation theory (see [15] and [19]), namely,

(2.3) uc(t; e)= Eo(t; e)+ E+l(t/e2; e).
Here the outer expansion,

N

(2.4) Eg(t; e):= E U,(t)e",
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provides a uniformly valid O(e N+I) approximation to u(t; e) on intervals [6, to], 6 > 0,
bounded away from 0: The initial layer expansion

N+I

(2.5) E+(t/; ):= y V(t/; )+1

is asymptotically zero except in a neighborhood of the initial point 0. We introduce
the stretched variable ’= tie2 inside the initial layer. The expansion (2.3) contains
two terms Vr and Vrq+l, which are not useful in the final approximation, but are
necessary in the proof of uniform validity. The construction of such terms of higher
order is typical in singular perturbation problems.

We say that a function z(t; e) in C([0, to], H) is O(e k) as e-0+ uniformly in
[0, to] if there are positive constants C and eo such that ]lz(t; e)ll-< Ce k holds for all
in [0, to] and e in (0, eo].
A calculation shows that

(2.6)

where

N

L[UN] 2 (U’,,(t)+AUn(t)- U_2(t))e"
n=0

N

-" 2 (n+l(’/’) " n+l(’r)+AVn-l(’r))en+R(t;
n=--I

(2.7) R(t; e):= U’_a(t)eU+l+ U’[v(t)erv+2+AVv(t/e2)eN+l+AVv+(t/e2)e+2

and functions with negative index vanish identically. We shall consistently use primes
for t-derivatives and dots for r-derivatives.

Putting 0 in (2.3) and its derivative we find
N

(2.8) UN(0; )’-" Uo(0)-- Un(O)-[- gn_l(O))En4; VN(O)F_,N+IAf" VN+I(O)I N+2

and
N

(2.9) euv(0; e)= I2o(0)+ (U’,(0)+ 9",+1(0))e "+,

which serve to determine initial values for Un(t) and I2, (r), resp., when we impose (2.2).
The formal approximation uu is now constructed by solving the following set of

initial value problems. For the terms of the outer expansion, we have problems (P,),
0 _-< n _-< N, given by

fF(t), n =0,

g’,,(t)+au,(t)=tO n=l,
-U"._2(t), 2<=n<=N,

U,(0) { Uo, n =0,
-V,_I(0), l<--n<-N,

while the terms ofthe initial layer expansion are determined as solutions ofthe problems
(P,),O<=n<=N+I,

9.(,)+ f.(,) { 0, .=0,,
-AVn_2(’r), 2_-<n_<-N+l,

f Ul,
(0)

Utn_l(O),

V.(z)- 0 as -,

n--0,
l_-<n_-<N+l,

0<__n_-<N+l.
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It follows that the remainder

z(t; e):= u(t; e)-urv(t; e)

satisfies the second-order initial-value problem

(2.10) e2z"(t)+z’(t)+Az(t)=-R(t; e),

(2.11) z(0; )= Zo(), z’(0; )= z(),

where

ZO(E :-" VN(O)E N+I- VN+I(O)E N+2,

z,(e):=O

and R(t; e) is given by (2.7). See [7] for proof of existence and uniqueness of a solution
to this problem.

For the solution of problems (P,), 0 -< n-< N, and (/3,), 0__< n =< N+ 1, we have
the following result.

LEMMA 2.1. Let N be any nonnegative integer and to > O. Let A be a positive-definite
self-adjoint linear operator in H. Suppose Uo D(Arv+2) and ul D(AN+I). Then, provided

F(’) C([0, to], D(AZV-21)), O<=l<=[N/2],

where denotes the greatest integer function,
(A) The solution ofproblem (P,), 0<-_ n <-N, is given by

U,(t)

n/2--1

V(t)P(tA; n/2)A"/2Uo + T(t) P(tA; n/2-1-1)A"/2-1-1F(t)(O)
1=0

n/2

+ T(t-s) P((t-s)A; n/2-1)A"/2-1F(l)(s) ds neven,
/=0

T(t)P(tA; (n- 1)/2)A(n-1)/2Ul n odd,

where T( t) is the analytic semigroup generated by -A, and P(tA; k) is understood to
be a generic polynomial operator in tA of degree k.

(B) The solution ofproblem P,), 0 <-n <-N+ 1, is given by

v.()

e-P(’; n/2)A"/2Ul n even,

e-P(’; (n- 1)/2)A("+)/Zuo
(n--l)/2

+e P(r; (n-1)/Z-l)a("-l)/2-1F(l)(o) nodd,
1=0

where P(’; k) is a generic polynomial in - of degree k.
Proof An induction proof is based on the variation of parameters representation

for U,/(t) using T(t), the analytic semigroup generated by -A,

U,+,(t)=-T(t)V,(O)+ T(t-s){-U",_(s)} ds,
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and a representation for VI+I(Z) obtained by two Riemann integrations of (Pn+l),
namely,

IoV,+l(r)=e-*U’,(O)+ e-(*-s) AV,_I(S) ds+ AV,_I(s) ds.

Remarks. (1) We note that in the above procedure, the zeroth order terms Uo and
Vo are determined simultaneously from the initial data for problem (P*), but the higher
order terms are determined alternately, as indicated in the diagram.

In particular, if Uo 0, the first chain of dependent functions vanishes, while if U 0,
the second chain vanishes.

(2) The solution u(t; e) does not exhibit initial layer behavior since the first term
Uo of the outer expansion provides a uniformly O(e) approximation on [0, to], i.e.,

u(t; e)= Uo(t)+ O(e).

However, for the t-derivative

Eut(t E)"-- r0(7’)’+ (U(t)+ (/r1(7"))8,+0(8,2),
so we see that U6(t) provides a uniformly O(e) approximation in any interval [8, to],
6 > 0 where f’o and f’l are asymptotically zero, but close to the initial point the boundary
layer functions Vo and V1 are required for a uniform approximation.

The justification of the formal expansion procedure requires that the remainder
z be O(e N/I) on [0, to] as e-0/. A crucial step is the development of an a priori
bound for the solution of the second-order initial value problem

(2.12) e2z"+z’+Az=f(t; e),

(2.13) z(O) Zo($), Ezt(O) Zl(E ).

We formulate the result as follows.
LEMMA 2.2. Let A be a positive-definite self-adjoint linear operator in Hand suppose

Zo(e) D(A), zl(e) D(A1/2) andf( e) L2(O, to; H), where 0< e <- eoforanarbitrary
fixed number eo in (0, 1).

Then the solution z(t; e) of (2.12), (2.13) on [0, to] satisfies the inequality

IIz(t)ll / e z’(t)ll / Ila’/z(t)ll
(2.14)

M I1oll + IlIlll + IIA1/eoll + II/()11 d

in which we have suppressed the e-dependence of z, Zo, Zl andf. The constant M is given
explicitly by M [6(1 Co)-1] 1/2 exp [(1 Co) -1 to].

Proof Forming the inner product

(2z + 2z’, L[z]-f)=O

and transferring derivatives to form perfect t-derivatives, we see that, by introduction
of A1/2 and use of the positive-definiteness of A, we obtain the differential inequality

D,{ll z = + 2(z, z’) + =11 z’ll = + IlA’/=zll}
Ilzll - + 2Zll z’ll = + 211fll =.
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Integrating over the interval [0, t], and using the inequality

2eE(z, z’)--> - IIzll=- llz’ll =
which holds for 0 < e < eo, where eo lies in (0, 1), we arrive at the inequality

_-< 2(1 eo)- (llzoll+ Ilzlll + 11A1/2zol]2 + Ilf(s)[I

+2(1--eo)-1 (llz(s)ll+llz’(s)ll+llA1/(s)ll) ds.

Application of Gronwall’s lemma and elementary inequalities produces the result of
the lemma.

We can now state the main result of this section.
THEOREM 2.1. Let a nonnegative integer N and to> 0 be given. Let A be a positive-

definite se-adjoint linear operator in a Hilbert space H and suppose that Uo D(An+2)
and Ul D(An+I). Assume F F(t) is such that

dF
dt, eC([O, to],D(A-’)), ONIN[N/2].

en the solution u(t; e) of the initial-value problem (P) has an asymptotic expansion
of the form (2.3) such that

u(t; e)= u(t; e)+O(e+),

and

A1/2u(t; e) A1/2uN(t; e)+ O(e N+I)
as e --> 0+ uniformly on [0, to].

Proof. The remainder z(t; e)= u(t; e)-uN(t; e) satisfies (2.10) and (2.11). Since
Lemma 2.1 implies

<+-)/=uoll; IIA/=-IF<’>(O)II, 0 <- <--_ N/2) N even,
v,/(0)ll-< C(IIA</)/=uII) N odd,

we see that Ilzo()ll < c’/’. Obviously IIz()l1-0.
In order to bound IIR(t; e)ll, we first note that since e-P(z) is bounded on [0, oo)

for any polynomial P(z), we have from the representations in Lemma 2.1,

+4)/=Uoll, IIa<+=)/2-f)(O)ll, 0<- <--_ N/2) N even,
IIAVN+,()II < )/=ull) N odd.

Also, the proof of Lemma 2.1 yields an expression for U’,’(t) so that for N odd,

Uv(t)ll <-- C(to; Ila+ull)
and for N even, with

GIIoo :- sup G(t)II,
0_--< t_--<

N+2IlU(t)ll<-C(to; IIA uoll; IIA-=’F(’)(O)II, O<--I<--(N-2)/2
Ilar/2-’F(’+’)( )11, Ilar/2-’+’F(’)( )11,

IIa’-=’+=F(’)( Iloo, 0<- <- N/2).
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From these estimates

Ilg(t;  )11
Putting these results in the energy inequality (2.14) we obtain

IIz(t)ll + IIz’(t)ll + a /=z(t)ll -< C(to) 

which establishes the theorem.
Remark. The results of this section hold for any positive-definite self-adjoint linear

operator A defined on a Hilbert space H, and are not restricted to the operator defined
in (1.5). In particular, if A is of arbitrary order 2m, the plate problem is included.

3. A numerical procedure. Applying the results of 2 to the solution u(x, t) of
problem (P), given by (1.1) to (1.4), we have the asymptotic expansion

N

u(x, t)= Uo(x, t)+ E (u,,(x, t)+ v,,_l(X, t/e2))e"+O(eV*l).
rl=l

Here U,(x, t) is obtained as the solution of a parabolic problem (P,)"

ff(x, t), n o,
0 U,,

(x, t) + AU, (x, t) I,{0, n 1,
O l-02 Un-2/0 2, 2 <-- n <-- N

for (x, t) lI x (0, to],

U,(x, t)=O, O<=n<-_N, (x, t)60x(O, to],

Un(x,O)=
Uo(X), n--0, xG,_
V._(x, O), l<-_n<-_N, x 6 I,

where the elliptic opera.tor A is given by (1.5). To determine the initial-layer correction
terms we must solve (P,)"

_[ 0, n =0, 1
for(x, 7.) - X (0 oO),

-AV,_E(X, 7.), 2 <= n <- N 1

oV,(x, O)= u(x), n=0, xf,_
07.

V,(x, 7.)0 as

In order to develop a numerical procedure based on the Galerkin method, we
introduce weak formulations of the problems (P) and (P,), 0 <-n-< N. As usual, we
denote by H’(II) the real Sobolev space of integer order m on 1) equipped with the
norm I1" I1,,, and by H’(I)) the subspace of Hm(ll) obtained by completing C(12)
with respect to the norm

By a weak solution of problem (P) we mean a function u(x, t), twice continuously
differentiable with respect to t, such that for each fixed in [0, to], u(t) := u(-, t) e H(f)
and satisfies the integral identities

e2( w)+a(u,w) (f,w),gltt W) -;I" lit,
(3.1)

(U(0) U0, W) 0, (CUt(0) --/’/1, W) 0
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for each w H(II). Here (.,.) denotes the L2(I)) inner product and a(.,.) is the
bilinear form

i,j=

associated with the linear operator A defined in (1.5). Under the assumptions on the
coecients a and c given in 1, the bilinear form a(.,.) is continuous as a map
from H()x HI(), i.e., there exists a constant > 0 such that

(3.2) a(u,  llull llwll for all u, w e HI(a),
and strongly coercive, i.e., there exists a constant A > 0 such that

(3.3) a(u, u) Ilull = for all u e H(O).

ese propeies are impoant for the error bounds of our numerical approximation
discussed in 4.

A weak solution of problem (P,), which we shall also denote U(x, t), ON n N,
is a continuously t-differentiable function U,(t):= U,(.,t)eH(O), for each in
[0, to], which satisfies

--,w +a(U.,w)= O,
(-0 U._2/0 , w),

for each w e H(I)).

n --0,

2<=n<-_N,

(U.(O)-u.,w)=O, n=0, 1,

(U.(0) + V._I(0), w)=0, 2-< n <- N,

The existence and uniqueness of the weak solutions for (P) and (P,), 0-< n-< N,
follow from standard results for linear hyperbolic and parabolic equations (see, for
example, [14]). We note that the terms of the expansion are obtained in a recursive
manner so that the problems (P,), 0 -< n =< N, are not solved simultaneously, but
successively, together with the layer problems (P,), 0-<n=<N-1; see the remark
following Lemma 2.1.

To describe the asymptotic Galerkin approximation, let us denote by Sh a one-
parameter family of M(h)-dimensional subspaces of H(I)) possessing a certain
interpolation property to be specified later (see (4.1)). Let {w}=l be a basis for Sh.
The asymptotic Galerkin approximation is defined by

N

(3.4) U.h(X, t)= Uho(X, t)+ E (Uh(x, t)+ Vhn_l(X, t/e2))e ",
rl-=l

in which U.h( t)e Sh is the continuous-in-time Galerkin approximation of the weak
solution U. (x, t), which satisfies

t), wh),

’’- W
h +a(U, w O,

(-o u _ /ot w"),
w")=0,

Uhn( 0) -- Vnh_l( 0), Wh) O,

n--0,

2<_n<-N,

n=0, 1,

2<_n<_N,

for each wh Sho
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The functions vh, 0_--< n--<_ N-1, are the L2-projections of the layer functions
V. (x, ) so that

(v(., -), w) (v( ., -), w)
for all wh Sh.

In terms of the basis {w}=l for Sh, the outer approximations have the explicit
representations

M

u(x, t)= (t)w(x).
k=l

snlMHere the functions t kSk=l, n 0, 1," ", N are determined as solutions of an initial-
value problem for a system of ordinary differential equations

2 (t)(w, w)+ a(t)a(w, w)
k=l

f (f(., t), w), n =o,

(.5 -(

{(., ), =0,,
k=l

for 0N/NM.
The system is uniquely solvable for each n 0, 1,..., N, since the Gram matrix

G= [(, w))] is positive definite. Let S= [a(, w))].
The solution vectors

x" (t)=

ot"(t)=(t, (t), t(t)),
n O, 1, ., N, are given by the explicit representation

exp {-ta-lS}G-luo+ exp {-(t- tl)a-ls}f(tl) dtl,

exp {-tG-IS}G-Ul,

fo d2otn-2( tl)
exp {-tG-1S}G-1V.(O)+ exp {-(t- tl)G-1S}

dt2

with

and

f(t)=((f(’, t), wh), (f(’, t), W)),
U,, ((U.,wlh), ", (U,,, W)), n O, 1

/1=0,

dtl, 2<=n<- N,

V,(O) ((- V,_,( O), wh ), (- V,_,( O), wh)), 2 <= n <-_ N.

The asymptotic Galerkin approximation defined in (3.4) admits the explicit rep-
resentation

N M

(3.6) u,h (X, t) Z [3,( t)w(x)e",
n=O k=l



AN ASYMPTOTIC GALERKIN METHOD 771

where

(3.7) fl(t) o(t). ek

and
fl,(t) {t"(t) V,,_l(z)} ek, 1 --<_ n <-- N,

in which ek is the kth unit vector in R, and

Vn-l(7")"-((Vn-l(’, 7"), whl), (Vn-,(’, 7"), whM)) T

for n=l,- ., N.
We comment that ifwe solve (3.1) directly by the Galerkin method and approximate

the weak solution u by the Galerkin approximation

M

gh(x, t)= 3"k(t)w(x),
k=l

then ,(t) (3’1(t),. , 3"M (t)) 7- satisfies the singularly perturbed second-order
ordinary differential equation with initial data:

e2Gl"(t)+ Gl’(t)+ Sl(t f(t), 0< t_<- to

(0)-- O-I((Uo, wlh), (0, whM))T

E’t’(O) "-G--I((Ul, wlh), (Ul, whM)) T.
The vectors I and I defined in (3.7) are the zeroth order term and the O(e)-term
in the expansion of ,. Hence the asymptotic Galerkin approximation is a combination
of asymptotic and numerical approximations.

The coefficients fl(t), 1 <-k <- M, defined by (3.7) are computable in principle.
The exponential matrix is best handled in practice by difference approximations or
Pad6 approximations. The implementation of the procedure using discrete schemes
follows along well developed lines. Preliminary computations indicate that the pro-
cedure is very promising.

4. Error estimates. In this section we derive error estimates for the asymptotic
h the continuous-time Galerkin procedure developed in 3.Galerkin approximation u.,

Since the accuracy of the procedure depends on the properties of the approximating
subspaces, we follow [3] in assuming that for a fixed integer rn->2, the finite-
dimensional subspaces Sh of H(II) possess the following approximation property:
For any u HS(II)fq H(fl), 1-<s=< m, there is a constant Q, independent of h and u,
such that

(4.1) inf{llu- v ll + hllu- Vhlll: V S) Qh llull .

The space of piecewise linear polynomials is known to satisfy (4.1) for s =.2.
We introduce the elliptic projection of u onto Sh, denoted eh, defined as the

solution of the variational elliptic boundary value problem

(4.2) a(eh(t), wh)= a(u(t), wh)
for all wh Sh and for each fixed in [0, to], treated as a steady-state problem with
parameter t. The existence of eh is guaranteed by the Lax-Milgram theorem. The
elliptic projection is the best approximation to u in Sh with respect to the Hi-norm,
i.e., for some constant ,

Ilu ehll <- vllu for all Wh C:_ Sh.
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Moreover, it is easily shown that if for some constant k => 0, u ck([0, to]; HS(f)fq
H()), then for 1-< s-< m, and for some constant C, independent of h and u,

(4.3) IID,(u eh)ll----< ChllD,ull.
We also introduce the continuous-time Galerkin solution of (3.1), gh C2((0, to];

sh), satisfying

e2(gh,, wh) + (gh, wh) + a(gh, Wh) (f, wh),

(4.4) (gh(’,O)--Uo(’), wh) 0,

(eght(’,O)--Ul(’), Wh) =0

for 0 < =< to and for all wh Sh.
The elliptic projection eh and the Galerkin solution gh are used only to derive

the desired error estimates and do not appear in the numerical procedure (see [3], [8]
and [20]).

If _X is a Hilbert space with norm I1" 8, then

Ilull_:= sup Ilu(’, t)ll_
t[O, to]

and

(Io ) 1/2

Ilull<) :- Ilu(’, t)ll dt

We obtain error estimates with respect to the following norm

Ilull := Ilu I1,, + Ilu, ll=.
THEOREM 4.1. Let {sh}, 0<h =< 1, be a family offinite-dimensional subspaces of

H(f) satisfying the approximation property (4.1). Denote by

u, the weak solution ofproblem P),

gh, the Galerkin approximation of u in Sh,

e h, the elliptic projection of u into Sh, and
h the asymptotic Galerkin approximation.

Assume that Uo D(AN+2) and Ul D(AN+I). If utt L2(O, to; HS(l")), and

Ileh( O)--gh( ", 0)11 -< Ch,
eth( 0)- gth( 0)11--< Ch S,

(4.5)

(4.6)

then the bound

hllE<C{h+l+eN+l},]]U--U.
holds for 0 < <-_ to, where the constant C is independent of e, h and u.

hProof. To measure Ilu-u,ll we introduce the elliptic projection eh and the
Galerkin solution gh,

h h e h gh gh hu-u,=(u-e )+( )+( -u,),
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and proceed by bounding each term on the right-hand side. The appropriate estimates
are

(i) Ilu-ehll <-- ChS-{llull:s /

(iii) IIg < C’’/’

By the best approximation property of eh and the property of convergence of the
family of subspaces Sh, we see that if u HS(fl)f’l H(fl), then

where C Q,. Applying this argument to u, HS(f) f’) H(fl) together with Nitsche’s
trick (see [18]), we get

hu, e, <-- Ch u, ll.
The inequality (i) follows immediately.

For the proof of (ii), let qs h := gh eh and r# := u e h, then we easily find, using
(3.1), (4.2) and (4.4), that for each wh Sh,

E2(i/]h W
h h

W
h 2( wh)_l_(,,lt W

h,, )+(sh, w )+a(h, )= e rh,, ).

We combine the first pair of terms on each side as follows

e2(e-t/:D,(dfhet/:), wh)+ a(r#, wh)= e2(e-t/:Dt(rltet/:), wh).
For each fixed in (0, to] we choose the particular element of Sh given by

wh(t) dth(t)e t/:, so that we obtain

e - +- O,a(if/h, Ih) E D,(rhe 6, e

Integration from 0 to : yields, after integration by pans and use of the
coercivity and continuity of the bilinear form a(... ), specified in (3.2) and (3.3), the
inequality

(4.7)

A 4xh (4:) / -II ,() = - e-e/( 3, 4xh (0) / = q,, (o) =)

+2vie: e-<#-’>/ll,(t)ll, dt

+ 2e e-(e-’/(D,(v, e’/), 4,h,) dr.



774 BENJAMIN F. ESHAM JR.

By Gronwall’s lemma and elementary inequalities, the following is seen to hold:

IIph(t)ll + (t)ll c{ll ,’(o)11 +

From (4.3) and the hypotheses (4.5), (4.6),

e --ghllE <-- ChS{1 + e +

and (ii) is established.
Applying the inequality of Lemma 2.2 to z(t)= gh(t)--u(t), we find

Ilal/2(gh u)ll + ell(g h u),ll-< c"+,

where I1" denotes the L2-norm. From [6] we know that the norm IIA/, is equivalent
to the norm I1" I1 so that

h N+IIlgh(t) U(t)ll+ellgh,(.t)-u,(t)ll<--Ce

and

Thus (iii) is seen to hold.

5. Numerical experiments. Here we present some numerical evidence that the
method provides good numerical approximations to the solution of the singularly
perturbed problem. We consider the following model problem (P):

E21tt -F" II lgxx 0, 0<x<l, t>0,

u(x, o)= Uo(X), eUt(X O)= Ul(X), 0<X < 1,

u(O,t)=u(1, t)=O, t>0,

with Uo(X)= u(x) =sin rx. The exact solution of (P) can be found explicitly: when
0< e <1/2,r, u(x, t; e)={A(e) er,()’+B(e) er2()’} sin rx where

-1 +/1 47r2e2 -1-/1 4"rr2e2
rl(e r2(e)

2e2 2e2

2e + 1 +/1 47r2e2 /1 47r2E2-1 -2e
B(e)a(e)

241 --42e2 2/i 47/’2B 2

and, when e >

u(x, t; e) e-’/22{cos r(e)t + C(e) sin r(e)t} sin

where

/42E2- 1 1 + 2e
r(e)= and C(e)=

2e2 /4,rr2e2_ 1"
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[1])"
Attacking the hyperbolic problem directly we first write it as a system (see Baker

tl 13, F_, 213t --13 dr tlxx.

With U u(’, tn) and Qn v(., tn), we introduce the scheme

(5.1) U

(5.2) (e----+)(O"+’ X)+(-e-)(O",x)+a(U’,X)+’ra(O"+’+O",x)=O
where r is the time step and X S, the finite-dimensional subspace of piecewise linear
polynomials. At each time step the new value of u, is computed by means of (5.2) and
then used to update u using (5.1). To see that this Crank-Nicolson-Galerkin scheme
is well suited to the problem (P) when e is large, we set e 1, Ax= At=.01 and
generated the data in Table 1 at x .5. When e .01, however, the approximate time
derivative oscillates wildly as shown in Table 2. Since these values are used to update
u, we have a very poor approximation. In order to achieve the same accuracy as
indicated in Table it was necessary to reduce the time step to At- .00001.

TABLE
e 1, Ax =At =.01, x=.5

Approx Sol Exact Sol Rel Error

.01 1.009455 1.009455 0.0

.05 1.036466 1.036459 6.46 x 10-6

.1 1.046283 1.046249 3.28 x 10-5

.5 .392190 .392168 5.66 x 10-5

-.594303 -.594301 3.37 10-6

TABLE 2
e =.01, Ax= At =.01, x=.5

Computed ut Exact ut Rel Error

.01 -114.72 -9.04 1.2 x 10

.02 93.32 -8.19 1.2 101

.03 -104.96 -7.42 1.3 x 10

.04 86.97 -6.72 1.4 x 10

.05 -96.11 -6.09 1.5 10

TABLE 3
Ax At .01, x .5, .01

10-2 .95974 1.02616 6.5 10-2

10-3 .93457 .94352 9.4x 10-3

10-4 .91499 .91590 9.9 10-4

10-5 .90879 .90896 1.9 x 10-4

10-6 .90683 .90693 1.1 10-4

10-7 .90621 .90630 9.8 x 10-5

10-8 .90602 .90610 9.7 x 10-5

e Asymp Sol Exact Sol Rel Error
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The asymptotic expansion to two terms is

Ul(X, t)= Uo(x, t)+ e( Ul(X, t)+ Vo(x1, t/e2)),
where Uo and U both satisfy the parabolic IBVP

Ut- U,, O,

U(x, O) sin rx,

U(O,t)=U(1, t)=O
2and Vo(x, t e2) =-e-’/ sin x. We have used a standard Crank-Nicolson-Galerkin

scheme to generate the solution to the parabolic problem. Table 3 shows that the
asymptotic Galerkin approximation is in close agreement with the exact solution well
beyond the point at which the Crank-Nicolson-Galerkin scheme has failed. Note that
this has been accomplished using the same space-time mesh sizes in both cases.
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IDENTIFICATION OF THE CONDUCTIVITY COEFFICIENT
IN AN ELLIPTIC EQUATION*

AVNER FRIEDMAN AND BJRN GUSTAFSSON

Abstract. Consider an elliptic equation in a two-dimensional domain 1 with conductivity coefficient
a + kxo (k O) where D is a subdomain of II. From the measurements of a pair of Dirichlet and
Neumann data one wishes to identify D. It is proved that this problem is stable in some local sense.

Key words, elliptic equations, conductivity coefficient, identification problem, electrical prospecting
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Introduction. Consider an elliptic equation

(0.1) div (aVu) =0

with Dirichlet data

(0.2) u =f on 01, f const,

and with coefficient a 1 + kxo (-1 < k < oo, k # 0), where D is an unknown subdomain
of l. We seek to determine D by measurements of the Neumann data

(0.3) Ou_ g on 0.
Ov

This identification problem arises in electrical prospecting, whereby one wishes to
discover the location of metals or fluid reservoirs inside the earth.

Let D(t) be a 1-parameter monotone family of domains with D(O)- D such that

d
(0.4) -Xo,) t=0

# 0 in 9’,

and denote by u(t) =- u(x, t) the solution of (0.1), (0.2) corresponding to a 1 +
Our main result asserts that, in case the D(t) are affine transformations of D, C in
t, for all with tl small enough, there holds

(0.5) vv[u(t) u(0)] >- cltl

where c is a positive constant.
If we denote by I, the mapping from a to g (when f is fixed) then (0.5) means

formally that d/da 0; thus, if (al)= gl, (a2)= g2 and Ila=-all is small, then

1
-< C<oo.(0.6) Ila=-a, ll<-cllg=-g, where

IId/dall-
This means that the computation of D among a monotone family of domains is stable
with respect to small errors in the measurement of the Neumann data; for more details
on the significance of a result of this type see [12] and 1 below.

* Received by the editors July 24, 1985; accepted for publication April 8, 1986. This work was partially
supported by National Science Foundation grant MCS-8300293.

Department of Mathematics, Northwestern University, Evanston, Illinois 60201., Royal Institute of Technology, Stockholm, Sweden.
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There are other versions of identification problems. In [2], [4]-[6], [11] one
measures the quadratic form

for all f and shows that this determines a a(x) in O, provided that either a(x) is
piecewise analytic [4], [6] or Ila-111 is small enough [11]. For some special domains
the identification problem can be resolved by separation of variables [3], [8] or by
explicit representation of u by means of Green’s function [9].

In another version (0.1) is replaced by

div (aV u) in f (1 is given)

and one wishes to find a, given the knowledge of u throughout all of f; see [1], [10]
and the references given there. This problem is unstable.

References to physical models and numerical computations of identification prob-
lems are given in [1], [5].

1. The main result. Let f be a bounded simply connected domain in RE with C
boundary 0f (0 < a < 1) and let D be a bounded subdomain of f with C2’ boundary
OD, 1 c . We shall designate points in RE by x- (xl, x2).

Denote by XA the characteristic function of a set A.
We assume that D is star-shaped with respect to any point x* of some nonempty

subset D* of D.
For any x* D* introduce the 1-parameter family of domains

(1.1) D(t) {x* + (1 t)(x x*), x D} (- 1 < < 1).

Then D(t) c D(t’) if > t’. Also

0
(1.2) -Xo t=0

=[3(R)oo in ’,

that is

t=O D

for any b Co(O), and/3 is a continuous and strictly negative function on aD;/3 C ’.
Set De(t)= l\D(t). We shall use the notation w (or wi) to denote the value of

a function w on D(t) taken as a limit from De(t) (or D(t)).
Let k be a fixed number, -1 < k < 0 or k > 0, and set

(1.3) a(x, t)= 1 + kxoo(x),

Consider the elliptic equation

(1.4) div (a(x, t)Vu)=0

with the Dirichlet condition

a(x)=a(x,O).

in f

(1.5) u=f on 0I

where f f(x) is in C’(Of).
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It is well known [7] that the solution u of this diffraction problem is in C’(I))
HI(I)) for some 0</3 < 1, as well as in C2"(D(t)) and in C2"(De(t)\Of), and that

onOD(t)(1.6)

where u is the outward normal to 0D(t).
Set

Ou(x,t)
(1.7) g(x, t) x 01)

where u is the outward normal to 0f. Then g C.
We would like to determine the conductivity coefficient a(x) from measurements

of g(x)= g(x, 0). Since in real terms we can only measure g(x) with some error, we
would like to ensure that if the measurements give us a function g(x, t) "close" to
g(x) then the corresponding a(x, t) is also "close" to the true coefficient a(x). If that
is the case, then by compiling a catalog of various g’s corresponding to various a’s
we can have an effective way of determining the true conductivity: We simply corre-
spond to a function that we obtained by actual measurements the coefficient a which
fits to that g in our catalog that is "nearest" to . This point of view is quite common
in inverse problems 12].

If f--const, then u--const, for any choice of a(x, t) and thus g(x, t)-=0. This
means that we cannot gain any information on the coefficient a. Thus we must henceforth
assume that

1.8) f const.

THEOREM 1.1. If (1.8) holds then there exists a positive constant c such that

(1.9) IIg( ", h)-g(. )ll0o >= clhl
/f hl is small enough.

Theorem 1.1 extends to more general monotone families of domains D(t); see 3.
Theorem 1.1 means that we can effectively determine D by the procedure outlined

in the paragraph following (1.7), provided D is known to be imbedded in a monotone
family of domains.

As we shall see in 3 (Remark 3.2), Theorem 1.1 is generally false if D(t) is not
a monotone family (at least in one space dimension, or for an annulus).

The remainder of this paper is devoted to the proof of Theorem 1.1; some
generalizations are mentioned at the end of 3.

2. Proof of Theorem 1.1. Set g(t) =- g(x, t). To prove the theorem it suffices to
assume that

--)0
h L2(OI’)

for some sequence h - 0

and derive a contradiction. From now on h will be restricted to this sequence.
Consider first the case where 0 < h < 1, so that

(2.2) D(h)c D,
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and set

a(t)=-a(x,t), u(t)----u(x,t),

a(h)-a(O) u(h)-u(O)
ah l)h

h h

From (1.4) we get

(2.3) div (a(h)Vu(h) a(0)V u(0)) 0,

which implies that there exists a function wh in Hl(fl) such that

1
(2.4) -[a(h)Vu(h)-a(O)Vu(O)]=curl wh’

here curl w (wx2,-wx,). We normalize wh so that

(2.5) wh(xO)--O at some point x

Since

(2.6)
1
-;-[a(h )V u(h a(0)Vu(0)] a(O)VUh + ahVu(h

we can rewrite (2.4) in the form

(2.7) a(0)
0 0 h

oVh + itg W --ah
Ou(h)

Introduce the function

(2.8) fh a(O)l)h ff- iwh.

Then

(2.9) Ofh Oa(O)
Vh + a(O) OV___h+i

0

and, using (2.7),

(2.10) ofh Oa(O)
l)h ah

O 0

the right-hand side is a measure
It follows by Cauchy’s formula that

Io+ dz,
2ri a z-

LENMA 2.1. As h O,

(2.12) vDxh0

and

uniformly in compact subsets ofDe,

(2.13) foo IVh[ ds ->0.

1
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Proof. Take for simplicity x*= 0. Define

’h xlandl_hf =I(1-h)f,

u(x)=u(x,O),

u(x=- u i- -u(x

Vh(x) =- u(x, h)- u
1- h

Then

Vh(X)= Uh(x)+ Vh(x) inOh.

By the C2’ regularity of u in De (.J OD,

(2.14) Uhl + IV uhl <= C in De f’) fh.

Next,

div(a(h)VVh)=- O-divx a(h)Vxu
1-h

Since

a(h) 1 + kXo(h)(X) 1 + kX(l_h)D(X 1 + kxo 1 h

setting y--x/(1-h), V,= Vy/(1-h), the expression in braces becomes

1
,_2 divy [1 + kxo(y)Vyu(y)] =0 in fh,

(1 n)

(2.15) div(a(h)VVh)=o in fh.

Further,

V(x) u(x,h)-f(x/(1-h))
if x 012h VI 0( 1 h)),

Vh(x) =f(x)-u(x/(1-h)) ifxOh01";
h

since u(x) and u(x, h) are in C 1, in some neighborhood of 0, it follows that in both
cases

vhl <-_ C,

i.e., [vh[ <-- C on Ofh. Hence, by the maximum principle,

(2.16) lEVI-< C in -h"
Recalling (2.14) we conclude that

[Vh[ <= C in D\B(O)
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for any > 0 and h small enough, where B,(A) denotes a 8-neighborhood of a set A.
Since Vh is harmonic in De and vh 0 on Off, we then also have that

(2.17) [vh[--< C in De.
Hence, for a subsequence,

(2.18) vh --> v uniformly on compact subsets of

where v is harmonic in De and

(2.19) v 0 on 0fl;
Ov

here (2.1) was used. It follows that the zero function is a harmonic extension of v into
R2\f and therefore v-=0 in De. Clearly (2.12) now follows from (2.18) and Harnack’s
theorem.

To prove (2.13) we multiply (2.15) by Vh and integrate over ff’= f\B,(af), where
0 < r/< dist (D, 0ff). We obtain, for small h,

f ft’ (h)]Vvh]2<= fol’ a(h)[vvh] ]vh]"

Since Vh is harmonic and bounded in Bo(Of’) (8o is independent of h) the right-hand
side is uniformly bounded; hence

 lv

c.

Recalling (2.14) we deduce that

l’(2.20) IV v.I C.
ft’n De

Now, for any small > 0,

fo ’Vh[<=C fo ,VVh,+C j ,Vvh,+C Io ’Vh’.
D nBa(8D) m’nDe)\Ba(OD)

The last two integrals on the fight-hand side converge to zero as h- 0, whereas the
first integral is bounded by C$1/2 (by (2.20)). It follows that

supf Ivhl <=lim C81/2,
hO ]OD

and, since is arbitrary, (2.13) follows.
From (2.12), (2.5), (2.7) we conclude that

(2.21) fh
_

O, Vfh 0 uniformly in closed subsets of

Taking h 0 in (2.11) we see that if

(2.22) / lim (-) Ina(0)h-,0O z--Vh, dxdy,
(2.23) J lim ah dx dy

h-.O O z-

exist for any " DU De, then fh()fO(), where

(2.24) fo(,) I-J if " D U
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from (2.21) we also have

(.5)

Now clearly

f(sr) 0 ifDe.

0a(0)
-y(R)3oo in@’

where y is a C1’ function on OD. Therefore

lim__,o Oa(O)oe z-Vh dxdy=imo
o z_V(Z) ds=O

by (2.13), i.e.,

(2.26) I=0.

Next, by (1.6) and the fact that u(t) is in CI(D(t)) and in C(De(t)) with moduli
of continuity independent of t, it follows that

Ifo Ott(h) l fo( elim ah-- dx dy kfl
Ou(O) 1

ds"
h-O O Z-- o O / Z--

here we used (1.2) and (2.2). We conclude that J exists and, by (2.24), (2.26),

(2.27, f(,,=ko () 1
ds if,eDUD.

here u u(x, 0).
Let T(z) be the positively oriented tangent vector to OD at z. Then

& T(z) ds along OD.

Using this in (2.27) we get

r( - ( e D .
In view of (2.25) and the standard jump relation of the integral in (2.28) across

OD, we then have

(.9 fo() i
r(z) o]

on0

where fo(z)= (f(z)) is the limit off from D. Obsee also from (2.28) that

(2.30) fo(z) is holomorphicin D.

LMMA 2.2. ere holds

(2.31) 0_) =0 on OD.

The proof is given in 3. Assuming its validity, we shall now proceed to complete
the proof of Theorem 1.1. Since/3 0 along OD,

on OD.
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Recalling the jump relation (1.6) we deduce that for some constant c, the function
U u-c vanishes on 0D together with its first derivatives. By the argument following
(2.19) it then follows that U-= 0 in B(OD) and, by analytic continuation, u c in De
which contradicts (1.8).

So far we have assumed that (2.2) holds. If-1 < h < 0, so that

(2.32) D(h) = D,

then we replace (2.6) by

1
7[a(h)Vu(h)- a(0)Vu(0)] a(h)Vvh + ahVu(O)

and proceed as above (with minor changes) to establish (2.24) with the corresponding
I vanishing and with J being the same as before.

3. Proof of Lemma 2.2. Set

Then

(3.1) on c3D,Ul /’/2

(3.2)
(gUl

(k + 1) c9u2
on OD.

Notice that the function OUE/OZ is homomorphic in D. Multiplication of both sides of
(2.29) by Ou2/Oz gives

(3.3) F’(z) T(z) 2ikfl(z) (z OD)
O Oz

where F is a holomorphic function in D, namely, the primitive off(z)OuE/OZ.
Along OD we have

2 i -i
Oz Ox Oy

=+i=e- +i

where is the outward normal, O/Os is in the tangential direction obtained from
by rotation counterclockwise by /2 and is a real valued function. Therefore by
(3.1), (3.2) we easily obtain

(3.4) 40UlOU2 (Ou2) 2 (Ou2) Ou2Ou2
Oz

Hence, if k > 0,

4 Im c9ul gu:z
k cu2 9u___22 < c3u2 gu. OUl.OU2

Similarly, if -1 < k < 0,

4 In----0ul 0u2 Ik] [(k+l) (0U22

+ (Ou2] 21kl[Re 0ul On2].
O Oz -2(k+l) / / 3 k+l 0 J

Since fl is real valued it follows that in both cases, for any z OD,

r z) (z + ix ; lx l
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where

min {1, k + 1}"

Writing the holomorphic function F in the form F V+ W we have

dF
V+iWs Vs+iV alongOD.

ds

Since also

dF dF dz
ds dz ds

-F’(z)T(z),

we conclude from (3.4) that

(3.6) vl =< CI Vsl along 0D.

Suppose V const, in D. Then V must attain its maximum in/5 at a point x 0D
and V(x) >0. Since also V(x) =0, we get a contradiction to (3.6). We have thus
proved that V= const, and therefore also F= const. From (3.3) it then follows that

OU 0U2
fl -0 onOD

05 Oz

which, in view of (3.4) and (3.2), implies (2.31).
Remark 3.1. Theorem 1.1 extends (with minor changes in the proof) to the case

where the domains D(t) are conformal affine transformations of D varying in C 2

manner and monotonically in t, provided/3 0 on 0D. The theorem also extends to
the case where f depends on t, say f=f(x, t), provided

1

h
If(" h) -f(., 0)] --> 0 in cl"’(OD)-norm

as h --> 0. If the D(t) do not vary monotonically in t, then Lemma 2.1 is still valid with
(2.13) replaced by

]Vh[ ds - O.
O( Dt.J D( h

But this is not sufficient for proving (2.26); see also next remark.
Remark 3.2. Consider the case where l-I is one-dimensional, say II {0 < x < 1}.

The solution of (1.1) with u(0) a, u(1) =/3, u’(0) a’, u’(1) ---/3’ is given by

(3.7)
dy

u(x) + I
.to a(y)

where

(3.8) u(O)a’=(-a) fl’-a(y)’ a(1)

For any other conductivity ti(x) with

(3.9) ti(0) a(0), ti(1) a(1),
a(y) t(y)’
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the Neumann data g corresponding to the Dirchlet dataf are the same as for a. Clearly
(3.9) is satisfied if ti(t)= 1 + kxo,, a ti(0) whenever D(t) is a translation of D. In
this example the mapping a g is thus nonunique; furthermore, the assertion of
Theorem 1.1 is not valid if D(t) is a translation of D. If however D(t) is monotone
in then the assertion of Theorem 1.1 is valid, as can be verified directly by means of
(3.9). Similarly, if is an annulus l {rl <lxl < r2} andf= ci on {Ixl-- r,}, c, constants,
then the assertion of Theorem 1.1 is valid for a family of annuli D(t)=
{d(t) < Ixl < d=(t)} provided the family is monotone in t, but it is generally false if the
D(t) do not vary monotonically in (note however that 1 is not simply connected,
as required in Theorem 1.1).

Remark 3.3. Let b(z) be a conformal mapping of f onto the closure of a
domain fi and set /(t)= (D(t)), a= qb, f=fo , u a o, -I’1 . Then
(1.4), (1.5) and (1.7) are equivalent to

Since

div (SV5) 0 in f, a=f

0<c_-< -_<C<,
Ig(t)-g(O)[l

Theorem 1.1 extends to the family D(t) of subdomains of .
Remark 3.4. Theorem 1.1 extends to inhomogeneous equations

div (aVu) l(x) in l

provided s C 1, and S-= supp satisfies: S c De and De\S is connected; if 0 and
l> 0, then the condition (1.8) is not needed. The function may also be taken to
depend on t.

Remark 3.5. The results of this paper extend with minor changes to the case where
the Neumann data (1.7) are prescribed, whereas the Dirichlet data f=f(t, x) are
measured; here it is assumed that 0n g 0 and u is normalized, say, by on u 0. The
assertion (1.9) is replaced by

IIf(’, h)-f(. )llc<o.) clhl
where c is a positive constant.
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THE ELECTROPAINTING PROBLEM WITH OVERPOTENTIALS*

VIVIANA MARQUEZf AND MEIR SHILLOR$

Abstract. Existence, uniqueness and regularity are proved for the electropainting problem with over-
potentials. The problem consists of finding a pair {p(x, t), h(x, t)) such that o(x, t) is a time dependent
family of harmonic functions, representing the electric potential in a domain, and h(x, t) is related to the
paint thickness on the part ofthe boundary being painted. The boundary condition on this part is o, G(0, h)
where 0n is the inward normal derivative, h is determined from the history of the process. The assumption
on the overpotential r(x) implies h >= r(x) > 0 and thus the boundary condition is nondegenerate. We show
that the process is monotone; there is no paint dissolution. Then we consider the explicit time discretization
of the problem. Letting the time step shrink to zero leads to the above mentioned results. Then the t--> oo
limit is considered, existence, uniqueness and regularity are proved. Moreover it is shown that this asymptotic
limit can be recast as a Signorini variational inequality with an obstacle constructed from p(x, t), < o.
Finally the degenerate case r(x)=0 is considered and the existence of a weak solution is proved, in a
convex geometry, using monotonicity arguments.

Key words, electropainting model, overpotentials, evolution problem for the Laplacian, Signorini
problem

AMS(MOS) subject classifications. 35J65, 35R35

1. Introduction. We consider an evolution problem associated with an electro-
painting process with overpotentials. The problem is to find a pair {o(x, t), h(x, t)}
such that in an annular region fl c R (n -> 2) with outer boundary S and inner boundary

Aq=0 in ll, O<-_t<-_T,

p=l onS, O<=t<=T,

F there holds

(1.1)

(1.2)

(1.3) ,=G(,h) onF, 0=<t=<T,

(1.4) h(x, t)=cr(x)+ g((p,(x, ’)-e)+) dr, xeF, O<=t<- T

where , is the inward normal derivative on F, (z)+= max {0, z), G, g and r are given
functions, e > 0 and T> 0 are given constants.

Such problems were considered by Hansen and McGeough [6], Aitchison, Lacey
and Shillor 1] and Cattarelli and Friedman [2]. The first two deal with the modeling
aspects of the electropainting process and numerical experiments. The third deals with
mathematical analysis of the model. In all these papers it was assumed that g(s)= s,
G(, h) /h and cr 0, thus the problem considered here is more general mathemati-
cally as well as from the practical point of view.

A problem of the type (1.1)-(1.4) can be considered (see [1] or [6]) as a model
for the following process. A metal body with an outer surface F, to be painted, is
immersed in a bath with an electrolytic solution. The solution occupies the region f
such that Of/= FU S, where S is the inner surface of the bath. The metal part is

* Received by the editors September 30, 1985; accepted for publication (in revised form) May 8, 1986.

" Departamento de Matemfitica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, 1428 Buenos Aires, Argentina.
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de Matemfitica, Facultad de Ingenieria, Universidad de Buenos Aires, 1000 Buenos Aires, Argentina. Present
address, Department of Mathematics, Imperial College of Science and Technology, London, England
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connected to an electric potential source, the bath itself (S) serves as the other electrode
and as a result of the flow of the electric current in the solution and into F the process
of paint deposition takes place on F. The existence of a cutoff current e > 0, that was
postulated in 1 ], assures that there is paint deposition only at those points of F where
the current qn satisfies qn > e. Indeed one of the main purposes of the construction
of the model in [1] was to be able to predict which parts of F become painted and
which remain bare. The model that was proposed in [6] is the same as in 1] but with
e 0 and therefore in this case F becomes completely covered by paint for. any > 0.
Thus the numerical experiments in 1 were done with the purpose of showing painted
and unpainted regions in the Signorini problem that corresponds to the steady state
and the evolution of the paint layer in the time dependent problem. The numerical
experiments in [6] were to study the saturation and leveling effects.

Some mathematical analysis of the model in [1] was performed in [2]. First they
showed that under the conditions of [1] there is no paint dissolution, i.e. the process
is monotone, and therefore the boundary condition that was given in [1] for that
possibility is redundant. Then they considered a time discretized version of the model
and proved the existence and uniqueness of the discretized solution and its convergence
to the steady state Signorini problem that was conjectured in [1].

We consider a more general problem. It is well known (see e.g. Levich [9] or
McGeough [10]) that when electric current is passing in a solution some chemical
reactions take place near the electrodes that lead to a nonlinear relationship between
the potential and the current. This is represented above in (1.3). Moreover by taking
tr(x) > 0 we allow for the existence of a resistance to current besides the paint layer.
More specifically, there may exist initially on F a thin coating of a different material,
which is a common occurrence in the industrial process; also the production of gas
bubbles and a buildup of different reaction products may block the way of the paint
molecules and thus form a resistance on F. As far as we know there exists no description
of what takes place near F, and tr(x) should be found experimentally. Since in cases
of practical interest some or all of these phenomena are likely to be present the fact
that most of our results are obtained for or(x) >= tr. > 0 does not restrict the applicability
of these results. In the numerical experiments in ] it was tr 0 and this did not cause
any trouble, but the method of computation was not particularly sensitive to weak
divergence of the normal derivative. In our case the (nondimensional) paint thickness
is h.(x, t) h (x, t) tr(x) at x F, 0 <- t. These two phenomena are referred to as
"overpotentials" (see [9], [10] and Lacey [7]). In addition we consider a more general
process of paint deposition, represented by g. Although the main practical interest is
the paint thickness h. as a function of space and time it turns out that the total
resistance h is the dominant factor in the model.

We prove existence, uniqueness and asymptotic behaviour of the solution to
(1.1)-(1.4) and obtain some regularity.

But first, following the ideas of [2], we too prove, in 2, that the smooth solution
to (1.1)-(1.4) with an appropriate condition for paint dissolution (ht <0) is monotone
(i.e. h, => 0) and therefore such a condition is not needed. We stress that this is so under
the given condition (1.2) on S. It is clear mathematically and from the practical point
of view that under different conditions dissolution can take place. Indeed if the voltage
is switched off, i.e. 0 on S after some time t_>-to> 0, or the voltage on S is an
oscillating function with both positive and negative values that are sufficiently large,
then one should find that ht < 0 on a portion of F. It is also shown that the process
tends to an asymptotic limit, that is considered in 5, but cannot attain it in finite
time. This is in contrast to the result in [2], where such a possibility was not ruled out.
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The existence and uniqueness of the weak solution are proved in 4 where under
additional assumptions on G it is shown that the weak solution is a smooth solution.
The proofs are based on an explicit time discretization of the problem that is considered
in 3. Existence, uniqueness and regularity are proved for the discretized problem
and then some necessary bounds, independent of the time step 3, are derived. The
results of 4 follow from the - 0 limit and these bounds.

In 5 we prove that the process tends asymptotically to a unique steady state.
Moreover using the fact that this steady problem is the limit of an evolution problem
we are able to give a variational inequality formulation, a Signorini-like problem,
where the obstacle is constructed from o(x, t), <

It may be of interest to investigate what types of elliptic boundary value problems,
like the problem of the steady state, can be given variational inequality formulations
by their imbedding as asymptotic limits of evolution problems. In their analysis in [2]
they used implicit time discretization and introduced tr, > 0 as a regularizing parameter,
we use an explicit one in 3. Since they considered the limit tr, 0 they were unable
to consider the limit 0 and hence proved the existence and uniqueness of a time
discretized solution. We took the limit 0 for or,>0 and obtained the above
mentioned results. Also the steady state in [2] is the Signorini problem but ours is
more complicated.

Finally the nondegeneracy condition or(x)=> or,> 0 is essential for all the proofs
mentioned above. Nevertheless we are able to prove, in 6, the existence of a weak
solution to the degenerate problem with tr(x)= 0 in a convex geometry as a monotone
limit of solutions with tr(x)= tr > 0, as tr 0. Thus in this geometry, where $ is taken
as the inner electrode while F, assumed to be convex, is the outer boundary, there
exists a solution to the problem that was considered in [1] and [2].

The regularity of the free boundary, the boundary of the set in F where h > o- and
the regularity of the solution with tr 0 remain open questions.

2. No paint dissolution. The model for the electropaint process that was proposed
in [1] included a condition for the case of the dissolution of the paint layer. But it
was proved in [2] that any smooth solution can be modified smoothly so that the
solution and the paint layer are nondecreasing in time. We give the generalization of
the model in 1 to include overpotentials and nonlinear growth condition for the paint
thickness and then prove that any smooth solution is monotone increasing with time.
So under such conditions, 0 1 on $, the paint dissolution does not occur and therefore
the appropriate condition can be omitted from the model.

The fact that there is no paint dissolution has some importance from the mathemati-
cal point of view as well as from the practical one. Indeed it seems that if dissolution
can take place then the free boundary (i.e. the boundary on F of the region where
there is no paint deposition) is likely to be linearly unstable and so it is likely that the
model will break down leading to an ill posed problem (see e.g. [3] and [4]).

We consider the process in I c R n, n-> 2, a doubly connected region with outer
boundary S and inner boundary F. Everywhere below it is assumed that S and F are
in C+’ for any a (0, 1).

The modified model is to find a pair {p(x, t), h(x, t)} such that

(2.1) At#=0 in f/, 0 -<t,

(2.2) =1 on $, 0=<t,

(2.3) q, G(o, h) on F, 0=< t,

(2.4)’ h, g((o,, s)+) on F, 0=< if h r(x),
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(2.4)" h, g((o, e)) on F, 0<_- if h > tr(x),

(2.4)"’ h(x, 0) tr(x) on F

where o, is the inward normal derivative on F and e is a positive constant. G is
prescribed and g is an odd function with g(s) > 0 for s > 0. tr(x) is a given overpotential
and the paint thickness at a point x F at time is given by h(x, t)- tr(x). Condition
(2.4)’ means that at x F if there is no paint, i.e., h tr, then paint deposition will start
only if o, > e. On the other hand at a point x F where there is paint, i.e., h > r, then
by (2.4)", if o,> e then there is paint deposition and when o, < e there is paint
dissolution. It follows from (2.4)’, (2.4)" and (2.4)" that

(2.5) h(x, t) >= tr(x), x F, 0 <- t.

We shall need the following assumptions:

(2.6)

(2.7)

(2.8)

r(x) c,’(r), 0 < r, _-< r(x) _-< r* < K/e,

g(s)Cl(), 0<k,_-<g’_-<k, g(0)=0,

G(s,p)Cl([O, 1]x+), G(0, p)=0, G(s,p)>O if s>0,

G(1, p) < K2/p, p +
OG/Os > O, OG/Op <-_0 and both bounded on compact subsets of [0, 1] x+, OG/Op < 0
if s > 0. They are used everywhere below (except in 6).

Denote by to, the solution of

Ato,=O inf,, to,=l onS,
(2.9)

to,. G(to,, tr) on F.

So to,(x)= o(x, 0), where o is a solution to (2.1)-(2.4)’". If

(2.10) to,. =< e on F

then q(x, t)-= to,(x) together with h(x, t)=-tr(x) form a solution of (2.1)-(2.4)".
In order to exclude this trivial case we shall assume that the geometry and the

data are such that

(2.11) to,, > e for some points x e F.

DEFINITION 2.1. By a smooth solution of (2.1)-(2.4)’" we mean a solution (q, h)
such that o, ot, Vo are continuous in 1"1 x [0, c) and h, ht are continuous on F x [0, ).

DEFINITION 2.2. Denote by to the supremum of all s such that h(x, t) is nonde-
creasing for all x F, 0 _-< < s.

THEOREM 2.3. Let (tp, h) be a smooth solution of (2.1)-(2.4)" and let (2.11) hold.
Then to c.

This result is stronger than the one in [2], where the authors were able to assert
only that if to < 3 then one can join a solution continuously to the steady solution at

to in order to obtain a nondecreasing solution for 0_-< <. This is so, as well as
the uniqueness of the smooth solution, due to the fact that 0 < tr, -< tr(x).

Proof. We follow [2] in part. By (2.3)

o.=G(o,h) on F.

Since h _>-tr > 0 we can use the strong maximum principle and (2.8) to deduce that
cannot take a positive maximum or a nonpositive minimum on F and therefore

(2.12) c, _-< o(x, t) =< 1, x 1), 0 =<
for some c, > 0.
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Since this holds for any function G(s, p) on R x R+ such that G(s, p) > 0, s # 0,
s , the restriction of s [0, 1] in (2.8) leads to no loss of generality.

Thus by (2.3) and (2.8)

(2.13) n(x, t)> 0 on F.

LEMMA 2.4. If h(x, tl) >= h(x, t2) and h(x, tl) h(x, t2) on F then

(x, tl)> (x, t2) in f.

Proof. The function O(x) (x, t) (x, t) is harmonic in f, vanishes on S and
satisfies , a(q(x, tl), h(x, t))-G(q(x, t2), h(x, t2))

G(.)(q(x, t)-p(x, t))+ Gh(*)(h(x, tl)-h(x, t))

where here and below, G(.) and Gh(*) stand for the partial derivatives evaluated at
some value by the mean value theorem, and since > 0 then Gh(*)< 0 by (2.8). But
h(x, tl)--> h(x, t2) so

_-< G(,), G>0
by (2.8). Applying the strong maximum principle we show that p > 0 in f.

Assume that to < c. Then there exists a sequence (xi, ti) with x e F, ti > to such that

ti - to Xi - Xo as c

and h,(x, t)<0; consequently also h(x, t)> o’(xi). Clearly h,(xo, to)=0.
LEIMA 2.5. There holds" ,t(Xo, to)<= O.
Proof. If q,(xi, to) -> e then, since qn(xi, t) < e,

(2.14) ,(x, ) < 0 for some to < < t.

If, on the other hand, ,(x, to) < e then h(x, to) tr(xi) (since h(x, to) > tr(x) implies
h,(x, to)=g(,(x, to)-e)<0, a contradiction to the definition of to). Since further
h(x,, t,) > o-(x,) we conclude that h,(x,, ’) > 0 for some to < t’ < t and thus ,(x,, ) > e,
which yields (since ,(x, ti)< e)

(2.15) ,(x, ) < 0 for some t < ? < ti.

The lemma now follows from (2.14), (2.15) upon taking i--)o.

From Lemma 2.4 we have

(2.16) p,_->0 if 0< t_-< to

LEMMA 2.6. There holds hi(x, to) O.
Proof Suppose that h,(x, to) O. For to

(2.17)

hence

We can use the strong maximum principle to deduce that , cannot take the minimum
on F and so

(2.18) , > 0 on F.
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At (Xo, to), h,=O and q,>0 by (2.18). Then (2.17) implies that q,,(Xo, to)>O, a
contradiction to Lemma 2.5.

Set Fo Ffq {o,(x, 0)> e} and for any 0<tl < t2< to let

oi(x)=o(x, 6) and hi(x)=h(x, 6), i= 1,2.

Then

(2.19)

rearranging

-Gh(,)(h2-hl)+(qz,-ql,)= Go(,)(tp2- q 1) on F.

By Lemma 2.4, q2__> 81; hence

-Gh(*) htdt>--(2,,-o).

On Fo, h, g( q, e) <= k( q, e) if < to; hence

(2.20) c (p. e) dt _-> -((o2. e)- ((0 In E)), C > 0
tl

Integrating (2.20) over Fo we find

c (o. e) dt > (q2=_ o-)- (.-)
tl

on Fo.

and setting

(t)= fI" (qn(X, t)-e),

we arrive at the inequality

c _>- -(,() ())

or +c_->0. So ec’ is monotone nondecreasing for 0<t<to. Since 4,(0)>0 it
follows that 0(to)> 0, which is a contradiction to Lemma 2.6, i.e., h,(x, to)= 0. Hence
to < oo is impossible and so the theorem is proved.

COROLLARY 2.7. Ifh(, s) > ()for some e F, s > O, then h(, t) > Ofor all > s.
Thus, once h(, t) becomes greater than o-()), i.e. once paint deposition starts at

:, it does not stop and h continues to grow at a strictly positive rate.
To prove the corollary we proceed by contradiction and consider the number tl

such that ht(, t) > 0 if g-< < and h,(ff, tl) 0 where g-<_ s is such that o,(ff, g) > e.

Applying the argument of Lemma 2.6, we deduce that h,(x, tl) 0, which is impossible
from the proof of Theorem 2.3.

Theorem 2.3 shows that, under the condition o 1 on S, there is no paint
dissolution and therefore (2.4)’-(2.4)’" in the model can be replaced by

(2.4) h(x, t) tr(x)+ g((q,, e)+) dz, x e F, 0<= t.

Finally we prove the following.
THEOREM 2.8. The smooth solution is unique.
Proof Let (c 1, h 1) and (0 2, h 2) be two smooth solutions.
Subtracting condition (2.3) for i= 1 from the one for i-2 we find (2.19), only

for the same time. From (2.8) G > 0 and Gh <--0. Now a point of positive maximum
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of 2_1 can be only on F and then 2,_<0 by the strong maximum principle.
Hence it follows from (2.19) that

(2.21) G(,)(2- 01) _-< -Gh(,)(h2- h 1)

and since a similar argument applies to a negative minimum it follows that

(2.22) I2-’1 rlh:- h11.
On the other hand

IhZ-hl Ig((-e )-g((,-e)+)l dt

(2.23)
2

Combining (2.19), (2.22) and (2.23) we get

I-1 glh-hlgl-1,
which implies that 2, , if we take 6 < K-. But this implies that 2, both
being harmonic functions, and also that hl h2 by (2.4).

3. The time diseretized problem. We consider the time discretized version of the
evolutionary process (2.1)-(2.4). We retain all the assumptions on the data and on
from 2. We use explicit time discretization in order to obtain approximate solutions
and then we obtain the necessary uniform bounds.

For any T> 0 and a large integer M > 0 let

T
(3.1) M’

and set t= m, m=0, 1,... ,M. If we replace (x, tin) by m(x) in (2.1)-(2.4) we
obtain the following explicit finite differences system

(3.2) A=0 inO,

(3.3) =1 onS,

m=G hm) onF,(3.4) ,
m--1

(a.5) h + 2 g((’.- )+) on r,
i=0

where m 0, 1, 2,. ., M.
X

MLEPTA 3.1. ere exists a unique solution { (x), h )} =o of (3.2)-(3.5) with
C+(), h C(F) any a (0, 1), 0 m M.
oof Proceeding by induction it is enough to prove that the elliptic problem

(3.6) Au=0 in,

(3.7) u=l onS,

(3.8) u, G(u, ) on r
has a unique solution in C1+() any a (0, 1) provided 0< y and y C(F). By the
maximum principle and by (2.8) it is seen that a priori 0<u 1 in ft. Let fl(0, 1)
and let

(3.9) v={vco(fi),iivll,}, >0.
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For any v VM we solve (3.6) and (3.7) together with

u,=G(v,y) onF.

But by (2.8) and the assumptions on v and y, G(v, y) is in C (F); hence u, C (F)
and therefore ue Cl+(fi) (see e.g. [5, p. 117]) and Ilull,(_-< Mo for any/3 =</3’< 1,
where Mo depends only on the data and/3’ but independent of y. If we choose M Mo
in (3.9) and define a mapping u Tv on VM then T: V V is continuous. Moreover
u C1/(); hence T has a compact range in V and so by Schauder’s fixed point
theorem T has a fixed point u such that u Tu which is the solution to (3.6)-(3.8);
moreover u c cl+/3(fi). This argument applies to any /3 (0, 1), hence u C1+(),
any a (0, 1). Now returning to the discretized system (3.2)-(3.5) we see that if
m C1+() then ,m C(F) and so (,m_ e)+ C(F) and therefore so is g((C-
e)+) and hence, by (3.5), h m+l C(F). Clearly this holds for any a (0, 1). To prove
uniqueness we take the difference of any two solutions and apply to it the maximum
principle.

We note that since h => h -1 the proof of Lemma 2.4 gives

(3.10) qi_> (i--1 in , i_>- 1.

Recall also that by the maximum principle

(3.11)

For any xoF denote by jo=j(xo) the first integer jo->-0, if existing, such that

(3.12) o,. =< e if =<jo- 1,

Cg> e.

Notice that h’(xo)=r(xo) if i<=jo and hJo+l(xo)> hJo(xo).
Remark 3.2. We choose to work with the explicit scheme, i.e. the summation in

(3.5) is 0 =< =< rn 1. The proof of Lemma 3.1 is thus more direct and simple than in
an implicit scheme where questions of the invertibility of the equation

,, G(v, y+ g((,, e)+))
would arise. Moreover from the numerical point of view the explicit scheme is simpler
to consider and to program since no iterations are needed. On the other hand the
explicit scheme has an unattractive featuremwe cannot assure, as was done in Corollary
2.7, that once hi(xo)>r(xo) then h+l(xo)> h(xo) holds for every j>=i; i.e., the
computed h may not be strictly monotone increasing. But nevertheless the explicit
scheme does introduce a correction in the cases of overshooting. Indeed let rn =>jo be
an integer such that

(3.13) o(Xo) > e, (0nm+l(x0) < 8.

Then we find from (3.5) that

(3.14) h"+l(xo) > hm(xo), hm+2(Xo)-- hm+l(xo).
Since

-Gh(,)(hm+2- hm+l) + (tp’+2- on+l) Go(,)((o m+2- o rn+l)
and so (3.14) and (3.10) imply that 0,m/2=>0,m/ at Xo, i.e. the normal derivative
increases in the correct way at one time step later. On the other hand it is easy to show
that in an implicit scheme hi/l(xo)> hi(xo) if i>jo, i.e. the analogue of Corollary 2.7.

We proceed to obtain uniform bounds on the solution to (3.2)-(3.5).
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LEMMA 3.3. There holds

K2(3.15) tr(x)<-h"(x)<-+l Vxr, m>-O

for all < ./kK2.
Proof. From (3.5) the left inequality is immediate. Now let m_->0, xF and

suppose that there exists l=> rn such that qS,(x)=> e. Then by (3.4) and (2.8)

(3.16)

and so

K2p.(x) O(p (x), h (x))_-< G(1, hS(x))<- hii-x)

(3.17) hi(x) <- (x) =’--"
Since h"(x)<= h(x) for every l_-> m, the other inequality holds in this case.
Now suppose that l,(x)<e for every l>-m. If h’(x)>(K2/e)+l then by (2.6)

h (X) > O’(X) and so there exists j -< rn 1 such that o,(x) > e and q’, (x) -<_ e for every
j < _-< rn 1; then

h"(x) hJ+l(x) > hJ(x).

As (3.17) is true also for l=j we find that hJ+l(x) hJ(x)>= 1 and so

6k(q- e) >- 6g(J.- e) >-_ 1.

1
(3.18) o(x) >-

k.

Combining (3.16) with =j and (3.18) we obtain

K2hJ(x) <= q(x) <= K2k6 < or,,

which is impossible.
LEMA 3.4. For every c (0, 1) there exists a constant C>0 such that for any

0 < tr* < K2/e, 0 < 6 < tr,/kK2, m >= 0

(3.19) q" c(a)_-< C.

Proof This follows from Theorem 4.2 [8, Chap. 5, p. 333].
LEMMA 3.5. There holds

(3.20) 0=< o’_-< G,
where G. is independent of and of T.

Proof From (2.8), G(s, p) is positive for s > 0 and is monotone increasing in s
and monotone decreasing in p. Therefore the fact that 0 < q" <- 1 and Lemma 3.3 imply
that

(3.21) o"=G(om, hm)<=G(1, tr.)=G., m>=O.

LEMMA 3.6. There exists a constant C > O, independent of 6 and T, such that

(3.22) < C, m _->0.

Hence
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Proof. If we multiply (3.2) by (’-1) and use Green’s theorem we obtain

In IVq"]2 Ir (1- qm)q,m <_--meas F.G., m>=0.

LEMMA 3.7. For every a (0, 1) there exists a constant C > O, that depends on the
data, on a and on T, but is independent of 8, such that

(3.23) cr, h c-< C, m => 0.

Proof. For any x, y e F, m > 0, we have as in (2.19) that

.m(x)_ .m(y) G(*)("(x)-"(y))+ Gh(*)(hm(x)- h"(y)).

If we divide both sides by Ix-yl, take the supremum over all x, y e F, use (2.8) and
the fact that Ia(,)l_-< K3 and IG(*)I < K, which follows from Lemma 3.3, we find

(3.24) H(m, <- KH(") + K3H(h")
where H(f) stands for the H61der constant of f. From Lemma 3.4 we have that
glna(qgm) <- g4 and K4 is independent of 8 and T. From (3.5) and (2.7) we see that

m-1

Ih(x)-h(y)l<--I(x)-(y)l+k Y
i=0

and therefore

m-1

(3.25) H,(h")<=H,(cr)+Sk Ho,(q,).
i=0

Inserting (3.25) in (3.24), we have

m--1

H,(")<=K4+K3Ho,(cr)+3kK3 H,()
i=0

In order to simplify the notation let bm=H(), mO, D=kK3 and a=

K4+ K3H(). Then the last inequality can be written in the form

(3.26) ba+3D b, ml.
i=0

Let B a + 3Dbo then one can show by induction that

b(l+3D)m-B, ml,

and since 3 TM we find that

bN 1+ BNB lim 1+ =(a+Dbo) er.

Therefore H(), for every m 0 is bounded for T < m and it follows from (3.25)
that H(h) is similarly bounded, hence (3.23) is satisfied.

LEMMA 3.8. ere exist posiive constanCs C C independent of and ofTsuch that

(3.27)
(x)- (x)

C xO, m0

and

(3.28)
m+l m(x. (x)- . C2 X e F, m -> O.
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Proof We have that qm+l-(m> 0 in 12, (if (m+l (0m in 1 then the assertion is
clear), is harmonic and vanishes on S. Therefore its positive maximum is obtained on
F, say at XoeF. Clearly at that point q,m+l_ q,m <0. Therefore it follows from

(3.29) m+l m+l m+l hon -tpn=G(,)(o -o )+Gh(*)(h

that at Xo, using (3.5) and (2.8),

Go (*)(0 re+l- q9 m) (IGIg((T e)+).
But K =< G for some K > 0, from (2.8) and in view of Lemma 3.3 and G l< and
g’-< k; hence

where Lemma 3.5 was used, and so (3.27) is proved. Now (3.28) follows from (3.29)
if we use (3.27), the necessary bounds on G, Gh and g((q’-e)+) < kG..

LEMMA 3.9. There exists a positive constant C > O, independent of and of T, such
that

(3.30)

Proof. From

we obtain

m+l 2

-<C, m->_0.

0 --2 Ill (( m+l () m)m(Om+l

V
tp -o <

tp -o o,

and the right-hand side is bounded by (meas F). CI" C2 in view of Lemma 3.8.

4. The weak solution. In this section we use the results of the time discretized
problem, take the limit t -> 0 and deduce the existence of a weak solution to (2.1)-(2.4).

DEFINITION 4.1. A weak solution to (2.1)-(2.4) is a pair (o, h) of functions such
that for any 0 < T < o:

(i) e wl’2(0, T; H (a))0 C (fi x[0, T]),

for any a e (0, 1);

(ii)

and

(0 e cl+t (fi), OtT,

h, ht C (F x [0, T])

Ap =0 in 12, 0=< t_<- T,

tp= 1 on Sx[0, T];

(iii) The (inward) normal derivative on F, p,, satisfies

q, C (F x [0, T]) for any a e (0, 1),

(iv)

qn=G(p,h) on Fx[0, T];

h(x, t) =o’(x)+ g((tp,(x, z)-e)+) dz on Fx[0, T].
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Thus (2.1)-(2.4) are satisfied but the weak solution lacks some regularity with respect
to t.

THEOREM 4.2. There exists a unique weak solution to (2.1)-(2.4) for any T>0.
Moreover

(4.1) q WI’(0, T; HI(I)).

Proof. Let .m be the solution of the time discretized problem (3.2)-(3.5) with
8- T/M, such that 8 < tr./kK2, and let p(x, t) denote the linear interpolation, in
time, of the q re,S, that is

(X, t)=[m(x)--om-’(X)][t--(m-- 1)8]8-1+ m-l(x),
(4.2)

xf, (m-1)8<=t<-mS.

By Lemma 3.1 o C+() for all m _->0 and therefore o C+(I)), and by Lemma
3.7

(4.3) [[([[cl+a(a) C, 0 -< t-< T for any a e (0, 1)

where C depends on a, and, here and below, C is a constant independent of 8.
From Lemma 3.8 we have that

0tp
(4.4) -- --<_ C in f x [0, T]

where C is independent of T. Therefore there exists a constant C such that for any
a (0, 1)

(4.5) I1 (ato. _-< c
and C depends on a but is independent of T. From Lemma 3.6 it follows that

C
(4.6) I111,’(.)<= 0<= t<= T

and C is independent of T. From (4.4) we find that

(4.7) o I1,’.o.))--< c.
Let 8 0. For simplicity we use the same notation for subsequences. Then we

have that

uniformly in C (f x [0, T]) for any a (0, 1),
(4.8) o o

uniformly in C + (1)), 0 _-< _-< T.

Clearly the limit function satisfies o 1 on S. Let sr C(f); then

Vsr. Vo=0 V8>0,

so (4.8) implies that

v. v =0,

and therefore Ao =0 in f, [0, T], so (ii) of the definition is satisfied. Now from
Lemma 3.9 we have that

fn ot

2

(4.9) V-y7 dx<-- C, (O, T),
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C > 0 independent of T; hence together with (4.4), (4.6) and (4.8) it follows that as
6-0, o WI’(0, T; HI(I)), i.e. (4.1) holds.

Let o,, be the linear interpolations, in time, of the o,
p,,(x, t)=[p+l(x)-qg(x)][t- m616-1+ p(x),

(4.10)
xF, m6<=t<=(m+l)6

then ,. C (F), for any a (0, 1), all [0, T], by Lemma 3.1. And

then Lemma 3.8 implies that

<--_C, O<=t<=T

where C > 0 is independent of T; therefore q, are uniformly bounded in C(F x
[0, T]) for any a e (0, 1).

It follows that

(4.11) q,n --> uniformly in C (F x [0, T]).

But for any " e H (fl) with 0 on S we have

fa V" VcP fr CP,,, O<-- t<- T;

then as 6 0, in view of (4.8), we find that

It follows from (4.8) that the normal derivative q satisfies

q=b a.e. on F, t(0, T),

but cp, C (F), 0 _-< t-< T; hence q C (F x [0, T]).
Let

h(x, t)= o’(x) + g((tp,,(x, 7")-e)+) d’r

(4.12)
m--1

=cr(x)+6 E g((o,.(*)-e)+)+[t-m6]g((,.(*)-e)+)
i=0

for m6 <-_ <-(m + 1)8. We used q(,) to denote the values of the function at some
intermediate points t < t* < t+. So

m--1

hm(x)-h(x, t)=6 , {g((q.-e)+)-g((q..(*)-e)+)}
o

-[t- m6]g((,.(,)- e)+).

But from the properties of g, (2.7), we find that

[g((p.-e)+)-g((q,.(.)-e)+)[<=k[p.-tp,.(.)[, O<-_i<-_m-1,

g((o.. (,)- e)+) =< kr.. (,).
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But from (4.10) and Lemmas 3.5 and 3.8, we obtain

<= /’-

(4.13)
It- mglg((,,(* e)+) _--< tkG.,

hence

(4.14) [hm(x) h(x, t) <- C, on F x [0, T].

Clearly h(x, t) C(Fx [0, T]), since ,, C(Fx [0, T]). Moreover

ha,, g((qa,, e)+),
which means that

ha,, C (r x [0, T]).

As ->0

(4.15)

and therefore

O<=i<-m-1,

m <- t<--(m + 1)t;

g((q,,-e)+)-g((q,-e)+) uniformly in c(r[0, T])

801

O<=t<=T,

O<-t<=T,

(iii) c,
C independent of T,

(iv) Ilvq,,lle< )_-< c,
C iudepeudem of T,

(v) . h(x, t) 1 + K2/ e.

ha(x, t)- h(x, t) !(4.16)
ha,t(x, t)- ht(x, t)J

uniformly in C(Fx[0, T]).

So, since (4.15) holds, we obtain that
M _. t) ;-(4.17) {h (x)}=o h(x, as 0

and clearly (4.12) implies that

(4.18) h(x, t)=tr(x)+ g((q,-e)+) dr on Fx[0, r],

so (iv) is satisfied. Also it follows from (4.16) that

h,h,C"(Fx[O, T]).

So (i) is satisfied and we are left with the second part of (iii), which follows from the
uniform convergence in (4.8), (4.16), from (3.27) and the assumptions on G. More
specifically, since

(4.19) o’= G(q", h)--> G(.h) as 6->0

where the limit is uniform on Fx[0, T] and in view of (4.13), m, and therefore
q, G(, h) on F x [0, T], i.e. (iii) is satisfied. The proof of the uniqueness is very
similar to that of Theorem 2.8.

For later references we collect some of the facts above.
LEMMA 4.3. The weak solution q, h) satisfies
(i) q(x, tl) -<- q(x, t2) in II if tl < t2,

(ii) qC(fl[0, oo)) any a(0,1),
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Proof. (i) follows from (3.10). (ii) follows from (4.5) and (4.8). (4.6) and (4.8)
imply (iii). (iv) is a consequence of (4.9). (v) follows from Lemma 3.3.

In order to obtain better regularity we assume, in addition, that

The partial derivatives Gs (s, p) and Gp (s, p) are C functions(4.20) (any a (0, 1)) on compact subsets of [0, 1]xR+.

Then we can assert that under the assumptions of Theorem 4.2 and (4.20) we have
for 0 < T < oo that the weak solution is a smooth solution (in the sense of 2).

THEOREM 4.4. If in addition (4.20) holds then the weak solution o, h) is a smooth
solution, Vq is continuous in 1"/x [0, T] and moreover

(4.21)
Pt(’, t) 6_C l+a (fi), 0 <= <= T,

0, m C’* (f/x [0, T]),

(4.22) o,, C(F [0, T]).

Proof Let w be a solution of

Ao =0 in

(4.23) w=0 onS,

to,-Gs(q, h)to Gp(q, h)h, on F.

As, for [0, T], Gp(o, h)h, and G(q, h) are in Ca(F) then to C1+(1). Since the
solution to (4.23) is unique (G->0) we find that to o, and therefore o, C1+(1)),
0-< =< T. To show continuity in let 0 =< tl, t2 -< T and set

i_.., ,(x, t,), h h,(x, t,),

G Gs(q(x, t,), h(x, t,)), G Gp(q(x, t,), h(x, t,)), i= 1, 2,

q,. Then v satisfies Av 0 in f, v 0 on S andand let v 0
2 2 2.-,-,) h,-h,, x r.

The last equality can be written as

h)-(G-G)q.(4.24) Gv= v,,-(Glph,-Gp
If v > 0 at some point then it attains its positive maximum on F where, by the maximum
principle, v, < 0. So

(4.25) 0 < G,v < IGh 2 2

and a similar argument at a point of negative minimum (on F) gives

(4.26) 0 < -Gv < IGph G,h,l + IG] G2I Il-
By (4.25), (4.26) and (2.8) we have

(4.27) ivl=l, 02,1<_ g(llGlph 2 2 2

and the right-hand side converges to zero as It=-ql-0; hence o, is uniformly con-
tinuous. Now we divide (4.27) by It=- tl =, a (0, 1), use the H61der continuity of Gp,
G,, (4.20), and of h, and write

2 2 l_G2p)hl+(hl hE)G2p.Glph Gph Gp
It follows that

(4.28) I-’1
t- t2l -<- K,
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where K depends on the data and on T and is uniform in ft. Hence ot C ([0, T])
uniformly in 1"/for any a (0, 1). In (4.20) we used the fact that or. <- h <-_ 1 + K2/e, (v)
in Lemma 4.3. Combining this with 0t CI+(I)) leads to the second part of (4.21).

Since on, (O/Ot)on Got + Gpht then by the continuity we have
Moreover the right-hand side is H61der on F, 0_-< -< T and in view of the second part
of (4.21) it is H61der on [0, T] uniformly on F; hence (4.22) follows.

It remains to prove the continuity of Vo in flx [0, T]. Let e be a unit vector in
some (spatial) direction and denote by oe the derivative of o in this direction.

By contradiction, if

IOe(X, o + t) (#e(Xo, to)l >- > 0

for x-Xo 5x small, for some (Xo, to) l-I x [0, oo), then rewriting and using the fact
that qe Ca, it is enough to assume that

(4.29) IOe(XO, to+ t)-qge(Xo, to)l>- %
Let 8t= 1/m then since q,,(x)=o(x, to+l/m) is bounded uniformly in C1+ then
there exists a subsequence, also denoted by m, such that Om(X)-> (X) in C+ but
q(x, t) are in C"(flx[0, T]), hence (x)=o(x, to). But clearly Om,e(X)">e(X uni-
formly hence (#m,e(X) Oe(X to+ 1/m)-, Oe(X to) which is a contradiction to (4.29), at
X "-X0

This holds for any direction so Vq is continuous in 1 x [0, T].
If (4.20) holds then the solution satisfies the following corollary.
COROLLARY 4.5. It holds that

(4.30) 0(x, tl) < (x, rE), X /(.J F if < rE;

iffor some g F, r > O, h(g, r) > tr(g) then

(4.31) ht(g, t)>0 Vt>-_r.

Proof. Since (o, h) is a smooth solution, it follows from Corollary 2.7. It follows
from (4.31) and (2.4) that

(4.32) on(g, t) > e Vt_-> r.

5. The asymptotic limit. We consider the asymptotic behavior ofthe solution (o, h)
of (2.1)-(2.4). For simplicity we assume (4.20) and so this is the smooth solution. It
turns out that the steady state limit (as t->c), which can be obtained formally by
setting ht =0 in (2.4) (or more precisely in (2.4)’-(2.4)"), can be characterized as a
Signorini problem with an obstacle that depends on 0(x, t). Moreover the interest in
the limit from the practical point of view is obvious since the thickness of the paint
coat after a long time can give an indication of the areas that will not be painted at all.

The steady-state problem associated with (2.1)-(2.4) is to find a pair {(x), h(x)},
3 C1(1)),/7 L(F) and such that

(5.1) A-0 a.e. in fl,

(5.2) q3, G(qS, h) a.e. on F, 3 1 on S,

,(x) e if h(x)> tr(x),
(5.3)

qS,(x)-<_ e if/7(x) or(x),
a.e. on F.

If we denote by (o(x,t),h(x,t)) the smooth solution of (2.1)-(2.4) and
((x), h(x)) the solution of (5.1)-(5.3) then we have the following theorem.
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THEOREM 5.1. p(x, t) (x) uniformly in C(fl), any a (0, 1), and weakly in
H (f) and h (x, t)/ g(x) pointwise on F as - o. Moreover g(x) <= K2/e.

Proof. First suppose that h(x, t) > or(x) for some x F, > 0. Hence ,(x, s) > e

for some 0< s < t. Let z sup {s _-< t; ,(x, s) > e}. Then n(x, ’) --> e, and then it follows
from (2.3) and (2.8) that

(5.4) e _-< q,, (x, ’) _-< G( 1, h) < --.
h

Therefore h(x, -)< K2/e and clearly h(x, t)< K2/e too. By Lemma 4.3(ii) (x, t) is
uniformly bounded in Ca(fix[0, )). Let {ti} be a sequence such that ti as i- c.
Consider the sequence of harmonic functions i(x) (x, ti). This sequence converges
uniformly in 12 to q,(x). Clearly q,(x)= 1 on S. By Lemma 4.3(iii) the qi(x) are
uniformly bounded in Hi(O) and hence qi(x) ,(x) as i- (a subsequence if
necessary) weakly in HI(f). Hence ,(x) is a harmonic function in 12. By (2.3) and (2.8)

0 < q, G(q, h) < G(1, (r,) G, on F,

which implies that sup Iq,(x, t)]-< G, < oc where the supremum is in (x, t)
Therefore there exists a subsequence qi, that converges to 4% weak star in L(F), i.e.
for every " e H (fi), " 0 on S,

(5.5)

But since

(5.6)

it follows from (5.5) and (5.6) that , is a generalized (inward) normal derivative of
q,, so we denote it by q,,. Now it is clear that hi(x)=-h(x, ti) >- hi_(x) and since
hi(x) < KE/e it follows that hi(x)/ h(x) pointwise in F and h(x)<-_ KE/e. But then,
using Lebesgue’s theorem we obtain that

(5.7) ’G(q,, hi)--> ’G(q,, h)

where (2.8) was used, and this in turn together with (5.6) implies that

(5.8) q,, G(o,, h) a.e. on F.

We can identify q,(x) with qS(x), the unique solution of (5.1)-(5.2). Indeed if ql

and q2 satisfy (5.1), (5.2) with the same h then, from the monotonicity of G with q,
it follows that if we multiply A(o- q2)= 0 by (q- q2) and integrate over 12 we find

(5.9)

Jr G1 O2)(q9, q92) 0,

i.e., ql = q2 since ql q2 1 on S. It remains to show (5.3).
If hi(x)= tr(x) for some x 6 F, all i_-> 1, then from (2.4) it follows that qi,,(x)<= e

all i_-> 1, and by the pointwise convergence h(x)=tr(x) and ,,<-e a.e. on
{h(x)=tr(x)}. On the other hand if hi(x) > tr(x) for some i> 1 then by (4.32) %,(x) > e

all j>=i but since the integral in (2.4) converges uniformly (h(x)<=K2/e) hence
qi, (x) e as --> c a.e. on F f’l { h (x) > tr(x)} thus (5.3) is satisfied a.e. on F.
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We have
LEMMA 5.2. The solution to (5.1)-(5.3) is unique.
Proof. Let (Ol, hi) and (o2, hE) be two solutions. As in (5.9) above we find that

(5.10) f IV(l- 2)12 =-Ir (G(Ol, h)-G(02, h2))(l 02).

It is enough to show that the right-hand side of (5.10) is nonpositive. Indeed if
h, h2> r(x) then o,(x) e o2,(x).

If h(x)> r(x) and hz(x)= tr(x) then o,(x)= e and o2,(x)_-< e, and this means
that G -= G(o, h) e _-> G(o2, h2) -= G2. So we want to show that 0 _-> 02. Assume
that o(x) < o2(x) at x F, then

0 --> G1 G)(01 02) G(ql, hi) G(02, h,))(

(5.11) + (G(2, hi)-G(q_, hE))(ql- 2)

> (G(q92, hi)- G(q92, h2))(q91- q92)

since G is strictly monotone increasing in o, but G is monotone decreasing in h and
h > h2; hence G(q2, h) G(o2, h2) -<- 0 and so the assumption ((01 o2) < 0 leads to
a contradiction in (5.11). Hence q-o2->0 and therefore (G1-G2)(ql-q2)>=O. The
argument in the case when hi tr(x) and h2 > o’(x) is similar. Finally when h o-(x)
h2 then (G1- G2)(0- q2)=> 0 follows from the monotonicity of (3 in o.

From Theorem 5.1 and Lemma 5.2 we have the following theorem.
THEOREM 5.3. Assume that 8f is in C 1+’, any c (0, 1), (2.6)-(2.8) and (4.20)

hold. Then there exists a unique solution (, h) to the problem (5.1)-(5.3). Moreover

(5.12) q5 C’+(fi),

(5.13) h C(F) for any c (0, 1).

Proof. The uniqueness follows from Lemma 5.2. In addition we have that
HI(I)). Recall that tr,=</_-< K/e and 0< c, =minr q(x, 0) =< minrto,) o(x, t) (see
(2.12)). Define

(5.14) F+ {x 6 F,/(x) > tr(x)},

then F+s by the assumption (2.11) and is open in F by the continuity of h(x, t)
and the fact that h (x, t) is monotone nondecreasing in on F+. Let x, y F+ then G e
a.e. at these points and hence

0= G((x), h(x))-G((y), h(y))
(5.15)

=G(*)(f(x)-f(y))+Gh(*)(g(x)-g(y)) a.e. on F+

where G(,) and Gh (*) were evaluated by the mean value theorem. Now since c, > 0
it follows from (2.8) that 0< k’ < Ia (*)l < k" and therefore (5.15) can be rewritten as

(5.16) k’l(x)- tT(y)l-< gl[q3(x)- ,(y)l a.e. on F+.
But the right-hand side is HBlder continuous with exponent a in P+ hence so is the
left-hand side, i.e./(x) e C"(P/). Therefore/e C"(F) since on F\F+ we have h(x)=
o-(x). But then, since q5 e C(f), we obtain by (5.2) that

Let to be a solution of

Aw=O in f,

(5.17) to 1 on S,

to, qS, onF.
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Then to C1+(1)) and since the solution to (5.17) is unique we find that to 95 and
therefore q5 C1+ (fi), any a (0, 1).

We are able to show that the solution (qs, h) of (5.1)-(5.3) is also a solution of a
Signorini problem (see e.g. [5, p. 111]). To this end let the obstacle be defined by

(5.18) Z(x) lim p(x, t), x F

where

(5.19) z(x) sup (0<-t; h(x, t) or(x)}, xF.

Since h is monotone nondecreasing in t, r(x) is well defined and it can have the value
+o.

We have the following lemma.
LE 5.4. r(x) is continuous from above on F+.
Proof. Clearly F+ {x F, z(x) < oo}, since if x F+ then /(x) > or(x). Then for

some < oo, h (x, t) > r(x), hence z(x) < < oo and vice versa.
Now let Xo F+, r(Xo) M and by (5.19) h(xo, r(Xo)) cr(xo) but h(xo, t) > cr(xo)

for all t>r(Xo). Consider the solution (q,-h) in O<=t<=2M and, by Theorem 4.2
h C(F [0, 2M]). Then for any x in a -neighbourhood N F of Xo, r(x) < 3M/2,
h(x, t)> or(x) for > r(x), x N. Also, if r(x)> r(Xo), we have

(x)

h(xo, "r(x))-h(x, ’r(x))=tr(Xo)-tr(x)+ g(tp,(Xo, ’)- e) d’r
,I ",’(xo

where we used (2.4) and the fact that , > e for > r(Xo) at Xo, by (4.32). Hence
-(x)

O< g(o,,(Xo, z)-e) dz<-I,r(x)-,r(Xo)l+lh(xo, ’(x))-h(x, z(x))l,
(Xo)

but the right-hand side converges to zero as x Xo. Hence, since g > 0 for q(Xo, t) >
> r(Xo), it follows that z(x) x Z(Xo).

Define

(5.20) {" H(I); " 1 on S, "- Z on F},

then we prove the following.
THeOgM 5.5. If (4.20) is satisfied then (, h) is a solution to (5.1)-(5.3) if and

only if c satisfies the variational inequality

Iov "
Remark 5.6. The fact that (if, h) is a solution to a variational inequality is a result

of its being the asymptotic limit of an evolutionary problem and indeed the obstacle
Z(x) is constructed from the time dependent solution. It may be interesting to investi-
gate what classes of problems of the type (5.1)-(5.3) can be recast as variational
inequalities via their imbedding in appropriate evolutionary problems.

Proof. It is enough to show that (5.21) is satisfied by o (x, t) as --> oo, where (, h)
is the solution to (2.1)-(2.4). For any sr , 0< < oo, we have

(5.22) fnvcc(x,t).V(-cc)+e
where F, F CI {x; c,,(x, t) > e} and Lemma 4.5 was used. Clearly F,/* Foo if - oo by
(4.31) and so for any r/> 0 small and M> 0 large there is a 0 (depending only on
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0 o if r/ 0) such that

(5.23) k g((" e)+) +nM

K h(x, 0 + M)+nM N--+ nM

where we used (2.7), the fact that h <-_ KE/e and that Fo\Fo-0 if 0oe, with an
appropriate K.

We integrate (5.22) with respect to 0 < < 0 + M, divide by M, use (5.23) and let
M- oo, r/ 0. We find that q3(x) limt_,o t0(x, t) satisfies (5.21).

The fact that 5(x)e HI(I)) follows from (5.12) and that q3 1 on S is clear. From
the definition of Z(x), (5.18), and from to(x, tl)--< to(x, t2) for every tl < t2 it follows
that q5-> Z on F, therefore q5 e N, as was claimed above.

Remark 5.7. It follows from Theorems 5.3 and 5.5 that the solution q5 to the
Signorini problem (5.21) is in C1+(1)) for any a e (0, 1).

6. A weak solution when tr(x) 0. Most of the bounds that were found in 4
depend on the fact that 0< o’,_-<r(x). Nevertheless using convex geometry and a
monotonicity argument we are able to prove the existence of a weak solution to the
degenerate case when tr(x)= 0 on F; i.e. the case that was considered in [1] and [2].
To this end we invert the geometry and assume that S is the inner boundary of and
F is the outer boundary, both in C1+, any a (0, 1) and that F is convex. For simplicity
we take g(s)=s, G(to, h)=to/h which satisfies (2.8) and (4.20) for 0<to-<l and

o’.=< h =< 1 + e -1. In addition we take tr(x) tr where o’->0 is a constant. Thus we
consider the problem

(6.1) Ato =0 in fl, 0_-< -< T,

(6.2) to=l onS, 0_<-t -<T,

(6.3) hto,=to onF, O<-_t<-_T,

(6.4) h=tr+ (to,-e)+dr onF, 0<-t<-T.

We refer to (6.1)-(6.4) as problem (P). Our interest is in (Po), which is the
problem in the limit as cr 0. It follows from Theorem 4.4 that for any r > 0 the
solution to (P) is smooth. On the other hand the weak solution to (Po) is essentially
weaker than in definition 4.1, as the following definition shows.

DEFINITION 6.1. A weak solution to problem (Po) is a pair of functions (to, h) such
that for any 0 < T < oo

(i) to e L(O, T; H’(a)) CI C’ (1 x [0, T]),

h e L(r x (0, T)),

ht e L(0, T; L(r)),
for any a (0, 1);

(ii) At#=O in, O<=t<=T,

to=l onS, 0_-<t-<T;
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(iii) There exists a function q. L(0, T; LE(F)) such that

fav" V=-Ir., O<-t<- T

for any smooth function sr such that " 0 in a neighborhood of S, thus o, can be
considered as a generalized (inward) normal derivative of o;

(iv) ht#,, q a.e. on F, 0_-< _-< T;

(v) h (o e)/ dr a.e. on F, 0_-< -<_ r.

We want to prove the existence of a weak solution to (Po) as a monotone limit
of (smooth) solutions to (P), r > 0. To this end we need the following a priori estimates.

LEMMA 6.2. Let to be the solution of
(6.5) Ato=0 in l, to l on S, trto, to on F.

Then there exists a constant 0 > 0 that depends only on the geometry but is independent
of or, such that

(6.6) 0=<to, < 0 on F

for any tr>0.

Proof From the maximum principle to > 0 and to, > 0 on F. Let Xo F be the point
where maxr to, is attained; at this point maxr to is attained too. Let II(x) be the
hyperplane that passes through ttre point (Xo, to(Xo)), i.e. II(xo)=to(Xo), and has a
slope 0 2/do in the direction of the inner normal, where do dist (F, S). From the
assumption on the convexity ofF we have that H(x) _>- to (x) on F and by the construction
II(x) > 1 on S. Hence H > to in 12 and therefore by the strong maximum principle,
since II to at Xo, 0 1-I, > to, at Xo, i.e., (6.6) holds.

We use this to show the following.
LEMMA 6.3. There holds for any tr > 0

(6.7) I .1 c, 0-< t-< T
F

where C > 0 depends on F, 0 and e but is independent ofr or T.
Proof Let (q, h) be the solution to (P). Then ot C(f[0, T]) by Theorem

4.4 and satisfies

(6.8) Aq, =0 in 1, 0 -< <- T,

(6.9) q, 0 on S, 0 _-< -< T,

(6.10) hq,,=q,-h,q, on F, 0-<_t-<-T.

We multiply (6.8) by qt, integrate over 1, integrate by parts and use (6.9) to obtain
(for any [0, T])

(6.11)

Now we multiply (6.10) by qt, and integrate over F. Using (6.11) and the equation
(o, e)+ we get
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where the left inequality follows from the observation that if . -< e then h 0. Hence
from (6.10) it follows that ,. > 0. We rewrite (6.12) as

or

dt
(q, e +(qg,-e)2 --<_0

(q,(x, t)-e)3+(qg,(x, t)-e)2 dx

(6.13)
_-< (.(x, o)-)+(.(x, o)-) dx.

Now clearly q(x, 0) to(x) where to is the solution of (6.5) and therefore q,(x, 0) =< 0
by (6.6) and so (6.13) implies (6.7), and also

(6.14) fr C.o=

LEMMA 6.4. There holds for any r > 0

(6.15) II llw(m<= C, 0 <- <- T,

where C is independent of tr and of T.
Proof. We integrate (o- 1)Ao over lI and find

Iv l=- (1 q)q,, --< (1-q)2+ q,,<-- C

where we used 0=<q_-<l and (6.14), for any 0-< t-< T.
We denote by {q, h,,} the smooth solution to (P), or>0. We have that the

sequences {q} and {h} are monotone increasing with tr > 0.
LeMMA 6.5. Let 0 < tr < tr2 and let q, =- q, h, =- h, 1, 2 be the smooth solutions

to P, ). Then

(6.16)
(01(02 in OUF, O<=t<-T,

h<=h2 on F, O<=t<- T.

Proof Define the set ={te[0, T]; (6.16) holds for t}. We have that
Indeed at =0 we have h oh < r= h2 by assumption. Let q o2-.q, then

Aq =0 in and o =0 on S and

(6.17) o=o2-o=trzO,-ohql, on F.

Let Xo e F be a nonpositive minimum point of o; then by the strong maximum principle
o, > 0 at Xo, and so q2, > o, which is impossible by (6.17). So mint o > 0 and hence

(6.18)
o,<q2 in OUF, t=0,

h,<h2 onF, t=0.
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By continuity there exists t, > 0 such that [0, t,)c X. If t, < T then there exists Xo F
such that hl(xo, t,) hE(xo, t,). Assume that hi hE at t,. By the proof of (6.18)
we have goi(x, t,)< goE(x, t,) in fl (.J F. Then it follows from

O<qg=o2-qgl--h22n-hlOln xoF t= t,

that e < ql, < o2,; hence hl, (tpl, e) < (02n e her at Xo F, t, but this implies,
by continuity, that hE(XO, t) hl(xo, t) for t, 8 < < t,, some 6 > 0, which is a contra-
diction to the definition of t,. If hi =- h2 at t,, then if (1 02 the argument is as above.
If ql (2 at t, then this holds for every _-> t, because of the uniqueness, and (6.16)
holds trivially on t,, T].

Now we can assert that problem (Po) has a weak solution (as in Definition 6.1).
Thus the problem that was considered in [1] and in [2] has a weak solution.

THEOREM 6.6. There exists a weak solution (tp, h) to problem (Po). Moreover
0=<h=<l+e -1.

Proof. Let {o, h} be the solutions to (P) with tr> 0. It follows from Lemma
3.4 that {o} is bounded uniformly in C(lx[0, T]) independently of tr>0, and
Lemma 6.4 implies that the same holds true in L(0, T; Hl(f)). For all tr>0, tr_-< h-<
1-4-1/e, from Lemma 4.3 (v) with K2 1. Therefore as we let tr- 0 we obtain

(6.19)

and

funiformly in C (fl x [0, T]),
o xa o t weakly in Hl(f), 0-< t=< T,

{.monotonically on fix [0, T]

h [weak* in L(Fx (0, T)),
(6.20) h

monotonically on F x [0, T].

From the uniform convergence oo q we have o 1 on S, 0- _-< T and q is harmonic
in 1, 0-< =< T, thus parts of (i) and (ii) of Definition 6.1 are satisfied.

It follows from Lemma 6.3 that {,.} is bounded in L3(F), 0 -< t-< T, independently
of tr > 0. Thus o,. weakly in La(F), 0 =< -< T and therefore, by Sobolev’s theorem
(see e.g. 8]),

(6.21) o,,, strongly in L2(F), 0=< t-< T.

Let " be a smooth function such that K 0 on S, then

(6.22) fn V Vtp fr q,, O <- <= T

for all tr > 0. Then (6.19)) and (6.21) give, as tr -* 0, that

(6.23) Ir V’. Vtp -Ir ’, O_-< t-< T.

Therefore, since Ao 0 in ft, q can be identified with a generalized (inward) normal
derivative of q, so we write t#, q where (6.23) is understood. Thus (iii) is satisfied.
Letting sr C(I"), we multiply (6.3) by " and integrate over F and then let try0,
then (6.19)-(6.21) give

(6.24) frho.=frq,O<=t<-T
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and so (iv) is satisfied, but moreover hon C(F x [0, T]). Finally we multiply (6.4)
by " and integrate over F, so

h=tr + (o.n-e)+ dr, O<-t<- T.

Letting 0 and using (6.20) and (6.21) we get

(6.25) h ( e dr, 0 L

and so (v) is satisfied. Moreover by differentiating with respect to in (6.25),

h,=(-e)+ a.e. onF, 0tL
and therefore h L(0, T; L2(F)). This completes (i) and therefore the proof of the
theorem.
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ASYMPTOTICS OF A RATHER UNUSUAL TYPE IN A
FREE BOUNDARY PROBLEM*

C. M. BRAUNERt, W. ECKHAUS, M. GARBEY AND A. VAN HARTEN

Abstract. We consider the singular perturbation problem

u
-eAu+=f in [IR

l+u

with u =0 on 0[l. There is a region where u blows up as e$0, whose boundary S is solution of a free
boundary problem. Across S there is a sharp transition layer phenomenon. We construct a uniform asymptotic
expansion in 1) which exhibits two rather unusual features: the regular expansion in the subdomain inside
S has singularities as S is approached; the structure of the local expansion along S involves fractional
powers of e multiplied by powers of In e. We prove the validity of the expansion using barrier-function
techniques.

Key words, singular perturbations, free boundary, matched asymptotic expansions, nonlinear elliptic
boundary value problems

AMS(MOS) subject classifications. 35B25, 35J75

1. Introduction. In this paper we take up a problem that has been studied by
Brauner and Nicolaenko [5], [6], [7] and analyse it by the method of matched
asymptotic expansions [1]. Let us first formulate the problem, then summarize some
relevant results and show why further analysis is needed and is nontrivial.

Let the function u be a solution of

(1.1)

U
-eAu+=f(x) in l’l c ,

l+u

u 0 on 0fl.

f/is a bounded open domain without holes, the boundary 0fl is smooth and connected
and 11 lies everywhere on one side of 0fl. The functionf(x) has the following properties"

(1.2) fCoo((l), f>=O, maxf(x)>l, f<l on01).

From the theory of monotone operators and regularity theory for solutions of elliptic
boundary value problems it follows that for a given e > 0 (1.1) with f as in (1.2) has
a unique solution u C(l)) (cf. [3], [4]). Furthermore, a priori bounds for this solution
can be given as

K
(1.3) 0 <- u -< maxf(x).

For the lower bound we refer to [5]. The upper bound is valid with K ](-A)-I]. Here
(-A)-1 denotes the inverse of the Laplacian with Dirichlet boundary condition con-
sidered as a bounded operator from. C([I) into C(fl), where C([I) is endowed with

* Received by the editors May 8, 1985; accepted for publication (in revised form) January 22, 1986.
f Ecole Centrale de Lyon, 69130 Ecully, France.
t Department of Mathematics, State University of Utrecht, 3508 TA Utrecht, The Netherlands.
Universite de Valenciennes, 59300 Valenciennes, France.
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the maximum norm Imax and denotes its operator norm. The upper bound
follows, since

ulU]max E- (_A)_l(f_ u ) -1 u
--< II(-a)-II f-i+u1 + u

and, using (1.2), If-u/(l+u)l<-_maxcf.
We aim to study and construct asymptotic approximations for u, valid for small

positive values of e.
From Brauner and Nicolaenko [6], [7] we have the following results. Consider

the rescaled function w eu. w converges for e $ 0 to a function Wo W2,p() C (fi),
p=>2, where the convergence takes place strongly in H(fl) and weakly in W2’P(fl).
Note that Wo=> 0. We introduce

f+ {x flWo(X) > 0}, S o+,
def

(1.4)
1)o- int {x l)lWo(X) 0}.

In this paper we consider the situation where the open set 1+ has no holes, its boundary
S is smooth and connected and 1+ lies everywhere on one side of S. S is called the
free boundary and we suppose that S has a positive distance to 01), i.e., 1+ c 1. We
mention that regularity results on the free surface S in 2 dimensions have been
established once S is a Jordan curve (cf. [8] or [20], [21]). (See Fig. 1.)

In this situation Wo restricted to 1+ is in C(I+), and Wo solves the obstacle problem

-Awo=f- 1 in 1+,

(1.5) Wo 0 on S,

OWo -0 onS.
On

Furthermore, in rio we have f< 1 (cf. [8]) and u(x) converges pointwise as e $0 to
the function Uo(x), which is the unique solution of the formal limit of the equation
(1.1), i.e.,

Uo(1.6)
1+ Uo-f

FIG.
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Finally we can show [5], [10] that

(1.7) maxf(x) < 1.

Hence Uo(x) is well defined in 1)o and Uo C(l)o).
From the point of view of asymptotic approximations we can summarize these

results by stating that in f// the solution u is .approximated by (1/e)wo, while in
the approximation is given by Uo. A natural question arises now: can one construct
asymptotic expansions in these domains and global expansion of u valid in the whole
domain f?

Let us show that the question is highly nontrivial by attempting in an elementary
way to construct an expansion in f/+. We write

(.8)

and obtain for w the problem

(1.9) -Aw+

This suggests an expansion

W EI,

e+w =f-1 inf/+.

(1.10) W WO-" EW + e2W2"
With Wo as defined by (1.5) one gets for Wl the problem

1
(1.11) _Awl=_m in f/+.

Wo

Clearly the right-hand side is singular on the boundary S of f/+. For higher terms of
the expansion (1.10) one gets equations with stronger singularities.

One must realize at this stage that in a singular perturbation problem (1.1) one
should expect along the "free boundary" S the occurrence of a transition layer in
which the solution varies rapidly. Regular expansions ofthe type (1.10) can be expected
to be valid only in compact subsets of +. Relations between regular expansions and
expansions in the layer are established by matching. Also, one should realize that the
structure of the expansions is not known a priori and that terms other than those
depicted in (1.10) can (and will) occur.

In this paper we construct asymptotic expansions for the solution u of (1.1) up
to an arbitrary order of accuracy and prove their validity. Our motivation in performing
the analysis was not only to provide a full answer to the problem of asymptotic
expansions for the specific equation (1.1). We also found that the problem at hand
was a true challenge even to experienced practitioners of asymptotic analysis. We
therefore hope that the techniques and reasoning that we have developed may be
useful in other problems of a similar nature.

Let us now sketch the contents of the following sections" Section 2" The regular
expansion in f/o and the layer at 0f; Section 3: The principal terms in the internal
layer at S and in the expansion in f/+; Section 4: Higher order terms near $ and in
f/+; Section 5: Matching relations of the internal layer at S and the expansions in
f/o, f//; Section 6: Composition of a global approximation Z and estimation of the
error u- Zv; Section 7: Discussion of some generalisations.

From the point of view of asymptotic expansion, 2 will be rather straightforward.
However, in the following sections the construction process contains some surprising
elements. For example, the structure of the asymptotic expansions near the free surface
S and in f/+ turns out to be unusual; not only do fractional orders of e appear as
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order functions, but so do fractional orders of e multiplied with powers of In e. Partial
results in this sense were also announced by Frank and Wendt, cf. [9]. One of the
nontrivial aspects of the construction will be to determine which order functions are
needed in the local expansions near $ and in fl+. For precise information on these
order functions, see 3 and 4. Another interesting phenomenon in the construction
is the unavoidable occurrence of singularities in the higher order terms ofthe expansion
in l’l+ when the variables approach the free surface. This requires a rather delicate
analysis separating the singularities from the regular parts of the terms. We then show
that these singularities match the layer at S and that the layer changes the singularities
coming from fl+ into regular terms (see 4 and 5). To demonstrate the validity of
the constructed global approximation we use an estimation result based on barrier-
function techniques (see 6). Using the results in that section we can improve the
convergence statements made earlier in this introduction. For example, if K is an
e-independent compact subset of II0, then

(1.12) maxlu-Uol=O(e) for e $0.

Instead of an estimate IIw-woll :( ) and weak convergence in W2’p(II) we
obtain here

(1.13) IIw- wollc,  ) for e+0,

(1.14) fore$Owithq=l/(2p).

Finally, in the discussion of generalisations in 7 we consider the effects of domains
of dimension > 2, of more general second order elliptic operators and of more general
nonlinearities. To conclude this introduction we remark that the work of M. Garbey’s
thesis lies at the basis of this report (cf. 10]) and that some of the results can be found
summarised in 11 ].

2. The regular expansion in 1"1o and the layer at 6t11. From the point of view of
techniques of singular perturbations, this section is very straightforward. We simply
need the results in the sequel.

In fo we construct a local formal approximation of the solution u as
M

(2.1) u---U E ekUk(X)
def k=O

Substitution in (1.1) provides us with a recursive system of equations:

Uo f(2.2)
(1 + Uo-" =f’ i.e. Uo (1 -f---

and

(2.3) U.+, (1+ Uo)2 {AUn.--Fn+I(Uo, Un)}

with

F.+I= Lae.+l
1 + Uo+ ekUk

k=l e=O

(_1)
=2 (1 + Uo)m+l H Uk.-

/I1 i=1

The system for the U.’s can be solved uniquely and each U. is in C(lo) because of
(1.2) and (1.7).
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In general Uo and also the other Un’s will not satisfy the Dirichlet boundary
condition on 012. As a consequence we need a layer along 012 to correct this.

As usual (cf. [1], [12]) we put

) 2m+l

(2.4) u ZoM U1 +GH d(x.!_-- do GI
def k do

with
k=O

(V/-)kGk(’ tO).

Here " is the layer variable

d(x)
(2.5)

where d(x) denotes the distance of a point x to 012.
For x12 we denote by a point on 012 such that Ix-l-d(x). Note that is

uniquely determined by x for x/ {x fild (x) =< d} with a certain > 0 depending
on the curvature of 012. For x/ we define to(x) as the distance from along 012 to
a certain reference point 0 on 012 measured say in clockwise orientation, 0_< to < L
with L= length (012). (See Fig. 2.)

FIG. 2. x =(to)+d,(to) with , the inward normal on OD,, (, ’)=0, (’, ’) (,, ,)= 1.

The function H is introduced in order to avoid singularities in the transformation
x --> (d, to). H is a C cut-off function

1
and H’(s) < 0.

for s<1/2
(2.6) n(s)=

0 fors-1

The constant do is chosen sufficiently small (say ), so that x-->(d, ei2’/L) is a
C-diffeomorphism from {x hld (x) <- do) onto [0, do]x T with T= {zllzl- 1).

Substitution in (1.1) leads us to:

02Go 1 1
(2.7) asr2 1+, 1 + ,+ Go
with y(to)= Uoloa(to)->0. Further, we want Go to satisfy the following boundary
conditions:

(2.8) Gol=o -% Go--> 0 for
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In this way Go is uniquely determined. As a function of " for a fixed to it is given by

G/(+’) dg
(2.9) if y(to)> 0

.,_y/+, /2[g-In (1 + g)] 1 + y

and

(2.10) Go=0 ify(to)=0.

If y(to)< 0 then Go(’, to) is strictly increasing on [0, ). The behaviour for ’-c can
be described more explicitly if we note that

" .exp W(g) dg(2.11) Go C exp
1 + y Go/(I+T)

o W(g) dg).with C 7 exp
Using the implicit function theorem we see that Go is exponentially decreasing

for sr- oo. Moreover, Go depends smoothly on to, " and all derivatives ok+lGo/Okoto
vanish exponentially for "- oo.

For the higher order terms G, we find problems of the following type:

02Gn+l Gn+l =Fn+I(Go,’",Gn),
0st2 (l+y+Go)2

(2.12)
G,+lc=o= 0 if n+ 1 odd, =-UploC if n+ 1 even, with p =1/2(n+ 1)

and

[ J1 0 (,)F"+I= (n+ 1)). a6"+ =o’
Me-= 1-f(C,,o)- E (AU)(C,
k=0

+ u(,)+ G(, )
k=0 k=0

h- h-d + h-d G(,)
k=n

where is a shohand notation for .
Note that by construction of the U’s

(.3 -f-U-( + gl-’= O(* O(*
uniformly on o. Using this and induction with respect to n it is not dicult to show
that (2.12) has a unique solution, which vanishes exponentially for m"

(.4
+ .(0, ). (, ).

In this expression K(, ) is a suitably chosen solution of the homogeneous equation
with K (0, ) 1"

(,=c((,,
()=[2(--ln (1-))]l/ with = /(1 +).
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Using (2.11) one can check that K is smoothly dependent on to, even when y(to) has
a zero. Moreover, it is not difficult to see that not only G,+I but also derivatives like
ok+lGn+l/Okoto vanish exponentially for ’->

To conclude this section we remark that the approximation constructed up to
now, i.e., Zo as given in the right-hand side of (2.4), is such that

(2 15) _eAZoM + Zl+Z-------f-r
where the error term r is O(e/) uniformly on 1)o. That is, for d(x)-1/2do r is given
by the right-hand side of (2.13), apart from some additional exponentially small terms
when 1/2do d(x)do. In the region O-d(x)-1/28o the error is equal to

2M+l (n Op(2M+2)
(+)- y

,=o n 06" =o

Using (2.12) and the exponential decay of the G,’s we find that this expression is
indeed O(t2M+2).

It is now clear that this formal approximation in the subdomain 1o is of the order
O(e+), where M can be taken arbitrarily large. In 3, 4 and 5 we shall work toward
such a result in

3. The principal terms in the internal layer at S and in the expansion in +. In
this section we commence the study of the transition layer along S and the expansion
in l-I+. The main objective is to determine the set of order functions occurring in
various expansions. The difficulties due to singular behaviour of the expansion in
do not occur yet. The next term of the expansion of u in fI+ turns out to be In e Wl,

where wl is the solution of a well-defined Dirichlet problem for the Laplace’s equation
in 1+.

In order to describe the local approximation of the solution in the layer at the
free surface S (see Fig. 3) we use the following coordinates. The .p coordinate is

FIG. 3. x=(O)+pn(O) with n the normal on S in the direction of 1)+; (n,’)=0, (’,’)=(n, n)= 1.

Note that p > 0 in 1)+, p < 0 in 1o; for points sufficiently close to S [Pl distance to S, 0 <- 0 < Oo where

0o length (S).
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stretched in a significant way:

(3.1) p/x/-.

In these coordinates the operator e A is given by

02 02
(3.2) eA -i+ eg-1

0 --- -2 0_--_+v/- g-lel "g "e2--
O0

with g 1 + 2x/-a + e2b, el x/-b + a, e2 V’-a +1/2e2b and a {n, x ), b (n’, n’),
where denotes differentiation with respect to 0. For the local approximation of the
solution near $ we put

(3.3) u- Oo(sc, 0) + 1(:, 0) + 2,2(:, 0)+. .
In this expansion the magnitudes of the higher order terms l(e), 2(e), etc., are
unknown at the start of the construction. They will be determined during the construc-
tion process.

If we recall (1.5), it is clear that the local approximation in f+ will be of the
following type:

(3.4) U e-lw0"q- 111 q-’’"

Again the magnitude (e) has to be found during the construction. Let us now first
deduce the principal term in the layer.

The equation for o is obtained from the O(1) terms in (1.1) by substituting (3.2)
for cA. It is the following O.D.E.:

1921]/0 1-f 1
(3.5)

0:2 1 + @----"
The variable 0 acts only as a parameter. Here f denotes fls. This function depends
only on 0, it is smooth and periodic and 0<f< 1 (see (1.2) and (1.7)). In addition to
(3.5), matching provides us with "boundary conditions" for :-oo and :+oo.
Expanding the regular expansion in Io in the :, 0 variables we obtain:

(3.6) lim @o

2with af Uols =f/(1-f). From (1.5) it follows that Wo=1/2(1 -f)p / O(p3) for p$0.
As a consequence, expansion of (3.4) in :, 0 coordinate leads us to

(3.7) @o=1/2(1-f):2+o(:2) for:-oo.
The solutions of (3.5)-(3.7) can easily be found. Namely, (3.6), (3.5) imply that 02@o/0sc2
and also 0@o/0 vanish for :--oo. Multiplication of (3.5) with 0@o/0: and integration
yields

o =’/+(l+)v i+"
(3.8)

f,,’ dz

x/2[z In (1 + z) r/ with Vo> 0.

Here the lower endpoint Vo(0) plays the role of a free constant, possibly depending
on 0. Eventually Vo(0) will be determined by a matching argument. The function v(r/, 0)
is strictly increasing on (-, oo) from 0 to
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Let us have a closer look at the asymptotic behaviour of o for both sc- and
+. Using a procedure as in (2.11) we find that

(3.9) v c e’(1 + O(e’))

with c Vo exp (o W(g) dg) > 0. Since

(3.10)

it is also clear that

0:
(’ 0)=/2[v-ln (l+v)] sc

(3.11) 0o /1 ee/l+-ce +/(1+O( )) for:-,-o.

For the analysis of the behaviour for :-->- we introduce

(3.12) I(z) (2z)-1/. {(1 -z-11n (1 + z))-/-- 1}.

Note that I(z)= O(z-3/ In z) for z-m; hence, I(z) is integrable at c.
Since

1 1
(3.13)

/2[z- In (1 + z)]- + I(z),

the implicit formula for v in (3.8) can be written as

fo )(3.14) v r/+ I(z) dz + I(z) dz

(3.15) v(r/, 0)= 1 +2r/ 2x/o- I(z) d2 --o(7 -1) for

For o this means

(3.16) o(sC, 0)=(1-f) + 2o- I(z) dz :+o(sc) for s.
Next we observe that the linear term in : in qo gives rise to an O(e-a/2) term when
reexpanded in the p, 0 variables in f/. Now let us take in (3.4)

(3.17) a-1-- 8-1/2"

Then ff has to satisfy the equation

(3.18) A =0.

Matching with the layer at the free surface, which has no 0(8-1/2 term, makes it
necessary that

(3.19) ffl 0 on S.

The conclusion is

(3.20) ffl--0 in+.
Another consequence of the matching is that the linear term in : in (3.16) equals
Offq/Onls and hence vanishes, i.e.,

(3.21) 24o I(z)dz.
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Thus the value of Vo follows indeed by a matching argument. Somewhat surprisingly
Vo> 0 does not depend on 0.

The leading term 4’0 in the layer is now completely known. It will be important
to have a precise description of the asymptotics of q’o for s oo.

LEMMA 1. Let us denote

In s 1
(3.22) r/- :2, r/2 -Then there exists a o> 0 such that for sufficiently large, >-_ o

1 2
(3.23) qo =(1-f)sc+ In + T(O,

1-f
where for q, q sufficiently small: Inl < ,,, Inl < and 0 [0, 0o).

(i) T is smooth and T is periodic in O,
(ii) T has a convergent power series in ql and

T= E E Ttrl rl
k=O !=0

Proof ofLemma 1. The function v satisfies the equation

(3.24) -= r/. 1 + r/- I(z) dz

Now put

(3.25) v 1/2,:( + ):.

After a change of the integration variable z r/2s we obtain

(3.26) 3= (2s)-/:{[1-s-(2+lns+.ln(l+s-))]-/-l}ds
(1+)

with

In r/ 1
*?- 2 r/2- 2"

For a moment we consider 1 and 2 as independent variables. An application of the
implicit function theorem (cf. 13]) shows that for , 2 sufficiently small is analytic
in 1 and 2 with

(3.27) ,3(0, 0)- 0,
_a_ (0, 0)- 2.

Using (3.8), (3.25) and expressing 1, 2 in terms of r/l, ,12 and , we find a transcription
of this result for o:
(3.28) o +1/2(1 + )-1:2[1 + ,3((1 + )2(r/ r/2 In (1 + )), (1 + )2r/2)]2

Herewith the growing terms for :--> oo in (3.23) are easily checked. Further, we deduce
from (3.28) that

(3.29) 0o :2S(0, r/, r/E)

where S has the properties (i) and (ii) as indicated in the lemma. However, (3.29) still
differs from (3.23), but a little trick is helpful.
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Substitution of (3.28) in the O.D.E. (3.5) yields

02qo 1_f_2(1+) 1
(3.30)

02 ’-----""-, S(0, ’/1, ’/2)

where has the properties (i) and (ii) and (0, 0, 0)=0. Integrating twice in (3.30),
meanwhile using the fact that o does not contain a linear term for se- oo, we find
(3.23). [3

As a consequence of the behaviour of Po for s- oo we need in the expansion in
f+ a term of magnitude In (e), i.e.,

(3.31) u- e-lwo+ln e. wl/"

where wl is the solution of

(3.32) AWl =0,

(3.33) Wl 2(1-f)-1 on S.

But this reflects back on the layer at S. It is easy to see that matching requires that the
next order term in the layer expansion correspond to

(3.34) 81- x/-" In e,

where is a solution of the homogeneous, linearized layer equation

(3.35) 0211 1

0s2 (l/ffo)2ffl=0,

which vanishes for :--oo, i.e., ffl is proportional to the derivative of o
’o(3.36) 1 K(0)

Now an obvious question is how the other order functions in the asymptotic sequence
in the layer are generated. "Minimal" requirements for this sequence of order functions
5e (Sn n e U (0)} are

1 1, In e and (v/--) k, k e are in O. The first magnitudes are those corresponding
to qo, q; the others are generated by the Taylor series of f in the s, 0 coor-
dinates.

2 Stability under multiplication: 8n, 8,, 5=:>8,. 8 ,., especially
8nx/ 5e. The reason is the structure of eA in (3.2) and the fact that such
products appear automatically in the Taylor series ofthe nonlinearity u/(1 + u).

These conditions 1 and 2 naturally lead us to (at least)

(3.37) 5e {8k821 k t U {0} and LI {0}}
with

81 - In e, 82 x/.

In the sequel we shall demonstrate that this sequence 6e is indeed sufficient.
On the other hand, if the layer term 81kSk.( 0) contains a constant term 8 k1821

for soloo, we expect that all these order functions 81k8/2 will also be present in the
expansion in the region 2+. In combination with (3.31) this leads us to the following
sequence + of order functions needed in f+:
(3.38) 5+ {e -, In e} 13 .
This sequence contains all the order functions generated by qo+ 8q1 in (p, 0) coordin-
ates. It is also closed under Taylor series expansion of the nonlinearity. Below we shall
show that the sequence O+ is sufficient to construct the expansion in f+. One could
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have the impression that S+ contains superfluous order functions. It cannot be denied
that 6e+ contains a few redundant order functions, for example, 81. However, the
redundancy in S+ is not large, as we shall see.

4. Higher order terms near S and in 1+. In this section we confront the problem
of the singular behaviour of the expansion in I+. Our analysis is an interplay of formal
construction and matching arguments We aim to show that singularities of the
expansion in + near S are counterbalanced by corresponding terms of the layer
expansion The computational complexity comes mainly from the fact that we consider
expansions to arbitrary order of accuracy. We have to do so in order to show that the
construction does not break up at some stage. Let us denote the expansion in the free
surface layer by

k+l<N

(4.1) u E E ,,,(, 0),
def k=0 /=0

with 51.= x/-" In e, 82 and sr p/v/-, as before. The notation for the expansion
in f+ will be

k+l<=N

(4.2) u N e-lwo(x) + In e. Wl(X + E E tkl2tk,l(X).l
def k=0 /=0

In this section we present an iterative scheme by which the rlk,l’S and )k,l’S can be
determined in a unique way. To start, we discuss in 4.1 the construction of the d/k,l’S
while in each g’k,l an additive term Akl(Oto/O) a solution ofthe homogeneous equation,
is still free. Furthermore, we analyze some of the properties of the Ok,I’S and we show
that some of the Akl have to be zero due to a simple matching argument.

In 4.2 the Ok,t’S are constructed, while in each rkk, a linear degree of freedom,
corresponding to a choice of a boundary value function gk, on S, is built in. The k,/’S
will contain a singular part for p 0. The freedom of gk, will arise in the boundary
values on S of the regular part of k,-

Next, in 4.3 we describe the scheme by which all free functions Ak, and gk, can
be uniquely determined. As a matter of fact this scheme will be based on a partial
matching relation. The full matching will be considered in the next section.

4.1. The tk,’S with free Ak,l’S. Let us first consider the layer along S. Collecting
the O(trlk2) terms in (1.1) with eA as in (3.2) we find the following inhomogeneous,
linear O.D.E. for k,, k / > 0:

2

(4.1.1)
0 lk, 1

02 (1 + t//0)2 llk’l A,l

with

where

rOk+l ]fk, (kV/t) -1 k.,c, lAlL0t$1oo2 =o,2=o

fk,l-- --f((2 0)--2B t0r,- 1 + t0r,

02
t$2B g-1 g-1 0 0

"+ B2" el-Bg-2 e2--" see (3.2).00’def dO-

denotes summation over all indices r, s with

O<-r<-k, O<-s<-l, r+s<k+l.
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In addition, matching with the expansion in fo provides the following conditions for

bO,l is bounded by a polynomial for
(4.1.2)

ffk,l- 0 for :--> --o for k>0.

If fk, is polynomially bounded for :--o, then the solutions of (4.1.1) that do not
grow exponentially for - are given by:

O,t(f, O) =(f, 0). (, O) (, O)f,,(, O) dd
(4.1.3)

o+A,,(O) .(, 0).

Here we shall take o to be a fixed, sufficiently large number. The function A,l(O) is
not determined by (4.1.2) because of the exponential decay of 0o/0 for -. This
simply means that at the moment (4.1.3) contains an amount of freedom.

Note that, except for this freedom, (4.1.3) allows us to calculate the ,’s recur-
sively. This can be done in several ways, for example:

a. calculate the ./’s with k + 1, next those with k + 2, etc., or
b. calculate all o, by increasing k, next all , with 1, etc.

Though the .’s are not uniquely determined we can already derive some of their
propeies. When the A,l’S are chosen as smooth periodic functions in 0, then all ,’s
are smooth functions of and 0 in x [0, 0o), periodic in 0. As for the behaviour of
@,i for - we can derive the following results:

LEMMA 2.

(4.1.4) o, P + exponentially small terms for -.
Here Pl is a polynomial in of degree with coecients depending smoothly and
periodically on 0. Moreover P has the same parity as L

Further, for > 0 there is an m such that

(4.1.5) 0,= O exp
1+

Moreover, the derivatives 0+./000 behave in an analogous way.
The derivation of (4.1.4) and (4.1.5) is an interesting, rather easy exercise in

induction using recursion as in b and using (3.10)-(3.11); fuher details are left to
the reader.

Note that the conditions in (4.1.2) are indeed fulfilled, regardless of the choice
of the A,’s.

Let us now consider the asymptotic behaviour of, for m. It will be convenient
to introduce the following concept:

A function of (, 0) e R x [0, 0o) is said to be of type p with p
(i) is smooth in and 0 and periodic in O,
(ii) for suciently large, o, can be represented in che following way:

(4.1.6)

with

/ P[X(’YI, 0)+ #2Y(nl, 72, 0)]
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and
-X is polynomial of degree <= 1/2p in rll with coefficients, depending smoothly and

periodically on O. For p < 0 this means that X =-O.
Yand all its derivatives with respect to 0 are analytic in rll tiE for Iqll < ’, 1’121 < ’

with coefficients of the power series in rll ’12 depending smoothly and periodically on O.
In this definition sCo and , are positive numbers which are fixed in accordance

with their values in Lemma 1. It is not difficult to verify the following extension of
Lemma 1:

(4.1.7) tPo is of type 2,
0,o

is of type 1.

This demonstrates already the relevance of the type p concept. Further, the other
solution of the homogeneous version of (4.1.1) is

do-- L-(, 0) dry.

Now a little calculation shows that

(4.1.9) 2 is of type 0

and

(4.1.10) q is of type O.

The type p concept is nicely compatible with algebraic and analytic operations and
notions. We mention a few useful rules, which can be checked in an elementary way.

(4.1.11) X of type p==>scX is of type p+r for rNU{0}, OX/O0 is of type p, OX/O
is type p-1, Or+X/OrOOS is of type p-r.

(4.1.12) X1 of type pl and X. of type P2XIX2 is of type p +P2, X1 of type p and
X2 of type P2 with P2 =< Pl, Pl-P2 even =>X1 + X2 is of type Pl.

(4.1.13) A polynomial in of degree p ofthe same parity as p with smooth, periodic
0-dependent coefficients is of type p.

For a function X of type p there exists a uniquely defined primitive I(g) with respect
to :-integration such that

(4.1.14) I(x) is a function of type p+ 1 without a constant term in its expansion
for :- oo.

Note that

(4.1.15) I(X) X(rl, O) dq+ Io(X)(O)

with a smooth, periodic function Io, which in general is 0.
Next we shall describe the behaviour of the k,’S for :- and at the same time

fix some of the Ak,I’S. From now on we shall use the shorthand notation

(4.1.16) X type (p) + type

for X ,1 --,2 with ,1 of type p and ,2 of type
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LEMMA 3.
a. k=0:

o,o type (2),
(4.1.17)

o,! type (l + 2) + type (l- 1)
b. k=l:

(4.1.18)

c. k->2:

(4.1.19)

forl>=l.

ffl,O type 1 ),
A1,1 =-0 and ffl,1 =type (2)+type (-1),
bl,l=type (l+l)+type (/-2) forl>=2.

Ak,o 0,

k,l=type(l)+type(l-1) forl>--O.
In order to prove this lemma it is clear that we need information about the solutions

of

02if/ 1
(4.1.20)

0:2 (1 + o)2 F

where F is a function of type p, while on top of that, F and all its derivatives are
polynomially bounded for --o.

LEMMA 4. Under these conditions (4.1.20) has a particular solution @part, such that
if/part and all its derivatives are polynomially bounded for --o and

(4.1.21) Ipar type (p + 2) + ao
with d as in (4.1.8)-(4.1.10) of type 0 and

ao --YT(q, O)F(rl, O) drl,

i.e., ao is uniquely determined by F and in general ao O. All other nonexponentially
growing solutions are of the form

(4.1.22)

partq- A(0)

Proof of Lemma 4. The particular solution can be given explicitly as

*part - I
0el 0---"

I I F +

It is easy to check that Itpart is smooth and periodic in 0 and that if/part and its derivatives
are polynomially bounded for - -o. Now it remains to show that if/part has the correct
structure for -> so. This requires more accuracy than simply applying the rules given
in (4.1.7)-(4.1.14). It is done by the following steps, the details of which are left to
the reader:

I\--F type(p)+Clp+2r/1
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The smooth periodic function C can only be nonzero if p-> 0 and p even. Then we
denote q 1/2p.

The same remark holds for C2, etc., here and below.

(0,o3 (0,o)-/ I\-F =type (p)+ C2PT]Iq+l, 0,

[(0,o3 (0,o 3]I \-] I\--- ]
=type (p+l)+ C3p+

,]1

O0I r(o o -2I (O0oF)] =type (p+ 2)+ C4:p+2r/1 := :o.q+l >

Since the srP+2r/q+l term can be absorbed in type (p + 2) our demonstration of (4.1.21)
is complete. E]

In addition to Lemma 4 we remark that in certain cases the constant ao can be
calculated explicitly. For example, when F O(1/2)p, then F is of type -(p-2) for
p_->3 and F is bounded. Here we find ao (1--1/2p)-lOo(--OO)-(1/2)p+l O. In general,
the condition ao=0 is equivalent to -oo (Od/o/O)Fd=O, when F is polynomially
bounded for :--o and F is of type p < 0.

Let us now give the proof of Lemma 3.
ProofofLemma 3. The inhomogeneous term in (4.1.1) for Ok, is of the following

form:

(4.1.23) fk,, (i) + (ii) + (iii)

with

1 Od(O,1/- 0)" l (kO(i) --1--" OS--7
r+s,h

(ii) X b". s-2+r
O<r+s2 aao
jl
j2-r

1
(iii) E (1 + 00)m+ Cr H

2m+l ,F(NO{O}) j=l
Ikl=k,ll=l

with

k,O 1 if k 0 and k,O 0 otherwise, coecients b’ smooth and periodic in
0 (following easily from 2/, for example b]’=0, b’2= 1, etc.) and ceain
constants Cr.

ter these preparations the proof lies mainly in an induction argument.
a. e case k=0. The statement holds for/=0. Suppose that (4.1.17) has been

verified for Ollo. Then, because of Lemma 2 and (4.1.23), fo,+l is smooth and
fo,+l and all its derivatives are polynomially bounded for -. Moreover,

(4.1.24) fo,+ =type (/o+ 1) +type (/o- 2).

For the first two pas of fo,+ (i) and (ii) the verification is straightforward. As for
(iii), we note that

H Oo,j type (I + 2m) +type (I + 2m 3),
=1
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while

(1 + o)-"-1 type (-2m)
takes care of the correct compensation. Now (4.1.17) with lo+ 1 follows almost
immediately when we apply Lemma 4.

b. The case k 1. For 1,o we refer to (3.36). Note that neither @1,o nor @o,1 has
a constant term for :-. By matching this implies that the corresponding term, b,o
in 12+ has to vanish on $. We obtain

(4.1.25) Abl,O 0, bl,O 0 on $

and the conclusion is that (1,0 0. In turn this implies by matching, combined with
our knowledge of o,2, that @1,1 cannot have a linear term in its expansion for o.
Next an easy calculation shows that

fl, type (0)+ type (-3).

Consequently, an application of Lemma 4 leads us to (4.1.18) with 1. For higher
l’s in (4.1.18) we proceed with induction w.r.t, in a completely analogous fashion.

c. The case k >= 2.
cl. k => 2 and 0. We observe that fk,O consists only of terms coming from (iii).

Suppose that (4.1.19) holds for k-< ko. Then we find

fko+1,o type .(--2) + type (-3).
Using our knowledge of Pko,O and using the fact that there is no order -k /1

01 6; term
in the expansion in 12+, we find that @ko+,o cannot have a linear term for sc- o, i.e.,
Ako/,o= 0. Therefore, an application of Lemma 4 provides us with (4.1.19) for =0.

c2. k >= 2 and >- 1. This case is again dealt with by induction w.r.t. with k fixed
and thus the proof is complete.

An important remark is that the contents of Lemma 3 are fully consistent with
our assumption (4.2) on the structure of the expansion in 12+, i.e., that re-expansion
in p, 0 coordinates of 6k2k, with

(4.1.26) PS, q2 62P-2, ’11 62P-2 In p -1/2662p-2

gives rise only to order functions as in (3.38)

(4.1.27) 62, 66, 6k6t2, k>-O, 1>-0.

However, in view of the matching with the expansion in 12+ it will be useful to have
somewhat more precise information on the behaviour of the functions, @k, for large
values of ’. Let us introduce the notation

(4.1.28) EI =defthe operator that gives the coefficient corresponding to the 1k8
term in an expansion written in (p, 0) coordinates.

The following result will be very useful later on:
LEMMA 5. Let k, be given as in (4.1.27), i.e. (k, /) {(0,-2), (1,-1)}U (U {0})2.

Set N’= k + and suppose K >= N’. Then

(4.1.29) E k,l 1621]/r,s Xk, "" Xk, + A)
r+ K

Here these parts denote the singular, the constant and the vanishing terms for p , 0,
respectively. The form of these respective parts is as follows"
(4.1.30) Asing C k’l -J

Xk, i,_j\O) (In p)ip
o<-i1+1/2

o<=j
i+j>0
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Asing only come from values r, s for whichContributions to the (In p ip-J term in k,! can
r+ s N’-j and 0<-_ r <- k.

(4.1.31) Aconst kl, Co:o(0).
Contributions to this term can only come from values r, s with

r+s= N’, l<-s<-21+2, O<-r<=k.

Finally

(4.1.32) ck,l(A,:ff L ,a,0)(In
O<=i<=l+l/2
I<=j<=K -N’

Contributions to the (In p)ipJ term in Ak can only comefrom values r, s with r+ s N’ +j,
0 < r < k. All coefficients Ck’

d are smooth and periodic in O.

Proof of Lemma 5. Actually, all we have to do is a little bit of "combinatorics."
First, a singular term can only be produced by a term ---36((ln )’/() for

,.rWn nwhich after re-expansion gives rise to terms *-’1 6+J-’((ln p)’- p) with 0 < n < m.
singSuch a term contributes to Ak.l precisely if r+ n k, s +j- n and m n. Because

of the structure of q’r. given in Lemma 3 we also know that j => 2m-s-2, where
equality only holds if r 0 and j 0, m > 0. This implies 21 + 2 2s + 2i + 2j + 2- 2m >-

2i+j+s>-2i+j and 2i=2m-2n<=j+s+2-2n=l+2-n<=l+2. Thus (4.1.30) is
found. A constant contribution can only come from a term for --> o proportional to
66(ln )q, where because of Lemma 3, q _-< 1/2(s + 2). After re-expansion this leads to
a constant term ---6 r+l s-q Aconst if k= r+q, s Hence62 which contributes to k, --q-

Aconstthe contributions to k,l in (4.1.31) indeed come from pairs (r, s) with r+s= k+ l,
s > l, 21>-2s-(s+2) s-2, 0 <- r<= k. The verification of (4.1.32) is left to the reader
as an exercise.

As we shall see in 4.3, the following facts will play an important role in the
actual constructions" (i) once all r,s with r+ s =< k + are known, the constant term
Aconst is known; (ii) the linear term in A,I: comes precisely from those r,, for whichk,l

0_-< r -< k, r + s k + + 1. In anticipation of the full matching later on in 5, we shall
now derive a concrete estimate for the asymptotic behaviour of the q’k,’S for large

(4.1.33) N
def k+l<= N

as in (4.1),
Asing Aconst 0,K(4.1.34) Akr, derk,l +k,! + Ak, K >= N,

2 rlk,

AN,K
def (k,l)=(0,-2)

(1,-1)
kO,l>--O,k+lN

It is important to have an estimate for the difference between AN and A’r.
LEMMA 6. There are constants C > 0 such that for >= o

(a) I*u(:, 0)-AU’U(62:, O)lC(612v621/lntlrJl-l%/-- N+I: !
(4.1.35) (b) IA’’(B, 0)-A’(, O)I<=C2((61+62)N+1+(62)K+l), K>N,

((C) IAN"K(62:, O)--AN’K(62, O)l<=Cln(p) 61+ 14]-_
v+

(1+6)K,

k>=NI> N.

For the derivatives ofthesefunctions r times w.r.t. and s times w.r.t. O, r+ s <= 2 analogous
estimates hold, but with an extra factor -r in the right-hand side.
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Proof of Lemma 6. Here we shall take advantage of the fact that, because of
Lemma 3, we can represent V--AN’N by a convergent power series for :-> so
(4.1.36) N-A’

k+i<N
6132 ars

In ’ only these indices r and s are present, which after re-expansion in p so/62 yields
an order p q6162 withp + q > N. Since p k + r- rn, q r + rn + s with some rn in O <= rn < r,
then

(4.1.37)

We can therefore estimate

(4.1.38)

k+2r+s>-N+l.

k+l<-N 2r+s=N+l-k

<-_c E
k+l<=N+l

and this leads us immediately to the first part of (4.1.35). The second part follows from
the representation

(4.1.39)

A’r-A’ E 66z:’+2 E" akl()r()N+l<--_k+l<--_K finite

ANl’r AV’r E 6k1612 E ckf(In P)’P’.
N+ 1_-< k+_<--N 0i1+U2

--lj<=K --(k+l)

It is left to the reader to fill in further details. Iq

To conclude this section we shall derive an estimate for the error up to which
satisfies the equation (1.1).

LEMMA 7. There is an e-independent constant pl > 0 such that for [:l --< Pl/ 32

(4.1.40)
IyN-eAU +

1+-f M(I+ 211)+1

with an e-independent constant M.
Proof of Lemma 7. The remainder ru -3Au +N/(1 +v) _f satisfies, by

construction of the k,l’S,
(4.1.41) Tlvru 0, i.e., rrq ru- Turl
where Tu denotes the Taylor series expansion w.r.t. 31 and 32 up to orders 3k3/2 with
k+l<-N.

Hence

(4.1.42) ru -(I- Tv)f(32:, 0)-(I- Tu)3Av -(I- Tu)(1 + qtv) -1.

As for the first term the statement in (4.1.41) holds trivially.
For the second term we note that

0r+s

(4.1.43) -3A E 322-rBr’(32, 0)
0<r+s=<2 oro0s’

where the Br’ can easily be identified using (3.2). Consequently,
l--2+r ..r+s,I,

(4.1.44) (I- Tu)32AN= (I- T)B’. 3k312-S’ U’k.t-S-2+

o<+_-<2 s=o 0:00
k+l<--N
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Now

V/k,l-j-2+rI(I- T)B"’I--< C(,=)+’ and
O,OOS

=< cl l

because of Lemmas 2 and 3, and there is an e-independent constant C > 0 such that

(4.1.45) (I- Tu)6Au) C 6(6)1+1.
k+lN

This implies that the second term is as required in (4.1.40).
For the third term we proceed as follows"

1 0N+I

tk+16612k,lT )(1 + (1- 1 + 2OtN+I k+lN
(4.1.46)

<C k IN+l( 1 ] -m-’
k+l=N+l m=2 i=1

ki+!
Eki k,Eli=

with some suitably chosen e-independent constant C. Here we used Lemmas 2 and 3
to estimate 1+s 1+o for Now, for we estimate 1 +{o 1 and

usi.g Lemma 2. For o we estimate l+{oC2 and
H,%, c ana again the estimate as required for (4.1.40) is easily found. D

Note that Lemma 7 shows that we have constructed a formal approximation of
arbitrary order in the layer along the free surface.

4.2, The k,’S with free gk, S, Let us now come back to the construction of a
formal approximation in +. Fork we find by substituting (4.2) in (1.1) and collecting
the terms of order e66 an equation of the following form:

(4.2.1)

with

ak+l
{Wo+ 6162w, + 2(1 + E’6[6br,s)}-1

where denotes summation over all indices r, s such that 0 -< r -< k, 0 _<- s _-< 2, r + s <
k + l- 2. For example, the equation for 4o,o becomes

1
(4.2.2) Atbo,o ---.

Wo

Since Wo behaves as /9
2 for p $0 (see (1.5)) the right-hand side of this equation is

singular for p $ 0. Analogously, singularities can be expected in the other Fk,’s. Con-
sequently, it is logical to split 4k,l into a singular part and a regular part. Now, it will
be crucial to the construction that the singular part of 4k,l can be determined in a
unique way from the previous 4, r with k _-< k, _-< 2, k + < k + 2 by an iterative
procedure using only the equation given in (4.2.1). The regular part of 4k,l will have
freedom in the form of its boundary values on S. Moreover, the following lemma
provides us with more information on the structure of the singularities near the free
surface.

LEMMA 8. The equations given in (4.1.1) have a set ofsolutions (k,i with thefollowing
properties"

(-) r,A,f(4.2.3) 4’,1 ,(P, 0). H
p Pl + d#,l

/71
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where b:, will consist of certain singular terms and b:i is sufficiently regular"
s,M(4.2.4) k,l j, kf(O)" (In p) p,

-I<j<_M+2
0<=i<--1+1/2
i>O orj<O

k,l
,j smooth andperiodic in O,

(4.2.5) b, CM+2+"(I+), a (0, 1).

In this decomposition M NIU {0} is arbitrary. H is the cut-offfunction given in (2.6)
and pl > 0 is e-independent, but suf#ciently small. The construction of the dPk,l’S goes
iteratively, namely, once all bk, with k + <-N are known with properties as in (4.2.3)-
(4.2.5), then for k + N+ 1:

(i) b, follows uniquely within the specified class by requiring"

(4.2.6) Acs,m cM+ok,l +Fk,l (((p, O)lO<=p<-pl}),

(ii) solution of

(4.2.7) m( r,M --Pk A( d.s’MH)k,! k,l

r,M(4.2.8) b k,t gk,l,

where gk, C(S) is free.
oofofLemma 8. Working out the differentiations in the definition of Fk, leads

us to

(4.2.9) Pk, X j,grk, l,p,m,n wo-m-Iw 1-I (ri,
1g]<--l-2m-2r-p n<-m terms

l k-p 0 is allowed
m>_ l,O<_n<=m

lk,l,P,m,nwith certain constants _, If we assume that the lemma is true for k + < N, a
simple calculation shows that for a pair (k, l) with k + N+ 1

(4.2.10) k,I -s 4 --r,mF:,l H + Fk,

with

and

Pk, X y#)l(in p)’pY,
--(I+2)<=j<=M
0<=i<=1/21
j<0 i>0

jk,
i,j smooth and periodic in 0,

M cM+tk,l (fi+), a (0, 1),

where M [_J {0} is arbitrary. Using (4.2.2) we see that (4.2.10) also holds in the case
k 0, 0, where the iteration is starting.

Our next step is to solve the equation

(4.2.11) Ats,M -s,M 1+1/2/ pM+l)k,l --Fk, + O((ln p)

This really involves no more than some linear algebra to determine the coefficients
k,lij. In a straightforward way one can compute that these coefficients have to satisfy

a system of linear equations of the following type:

2 0 k,l

(4.2.12) Eij ki k,l,s f i’,j’ -k
ij-" X Di,,j, Os Ji"-(j),j-2

(i’,j’)> s(i,J) s=0 0
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with

ifj < 0 orj => 2,
ifj 0 orj 1,

10 ifj=0orj=l,
8(J)

else,

(i’,j’) > (i,j) if]0n P)’PJl- o(l(ln p)"pJ’]) forpO,

i.e., if [j’ <j] or [j=j’ and i’> i].
Note that > is a linear ordering on the pairs (i, j) and that the system of equations

in (4.2.12) can be solved recursively starting with (i,j)= (1 + 1/2,-1), corresponding
to the principal term w.r.t, this ordering and then going down in accordance with the
ordering. In this way 4;. is uniquely determined and (4.2.6) holds. Next, we conclude
that the right side of (4.2.7) is in CM+"(+). Consequently, (4.2.5) holds (see [14],
15]). Thus the solutions of (4.2.1) defined in (4.2.3) have indeed the properties specified

in Lemma 3. [3

Let us now define

(4.2.13) N= e-lwo+ (ln e).w
__

klC12Dk, as in (4.2).
k+lN

We conclude this section with the following error estimate indicating how well
satisfies (4.1.1).

LEMMA 9. On the domain {x + distance (x, S) 1} we have

(4.2 14) -eA+-f <K.
e 62 N+I

1+ " 61+

with an e-independent constant K > 0 and p d (x, S ).
Proof of Lernrna 9. We note that the error is given by

s’-. (1-t)" OtN+ WOA- t,t2t2w, A- t2 1 + 2
r+s<--N

dt

which for d(x, S)>-61 can be estimated as

<--Kle k l-m-1182 W H (ri,si
k+l=N+l

1g]<=l-2m-2r-p terms
Il=k-p

<= K2e
k+l=N+l
][l--2m

and then (4.2.14) follows easily, l-1
This lemma demonstrates that the construction yields a formal approximation of

arbitrary order in lo.
4.3. The scheme leading to uniquely defined Ok,’S and k,’S with determined Ak,I’S

and gk,l’S. Of course we still have to determine a bunch of free "constants" in the
expansion in the layer along S and in the expansion in 1)+. This is done by a suitable
matching argument. In 5 we shall show that this leads us to a layer expansion along
S and an expansion in + with an overlapping domain of validity.

In order to fix the free Ak,’S, we notice that matching of the layer expansion and
the expansion in + requires that
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81 82 found by re-expansion of the layer ingk,! is the constant term of order k

(p, 0) coordinates,
the linear term in bk, near S coincides with the linear term found in the O(8k82)

term obtained by re-expanding the layer in (p, 0) coordinates. Note that the term
of order k8182 in the layer expansion has a coefficient

(1 f)Ak,l+l + Bk,t+I
where Bk,t+l is completely determined by the functions Or, with 0 <_- r < k, r + s k + + 1
or with r+ s _-< k / (see (4.1.32) and Lemma 4). Hence Ak,t+I has to satisfy the following
equation:

(4.3.1) Ak,l+ (1 + /){0k:l- Bk,t+}
with oktl as in (4.2.4).

Consequently, the scheme that provides us with the Ok,t’S and bk,’s in a unique
way runs as follows. We start with N 0 and then successively

Aconst is known see (4.1.31the Ok,t’S with k + N known --> /,k,t

gk, Aconst

def
k,l

all *oki’S with k + l= N - the bk,,’s with k + l= N known
are known (see (4.2.4))

Ao,v+l is known (see (4.3.1))

A1,N is known (see (4.3.1))

Av,1 is known (see (4.3.1))

Arv+,o=0 (see Lemma 3)

the Ok,t’S with k + l= N/ 1 known l- etc.

This scheme leads to gk, and Ak,l, which are smooth and periodic in 0. It will be clear
that only a very partial matching between the layer expansion and the expansion in

f+ has been built into this scheme. In the next section we consider the matching
relations in more detail.

5. Matching relations of the internal layer at S and the expansions in rio, ffl+. This
section is a preparation for the construction of a global uniformly valid expansion in

and the demonstration of its validity We show here that various expansions
constructed in preceding sections have overlap domains in which their differences are
small. First we shall show that the internal layer expansion XIs+2 and the regular
expansion U up to terms of the order 822 have an overlap domain, and we shall
estimate their difference there.

LEMMA 10. There are e-independent constants/91, 1, M and Iz > 0 such that for
--/91 P --821
(5.1) IUm-Wv+21<=M{(82+p)m+2+exp (-izp/82)}
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and

Or+s
proproos(um--attN+2 <=M{(t2+p)m+2+exp(-tzp/(2)}, r+s<-2.

Note that overlap up to a ceain order takes place in any region -l(e) p
-2(e) with 1 o(1) and 82 o(2). The difference is almost as small as osible in
a region -AS p -B with suitably chosen e-independent constants A, B > 0.

oof of Lemma 10. This proof is not very dicult. It uses the obseation that
there is exactly one function P =def N+ 1 of the form

(5.,2) P Pld(O)8Pj

I+jN

with smooth, periodic coecients p,, such that

p
(5.3) -8AP+ p-f :o(=+lpl) for820, pT0.

1+

On the other hand, both TU thTaylor expansion w.r.t. 82 and p up to terms 8p
with l+j of Us, and Q=o 8PI(p/82, o) with Pt the polynomial found in
the expansion of @o,1 for -- (see Lemma 2), satisfy (5.2) and (5.3) (see (2.13) and
Lemma 7). Hence TUn=Qn=P. Fuaher, ]Un-TUnIMI(2+p)+1,
I-1 M2 exp (-p/62) and I+-1 Ml(6+p)+l (see Lemma 2). Thus
(5.1) has been derived. The estimates for the derivatives follow in an analogous way.

Next we shall demonstrate that u+2 and the expansion in +, have an
overlapping domain of validity. It is no surprise that in this case we have to work
harder to get an appropriate estimate for the difference.

LEMMA 11. ere are e-independent constants Pl, 1, M > 0 such that for
p/2

In (p)+ 2. (61 + 62)N+3

and such an estimate also holds true for
Or+s

(6)opoo (+-) r+s2.

Proof of Lemma 11. We split the difference as

Win+2 pm (Wm+2 Am+2,r + (Am,r pm) + (Am+2,r AN,r)(5.5)

with K > N. The first and the last part have already been estimated in a way required
by (5.4) (see Lemma 6).

An estimate of the second part is found by applying the following result:

for each (k, 1) and for each K1 > 0 there exists a K > 0 such that

IA(A:k,!- Ck,l)l- O(PK’) for p ,l, O,
(5.6)

I(A’ +) for , O.k,I- Ck,/)l- O(PK’

Once (5.6) has been demonstrated, it is clear that the second part is such that there is
an M > 0 independent of e such that

(5.7) IAm’r -dPml<- Mpm+
by taking K sufficiently large. Therefore the estimate in (5.4) is complete.
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Let us now derive (5.6). This is done by induction w.r.t. No =def k + 1. We start with:
a. No =-2, i.e. k =0, =-2. Using Lemma 7 and the first part of Lemma 6

(with N replaced by K we find that

(5.8) (Ao,-2) 1-f+ O(pK+l).

As a consequence of Lemma 5 and (4.1.17) we obtain

(5.9) : OA_
Ao,-2 =0, =0.

,=o Op p=O

Together with the problem for Wo in (1.5), this implies that

(5.10)
A(w-AK’-2)= O(P+’)’

(Wo- Ao,-2)lp=o 0, pp(WO Ao,-2)l=o 0.

Moreover, the r.h.s, of the equation is CK+I+" for p => 0, p sufficiently small, because
of Lemma 5 and Lemma 8. Using a Cauchy-Kowalewsky type of construction (cf.
[15]) we find that

K K+3(5.11) Iwo-Ao,-=l O(p forp0.

b. Suppose (5.6) has been proved for k + _-< No. Consider, then, values such that
k + No+ 1, k + 0 if No -2. Given K1 > 0, choose K so large that

IA,- ,,1- O(PN+I+K’)
for all r, s with r + s =< No. From the structure of F. as given in (4.2.1) it follows that

(5.12) A6k,, --Pk,l-- --Pk,l J O(P
where k*., denotes Pk, with Wo, Wl, ,,s, r + s <--_ No replaced by their approximation
AK,s, r + s _-< No. Again using Lemma 7 and the first part of Lemma 6 with N-> K, we
obtain

(5.13) AA,/= -’,t+ O(p’).

Because of the uniqueness of the singular terms (ln p)p with j<0 or i>0 in the
solution of Ab =-/2*,t (see (4.2.12)), we obtain

k,l--AK cK1+2+ck, is for p _--> 0, p sufficiently small,
(5.)

A(b,-A#,) o(p,,)
Due to the partial matching relations imposed in 4.3 we have as boundary conditions
on S

--Ak,)l=o 0.kK,l)Ip=O O, (k,l K(5.15) (bk,, A
a

Again a construction of Cauchy-Kowalewsky type shows that

(5.16) Iqbk,--Akr,l O(pr’+2) for p$0.

The estimates on the derivatives can now also be verified in an elementary way; details
are left to the reader.

We conclude this section with the remark that for N >-0 the overlap region is
nonempty and that the difference is small in the region

(5.17) AE<-_p<-Bx/2, i.e.,Ail/2<=<=Bl/2
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with suitably chosen e-independent A and B > 0. This region is special, since exactly
in this region N+2 and N give rise to the same order of error in the equation;

(5.18) error (2)N+3- Osharp Osharp(e(N+3/4)

in that region (see Lemma 7 and Lemma 9). In fact it is this error, which is worst in
the global formal approximation, that we discuss in the next section.

6. Composition of a global approximation Z and estimation of the error u-

Z. Now we are in a position to put all the previously constructed local approximations
together into a global approximation ZN. We define

+(Zo+) 1-H e
with

ItN+2
Zo

the expansion in the layer along with the free surface $, see (4.1.33),
the regular expansion in o corrected with the layer expansion along
0f, see (2.4),
the expansion in f+ (see (4.2.13)),

[p2 is a smooth cut-off function, which is =1 for ]p, __< (1/2/-,/2 and which
He) vanishes for ]Pl e 1/4 (see (2.6)).

THEOREM 1. e constmction process has been successful in the sense that Z is a
global, formal approximation"

(6.2) max -eZ+-Z f =< R. e/ In
a l+Z

where R is an e-independent constant >0.

oofofeorem 1. The estimate in (6.2) can be derived by making a subdivision
of into

/= {(p, O)]p2}, 1,+ {(p, O)lp>O,p2},

,.o=((p,O)lp<O,p2}, =+{,U,.+), =ho(,U,.o}.
Paial results in the direction of (6.2) were already found. In we use (2.15) and
obtain an O(e N+3) error. e larger contributions come from , ,.+ and . We
apply Lemma 7 and Lemma 9 in and ,,+ respectively. In both regions we find an
O(e U4(N+3)) error, because of the special choice of the cut-off at an O(e/4)-distance
from S (compare (5.18)). In the overlap region ,+ we have

(P2)(*N+20N).

Using Lemma 9 and the matching relations in Lemma 11, we can see that here the
error is at most (4alln 1)+. Specially, the term. (aH()/ap) (*+-)

gives rise to this order (see Lemma 11). Other terms yield contributions of a smaller
order. e region ,o is dealt with in an analogous way using Lemma 10.
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The next step is to convert the estimate in (6.2) into an estimate for u- ZN. This
can be done with the following result:

LEMMA 12. Suppose that Z Coo(), Z >- 0 satisfies
Z

(6.3) -eAZ+-f r, Z 0 on
I+Z

Then there is an e-independent constant v > 0 such that

(6.4) lu-Zlsp<--Irlsu.

Proof of Lemma 12. We use a technique based on barrier functions and the
maximum principle (see 17], 12] and 18]). Suppose that a positive function v Coo(l))
can be found such that

Z+v
-eA(Z + v) +-f>=0 in

l+Z+v
(6.5)

Z+ v_-> 0 on

Then Z + v is an upper barrier for the solution u, i.e.,

(6.6) u<-_Z+v on.
To prove (6.6) we use the fact that Z+ v-u =aer w satisfies w Coo() and

-eAw+w>-O inf,,

with

w _-> 0 on Oil

?.=(l+Z+v)-’(l+u)-’,

Coo(l) and ->0.

Implicitly, we used the fact that u C(l)) (cf. [4]). The maximum principle for second
order elliptic Dirichlet problems (cf. [19]) implies that w-> 0.

If a negative function v Coo(l)) can be found such that (6.5) holds with reversed
signs in the region where Z + v >-0, then max (0, Z + v) is a lower barrier for the
solution u. This follows from (1.3) in combination with a maximum principle argument.

Now, we make the following choice for the function v:

(6.7) v b cos
d

cos
d

with a value for b >_-0, which we shall specify presently. The point x and the number
d > 0 are chosen in such a way that the product of the cosines is _-> 1/2 on 1. With this
function v we obtain that

Z+ v e "rr
(6.8) -eA(Z+v)+--f>--r-eAv>--r+b’-l+Z+v
which is _->0, when b=(v/e) min (0,-mina r) with v=8(d/Tr)2. In this way an upper
bound is found. For the lower bound we proceed in an analogous way. Actually we
even obtain a somewhat better estimate than we do from (6.3)"

(6.9) max (0, Z v ) +_.vmax (0, max r) _-< u _-< Z min (0, -min r). l-!
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An immediate consequence of Lemma 12 and Theorem 1 is

(6.10) [u Zc[s,p O e -1 e 1/2 In if N => 0.

However, this estimate can be improved somewhat. It follows that

(6.11) IZ Z,I sup O e1/ In if N1 ->- N _-> 0,

as one may verify with a straightforward calculation. Since

lu Zr, ls,p + IZ Zlp, the following result is found from (6.10)-(6.11).
THEOREM 2. I the sup norm it follows that the constructed global approximation

Z differs from the solution at most by an amount

(6.12) lu Zlp O e1/ In N e 0.

Of course the estimate given in the introduction (1.12) is contained in (6.12) for
N suciently large. In order to prove (1.13) and (1.14) we need estimates on the
derivatives (0/Ox, )( u Z), (0/Ox,Ox)( u Z). Note that

[ (1 +u)1] Ooxi .(1)_(6.13) -a+ (u-Z) ,,
with

+ ) )ri,N
OXi -xt(l+Zv (l+u

(1) < r(1)_ --1 1/2
ri,N[up ai,Ne e In

Using a technique shown in Lemma 12 we see that

(6.14)
sup

Nlsup)"

Now for N sufficiently large (1.13), the explicit expression for Zv and its derivatives
is contained in (6.14), (6.12). An interesting observation is that the main contribution
in the estimate (1.13) comes from the layer along 0ft. Differentiating (6.13) w.r.t, xj
and proceeding in an analogous way we obtain

02
(6.15) (u-Z) =O(e) for N sufficiently large.

OxOxj p

Thus we are led to (1.14). Again the main contribution in (1.14) comes from the layer
along 0f/.

7. Discussion of some generalisations. Two generalisations of the problem as
specified in (1.1) can be dealt with in a rather straightforward way: (i) higher
dimensional domains fl and (ii) general second order, negative, elliptic operators A
with smooth coefficients, instead ofthe Laplacian A. The conditions in the Introduction
have a formulation, which already applies to this situation. Of course certain minor
changes have to be made in the construction. For example, in general one has to work
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with several local coordinate systems (p, 0); to describe a neighbourhood of S and
expressions such as (3.2) will be more complicated. However, nothing changes in the
structure of the approximation ZN, and our methods of proving the validity of the
approximation based on the maximum principle still work.

A different story arises for a generalisation to more general nonlinearities, i.e., for
a problem

(7.1)

with

-eAu+d(x, u)=f>_-O onI,

u 0 on 012,

(I)e C(fixO), (I)(x,O)=O, u>O, irn(I)(x, u)= 1.

Note that a more general case with limu_oo (x, u) to(x) on , to C(), to > 0 can
be reduced to the one above by dividing by to. Now the structure of the approximation
near S and f+ will depend heavily on how (x, u) tends to its limit as u . In cases
where has the following asymptotics"

(7.2) (X,U)I--AI(X)u-I+ Z Ak(X)u-k foru
k>_-2

with coefficients Ak C(l)), A > 0, the approximation will still have a structure as in
this paper and its construction is analogous. In cases where has completely different
asymptotics for u--> o, the structure of the approximation will also be different. For
example, for 1- e the structure of the approximation will be easier, since only
order functions of the type ep/2, p =-2, 0, 1,. will then appear (see [10]).

The method of proving validity given in 6 extends without difficulties to these
more general nonlinearities.
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AN ABSTRACT D’ALEMBERT FORMULA*

JEROME A. GOLDSTEIN" AND JAMES T. SANDEFUR, JR.

Abstract. The abstract d’Alembert formula expresses solutions of the factored linear equation

I]jffi (d/dt-Aj)u(t)=O as u(t)=Y.ffi u(t), where (d/dt-A)uj(t)=O for j= 1,...,n. Here each Aj
generates a (Co) semigroup on a Banach space X and suitable hypotheses hold. Applications are made to

asymptotic theory, specifically to equipartition of energy and to scattering theory.

Key words, d’Alembert formula, wave equations, scattering theory, equipartition of energy, semigroups
of operators

AMS(MOS) subject classifications. 47D05, 34G10, 35P25, 35L30

1. Introduction. Let A1,... An generate mutually commuting strongly con-
tinuous semigroups of bounded linear operators on a Banach space X. If At-Aj is
invertible and has a big enough range for j, then any solution u of the factored
nth order equation

fi --Aj u(t) =O
j=l

decomposes as asum u( t) Y=I u( t) of solutions of (d/ dt- A)u( t) =0. The motivat-
ing example for this decomposition is the classical d’Alembert formula for the one-
(space-) dimensional wave equation, which expresses the solution of

))C
2 0 -d-(-1)Jcd/dx u

Ot2 Ox2
j=l

as u(t, x) F(x + ct) + G(x ct).
The abstract d’Alembert formula is presented in 2 and examples are given in

3. In 4, 5 and 6, we use the abstract d’Alembert formula to unify, extend and
simplify equipartition of energy results. Specifically, in 4, we improve a result of
Goldstein and Rosencrans [3] by deriving equipartition of energy for the telegraph
equation

utt + 2but + Uxx 0

in the sense that Ilu,(t)ll/llu,,(t)ll "--, 1 as t-oo. In 5, we show for the "damped"
wave equation

utt + 2but, + u,,,, O,

that limt_oo Ilu,(t)ll/llu(t)ll exists, that this limit, L, satisfies

[(b2+ 1)1/2-Ibl]2_-< L=< [(b2+ 1)1/2+ Ibl]2,

and that L depends on the initial data. In 6 we give equipartition of energy results
for equations of higher order (in time), which unify the results of Mochizuki [ 11] on
factored wave equations and of Goldstein and Sandefur [6] on equations of order 2n.
Applications to scattering theory are given in 7.
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2. The abstract d’Alembert formula. Let X be a Banach space. The following
assumption will be made throughout this section.

Hypothesis (H1). For j 1,..., n, Aj is the infinitesimal generator of a (Co)
semigroup Tj { Tj(t): _-> 0} on X. These semigroups commute, that is,

Tj( t) rk(S) Tk(S) Tj( t)

holds for j, k {1,. , n} and all t, s _-> 0.
Of concern is the nth order differential equation

j=l

to be solved for u :[0, oo) X. Special cases of (1) arose naturally in our study of
equipartition of energy; cf. [6]. In fact, a very special case of the abstract d’Alembert
formula is buried in [6], and it was our desire to understand better the calculation in
[6] that provided the initial motivation for the present paper.

Our first theorem establishes the well-posdeness of the Cauchy problem for (1).
Theorems 2 and 3 give a clean statement of the d’Alembert formula. Theorem 4 gives
a messier but a more useful version of the formula.

Following Sandefur [ 12], we say that the initial value problem for (1) is ellposed
on R+ [0, ) if

(i) For every set of initial data {bl, ", b,} with bi D, where D is some dense
set in X, there exists a unique solution u of (1) such that 1-Ijk=l (d/dt-Aj)u
c’-k(R+, X) for k=0, 1,..., n-1 and u(k-1)(0)= bk for k= 1,..., n;

(ii) If {Urn} is a sequence of solutions of (1) (in the sense of (i) above) and if
[Ijk=l(d/dt-Aj)Um(t)lt=o->O as m->o for k=O, 1,...,n-1, then I]jk__(d/dt
Aj) Um (t) -> 0 as m -> for k 0, 1,. ., n 1 and uniformly for in bounded subinter-
vals of R+.

THEOREM 1. Assume Hypothesis (H1). Then the initial value problemfor (1) is well
posed.

For the proof we need an extension of a classical ancient result of Gel’land [1].
LEMMA. Let Hypothesis (H1) hold. Then fqj__ C(Aj) is dense in X.
Here C(Aj)= fq m= Dom (Aj). For n 1 this result is due to Gel’land; see [7,

p. 308]. We shall prove it for n 2, assuming it for n 1. Two remarks must be made
in connection with this: (i) the n 1 case actually follows from the proof given below
if we specialize A2 to be zero, so that T2(t)-= I; (ii) the proof of the general case is
by induction and is in fact the following proofexcept for some inessential modifications.
Thus the details of the general case may safely be omitted.

Let f C(A2), which by hypothesis is dense in X. Let b C((0, oo), R), the
subscript c denoting "compactly supported," and set

g= b( t) Tl( t) T2( t)fdt.

We claim that

g Dom (A’) Dom (A’)
2for all m _-> 1. It then follows that g [j= C (Aj). Since g ->f as b -> 8o (for example,

take b_->0 supported in [e, 2e] with o b(t) dt= 1 and let e-> 0+), we conclude that
the lemma follows from the claim.
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To prove the claim, let b be supported in e, 1/e and let 0 < h < e. Then

Tl(h)g= 4(t)T(t+h)T2(t)fdt= 4(t-h)T()T2(t-h)fdt.

Consequently

h-l[T(h)g-gl h-[(t-h)-d(t)]Tl(t)T2(t-h)fdt

(2) + 4)(t)T(t)h-[T(t-h)f T(t)]fdt

’(t) TI(t) Tz( t)fdt (t) TI(t) T( t)Azfdt.

Hence g Dom (A) and Ag is given by (2). By induction the above argument shows
that g Dora (A) and

A?g= 2 (--1) k)(t)Tl(t)T(t)AT-kfdt;
k=0

here () m /(k [(m k) [) is the usual binomial coefficient. Next, by the commutativity
hypothesis (H1), f Dom (A) implies Tl(t)f Dom (A2) and

A2T( t)f TI( t)A2f

and similarly forA in place ofA2. Consequently, sinceA is closed andf Dom (A),

(t) T( t) T:( t)fdt Dom (AT)

and

A’ b(t) Tl(t) T2(t)fdt dp(t) TI(t) T2(t)Afdt.

Since m is arbitrary, the proof is complete.
Proof of Theorem 1. Let D be any dense subspace of fqj C(Aj) that is left

invariant by each Aj. For instance, D= fqj__ C(Aj) will do. Theorem 1 now follows
directly from the lemma and from a result of Sandefur [12, p. 731]. l-]

Consider (1) with n 2 and A A2 A, where A generates T. Then all solutions
of (1) are of the form T(t)(ck + t,) where b, are in Dom (A). If we want solutions
of (1) to be of the form u(t)= i=1 Ti(t)@i, then to avoid terms such as tTi(t), it is
necessary that Ai- Ai be injective for Sj.

Hypothesis (H2). 0 p(Ai-Aj) for ij. More precisely, zero is in the. resolvent
set of the closure of Ai-Aj for Sj.

kWriteu (I-I--1 (d/dt-A)) to mean that I-I= (d/dt-A)u(t) =Ofor >=O. Here
Ac stands for "null space."

THEOREM 2. Assume Hypotheses (HI)and (H2). Then we (Hj=I (d/dt-A))
implies w = w where w AC(d/ dt Aj).

Proof. The proof is by induction on n. (Previously we have assumed that the j’s
increased from right to left. For simplicity of notation we assume in this proof that
the j’s decrease from right to left.)
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Let
The case n 1 is trivially true. Assume the theorem to be true for n 1 with n -> 2.

and define u d/ dt A. w. Then

j=l

By the induction hypothesis, u Yo"=- uj where u (d/dt A) for j 1,- -, n 1.
Next, w’-A.w u implies, by the variation of parameters formula (alias Duhamel’s
formula),

w(t)= r.(t)w(O)+ r(t-s)u(s) ds

T.(t)(O)+ T.(t-s)T(s)u(O) ds since ueN -A
T.(t)w(O)+ [T(t-s)(s)(Ag-A.)-lug(O)] as

j=l

by Hypothesis (H2) and since 0 p(Ag-A.)

T(t) w(O)- , (Ak-A.)-Uk(O)
k=l

+ , T(t){(Aj-A.)-lu(O)} =- wg(t),
j=l k=l

where wg )/’(d/dt Ag) for j 1,. ., n.
e next theorem is a variant of Theorem 2 to the context of generalized solutions.

u F(x + t) (for x, e ) satisfies u.=u= in some sense, even if F is not a C function.
This is the notion we want to generalize to an abstract context.

According to [12], (1) can be reduced to the system dw(t)= Aw(t) where

A I 0
0 A 0

I
0 A.

acts on the product space X". Moreover, u is a solution of (1) if and only if u is the
first component of a solution w of w’= Aw.

Now let Ao generate a (Co) semigroup To on a Banach space Y. We call To(" )f
a mild solution of dv/dt Aov for everyf Y. A mild solution need not be differentiable,
but it is uniquely determined by its initial condition. By a mild solution of (1) we mean,
using the notation of the above paragraph, the first component of a mild solution w
of the first order matrix equation corresponding to (1).

Write u e (iIj=l (d/dt-A)) to mean that u is a mild solution of I] kj=l (d/dt-
Ag)u(t)=O for t-->_O.
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THEOREM 3. Assume Hypotheses (H1)and (H2). Then w(i-lsl (d/dt-As))
implies w s"= ws, where ws (d/ dt As).

Proof. Using the Phillips perturbation theorem, we can show (cf. [12]) that u is
a mild solution to (1) if and only if

u( t) Tl( t)d/l +
m=l

Tm(t2-tl)Tm+l(t)d/m+l dt.., dtm
where

m-1

lm--tm’-- E (-1)k E
k=l l<=il<’"<ik <-m--1

and bm- u(m)(0). In particular, when n- 2,

Aik "Ail(m-k

u(t)= Tl(t)tl + TI(t-s)T2(s)(2-AII) ds.

The proof of the necessity is by induction. Assume the result true for n- 1 and
let u be given by the above formula with suitable 1," "’, ,. Note that

folioS- t:
)... T,(tl)On dtl dtn_lu(t) Uo(t) + Tl(t- tn-I

where Uo is a mild solution of an equation of form (1) but of order n-1. By the
induction hypothesis, Uo(t) =s-i vs(t), where vs(d/dt-As). By the argument of
the proof of Theorem 2,

t2
Tn_(t2- t)Tn(tl)@n dt= T,(t2)[(A,-A_)-I@,]+ Tn_l(tE)[(An_l-A,,)-l@,],

o

j=n-2

and so on (by induction), whence

u(t) Uo(t) + Tj(t)aj Tj(t)flj
j=l j=l

and thus u=Y.i= ui with u(d/dt-Ai). [3

At first glance it seems "obvious" that the converse ofTheorem 3 holds. It certainly
seems justified calling u(t) il T(t)fli a weak solution of (1), but the point is that
this u is not necessarily a mild solution of (1). Let n- 2 and

u(t)- TI(t)[(A1-A2)-IbE-AE(A1-AE)-bl]
+ T2(t)[(AE-A1)-lbE-Al(AE-A1)-lbl]

--= TI( t)l + Tz(t)/3.

This u is a "weak solution" in the above sense, but u is in general not a mild solution
of

unless 41 e Dora (A1). Similarly, u is a mild solution of
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if $1 Dom (A2). In particular, despite the commutativity, the order of the factors in
(1) matters as far as the notion of a mild solution is concerned.

It is also of interest to note that u can formally be a solution to the Cauchy
problem even if $1 Dom (Am) and $2 Dom (A2); but in this case u need not be a
mild solution.

THEOREM 4. Let Hypothesis (H1) hold. Let D be a dense subspace of =1 C(A)
such that the problem

w(t)=O (t e0),
j=l

w<k)(O) =A, k O, 1,.’’,n-1

has a unique solution whenever fo,fl,"" ,f- are given in D and are such that
A’I A D holds for 0 <j < n 1 and ik 0, k= ik n 1. Suppose further that
D Ran (A A) for #j. en any w (= (d/ dt A)) with initial date in D
satisfies w = w where w (d/ dt A).

oof For n 1, this is trivial. For n =2, the proof of Theorem 2 gives, for
u=(d/dt-AE)W, w(t)= TE(t){w(O)-(A-A2)-lu(O)}+ Tl(t){(Al-AE)-lu(O)}. By
hypothesis,

u(0) w’(0)- AEW(0) D c Ran (A1- A2).

Thus, in the case of n 2, the proof of Theorem 3 does not really require the condition
O p(A1-A2); only the assumptions of Theorem 4 are needed.

For the case of general n, the induction argument of Theorem 3 gives w 1 w,
where w (d/dt-A), proved we can show that each of the vectors (A-A)-’u(O)
(for j n- 1) is in the subspace D. But this follows from the proof of Theorem 3
together with the conditions AI Aw(O) D for j {0,. ., n 1}, ik O, and

k=l ik n- 1. The details of the induction proof can be safely omitted.

3. Four simple examples.
Example 1. Let A generate a (Co) semigroup on X and let 0< fll < fiE"" < fl.

Set A flA for j 1,..., n. Then Theorem 4 applies provided

R(A)C(A)

is dense in X, where R(A) = Ran (A).
Example 2. This provides an illustration of Example 1.
In Example 1 take X to be a complex Hilbe space and take A iH where H is

a spectrally absolutely continuous self-adjoint operator on X. (Cf., e.g., Kato [8].)
Then, by the spectral theorem (a unitarily equivalent representation of) A acts as
multiplication by the identity function on@j L2(, v(x) dx), where 0 v Lo()
for each a J, i.e.

The set

D={(fo,’fo, C(\{0})for each a J}
is a subspace of C(A) R(A) and is dense for X. Thus by Example 1, Theorem 4
applies in this case.
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A special case is the wave equation in free space" utt Au where A acts on L2(Rn).
When n 1, we can show that Theorem 4 applies to the wave equation u, uxx in
LP(R), 1-<_ p < oo and in BUC(), the bounded uniformly continuous functions in the
supremum norm.

Example 3. The equation

d A -/3A u(t) 0

in X LZ(") is satisfied by the shear and pressure waves in linear elasticity in free
space. This is a fourth order equation covered by the analysis of Example 2, provided
that a and/3 are distinct positive constants. The equation has the form I-I]=l (d/dt-
icjA)u(t)=O, where A= (-A) 1/2, Cl--c2--ol c3 -c4-- .

Example 4. In the set up of Example 3 introduce a nonnegative potential V
Lp(n)+ LC([n), where p >-2, p >- n/2. Then the fourth order equation--(A V(x)) -d--(A- V(x)) u(t, x) 0

is covered by Theorem 4.

4. The abstract telegraph equation. Consider the dissipative wave equation or
abstract telegraph equation

du du
(3) dt---T+ 2b--d+ H2u =0,

where H is a spectrally absolutely continuous self-adjoint operator on a complex
Hilbert space X. Define the kinetic and potential energies of a solution u at time to
be

g(t)= u’(t) , P(t)= Ilnu(t)ll.
When b=0, total energy is conserved (E(t)=K(t)+P(t)=E(O)) and energy is
equipartitioned (K(t), P(t) E(0)/2 as ). When b > 0, E(t) decays to zero, but
nevertheless a weak form of equipartition of energy was established by Goldstein and
Rosencrans [3], who showed that 0<lim inf,_ K t)/ P( t) _-< lim sup,_o K(t)/P(t)
<, provided that 0 p(H) and b is sufficiently small. With the aid of the abstract
d’Alembert formula this result will be sharpened substantially.

THEOREM 5. Let H be a spectrally absolutely continuous self-adjoint operator on a

complex Hilbert spaceXand suppose H >- aL Let 0 < b < a. Then every nonzero solution

of (3) admits sharp equipartition of energy in the sense that

lim K t)/ P( t) 1.
t-

Proof The operator B=(H-bI)1/2 is specially absolutely continuous, and

C iB generates a (Co) unitary group which we denote by { T(t) e ’c" R}. Equation
(3) can be rewritten as

(--A+)(--A_) u O,

where

A+ -bI + C.
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whence

limK(t)/P(t)=l.

Remarks. Many cases of equipartition of energy from a finite time onward are
known. By this we mean that, for { T(t)" R} a (Co) unitary group and for D a suitable
dense subset of X,x,y D implies that there exists a 7.= z(x,y)>O such that
Re(T(t)x, y)=0 for Itl> . When {e’c} satisfies this condition we get

K(t)= P(t)=1/2 e-b’

for > 7-= 7-1(b, ) for suitable data 4’ and .
Let the notation and assumptions of Theorem 5 hold. The function v(t)= ebtu(t)

satisfies

v"+(HZ-b2I)v=O.

In particular,

If we let Ko(t)=llv’(t)ll 2, Po(t)=ll(H2-b2I)l/2v(t)ll 2, then Kv(t)/Pv(t)--> 1 as t-->
for each v corresponding to nonzero initial data. By combining calculations involving
Kv, Po with those involving K and P, we can conclude that (for H absolutely continuous
and H--> a2/, > b>0)

Re (u’(t), u(t))+ bllu(t)ll -lim 0.
t-,, IIHu(t)ll 2

Re(u’(t),u(t))
lim sup < 0
,-, Ilu’(t)ll =

for all nonzero solutions u of (3).
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Thus by Theorem 2, every solution of (3) is of the form

u(t)= e-bt(T(t)dp+ T(-t)d/),

where 4’, Dom (H) Dom (C). The kinetic and potential energies become

K t) e-2’t lla+ T( t)b + A_ T(- t) , 2,

P(t)= e-2’lln(T(t)+ T(-t),)ll 2.

Consequently, by the law of cosines, the unitarity of T(+t) and the Riemann-Lebesgue
lemma, limt_,o K (t)/P(t) exists and equals

We let x Hb; then y H, yields

lim K t)/ P( t) [lla+n-’xll + IIa_n-yll=][llxll 2 + IlYll=] -’.

But for each z X,

IIan-z[I-- <(-I +/- c)n-, (-Z +/- c)n-z>

=((b2I-C2)n--z,z)
since H*= H, C*=-C, and [H, C] =0

<(b=I-(bI n=))n-=z, z>- Ilzll,
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5. A "damped" wave equation. Let H be a spectrally absolutely continuous self-
adjoint operator on a Hilbert space X. Of concern is the "damped" wave equation

d2u du
(4)

dt
+ 2ibH-+ HEu O,

which differs from (3) by the presence of iH in the "friction" term. The factor
makes the first order term simply a perturbation and not really a friction term. We let
b be any real number and we make as initial data

(5) u(0) Uo Dom (H), u’(0) u X.

Let c (bE + 1) 1/2.
THEOREM 6. The limit L limt_ K(t)/P(t) exists and satisfies

(c-lbl)2<- L<= (c + [b[)2.
Furthermore L-> 1 as b-> O, and the bounds for L are best possible.

Proof. Let A+/- (-b + c)iH and let { T+/-(t) exp (tA+/-): R} be the corresponding
(Co) unitary groups. Then (4) factors as

0.

By Example 2, the solution to (4), (5) is

u(t) T+(t)b+ + T_(t)_,

where b+/- Dom(H) and

Hb+/- 2-[Huo +/- c-l(-iu + bHuo)].

The kinetic and potential energies are

K(t)= Ilu’(t)ll2- II(-b/c)T+(t)S4++(-b-c)T_(t)S,-II,
P(t) Ilnu(t)ll-- T+(t)n+ / T_(t)n4_ll.

As usual we expand by the law of cosines and employ the unitarity of T+/-(t) and the
Riemann-Lebesgue lemma. The conclusion is that the limit L of K(t)/P(t) as t-->
exists and equals

t [(c b)ll nb+ + b + c)ll nb_ -][ nb+ - + n- -]-.
Letting x= IIn/ll and y= IIn_[I = it follows that L is constant on the lines y= ax
in the first quadrant, 0 -< a-<. (Here a =oo refers to the line x =0.) Think of L= L(a)
as a function of a s [0, ]. Then L(a) [(c- b)- + (b + c)-a:][1 + a2]-, L(0) (c- b)-,
L(oo) (b + c)-. Since dL/da 8abc[ 1 + a2]-: it follows that L is increasing in a (resp.
decreasing in a) for b>0 (resp. b<0). Consequently L attains its maximum and
minimum on the set {0, }. That is,

(6) (c- Ibl)--< Z-<_ (c / Ibl) -.
Note that (c+lbl)- 1 as b-->0. Taking u=-iH(c+b)uo we get Hb+=0 and L=
(b+c)2, while taking u=i(c-b)Huo gives Hb_=0 and L=(b-c)2. Thus (6) is
sharp. [3

The results of this section and the previous section can be unified by considering
the equation

u"+ 2Bu’ + H2u O,
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where H is a spectrally absolutely continuous self-adjoint operator on a Hilbert space
X and B blI + ib2H where bl, b2 are real constants. We omit the details.

The change of variables v(t)= eib’nu(t) converts (4) into

d2v
dt2

+(1 + b2)H2v =0

which admits equipartition of energy using different notions of potential and kinetic
energies than those used in Theorem 6.

6. Equipartition of energy for nth order equations. In [6] we characterized
equipartition of energy for a large class of abstract Cauchy problems of order 2". The
theorem and methods of [6] appeared to subsume all of the literature on equipartition
of energy for higher order abstract Cauchy problems that we knew of except for the
interesting result of Mochizuki 11 ], who treated a special equation of order 2m and
got sharp results. In this section we show how Mochizuki’s result and more general
results for arbitrary order equations follow from Theorem 4.

We then compare his results with ours for fourth order equations of which

where 1, is an example. This paicular equation arises in the study of linear
elasticity. (See Example 3 in 3.)

Let H be a spectrally absolutely continuous self-adjoint operator acting on a
complex Hilbe space X. Consider the nth order equation

3=’ -ijH u(t)=O

where {,. .,,} is a set of n distinct real numbers. Let .=
{(t) =exp (itjH)" s} be the (Co) unitary group generated by Aj=+ijH. Then
by Example 2, the initial value problem for (7) is well posed and eve solution (in a
dense set of solutions) of (7) has the form

u(t) (t)6.
j=l

Assume &j Dom (H"-) for j 1,. ., n. Then

II !1lim IIn--’u<)(t)ll==, (+i)kn-l(t)

lln-ll
j=l

by the law of cosines and the emann-Lebesgue lemma. (Cf. the argument in [2] or

[5].) If we define the jth paaial energy to be

E(t) IIn"--u<)( t)ll

and the total energy to be

n--1

E(t)= E Ej(t),
j=0
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then Ej(t) and E(t) have limits as t+, but E(t) is not constant in general. (E is
constant if n 2 and f12 =-ill; this is the classical abstract wave equation.)

Now consider the abstract 2mth order wave equation

(8) I-[ +2H2 u(t)=O (te)

treated by Mochizuki 11 ]. Following Mochizuki we assume H is a spectrally absolutely
continuous self-adjoint operator on X and that 0< fl < f12 <"" < fl. Letting be
as above, we have (using Example 2) that every solution of (8) is of the form

(9) u(t)= E ((t)+ (-t)),
j=l

where ,..., m, 1,"" ", m Dom (H-). Define the (k+ 1)st paial energy of
u to be

Ek+(t) [[Ham-l-ku<k)(t)[la

(i-((e+(-(-
j=l

for k 0, 1,..., 2m- 1. Then we deduce Mochizuki’s asymptotic result, namely

tm j=l

for k=0,... ,2m-1.
Remark 1. Finding and in terms of the initial data is relatively easy linear

algebra. In the case of (9) with m 2 we have, setting u u((0),

UO (1 + 1) + (2+ 2), Ul iN[I(I 1) +(--)],

u=-[(1 +( ], u3 -N[( +(-].

Consequently

where

1-- XI+, ffJl-- XI-, 2 X2+, ffJ2:X2-

[fllx + y] [fl2x:l: y]
XI+ [2fla(fll2 f12)], X2+/-

[2f12(fl2_ fl)],
X U0" H-zu2, y -iH-ua iH-3u3

By using the parallelogram law, we get the convergence of the above energies in terms
of the initial data as

E,(t)--> [2(/322-/32)]-{(fl -2 +/y) H3y + 211H3x 1]2},
E2(t) --> [2(/322-/)]-’{2 Hy + (/+
E3(t) --> [2(fl2- fl)]-l{(fl + t) Hyii + (t7+ t) Hx -},
E.(t) [(-)3-1{(+) Hy + (t+) Hxi1}.

Remark 2. Let u be given by (9). Then u(t)= u(t), where u satisfies

+N u 0.
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Thus u is partitioned into m additive components, g/k, k 1,’’’, m. We can define
kinetic and potential energies as Kk(t)= Ilu;,(t)ll = and Pk(t)= ll/3.nu(t)l[=; and then
define partial energies as gk(t) =- Kk(t) + Pk(t). Let / (t) k--- Ek(t). Observe that
we not only have conservation of energy, but that we have conservation of each partial
energy since Ilu(t)ll = / II/Hu(t)ll-= E(t) gk(0). In addition, we have equipartition
of the partial energies, that is,

lim K(t)= lim P(t)=2-/(0).

When m 2, an example of which is the equation of linear elasticity, this result
implies that the solutions u is the sum of two waves (the shear wave and the pressure
wave in the example), each of which conserves energy and is equipartitioned between
kinetic energy and potential energy as t--> 4-0o.

In Goldstein and Sandefur [6] we showed how (7) could be reduced to a first
order .system on X when n 2". This first order system is controlled by a unitary
semigroup if(t). In particular, in the case of (7) with m 2, this first order system is

(10) U’(t)=MU(t),

where

0 Ol2
ill, U(t)

WE(t)I
a_ 0 ,] w3(t)/’

Ol2 0 191,1 [w4(t)]
a1=2-(f11+/3E) and aE=2-(-2).

By defining the energies as (t)=j= Ilwj(t)[I =, we showed that the total energy
is conserved and that energy is equipartitioned in the sense that lim,_+/- Ilw(t)ll=-
2-n(0), for j= 1,..., n.

In the case of (10), a straightforward calculation shows that

w(t) aEiH[u"(t)-fllflEHEu]

(11) U(t)=
wE(t) aliH[u"(t)-fllflEH2U]
Wa(t) -2alaEH2u’(t)
W4(t) u’"(t)+ 2-1(fl21+ fl)H2u’(t)

is a solution to (10). By our d’Alembert formula, we know that u= Ul +u2, where uj
tt 2 2satisfies uj +/3H u 0, j 1, 2. Making this substitution into (11) we get

+
ifll Htll ifl2Htl21U(t)=-2H2aa2 u+u !"u-u /

Since IliHull- (t) and I111- g(t),-- 1, 2, w s, om Remark 2, polarization,
and the Riemann-Lebesgue lemma, why the components, I111, are equipartitioned
for j= 1,...,4.

In addition, observe that the two waves, ul and uE, are such that u, uE)- 0 as

In the general case of n-2 in (7), using d’Alembert’s formula to write the
solution of (7) as

u(t) Z T(t)bk,
j=l



854 J. A. GOLDSTEIN AND J. T. SANDEFUR, JR.

where the k depend on the initial data, we can show (after tedius calculations) that
each component, Wk, of the first order system is of the form

Wk( t) ajkT( t)tj,
j=l

where ajk 0 or 1, and {j} depends on {bj} but not on k. In the case of (11), knowing
that uj= T(t)bj+ T(-t),j,j= 1,2, we have that

[Tl(t)dp* + Tl(-t) + T2(t) + T2(-t)
IT(t)6+ T(-t)- T(t)- T(-t)]v t) +
Tl(t) Tl(-t)O T(t)+ T(-t)O]

where =-2iH3 and =-2iH3, j= 1, 2.
Using polarization and the emann-Lebesgue lemma, it can be seen in the general

case that limt IIw(t)ll=: c, c being independent of k, k= 1,. ., n 2m. By consea-
tion of energy, c n- (0), and we again see that the 2 system exhibits equipaition
of energy.

7. Applications to scattering theoff. Let Ao, A generate (Co) semigroups on X.
We define the subspace of asymptotic equivalence Xe for the ordered pair (Ao, A) to
consist of all yX for which there is a vector f+ X such that IlTo(t)f+-T(t)flO
as , where is the semigroup generated by A.

If Ao, A generate (Co) groups To, T1 on X, let X, XSe denote, respectively, the
subspaces of asymptotic equivalence for the pairs (Ao, A1) and (-Ao,-A). We say
that the scattering problem for (Ao A) admits completeness provided

(ii) For each g X there are vectors g Xa such that

IITl(t)g+- To(t)gll+[lT(-t)g_- To(-t)gl0 as t:

Suppose that Ao, A1 are skew-adjoint operators on a Hilbe space X with iAo
spectrally absolutely continuous. Let iA for j 0, 1. Then the scattering problem
for (Ao, A1) admits completeness if and only if the wave operators for the pair (Ho, H1)
exist and are complete (in the sense described in Kato’s book [8]). In this case the
scattering operator exists and is unita, and Xa% can be identified with the absolutely
continuous subspace for H.

We can identify the semigroup with the first order differential equation u’= Au
for X-valued functions on . The definitions given above extend to more general
situations; we proceed rather informally. For j =0, 1 let (DE) be a linear ordinary
differential equation for functions from to X. We say that the scattering problem for
the pair (DE)o, (DE) admits completeness provided the following two conditions hold:

(I) There is a space Xae of continuous functions from to X such that for every
solution Ul of (DE)I in Xae there is a solution u of (DE)o such that [lUl(t)-u(t)[[0
as t.

(II) For every solution Uo of (DE)o there are solutions u of (DE) in Xae such that

Ilu+(t)-Uo(t)ll+[lu_(-t)-Uo(-t)llO as t.

If we topologize the solution spaces of well-posed initial value problems by using
suitable norm (or graph) topologies on the spaces of initial data, then we can extend
the above definition (of completeness) to the context of a dense set of solutions.
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Now suppose (A), A)), (AI), A1)) are two commuting families of
infinitesimal generators of (Co) groups on X, that is, let Hypothesis (HI) hold for
{AJ)’i 1,..., n} with j =0, 1. Assume that the scattering problem for the pair
(a), A1)) admits completeness for i= 1,..., n. Finally assume 0 p(AJ)-Ak)) for
# k and j =0, 1. Then for j =0, 1, every solution of I-Ii=l (d/dt-A))u(t) =0 is of

the form

uj(t) exp { tAJ)}fj
i=1

by Theorem 2. (Similarly we could weaken the hypothesis that 0 p(AJ)-A(kJ)) and
use Theorem 4 instead.) It follows that the scattering problem for the pair of equations
I-I,= (d/dt-A))u=O, I],=(d/dt-A>)u=O admits completeness.

Usually scattering theory for second order or higher order equations is developed
by writing the equations as first order systems and using the standard results of scattering
theory including the invariance principle and other tools (cf., e.g., Kato [9]). The
abstract d’Alembert formula gives an alternate approach to these problems. The
d’Alembert formula also enables one to extend in a natural and simple way the notions
of scattering theory from the context of isometric groups and Hilbert space to the
context of semigroups and Banach spaces.

We close with three simple examples of pairs of equations for which the scattering
problem admits completeness. Let q be a real integrable C function on R. Take
X L2(R) and

d
A)-dx A(2) -A),

dA1)= xx+ iq(x), A(21)= -A1).

The corresponding differential equations are

(DE)o
Ot2 --0X2,

/2iq(x) /(iq’(x)-qE(x))u.(DE)I
Ot20x x

For the second example take X L2(2),
A)=-A(2) i(-A) 1/2,
AI)= -A(21) i(-A + V(x)) /2,

where V is a nonnegative function in Lp(n)+L(n) with p=>2, p> n/2 and such
that V(x) O(Ixl--) for some e > 0 as Ixl- .

The final example seems not to have been treated in the literature before. Take
X L2(2),

A)= -A(2) oi(-A) 1/2 A)= -A(4) fli(--A) 1/2

A’)= -A(21) ai(-A + V) 1/2, A(31) -A(41) fli(-A + V) 1/2.

Thus, with the aid of the Birman-Kato invariance principle, the scattering problem
for the fourth order elastic wave equation with a potential term V(x) (cf. Example 4
of 3) reduces to the scattering problem for the Schr6dinger equation with the same
potential.
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GENERATION OF ANALYTIC SEMIGROUPS BY ELLIPTIC OPERATORS
WITH UNBOUNDED COEFFICIENTS*

PIERMARCO CANNARSA AND VINCENZO VESPRI

Abstract. Strongly elliptic differential operators with (possibly) unbounded lower order coefficients are
shown to generate analytic semigroups of linear operators on L2(RN), L2,, (RN), C(R) and C (Rs).
Some of these generation results are applied to parabolic initial value problems.
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Introduction. A number of papers has been devoted to studying the generation of
analytic semigroups by elliptic operators in unbounded domains 1 c RN (see, e.g. [9],
[22], [21], [28], [29]). Authors, however, have usually concentrated their attention on
operators with bounded coefficients.

In this paper we consider strongly elliptic operators of second order, E, with
coefficients defined on RN and allowed to grow at infinity in accordance with suitable
structure conditions. Such conditions are exactly the ones we need for the applications
in which we are interested.

We prove that E generates an analytic semigroup of linear operators in various
Banach spaces, such as L2(RN), L2’g(RN), C(RN) and C(Rv) (see 1 for a detailed
description of these results). Furthermore, all these results are obtained by the same
method.

It has to be noted that we have confined ourselves to the case of second order
operators defined in the whole space for the sake of simplicity and also because, this
is what we need for the applications we have in mind. Our method may be extended
to more general situations (for example, Dirichlet boundary conditions may be treated
by adapting the boundary analysis of 14]). In fact, we use .2’-regularity techniques
which also apply to solutions of elliptic systems of equations.

The main applications of our results concern the initial value problem for parabolic
equations with unbounded coefficients. Although such equations have been studied
for a long time (see, e.g. [23], [24], [3], [4], [8], [7]), interest in this topic has increased
since connections with stochastic control and filtering theory were pointed out ([6],
[20], [5]). While earlier treatments were mainly based on fundamental solutions, more
recent ones have also developed different approaches, using dynamic programming
[20], semigroup theory [18] or the Feynman-Kac formula [27].

In 7 of this paper we obtain the existence, uniqueness and regularity of solutions
to the Cauchy problem for second order parabolic operators with unbounded
coefficients, as a consequence of the generation theorems proved in 2-6. The results
of these sections are applied to a class of stochastic partial differential equations in 16].

Part of the contents of this paper was announced by the authors in 13] and [30].
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1. Notation and main results. We denote by Ilxll (resp. Ilzl[) the Euclidean norm
of a point x RN (resp. z CN). For any x R and r > 0 we define

nr(x) {y R" Ily xll < r}.

For any j 1,..., N and any multi-index/3 (/31,’’’,/3v) we set

o =o/ax, o" of,.., o".

Let be an open domain in R We denote by C(E) the space of uniformly
continuous and bounded complex-valued functions defined in f. We set lulo,(R),-
sup lu(x)l for any u C(f). Moreover, for any integer m > 0, we define cm(o)=
{u C(f)" D’u C(I) for 1/31--< m} and lul,,.-Y.__ IDulo,, for 0-<j_<- m.

In this paper we consider second order differential operators of the form

N N

(1.1) E aij(x)OiOj + , bj(x)O-c(x)
i,j=l j=l

where ai, b, c (i, j 1,. -, N) are complex-valued functions defined in R. We will
always assume that E is strongly elliptic, i.e.,

(1.2) Re E a,(x)zj, >= llzll = We c
i,j

for any x R and some , > 0. The growth of the coefficients of E will be referred
to a given function V" RN R such that for any x R and any y R with IIx-yll <- 1

(i) V(x) >= 1,
(1.3)

(ii) IV(x)- V(y)l<-tcllx-yll[V(x)+ V(y)] forsome k>0.

More precisely, we will impose the following assumptions:
There exist constants KI, K2, Vo> 0 such that

(1.4) KIV(X)- Vo<-Rec(x)<-K2V(x)+ Vo VxR.
There exists a constant B [0, 2] such that

(1.5) Elb(x)l-<-,,B=K,V(x) VxERL
(1.6) a,, b/V1/2, c/V C(RN) for i,j= 1,..., N.

Since the top order coefficients are assumed to be bounded, this framework is roughly
comprable with the one of [6, pp. 108-117]. Condition (1.4) is similar to one of the
hypotheses of [23]. However, here we need no differentiability assumptions on the
coefficients of E. Moreover, condition (1.5) only affects the asymptotic behavior of
coefficients bj.

Remark 1.1. From assumption (1.3)(ii) it follows that there exists a constant k > 0
such that

(1.7) V(x)<-kV(y) if Ilx-yl[-< 1.

We begin by analyzing the spectral properties of operator E when realized in
L2(R). Let f be an open domain in RN and m a nonnegative integer. We denote
by H"(f) the space of the complex-valued functions u, defined in f, which belong
to L2(I) together with all their partial derivatives of orders 1/31 -< m. We define

lulo,.= lu(x)l= dx lull,.= IOul..
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for 1-<j <-m. Moreover, we denote by Hoc(lI) the space of functions u Hm(D) for
any domain D with compact closure in 1.

Since the coefficients of E may grow at infinity, we need weighted spaces rather
than the usual Sobolev spaces Hm(Fz). For j 1, 2 we denote by HJ(I), V) the space
of functions u HJ(f) such that

Ilull,.,v y. Oul= dx <
I/l----J

Extending the method 14, 3], in 2 of this paper we prove the following result.
THEOREM 1.2. Assume (1.2)-(1.6). ere exists a number 1 Vo such that, ifh is

a complex number with Re h 1 then the equation (h E)u =f L2(R) has a unique
solution u H2(R V) and

(1.8) u I1=,v + Ix ll/=ll u I1,.%v + Ix 111ulo, klflo,R

where k is a constant independent of A.
The previous result can also be extended to more general weighted spaces (see

2 for details).
For 0 N we denote by L2’"() the space of functions u Lo(O) such that

lul =,, sup r-" lu(y)l= dy < +.
xeO,0<rl OBr(x)

Morrey spaces L2’() are useful to study the regularity of solutions to elliptic problems
(see e.g. [10]).

In 4 we show that E generates an analytic semigroup on the Banach space
L2(R) 0 L2’" (R), equipped with the norm

u IIo,, lulo, + lul,-.

For j 1, 2 let us denote by H’"(, V) the space of function u H(, V) such
that

and set

THEOREM 1.3. Assume (1.2)-(1.6) and let A C with Re A ,-> to1. Then the equation

(A E)u =f L2(Riv) f’l L2"(Rtq), 0</x<N

has a unique solution u H2’(R V) and

(1.9) Ilull,.(,v>/lA-oOll’/=llull,,(,v)/lA-OOl[ )[ullo,.,kllfllo,,
where k is a constant independent of A.

See [14, 5] for a similar result in the case of bounded space domains.
In 14, 6], generation on Morrey spaces is used to derive the uniform estimate

obtained by Stewart [28], [29]. Stewart’s method consists in bounding suitable localiz-
ations of solutions by classical Lp estimates [2] and applies to elliptic operators of
arbitrary order with bounded coefficients. The analogue of Stewart’s results for
operators with unbounded coefficients is stated below and will be proved in 5.
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THEOREM 1.4. Assume (1.2)-(1.6). There exists to2>-_ to1 such that, ifA is a complex
number with Re A _-> to2, then the equation (A E)u f L(RN) has a unique solution
u Hoc(Rv) CI(Rv) satisfying v1/EUlo,,R < /O. Moreover

(1.10) IA -ol/[lull,, +lVl/ulo,,3+lA -,ol lulo,,<=klflo,
where k is a constant independent of A.

Finally, we turn to the last topology we shall consider in this paper, namely H/Alder

topology. For 0< a 1 we denote by C(fl) the space of functions u C([I) such that

[u],a sup <+oo.

The H61der norm is defined as follows"

I1,., I,,,Io.oo.. +
Geaerfion of lyfic semiroups ia H61der spces ws s obiaed by Cmpao
[12] in bounded spce domains (see lso [14, ?] fo be cse of systems).
procedure ledig o alogous gefio beorem ws deeloped i [25]. This
procedure is bsed on imerpolfioa ecbaiques nd on Sewt’s resuR [28], [29] ad
pplies o operors wib bounded oeffiiems. I flis pper we
unbounded oefficiems by dpfing be mebod of [12].

For j 1, we denote by C(1, V) be spe of functions u

i#1_-<]

For0<c<l we set

I#l_-<y

We equip C’(, I/’) wib be norm

THEOREM 1.5. Assume (1.)-(1.5) m/suose that

C (R

There exists w R such that, iA is complex number ith Re A >= o, them the equtiom
E u f C R hs unique solution u C’ R, I/) nd

where k is a constant independent of A
Therefore, E generates an analytic semigroup on C(R) with domain

C2’’ (R V). Our semigroup fails to be strongly continuous at 0 because C 2,, (R, V)
is not dense in C(RS). However, the closure C2"(R, V) of the domain of E can
be characterized as follows. Let us set

C(RIv) {u e C(RN): Vu c(gZV)},

as

Then C2"’(R, V) consists of all functions u Cv(Rv) U C’(Rv) such that

lim[ sup lu(x)-u(Y)’]=O.II -yll



ANALYTIC SEMIGROUPS AND ELLIPTIC OPERATORS 861

This space, which is also known as the space of "little-H/Sider continuous" functions
(see [25]), will be denoted by h(R, V).

2. Generation in the L2 topology. In this section we prove Theorem 1.2. As in 14,
3], the proof consists of two steps. First, we obtain an estimate for divergence form

elliptic operators (Lemma 2.1 below). Then, we approximate operator E by operators
in divergence form and apply the contraction mapping theorem. Therefore, we have
concentrated our exposition on what is new with respect to [14, 3]. The remainder
of the proof is just sketched.

Consider the operator
N

g’= D(ai(x)D)+X b(x)D-c(x)
i,j

with measurable complex-valued coefficients satisfying (1.2), (1.4), (1.5) and

(2.1) ao, b/ V ’/2, c/ V L(RN), i,j= 1,..., N.

Here V is a real-valued function satisfying (1.3). For h C, uHI(R V) and
C(RN) with compact support, let us set

aa (u, A u$ dx + aijOjuDi$ - bDu$ + cu$ dx.
i,j

Then, aa can be extended to a continuous sesquilinear form on HI(R V)x
HI(R V). Moreover, a is coercive for Re A Vo.

(Re A Vo)lU 2 2
O,R +kllu{,ZvReax(u,u) VuH(R V)

(from now on we denote by k any positive constant independent of A). Therefore, by
standard variational arguments we conclude that for Re A Vo and f L2(R) the
equation

has a unique solution u H(R, V) and

(.3) u = klflo,R,,= lulo,
Moreover, from (2.3) one can easily get

(2.4) IA Vo[. lUlo, klfo,R
and

(2.5) IA Vol/ Ilull, klflo,R.
Now, if the coecients of are more regular, then u solves our equation a.e. as we
show below.

LEMMA 2.1. Let the coecients of be differentiable in R and satisfy, in addition
to 1.2), 1.4), 1.5), (2.1), the following condition"

(2.6) IDa0lo,., + tDb/V/o,., + D/Vlo,, r < +*

for any h 1,..., N. If Re A Vo, then the solution u ofequation (A- )u f L2(R)
is of class H2(R", V) and

(2.7) IlU2,R,V N k,+lA Vol 1/2 I/l’

where both k and k2 are independent of A and kl is independent of K.



862 PIERMARCO CANNARSA AND VINCENZO VESPRI

Proof. Since u Hoc(Rv) by classical regularity results, in (2.2) we can choose
ck Dhd/, where C(Rv) with compact support. A simple integration by parts yields

a(DhU, O)=--f fDhO dX- fR YDha,DuD,O dx
ij

Clearly, (2.8) holds for any 0 e H(Rr) with compact support.
Let 0 be a standard cutoff function, i.e. 0 e Coo(Rr) and

ON 0 <- 1, O(y) 1 if Ilyll - ,(2.9)
O(y) 0 if Ilyll - 2

and set o(X)= O(x/r) for any r> 0. By assuming ODhu in (2.8) we obtain

where

ax OrDhtl, OrDhtt Fr + Gr

Fr’-- IRv OrJa)hORDhll dX--IRN Orfl)h( OrDhll) dx

and the remaining term Gr contains the derivatives of aij, bj, c. Then

= <k(IFl+ll).(2.10) ODhu ,, v

Now, from (1.4), (1.5), (2.1), (2.6)we obtain, for any e > 0

(2.11) IGrl =< IIODull =,,N,v+ k(e, K) u =,,.
Moreover

2 2(2.12) lEvi ODhU ,, ,/ k( e)lflo,
By choosing e sufficiently small and letting r go to infinity, from (2.10), (2.11), (2.12)
we get

2 2<klflo, /k(g)llull,,, ,v(2.13) Y. IIOull, ,v-
h

Therefore, equation (A- )u =f is satisfied a.e. and

c + Vo) u f+ Vo V u + _, ai)D,D)u + Dia)D)u +E b.iD)u.
ij

Consequently, u e H2(R, V) and

Vulo, --< Iflo,R +IA Vol lulo, / k E IlD II1,R,V + k(g)llUlll,R,V
h

The desired estimate (2.7) may thus be derived from the last inequality and from (2.13),
recalling (2.4) and (2.5).

We now turn to the case of an operator E of type (1.1).
Proof of Theorem 1.2. Suppose assumptions (1.2), (1.4) hold for the coefficients

of E with constants v, K1, K2, Vo, B and set

(2.14) Y la,lo,,, +Y lb/ V l/lo,oo,, + C/ Vlo,o,, M.
ij j
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Now, if (J)>o is a standard family of mollifiers (i.e. J(x)= e-nJ(x/e), where J E

C(RS), J>=O, J(x)=0 if Ilxll--- 1 and JR" J(x) dx 1), let us set

E=E a(x)O,Oj+E b;(x)Oj-c(x), xERs, e>0.

Here, g(X)=[.R, J(x-y)g(y)dy for any g e Loc(RS). It is easy to check that E
satisfy (1.2), (1.4), (2.15) with the same constants ,., K1, K2, Vo, B, M as above,
replacing V by V in each inequality. Moreover

IOha(x)l + IOhOsaj(X)l + IDhb(x)/ V (x)1/21 + lObce (x)/ V (x)l =< g <

for any x R, e > 0 and 1 =< i, j, h, s <- N. Also, E approximates E as e 0 in the
sense that

(2.15)
O,,RN’

Therefore, the elliptic problems

0,,R

-->0 as e0.

and
u H2(RN, V)
(A-E)u=f+(E-E)u

are equivalent if e is sufficiently small. Let us set

g’= Di(aD)+ (b- Dia) D-c.
ij

By Lemma 2.1 we conclude that there exists V such that for Re h => V and u E

/_/2(R, W) the equation

(A-g’)U=f+(E-E)u

has a unique solution U= Ta., u H2(R N, W). Also, from (2.4), (2.5), (2.7), (2.15)
we get

T,,,=uII=,,v / IA v[ 1/2 T,=uII,,,,v / IA vl T,ulo,

(2.16) (k,+ k2(e) )IA Vgl ’/ (If[’R +I(E-E)uI")

k.(e) )It v;I 1/ (Iflo"N + k()llull,,,)

where tr(e) 0 as e -0 and kl is independent of e. From (2.16) it follows that we can
choose e so small as to have klkr(e)< 1 and then fix tOl _>- V; so large as to ensure
that Ta. is a contraction mapping for Re A _-> to,. The remainder ofthe proof is standard.

Remark 2.2. A useful generalization of Theorem 2.1 can be obtained in a very
straightforward way by using weighted spaces. Let 7r be a twice differenfiable real-
valued function defined on Rs and set II(x)=exp(r(x)]. Denote by L(RN)
resp. H}I(R, V), j 1, 2) the space of functions u such that IIu e L2(Rs) (resp. IIu e
H(R, V), j 1, 2). Then, for fe LI(Rs)

{ {IIuH(R’V)u E H(RN, V)
if and only if

(A E)u f (A E)(IIu) IIf
where

E E Y’. aij + ai D TrD E bD/rr v aij DDTr D TrDTr
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As easily seen, operator E satisfies the assumptions of Theorem 1.2 provided that for
each e > 0 there exists k(e) R such that

(2.17) [Dr(x)l+Y [D,Dr(x)[<= eV(x)+ k(e) Vx R N.
ij

Therefore, by applying Theorem 1.2 to E, we conclude that E generates an analytic
semigroup on L(RN).

3. Some useful lemmas. In this section we have collected some miscellaneous
results that will be applied often in the sequel.

Let E be a differential operator of type (1.1), satisfying conditions (1.2)-(1.6).
Let M be defined as in (2.14). If XoR we set

(3.1) E=E a(x)D,D+E b(x)D-c(x).
ij

In the sequel, we will abbreviate Br Br(x) for any r > 0 and denote by k any constant
depending only on u, k, k2, B and M. The result below is well known.

LEMMA 3.1. For any f L2(Br) and A C with Re A Vo the Dirichlet problem

(A-E)u=f in B, u O on OBr
has a unique solution u H E(Br) and

(3.2) u I1=,. klflo..
Suppose that u H(B) is a (weak) solution of the equation

(3.3) (A E)u C, Re A Vo.
Then, the following inequalities can be obtained arguing as in [12, p. 499]: denoting
by un the integral mean value of u on B, for 0 < s < r

(3.4) lUll, lU--UrlO,,
--S

and, if " 0,

k
(3.5) lul, lulo,.

Estimates (3.4) and (3.5) imply the result below, proved by Campanato in the case of
bounded coefficients.

LEMMA 3.2. If u L2(Br) is a solution of (3.3), then

(3.6) In- ulo, u-ul
for any z [0, 1 ]. Moreover, if O, then

(3.7) lul
We merely need to recall that (3.7) may be derived from (3.5) by the same procedure

used in [12, p. 503] to show that u satisfies

(3.8) lul = <klul =
1,Brr 1,Br.

Estimate (3.6), which is trivial if = z= 1, will then follow from (3.8) and (3.4) for
[0, ]. Indeed, by Poincar6’s inequality we have

2 2I 1o, k(ri,
< k+=r=lul,, u ul O,r"
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Remark 3.3. Estimate (3.6) is useful to study the H61der continuity of solutions
to differential problems. Indeed, from the results of [10] it follows that

(3.9) [u] 2 <k(N) sup p-(N+2) f,tr [u(y)- uB,(x)l 2 dy
xBr,O<p B,(x)

for any function u Loc(RN) and any ball Br c RN.
We conclude this section recalling a technical lemma proved in [11, p. 136].
LEMMA 3.4. Let qb and t be nonnegative functions on an interval ]0, d]. Suppose

that limr_.o tr(r) 0 and

b (zr) _-< [Kr + tr(r)]b(r)+ Lr

for any r ]0, d ], any " ]0, 1 and some positive constants a, fl, K, L with a > ft. Then,
for any e ]0, a -fl[ there exists re <-- d such that

qb(zr)<=(l+K)r-dp(r)+KL(rr)3 r]0, r], ’r]0,1]

where

Furthermore, if cr 0, then re d.

(I+K)’/

(I+K)’-)/-(I+K)"

4. Generation in Morrey spaces. The object of this section is the proof of Theorem
1.3, that we obtain as a consequence of Theorem 1.2 and of the local estimates recalled
in the previous section. Our first step is the following lemma which adapts the idea of
11 to the present situation.

LEMMA 4.1. Assume (1.2)-(1.6) and let A C, Re A >-_ Vo. Suppose u Hoc(RN) is
a solution of the equation (A E u fL2" (RN ), 0 ( ( N. Then, for any x RS and
any 0< r_-< 1,

(4.1)

where k is a constant independent of A, r.
Proof. Let xR, Br=Br(x), 0<r=<l and wH2(Br) be the solution of the

Dirichlet problem

(A-E)w:f+(E-E)u inBr,

w 0 on OBr
where E is defined as in (3.1). Then, by (3.2) and (1.6) we obtain

2 2(4.2) Ilwll ,,,v-< k[Iflo, +l(E-E)ulo,,]-< k[o’(r)llul[ _,,,v + r" If[L’-
where or" [0, +co[ [0, +oo[ is increasing and limr-o or(r)=0.

On the other hand, the difference v u-w satisfies the equation (A- E)v 0.
so, applying (3.7) to every partial derivative Dv, ]a]_-<2 and using property (1.7) of
V, we conclude that

(4.3) 2,Br, V Vq’ ]0, 1]

Therefore, (4.2) and (4.3) imply

Ilull <2[llvll =
2, Brr, V 2, B-r,

k[(’rN + ,(r))ll u -=,v+
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for any 0 < r, r _-< 1. We can now apply Lemma 3.4: by choosing e (N -/x)/2 we obtain

(4.4) liuil2,nro, V <= k[r(N+)/2liuli22,Rro,V+ (rro)lf[,,,]
for any re ]0, 1] and some ro ro(/X) ]0, 1]. By assuming r= r/ro, estimate (4.4)
implies (4.1) for 0 < r -< ro and then in general, as (4.1) is trivial if ro -< r _-< 1.

Proof of Theorem 1.3. From Theorem 1.2 it follows that, if Re A >-Wl, then the
equation (h -E)u =f Lf’l L’"(RN), 0</x < N, has a unique solution u H(R, V).
Also, from (4.1) we have

and so, by (1.8),

(4.5) u I1..(. kllfllo..R.
Since Au =f+ Eu, from (4.5) we obtain

(4.6) iA --(-011 IlUllo... <-- kllfllo.,R,.
The remainder of (1.9) may be derived from (4.5) and (4.6) by standard interpolation
techniques (see, e.g. [26, p. 7]).

5. Generation in the topology of uniform convergence. The thesis of Theorem 1.4
will be obtained by compactness arguments once we have proved the following lemma.
Here, the main idea is similar to the one contained in [28], [29], [14].

LEMA 5.1. Assume (1.2)-(1.6). ere exists 2 such that if Re A w2 and
u H(R V)O C(R) is a solution of the equation (A -E)u =f L(RS), then u

satisfies (1.10).
Proo Let x Rs, r > 0 and 0 C(R) be such that 0 <= 0 <= 1, 0 1 on B/2

B,/2(x), 00 out of nr B,(x), ID01o. kr-I1, Il 2. Then

OuH(R V), (A-E)(Ou)=F,

where

(5.1) F= Of-2 ao[D,uDO + DuD,O + uD,DO]-2 buDO.
In paicular, F LZ(R N) L2, (RN) for any 0 N and

k k
]F[ L.,R f’"n) +]U] L,nr) +--]U]r n."n, v)

(5.2)
kr’-’/[lflo,... + r-lulo,,.. + -1(I Ull,,.- + V’/Ulo,,.)].

Now, let us fix N-2< < N and apply Theorem 1.3. From (1.9) we obtain, for
ReAw,

(5.3) ou =,,., + I ,11/2 ou ...)+ 1 , ou o,,. k F o,,-.
On the other hand, from known propeies of Morrey spaces (see, e.g., [14, Lemma
6.2]) it follows that for any e > 0 there exists a constant k(e), independent of r, such
that

r-l Oulo,,. + [I oull.,. + v ’/0u Io,,.]
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Therefore, for 0< r_<- 1, from (5.2), (5.3), (5.4) we conclude that for all e > 0

r-l u Io,,,,, + r-[I u 11,oo,,,, +lVl/ulo,o,,,,]
-< ko +rlx [Iflo,o,." + r-:lulo,oo,. + r-’(lul,,,." +lv’/-ulo,o.,’)]

where ko is independent of e, r and A. Now, for any e > 0 there exists to2(e) => to1 such
that re k(e)e-liA -to11-1/2-< 1 for Re ,X -> to2(e). Then

r-=lulo,o.,., + r:’[I ul 1,oO.Br.,2 +l vl/2Ulo,oo.Sr/2]
(5.5)

<_-2ko[Iflo,oo, / r-=l ulo,oo, / r(I Ull,oo, /lv/=ulo,o,)]
and this estimate holds for any point x R. But lUlo,oo,R is actually attained at some
point of RV and the same is true for the other norms that appear in the left-hand side
of (5.5). So, choosing e sufficiently small and using (5.5) at most three times, we can
easily get (1.10).

We can now complete the proof of our theorem.
Proof of Theorem 1.4. Let us prove existence first. For each n 1, 2,..., let

O. C(RN) be such that 0_-

kn -I1, 1/31 --< 2. Then f. 0,of L2’" (R) for any 0 <_-/x _-< B. Fix N 2 </z < N and let
u. be the solution of the problem

u. e_ HE’’(R V), (A E)u. f., Re A _-> tOE.

In particular, u._HE(RN)f’ICI(RN) and so, by Lemma 5.1, {u.} is bounded in
C(R). Therefore, there exists a subsequence {u*} which converges to a function
u C(R). uniformly on each compact subset of R

Now, if we show that

(5.6) u.*- u in HE(D) for anyD R,
then standard regularity results and Lemma 5.1 will imply that u is a solution of our
equation in the desired class, and that satisfies (1.10). In order to prove (5.6), let
DRv and no be such that Bo= B.o(0) D. Let us set U.m U*.--U*m. Since (A-
E)u.m =0 in B.o+ for each n, m > no, we can estimate U.m using the Cacciopoli
inequalities proved in 15, 3]. There exists ro ]0, 1[ such that

(5.7) lUnml2,Bro(X) + lUnrnl 1,Bro(X klunmlo,B,o(X)
for any x D. By covering Bno with a finite number of balls of radius ro and adding
together inequalities (5.7) we conclude that {Un*} is a Cauchy sequence in H2(Bno),
which in turn implies (5.6).

Next, the uniqueness of solutions can be proved by similar arguments. Indeed,
let v Ho(R 0,,R, <+O and (A-E)v=0. Then
Onv HZ(RN)f’J C(RN) and (A-E)(Onv)= gn, where

gn E aij[DivDjOn + DjvDiOn + vDiDjOn] , bjvDjO,,.
O j

Clearly, gn L(RN) and lim Ign[o,,," =0. But, by Lemma 5.1

IA -,o_110.vlo,oo, --< klg.lo,o, Vn 1, 2,...

and so v 0.
Remark 5.2. In [28], [29], Stewart proves a generation theorem in the space

Co(R
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The analogue of this result for operators with unbounded coefficients may be easily
recovered from Theorem 1.4. Indeed, suppose f Co(Rr), Re A_-->to2 and let u
Hoc(RN) f) CI(RN) be the solution of equation (it E)u =f with IV1/2U[o,oo,R, < +o.
Define 0,, n 1, 2,.-., as in the proof of Theorem 1.4 and set u, (1- O)u. Then

(it E)un Fn
(1 0,)f+ a,[DOnD,u + D,OnDu + uD,DOn +, b:uDO,.

ij j

Therefore, by (1.10) applied to u, we obtain

Since IFlo,,x. 0 as n,the last inequality implies that u, V/2u, Dsu Co(Rm).
Remark 5.3. Let us go back to the proof of Lemma 5.1. From (5.2), (5.3) we obtain

u ..,,v) kr(m-")/[Iflo,, + r-l uIo,, + r- (I ul,, +IV/uIo,,)]
for 0 < r < 1. Therefore, choosing r as in the sequel of that proof, we conclude that

(5.8) iA 21<N-)/4u Ilull .,.,<).v) klflo,,.
See also [28], [29] for a similar estimate involving L" norms.

6. Generation in the H61der topology. The estimate contained in the following
lemma is essential for the proof of Theorem 1.5. We will briefly sketch its proof, which
uses the techniques of [12].

LEMMA 6.1. Assume (1.2)-(1.5), (1.11). Ifu Ho(R) is a solution ofthe equation
(h-E)u f C(R), 0< a < 1, Re h Vo, then

(6.1)

for any x R and some constant k independent of A.
Proof We note first that (6.1) will be proved provided we show that

(6.2) V=-’lDu-(D’u))l=@ kr+=[llull=,(xo),v)+ [Ifll,
112 n(x)

for any x Bl(X) and 0 < r 1 (here gn denotes the integral mean value of g on B).
Indeed, from (1.7), (6.2) and (3.9) we obtain

Z V=-Il(x)[Du],,( k[llull=,(,v+ Ilfll,]
112

which in turn implies (6.1), recalling (1.3) and (1.7).
Also, sincef LE’(R) for any 0 N, from Lemma 4.1 and (1.11) it follows

that

(6.3) Ilul[ 2,Br(x), V ,,+Iflo,,
for any x R and 0 < r 1. Here and in the sequel, k denotes a constant independent
of X.

Now, for x Bl(X) and 0< r 1, let B B(x) and w HE(Br) be the solution
of the Dirichlet problem

(A E)w =f-f+ (E E)u in B,
w =0 on OB

where E is defined as in (3.1). From (1.3), (1.11) and (6.2) it follows that

(E E)ulo, Ilull,v< u + Ifl o,,2,B,V
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so, by (3.2),

(6.4)

On the other hand, the difference v u-w, together with the partial derivatives
Dv, I1--< 2, satisfies the assumptions ofLemma 3.2. Then, by (3.6) and bythe properties
(1.3), (1.7) of V, we conclude that

(6.5) Y f V2-1lDv-(DV)B’l: dy<=kr+2 Y I V2-1IIDv-(DV)BI dY
It31--<2 Bzr 1/31--<2 Br

for any r e [0, 1 ]. Since u v+ w, (6.4) and (6.5) yield

E [ V2-1IIDu--(Du)B.rl2 dy
1/31-<2 ./nrr

(6.6) yk+ E V-lou-(ou)l dy
Ilr

for any r ]0, 1 ]. So, applying Lemma 3.4, we obtain (6.2) with exponent N+ a instead
of N+2a. Therefore, by our introductory remarks, (6.1) holds with exponent a/2
instead of a. Now, inseing this information in the above proof, we obtain (6.3) with
exponent N instead of N-a, (6.6) with exponent N+ 2a instead of N+ a and finally
(6.2).

Proofofeorem 1.5. From eorem 1.4 it follows that, for Re A 2, the equation
(A-E)u=fC(R) has a unique solution uHo(Rs)CI(R) such that
IV/2Ulo..R <+. Fuhermore, u satisfies (1.10). Therefore, Lemma 6.1 will allow
us to conclude that u C2. (R V) and

(6.7)

provided we show that

(6.8)

7. Application to parabolic equations. Let us consider the initial value problem

(7.1)

where

N N

(7.2) E(t)= E ao(t,x)DiDj+ ., bj(t,x)D;-c(t,x)
ij=l j=l

OU
--(t,x)-E(t)u(t,x)=f(t,x), (t,x)e[O, T]xRN,

u(O, x)= Uo(X)

(6.9) FIo, =< klflo,oo,
and so (6.8) follows from (6.9) and (1.8) applied to Ou.

Finally, the full estimate (1.12) may be easily recovered from (6.7).

for any point xe R.
In view of this, let us localize our equation by a cutoff function 0 e C(Rv) such

that 0 1 on B2(x) and 0 0 out of B4(x). Then Ou H2(R V) and (h E)(0u) F,
where F is defined as in (5.1). Now, from (1.10) we obtain
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is a differential operator with unbounded coefficients. We have already recalled some
of the literature on this subject. Recently, motivation for studying these problems has
also been provided by nonlinear filtering for diffusion processes (see, e.g., 19]). Indeed,
in the case of unbounded observations, the pathwise treatment of the Zakai equation
leads to parabolic operators with unbounded lower order coefficients (see [5], [20],
[18], [27], [16]).

We analyze (7.1) as an abstract Cauchy problem in a Banach space, using some
of the semigroup generation theorems proved in the previous sections.

If X is a Banach space with norm []x, we denote by L(X) the space of bounded
linear operators from X into X and by C([To, T1]; X) the space of continuous
functions g To, T1] -> X. We also define, for 0 < a < 1,

c(ro, rl];X)={uC([ro, ,]; x). SUp
Ilu(t) !X)llx+oOTo<--s,t T S

s#t

The spaces CI([To, T1]; X), cl’a([To, T1]; X)are defined similarly. Moreover, we set

C(]To, T1]; X)= C C([To+ , r,]; X)
0<e<T1-T

and we give analogous definitions for the spaces C(]To, T1]; X), CI(]To, T1]; X)
and C’(]To, T1]; X).

Let V be a function having properties (1.3) and suppose that E (t) is an operator
of type (7.2), with complex-valued coefficients satisfying the assumptions of 1,
uniformly for e [0, T ], i.e., for all (t, x) e [0, T x Rv

(7.3) Re Y’. a,j(t, x)zj, >-  llzll" Vz c
ij

(7.4) K1V(x) Vo <- Re c( t, x) <-_ K2 V(x) + Vo,

(7.5) E Ibj(t, x)l2< IlB2K1V(x)
for some constants v, K1, K2, Vo>0 and B[0,2[. Also, suppose that, for some
a ]0, 1[,

(7.6) ao, bj/V1/2, c/V C’([0, T]; C(RV)), i,j= 1,’’’, N.

Notice that the structure hypotheses (7.3),. , (7.6) are similar to those of [27].
The theorem below treats the existence, uniqueness and regularity of solutions to

problem (7.1) with respect to the L2 topology.
THEOREM 7.1. Assume (7.3)-(7.6) and letf C"([0, T]; LE)(RV)). Then
(i) For any Uo LE(Rv) problem (7.1) has a unique solution

ue C([0, T]; L2(RV))OC’(]O, T]; L2(RN))OC(]O,R]; H2(RN, V));

(ii) For any Uo H2(RN, V) problem (7.1) has a unique solution

U CI([0, T]; L2(RN)) VI C([0, T]; H2(RN, V)).

Moreover, in both cases (i) and (ii),

(7.7) U cl’a(]0, T]; L2(RN))VIC’(]O, T]; H2(RN, V)).

Proof. Theorem 1.2 implies that E(T), [0, T], generates an analytic semigroup
on LE(Rv) with domain H2(R, V). Furthermore, by (1.8)

k
I1[ E(t)]-lll e(=(,))<
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for any h C with Re h > ol. Also, from (7.6)

II[E(t) E (s)][to,- E (Z)]-IlI(L=(R))_--< kit- s[
for any z, s, t[0, T]. Therefore, asseions (i), (ii) and (7.7) follow from classical
results on nonautonomous evolution equations (see, e.g. [26]; see also [17] and [1]).

Remark 7.2. Recalling Remark 2.2, one can easily extend the result of Theorem
7.1 to the weighted space L(R), provided that log H satisfies (2.17).

We will now derive the analogue of Theorem 7.1 for HBlder spaces. According
to the assumptions of Theorem 1.5, we will replace (7.6) by

(7.8) a, b/V/, c/V C([0, T]; C(RN)), i,j= 1,..., N

for some a, fl ]0, 1[. Then arguing as in the proof of Theorem 7.1 we obtain the
following result.

THEOREM 7.3. Assume (7.3), (7.4), (7.5), (7.8) and letf C([0, T]; C(R)).
(i) If Uo h (R V), then problem (7.1) has a unique solution

u C([0, T]; C(RN))CI(]o, T]; C#(RN))C2’(]O, T]; C2"(R V)).

(ii) If Uo C2,(R V and E (0) +f(., O) h (R V ), then problem (7.1) has a
unique solution:

u cl([0, T]; C(RN)) C([0, T]; C2"(R V)).
Moreover, in both cases (i) and (ii),

U cl’a(]0, T]; c(gN))Ca(]O, T]; C2’(g V)).

Remark 7.4. Suppose that a,b, c(i,j=l,...,N) satisfy (7.6) and a, b, c
C([0, T]; C(RN)). en (7.8) fails to be fulfilled, in general. However, (7.8) holds
under any of the following assumptions:

a, b, c are differentiable with respect to x and
(7.9)

Dha, Dhb/V 1/, DhC/V C([0, T]; C(RN)), i,j, h= 1, "-.’, N;

aq, b, c are differentiable with respect to and
(7.10)

2s/V V C([O, T]; C(RN)), i,j= 1,..., N.
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A DIFFERENTIAL-DIFFERENCE EQUATION*
JERRY L. FIELDS" AND WALEED A. AL-SALAM"

Abstract. Wimp showed that the hypergeometric polynomials

Pn(z)=p+2Fp+l(-n,n+A, ap;bp+l;Z), n=0,1,...,

satisfied a certain differential-difference equation. Here we show that all "common" solutions to the standard
differential equation and the standard difference equation satisfied by the Pn(z) also satisfy the above
mentioned differential-difference equation.

Key words, hypergeometric functions, difference equations, difference-differential equations
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1. Notation and introduction. Let Z denote the integers, and Z/ the positive
integers. In addition to the usual notation for hypergeometric functions and Meijer
G-functions, see 1 ], [6], we will use the abbreviated notation

r.(s+ Cp):=
p

H r(s + c), r(s + co) := r0(s + co),
k=n+l

F(s+ t) q

(s+co),:= II (s+c),,
r(s) =

bl, ", bq

(S)t :=

ap
pF(z) :=pFq

bo

:-- X
(ap)k Z

k

k=O (bo)k

Gpm,’q"(W) := Gpmff w
bo bl, bq

1 F(bM- t)F(1-ar+ t)w
27ri JL Fm(1-bo+ t)F.(ap- tilt’

where L is an upward oriented contour which separates the poles of F(bM-t) from
those of F(1- ar+ t), and which runs from -iv to +iv (L= Lo), or begins and ends
at+ (L= L+), or -c (L L_). In particular, (ao) al a2" aq. As hypergeometric
functions, the polynomials

(-n, n + A, al, )P,,(z) :--p+2Fp+l
bp+l

z n + 1 Z+,

1-bjZ+, j-1,’’’,p/l,

satisfy a standard differential equation 1 ], [6] of the form

z{ r. (z)} {6(6 + bp+l- 1)1- 2(6 r)(6 + n + A )(6 + ap)l} Y.(z)
(1)

d
=0, 6=z--zz.
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grants A7549 and A2975.
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Under suitable parameter restrictions for n _-> p + 2, these polynomials also satisfy a
standard difference equation [2], [6] of the form

p+2

(2) .{Y.(z)}= (A*m+zB*)Y._,.(z)=O, Ao*=l, Bo*=Bp*+2=0,
m=0

where the numbers A’m, B*m are rational in n and independent of z. In [7], Wimp
showed that the P,.(z) also satisfy a differential-difference equation

dY,.(z) p+’

(3) z(1-z) d- E (Am+zB.,)Y._.,(z), Bp+l=O,
m----O

where the numbers Am, Bm are rational in n, and independent of z. When z 1 and
Y,(z) P,(z), (3) gives a p+2 term difference equation for P,(1), which is one term
less than the p+ 3 term equation given by (2). We will show that any "common"
solution of (1) and (2) is also a solution of (3). We will now define what we mean by
a "common" solution of (1) and (2).

In [3], it was shown that under suitable parameter restrictions, (1) and (2) have
a common global basis in

{z: larg z < 7r, ]arg (1 z)] < 7r},

i.e., if n is sufficiently large, and

a ar : Z, k # r,

1-bjZ+, k,r=l,...,p, j=l,...,p+l,

ak bj,

3 {G,(z e’=), O,(z e-’=), L,.j(z),j= 1,..., p+ 1},

r(n+l) ._.p+3 [ 1-n-A,l-a,i-ai.,n+l)L,.(z) F(n+A) 0, 1-bl+ 1-a{O;p+3/+3Z
F(n+ 1) p+2,1 /’ 1-n-A, 1-al,, n+ 1’G,.(z)
F(n+h) 0, 1-b,+,.p+2,p+2 Z J

where G, (z e) is the analytic continuation of G, (z e-) along an arc which encloses
z =0, but not z 1, then the elements of 3 are solutions of both (1) and (2) in ,
and are linearly independent both as functions of z, and of n.

DEFINITION. The function Y,(z) is a common solution to z{Y,(z)}=O and.{ Y. (z)} 0 in , provided Y. (z) has a representation

P

Y,(z) D,G,(z ei)+ D2G,(z e-’)+ , CL,.)(z),
j=l

where the constants D1, D2, C, , Cp are independent of z and are periodic functions
of n whose period is 1.

In [3] it is shown that P,(z) is such a common solution.
The following lemma is central to our analysis.
LEMMA. If Sr(w) is a polynomial in w of degree r, and is any integer >-_r, then

S(w) can be represented uniquely in the form

(4) Sr(W) E Qm( W-I" )t)m(Wd- "Y-" E)t-m,
m=0
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Qm =(t+e-2m) . (-m)k(m-e-t)ks,(-3"-k)
m!(e)/,_m k=0 k!(1--e)k

(5)
(--t--e/2m) t_.m(m--t)k(--m/e)kSr(_3"_e_k),/.

(t--m)!(--e)l+m k--O k!(l/e)k

where 3", e are arbitrary constants, and e O, + 1,.’., +( t- 1).
Proof. In a slightly different form, this lemma occurs in [2]. The uniqueness of

the Qm’s follows immediately, as substituting the values w--3’-j,j-0, 1,. , into
St(w) leads one to a nonsingular, triangular system of linear equations in the Qm’s.
Thus, if the Qm’s exist at all, they are unique.

For the existence of the Qm, consider the Lagrange representation

(_l)k(w/ 3")t(W/ 3"/ t)
(6) Sr(w) E Sr(--3"-- k).

k=O k!(t-k)!(w/3"/k)

This follows from the fact that

(w+ ,),(w+ ,+ t)
w+3"+k

=(w+ 3")k(W+ 3"+ k+ 1)t-k,

so that the right-hand side of (6) is a polynomial in w of degree t. When this polynomial
is evaluated at the points w -3’-j, j -0, 1, , t, it agrees with Sr(w) at these points.
As _-> r, this is sufficient to establish (6). By considering the partial fraction decomposi-
tion in w, one can show

k- t, w+ 3"+ e, l +--,1
4F3

(e k)(w+ 3"+ t)

1
e- (e- t)(w+ 3"+ k)’

+-k,l-w+v-t,---
l+t-kZ+, (e-t)(w+3"+k)#O.

It is worth noting that this formula also follows from a special case of a limiting form
of Dougall’s Theorem [1, p. 191, formula 6], i.e. set d 1 in

a
.a, + 1, b, c, d

a/l-b, a/l-c, a/l-d

F(a / 1 b)F(a / 1 c)F(a / 1 d)F(a / 1 b c- d)
F(a/l)F(a+ 1-c-d)F(a/ l-b-d)F(a/ l-b-c)"

Substituting this expression for (w+ 3"+ t)/(w/ 3"+ k) into (6), expressing the 4F as
a sum and interchanging summation processes, one obtains the first line-of (5). To
obtain the second line of (5), it is sufficient to observe that

St(w)-- E Qt-m(W/3"*)m(W/3"*/E*)t-m,
m--O

Representing Qt-m in the form given by the first line of (5), and then replacing m by
t-m, we obtain the second line of (5).
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Remark. Applying this lemma to the relationship
p+2 (w- n)m(w+ n + A --p--2)p+2-m

T(w) := E {A’m+ zB*m}
m=0 (-n)m(n+A-p-2)p+2-m

(n+a).
(n + A -p- 2),(n + bl,+2-1)1

{(w+ b,+2-1)1- z(w- n)(w+ n + A -p-Z)(w +
where bp+2 1 and Sr(W) is the right-hand side of this relation, determines the numbers
A’m, B*m as convenient closed form expressions. If the A*m and B*m in (2) are the numbers
determined above, and we substitute in the left-hand side of (2) the series expression
for P,,(z), interchange the summation processes, we get an equation of the form

(ap)j(n+A -p-2)j(-z)
T(j).

=o (bp+l)(n+ 1)_
Substituting in this expression the polynomial form of T(j) and rearranging in powers
of z, we see that the resulting expression is zero, and hence equation (2) is satisfied.

Similarly, numbers Am, Bm are determined by
p+l (w-n) (w+n+A-p-1)p+l_mE {Am--ZJBm}
m=O (--n)m(n4rA--p--1)p+l-m

1

(n+A -p- 1)p+l
(7) {w(w+ n + A -p- 1)p+l- w(w+ bp+ 1)1

+ z(-w(w+ n + A -p- 1)p+l

+(w- n)(w+ n + A -p- 1)(w+ ap)l)}.

In our main result, we will show that with this determination of Am, Bin, (3) is satisfied.

2. Main result.
THEOREM. If Yn(z) is a common solution to

z{Y,,(z)}=O and ,,{Y,,(z)}=O

in 9, then Y. (z) also satisfies the differential-difference equation

dY,,(z) p+l

(8) z(l-z)= Y’. (Am+zBm)Y._m(z),
dZ =0

where the Am, Bm are defined in (7).
Proof In view of the linearity of the various operators and the fact that Y.(z)

can be written as a linear combination of the elements in 9, it is sufficient to show
that G,,(z e+i’) and Ln,j(z), j= 1,. ., p+ 1, satisfy (8).

For convenience, let r =p + 1. We will find use for the relationship, s general,

{Am+zBm}
(n-m+h)

m----0 (n-m+l)-s

(n+x)+,_(n+A) (n+A)_,s(s_l+bi,+,)l_ z i-n-+-l_- (s+ai,)l.(9) (1-Z)s
(n+ 1)_ (n+ 1)-s

To see that (9) holds, let H denote the left-hand side of (9). Using

(n-m+A)s (n+A-tr)s (s-n)m(S’Jt’n’+’l-o’)tr_m
(n-m+ l)_ (n+l)_ (-n)m(n+A-tr)_m
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H becomes a form to which (7) is applicable, and after some algebra, the right-hand
side of (9) occurs. Using the Mellin-Barnes representation

1 J/fIl(s)(n-m+A)sG,,_,,,(ze+/-i)=27r--t (n_m+l)_s(z e+/-i) ds,

a(s):=
F(-s)F(1-b,+l-S)

F(1- a,- s)

where the integration contour L can be chosen to be a valid contour for n fixed and
m =0, 1,..., r, we have

K := E (A,, + zBm)Gn_m(Z e+’)
m=O

a(s)(ze’)’E (A+zB)(n-m+) ds.
2i =o (n-m+ 1)_

After substituting (9) into this expression and doing some algebra, we get

z(1-z) [.O(s) (n+A)s d
K 2 (n + 1)_ d {(z e’=)} ds

-1

e ds

d
e+/-iz(1-z)-z G.(z + R,

r(-s)r(1-b+,-s)
a*(s)

r(-a,- s)

R= E {(-1)PlI*(s) (n+A)s+l- (ze+/-i)s+l}Residue (n + 1)__
between

L and L-

By inspection, R =0, and G.(ze+/-i) satisfies (8). Similarly one can show that the
L..s(z) satisfy (8), starting with the Mellin-Barnes representation

I (n+A)SzdsL.s(z) 1--1-- r(a+s)r(1-a-s)n(s) (n+l)_27ri L

where L separates the poles ofF(as + s)F(n + A + s) from those of F(-s)F(1 bl,+ s).
COROLLARY. If Y,(z) is a common solution to

z{Y,,(z)}=O and ///,{Y,(z)}=O

in 9, and the limits, taken in 9,

dY,(z)
lim lim Yn-m Z Yn-m (1)

dz
m =0, 1, , p+ 1,

as well defined finite numbers for n >- p + 1, then

p+l

0 )". (Am+nm)Yn_m(1).
m=O
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Remark. If we set bp+2 1, and

(n+ 1)l--bkF,(z) n + 1)_l+bk

then under the conditions

bs-bkZ j k,

1 forms a basis equivalent to in

o {z: 0 < [z < 1, ]arg z[ < r}.

That is, considering . and 91 as column vectors,

M

l={Fn.k(Z),k=l, ,p+2},

z_bp+3Fp+2{ 1, 1 bk n, 1 bk + n + A, 1 bk + al,

1 bk + b,+

aj ak : Z,

forms a basis equivalent to in

2n+2AZ+, n+ascZ+, j=l,...,p,

jk,

oo= {z: 1 < [z[, [arg (z- 1)] < r}.

Remark. In [8, p. 159], Wimp observed that it was conjectured by Lewanowicz
that the numbers

( tl q- tiP+2 1),Q,, p+2Fp+
2n + h + 1, n + ap

satisfy a p + 2 term linear recursion relationship with rational coefficients in n. When
we compare Q,, with H,,,p+ (1), it is clear that the Q,, do satisfy such a linear recursion
relationship. A proof by Lewanowicz has now been given in [5].

then under the conditions

where M is a nonsingular matrix whose elements are independent of z and are periodic
functions of n, of period 1 (see [3]). Thus, the F,,,k(Z) are common solutions to (1)
and (2) in Do, and by analytic continuation, in 9.

Hence, the F,,,k(Z) satisfy (8). Note that P,(z)-F,,,p/2(z).
Similary, if we set

oo={H,,,k(Z),k=l, ,p+2},

H,k(Z) (n+h)_a ( 1,1+ak--b,+ 1)Z- p+3Wp+2(n + 1) ak 1 -[- ak -[- n, 1 + ak n A, 1 + ak ai,

k=l,...,p,

F(n+l)F(n+A+l-bi,+2)z-’-’ ( n+h +!-bp+2 [_lz)H’*’P+I(Z)=F(n+A)F(2n+A+I)F(n+A+I-a,)p+2Fp+ 2n+h+l,n+h+l-ai,

H,,,p+2(z)
F(n + l )r(2n + h )r(n + a,)z" ( -n, 1 bl,+U _lz)F(n+h)F(n+bv+) v+zFp+ll-2n-h,-n+l-ai,
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Remark. If Y.(z) is a function such that

..{Y,,(z)}=O and .{Y.(z)}=O in,

it is an interesting, open question whether Y, (z) is a common solution to these equations
according to our definition. Also, the structure of the linear solution space for (8) is
unknown.

Remark There are q-analogues of all these results which will appear elsewhere.
Remark. Recently, Lewanowicz [4], [5] has derived other differential-difference

relations for P(z) and demonstrates relations satisfied by the coefficients Am,

REFERENCES

1] A. ERDI.LYI, W. MAGNUS, F. OBERHETTINGER AND F. G. TRICOMI, Higher Transcendental Functions,
Vol. 1, McGraw-Hill, New York, 1953.

[2] J. L. FIELDS, Y. L. LUKE AND J. WIMP, Recursion formulae for generalized hypergeometric functions,
J. Approx. Theory, (1968), pp. 137-166.

[3] J. L. FIELDS, Uniform asymptotic expansions of a class of Meijer G-functions for a large parameter, this
Journal, 14 (1983), pp. 1204-1253.

[4] S. LEWANOWICZ, On the differentiabdifference properties of the extended Jacobi polynomials, Math.
Comp., 44 (1985), pp. 435-441.

[5] ., Recurrence relations for hypergeometric functions of unit argument, Math. Comp., 45 (1985),
pp. 521-535.

[6] Y. L. LUKE, The Special Functions and Their Approximations, Vol. and II, Academic Press, New York,
1969’.

[7] J. WIMP, Differential difference properties of hypergeometric polynomials, Math. Comp., 29 (1975),
pp. 577-581.

[8] ., Computation with Recurrence Relations, Pitman, London, 1984.



SIAM J. MATH. ANAL.
Vol. 18, No. 3, May 1987

(C) 1987 Society for Industrial and Applied Mathematics
021

A PROOF OF THE G2 CASE OF
MACDONALD’S ROOT SYSTEM-DYSON CONJECTURE*

DORON ZEILBERGER’I"

Dedicated to Joe Gillis on the occasion of his 75th birthday

Key words, root systems, constant term identities, hypergeometric summation

AMS(MOS) subject classifications. 31, 05A

We will prove the following theorem.
THEOREM Let m and n be integers and x, y and z commuting indeterminates; then

the constant term of the Laurent polynomial

F(x, y, z,: [(1-)(1-)(1 _)] m[(1--xY) (1--iz) (1- xY---z)]"

C(m,n)=
(3m + 3n)!(3n)!(2m)!(2n)!

(2m + 3n) !(m + 2n) !(m + n)!m!n!n!

This is the G2 case of Macdonald’s Root System-Dyson conjecture (see [6,
Conjecture 2.3, and (c), p. 994]; see also Morris [7]).

Macdonald [6] showed how Selberg’s integral [8] (see [1] for Aomoto’s recent
brilliant proof) implies his conjecture for all the so-called classical root systems. We
will follow the same route and show how the G2 case follows from a corollary of
Selberg’s integral that is due to Morris [7, p. 94].

After the first version of this paper was written, I was kindly informed by
Dominique Foata that Laurent Habsieger [9] has independently and simultaneously
obtained the results of this paper.

We only need the case n- 3 of Morris’ result that spells out to the following.
MORRIS’ THEOREM (n 3). Let a, b, c be integers. The constant term of the Laurent

polynomial

H(u, v, w; a, b, c)=[(1-u)(1-v)(1-w)] 1- 1- 1-

(a+b+2c)!(a+b+c)!(a+b)!(2c)!(3c)!
(a+2c)!(b+2c)!(a+c)!(b+c)!a!b!c!c!

We will need the following easy corollary.

* Received by the editors May 12, 1986; accepted for publication (in revised form) June 25, 1986. This
research was partly sponsored by the National Science Foundation

Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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COROLLARY The coefficient of uAvAwA in H(u, v, w; a, b, c) above is

(_1)A
(a/ b/ 2c)! (a + b/ c)!(a + b)!(2c)!(3c)!

(a-A+2c)!(b+A+2c)!(a-A+ c)!(b+ A+ c)!(a-A)!(b+A)!c!c!"

Proofi Since (1- t)a(1 t-1)b/tA=(--1)A(1-- t)a-A(1-- t-)b+A, we have

H(u, v, w; a, b, C)/uAvAwA=(--1)AH(u, V, W; a-A, b+A, c)

and taking constant terms, the corollary follows from Morris’ theorem.
Finally, we need the formula shown below.
DIXON’S FORMULA (e.g. [5, 1.2.6, Ex. 62, pp. 73. and 489]). Let M, N, K be

integers; then

(-1)A

A (M+A)!(M-A)!(N+A)!(N-A)!(K+A)!(K-A)!

(M+N+K)!
M!N!K!(M+ N)!(M + K)!(N+ K)!"

To prove the theorem we let u=x/y, v=y/z, and w=z/x. Then F(x,y,x)=
H(u, v, w; m, m, n). But uvw 1, so the constant term of F is the sum of all the diagonal
coefficients of H. Thus by the corollary the constant term of F is

E(-1)
(2m+ n)! (2m + n)!(2m)!(2n)!(3n)!

(m A+ 2n) !(m + A + 2n) !(m A+ n)!(m +A+ n)!(m -A)!(m + A)!(n)!(n)!

(2m+2n)!(2m+ n)!(2m)!(2n)!(3n)!
n!n!

(--1)A

A (m+2n-A)!(m+2n+A)!(m+ n-A)!(m+ n+A)!(m-A)!(m+A)!

Using Dixon’s formula with M m /2n, N m + n, K m, we get that this is
equal to

(2m + 2n) (2m + n)!(2m)!(2n)!(3n)!
n!n!

(3rn+3n)!
(rn+2n)!(m+ n)!rn!(2rn+3n)!(2rn+2n)!(2rn+ n)!

(3rn + 3n)!(3n)!(Zrn)!(2n)!
Q.E.D.

(2m+3n)!(m+2n)!(m+ n)!m!n!n!

Since F of the theorem is obviously with integer coefficients, our theorem implies
the not entirely obvious fact that C(m, n) is an integer, thus solving Askey’s problem
[2].

The q-Analogue. We will show how Kadell’s [4] recent q-analogue of Morris’
theorem implies the q-analogue of the G2 Macdonald-Dyson conjecture [6]. Since the
ordinary case is just the special case q 1 of the q-analogue, we could have started
with the q-analogue right away, giving the ordinary reader the option to plug in q 1
throughout. However we feel that this would have been very poor pedagogy. Indeed,
the way mathematics is created is by slowly increasing steps of generality. Unfortu-
nately, all too often results are presented in their overpowering full generality right
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from the start, thus making them very hard to read and understand, let alone use as
motivation

Let

and

(Y) (1 y)(1 qy) (1 qa-ly)

[a]!= (q)--------- =l(l+q)(l+q+q2)’’’(l+q+’’’+qa-1).
(l-q)

We will prove the following theorem.
q-THEOREM. Let m and n be integers and x, y and z commuting indeterminates;

then the constant term of the Laurent polynomial

F(x,y,z)=() () () (Z_y) (x_) (Y-2)
(q) (q) (q) (qXy) (q).

[3m+3n]![3n]![2m]![2n]!
[2m + 3n]![m + 2n]![m +

We need the following theorem [4].
KADELL’S q-MORRIS THEOREM (n 3). Let a, b, c be integers. The constant term

of the Laurent polynomial

() (-) () (-) () (-) (q) ( -) ( )H(u, v, w; a, b, C)--’(U)a())a(W)a
U q q

q q
b b b

[a+b+2c]![a+b+c]![a+b]![2c]![3c]!
[a+2c]![b+2c]![a+c]![b+c]![a]![b]![c]![c]!

We will need the following easy corollary.
q-COROLLARY. The coefficient of uADAwA in H(u, v, w; a, b, c) above is

(_l)AqaA(A-1)/2

[a+b+2c]![a+b+c]![a+b]![2c]![3c]!
[a-A+2c]![b+A+2c]![a-A+c]![b+A+c]![a-A]![b+A]![c]![c]!"

Proof. We are really looking for the constant term of H(u, v, w; a, b, C)/uAvAwA.
But since

(t)a(q(1/t))b
A

it follows that

H(u, v, w; a, b, c)
uADAwA

and the corollary follows from Kadell’s q-Morris Theorem.

"--(--1)Aq3A(A-1)/2H(qAu, qAv, qAw; a-A, b+A, c)
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Finally, we need the following formula.
THE q-DIXON FORMULA ([3], [5, p. 489]).

(__l)AqA(3A-1)/2
’[M+A]V[MA -A]V[N+A][N. -A][K+A][K. -A].

[M+N+K]!
[M]![N]![K]![M+ N]![M+ K]![N+ K]!

To prove the q-Theorem we let u-q(y/z), and v-z/x and w=x/y. Then
F(x, y, z) H(u, v, w; m, m, n). But uvw q so the constant term of F is the weighted
sum of all the diagonal coefficients of H, where the coefficient of uAI)AwA gets multiplied
by qA.

Thus by the corollary the constant term of F is, qA(--1)AqaAA-1)/2
A

[2m+2n]![2m+n]![2m]![2n]![3n]!
[m-A+2n]![m+A+2n]![m-A+ n]![m+A+ n]![m-A]![m+A]![n]![n]!

[2m+2n]![2m+n]![2m]![2n]![3n]!
[n]![n]!

(_l)Aqa(3a-1)/2
a [m+2n-A]![m+2n+A]![m+ n-A]![m+ n+A]![m-A]![m+A]!"

Using the q-Dixon formula with M m + 2n, N m + n, K m, we get that this
is equal to

[2m+2n]![2m+n]![2m]![2n]![3n]!
[n]![n]!

[3m+3n]!
[m+2n]![m+ n]!m![2m+3n]![2m+2n]![2m+ n]!

[3m+3n]![3n]![2m]![2n]!
[2m+3n]![m+2n]![m+n]![m]![n]![n]!" Q.E.D.

Acknowledgment. I heartily thank Richard Askey for rekindling my interest in the
Macdonald conjecture.
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AN ANALYTIC CONTINUATION OF THE HYPERGEOMETRIC SERIES*

WOLFGANG BOHRINGt

Abstract. The points z =1/2(1 + if) of the complex z-plane are on the boundary for each of the
convergence domains ofthe various hypergeometric series which appear in the transformation or continuation
formulas of the hypergeometric function 2F(a, b; c; z). This paper presents a continuation formula contain-
ing series in powers of 1/(z-1/2) with the convergence domain Iz-1/21>1/2, which contains the two points in
question in its interior. The coefficients of the power series are determined by a three-term recurrence relation
and are represented explicitly in terms of terminating hypergeometric series. If 2c a + b + 1, then one term
of the recurrence relation disappears and the series become hypergeometric series.

Key words, special functions, hypergeometric series, hypergeometric functions, continuation formulas,
hypergeometric differential equations

AMS(MOS) subject classifications. 33A30, 34A20, 34A30, 30B40

1. Introduction. This paper is concerned with the hypergeometric differential
equation

(1) z(1-z)w"(z)+{c-(a+ b+ 1)z}w’(z)-abw(z)=O

and its solution

(2) 2Fl(a, b" c; z)=
(a),,(b),,

=o (c).n!
z.

Here z is the complex variable and a, b, c are complex parameters, with c not equal
to a negative integer or zero. The notation (a)n means the Pochhammer symbol

F(a+n)
(3) (a),, a(a+l)... (a+ n- 1)=.

r(a)

In addition to the gamma function F(z) we shall require its logarithmic derivative
d/(z) F’(z)/F(z). Following common practice, we use the same symbol 2F1 to denote
the hypergeometric function as well as the hypergeometric series on the right-hand
side of (2) which represents the function inside the unit circle.

By means of the well-known transformation or continuation formulas it is possible
to express the hypergeometric function in terms of one or two other hypergeometric
functions with suitably changed parameters and the variable z replaced by either
z/(z- 1) or 1 z or 1/z or 1/(1 z) or (z- 1)/z. The corresponding series have different
convergence domains and so each of the formulas gives an analytic continuation of
the original hypergeometric series on the right-hand side of (2). An example, which
is relevant for the later discussion, is the continuation formula

F(b-a) -a2Fl(a + ,1 b+ ){r(c)}-’F,(a, b; c; z)=r(b)r(c_a) (-z) 1-c a. a’.

(4) +r(a)r(c-b)(-)-b2F1 b, 1-c+b; 1-a+b;.

(larg (-)1 < r, b-a not an integer).

* Received by the editors June 3, 1985; accepted for publication (in revised form) May 20, 1986.

" Physikalisches Institut, Universifiit Heidelberg, D-6900 Heidelberg, West Germany.
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Following Olver [3] we consider {F(c)}-12F1(a, b; c; z) rather than 2F1 itself in order
to avoid the restriction that c be not equal to a negative integer or zero.

There are two points of the complex z-plane which are on the boundary of the
convergence domain for each of the hypergeometric series appearing in the various
formulas mentioned so far. It is the purpose ofthis paper to communicate an appropriate
continuation formula which expresses 2Fl(a, b; c; z) in terms of power series such that
the two points in question, z 21-(1 + ix/)=exp (+i7r/3), are interior points of the
convergence domain. These series are not hypergeometric, but their coefficients satisfy
a simple three-term recurrence relation. They also may be represented in terms of
terminating hypergeometric series.

Our general results are presented in 2; some interesting special cases are discussed
in 3. The proofs are supplied in 4- 6, and the concluding remarks in 7 deal with
the computational aspects of this work.

2. General results. It would be a simple matter but of little use to consider a
Taylor series solution in powers of z-Zo in a neighborhood of an ordinary point Zo
of the differential equation, since then the problem remains to evaluate the two initial
coefficients which are equal to 2F(a, b; c; Zo) and (ab/c) _Fl(a+ 1, b+ 1; c+ 1; Zo),
respectively. Such a problem does not occur with series in powers of 1/(z- Zo). For
since they converge in a neighborhood of z , in a similar way to the hypergeometric
series on the right of (4), the required initial coefficients may immediately be obtained
by comparison with (4). Following this idea in detail, we can prove

THEOREM 1. Ifb a is not an integer, we havefor [arg (Zo- z)l < 7r the continuation

formula

(5)

{F(c)}-F(a, b; c; z)=
F(b-a)

r(b)r(c-a)
(ZO-- Z) 2 d.(a, Zo)(Z- Zo)-"

r(a-b)
r(a)r(c-b)

(Zo- z)-b .. d.(b, Zo)(Z- Zo)-",

where the series converge outside the circle Iz zol- max (Izol, Izo- 11) and the coefficients
d,(s, Zo) are given by the three-term recurrence relation

d.(s, Zo) {n(n + 2s- a b)}-l(n + s- 1)

(6) ({(n + s)(1 2Zo) + (a + b+ 1)Zo-c}dn_l(S, Zo)

+ Zo(1 -Zo)(n + s-2)d,_z(s, Zo))

with starting values

(7) d_,(S, Zo)-O, do(s, Zo)--1.

The series in (5) may be rewritten as

(8) E d.(s, Zo)(Z- Zo)-" E Zo)
.=o .=o(1+2 -b).

e"(s’z)(z

where the coefficients e,(s, Zo) now obey the recurrence relation

(9)
e.(s, Zo) n-l({(n + s)(1- 2Zo)+ (a + b+ 1)Zo-cIe._l(S, Zo)

+ zo(1 zo)(n 1 + 2s- a b)e._z(S, Zo))

with starting values

(10) e_l(S, Zo)=O, eo(s, zo)= l.
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The coefficients d, are also given by

(11) d,(s, zo)=

or by

(12)

(s),(l+s-c),
(l+2s-a-b),,n!

2F(-n, a + b 2s n; c s n; Zo)

(s),,(s+c-a-b).a. zo) (- )" ii -- ----bS
2F(-n,a+b-2s-n; l+a+b-s-c-n; 1- Zo).

A formula corresponding to (5) for the case when b a is an integer can be derived
from (5) by a limiting process in a similar way as described in [2]. The case b a is
covered by

COROLLARY 1. For larg (Zo-Z)l< r there holds

{r(c)}-F(a, a; c; z)=
r(a)r(c-a)

(a).(e.(a, Zo) Zo-z>-a o
(13) {2q(1 + n)- q(a + n)- q(c- a)

+ In (Zo- z)}-f.(zo))(z Zo)-",

where the series convergesfor Iz-zo[> max ([Zol, Izo 11) and the coefficients e.(a, Zo) are
given by (9)-(10) with b=a and the f.(zo) by the recurrence relation

f. (Zo) n-({(n + a)(1-2Zo) + (2a + 1)Zo- c}f._l(zo)

(14) + Zo(1 Zo)(n 1)f._(Zo)+ (1 2zo)e._,(a, Zo)

with starting values

(15)

+ 2Zo( 1 zo)e._(a, Zo))

f_,(Zo) =fo(zo) =o.

The case when b a is an integer different from zero is less simple and is therefore
omitted.

3. Special cases. We discuss some special cases of Theorem 1.
(i) For Zo=0 or Zo 1 the recurrence relation (6) simplifies and becomes a

two-term recurrence relation, the series in (5) are then hypergeometric.
Consequently (5) reduces to (4) if Zo 0 or to another well-known continu-
ation formula if Zo 1.

(ii) The case when Zo =1/2 is unique in so far as then two singular points of the
differential equation are on the boundary of the convergence domain of the
series. Although (6) simplifies, it remains a three-term recurrence relation.
The series converge outside the circle z -1/21 1/2, which means that the conver-
gence domain has been enlarged considerably as compared with the conver-
gence domain Izl > 1 of the hypergeometric series on the right of (4). As a
consequence, both points in question, z =1/2(1 +/- iv/), are now inside the
convergence domain.

(iii) If Zo =1/2 and c =1/2(a + b + 1), which implies that the two singular points on
the boundary of the convergence domain have the same characteristic
exponents, then we have
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COROLLARY 2. /f b-a is not an even integer, there holds for larg (1/2-z)l < r the
continuation formula

{r(1/2a+1/2b+1/2)}-F(a, b; 1/2a +1/2b+1/2; z)

2b-’-lF(1/2b -1/2a)
(16) r(b)4- (1/2- z)-aEFl(1/2a +1/2’ 1/2a; 1/2a -1/2b + l; {2z- 1}-2)

2a-b-’F(1/2a -1/2b)+ F(a)x/ (1/2- z)-bEFl(1/2b +1/2’ 1/2b; 1/2b -1/2a + l; {2z- 1}-2)’

where the series on the right converge for Iz-1/21> 1/2.
For a --u and b- u+ 1, if z is replaced by 1/2(1- z), this reduces to (8.1.5) of[l]

with/x 0.
A continuation formula valid when b a is an even integer may be obtained from

(16) by a limiting process. The case b a is covered by
COROLLARY 3. For larg (1/2-z)l < 7r there holds

{r(a +1/2)}-12F,(a a; a +; z)

(17) r(a) -z
.=o (n!)

{d/(l+n)-q(a+2n)+21n (2)+ln(-z)}(2z-1)-2",

the series on the right being convergent for Iz-1/21> 1/2.
The case b-a =2m with m 1,2,3... is covered by
COROLLARY 4. For larg (1/2- z)] < 7r and for m 1, 2, 3. there holds

{r(a + m +1/2)}-12Fl(a, a + 2m; a + m +1/2; z)

2a-l+2m m-1 (1/2a +1/2) (1/2a) (m n 1)!
2m)x/(1-2z)- .=o

y" (-1)" n!"F(a +

(18) +(-1)"

(2z- 1)-2"

F(a)x/-(1-2z)--2m .=o
y (1/2a+1/2+ m).(1/2a+

n)!n!

{q(1 + m+ n) + q(1 + n)- q(1/2a +1/2+ m+ n)-q,(1/2a+ m+ n)

+ 2 In (1 2z)} (2z- 1) -2",

Relative to the regular singular point at infinity the Frobenius ansatz

(21) u(x) E d.(s, Zo)X
n=O

(19)
reads

(20) {-x2+ (1 2Zo)X + Zo(1 -Zo)}U"+{c-(a + b+ 1)Zo- (a + b+ 1)x}u’-abu(x) =0.

X--Z--Zo,

4. Proof of Theorem 1. The hypergeometric function 2El(a, b; c; z) is a solution
of the differential equation (1) which, when rewritten in the variable

the infinite series being convergent for Iz-1/21> 1/2.
Corollary 4 contains Corollary 3 as a special case if the empty sum is interpreted

as zero. The formulas (17) and (18) can be written in various other ways by means of
the duplication formulas of and F so that ,(a +2m + 2n) and (a + 2m)2. or (a
appears.
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yields the recurrence relation (6) for the coefficients d,(s, Zo) with the characteristic
exponents s {a, b} as expected.

Next we observe that, when Izl is sufficiently large, x-s-"= z-S-"{1-(Zo/Z)}-s-"
may be expanded in powers of 1/z for any fixed Zo. Then u(z) becomes a power series
in 1 ! z multiplied by z-s. Since there is (apart from a constant factor) only one solution
of the hypergeometric differential equation with this. analytical structure, u(x) must
be equal to the well-known solution which corresponds to the special case when Zo 0.
We therefore have, for each of the two possible values of s,

(22) z-s2Fl(S, 1 + s c; 1 + 2s a b; z-’) (z- Zo) E d,,(s, Zo)(Z- Zo)-",
n-----O

by means of which the continuation formula (5) follows from (4).
The explicit representation for d,(s, Zo) may be obtained from (22) by applying

(23) z-s-’= (Z-Zo) 1+ =(Z-Zo) Y’. -Zo
k

Z Z0 k=O k!

to the series on the left. Collecting the terms with equal powers of z- Zo we obtain

(24)
(S)k(I+s--C)k (s+k)._k(--Zo)"-k

(z--z)-s.=o k=O 1 ;2 " -,) (n k)’.
(Z-Zo)-",

which in view of

(25)
s + k).-k= (_ 1)k s)_._(_--_.n_)k
(n-k)! (S)kn!

is equal to

(26) (Z_Zo)_ (s),,(_Zo),,(Z_Zo)_ (--n)k(l+s--C)k
,,=o n! k=O (1 +2s--a---i-k-! (z)-"

The sum over k is a terminating hypergeometric series, and comparison of (26) with
the right-hand side of (22) then shows that

(27) d,(s, zo)=(n!)-l(s),(-Zo)"2Fl(-n,l+s-c; l+2s-a-b; 1/Zo).

Application of the appropriate continuation formula of the hypergeometric function
now yields (11) or (12), respectively.

5. Proof of Corollary 1. The starting point is (5) with the series rewritten in terms
of the coefficients e, (s, Zo) according to (8). Then a is replaced by a e and b by a + e,
so that the e,(s, Zo) depend on e via s only. Introducing

and performing the limit e0 we obtain (13). The relation (14) follows if (9), with
a + b 2a, is differentiated with respect to s and then s put equal to a.

6. Proof of Corollaries 2-4. When Zo 1/2 and c 1/2(a + b + 1), the recurrence rela-
tion (6) reads

(29) d.(s,1/2)=2-2{n(n+2s-a-b)}-(n+s-1)(n+s-2)d._2(s, 1/2),

and the series in question becomes

(30) 2F(1/2s +1/2, 1/2s; 1 + s-1/2a-1/2b; {2z- 1}-2).
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The factor in front of the series in (5) is

F(a+b-2s)
(31)

r(a+b-s)r(c-s)
(z-z)-S"

In the context of Corollary 2 it becomes, using the gamma duplication formula,

2a+b-2s-lF(1/2a +1/2b s) (1/2_ z)_(32)
r(a + b- s)4-

With the two possible values of s the two connection coefficients on the right of (16)
follow immediately.

Corollary 2 can also be verified in a different way by means of known transforma-
tion formulas. For if c 1/2(a / b / 1), the hypergeometric functions on the right of (4)
appear with parameters such that the quadratic transformation formula (according to
[1, (15.3.16)])

(33) F(A,B;2B;Z)=
2-Z F A+-’-A;B+-; 2 Z

can be applied to each of them. The required result then follows in view of (32).
Corollaries 3 and 4 follow from (16) by tedious but standard calculations.

7. Concluding remarks. From a computational point of view the most efficient
method for evaluating the hypergeometric function is the Miller algorithm. The relevant
formulas are now easily accessible in the monograph by Wimp [4].

Nevertheless our Theorem 1 offers a method for computing the hypergeometric
function at the two points in question which before were practically inaccessible by
power series. If Zo 1/2 is used, the convergence ratio is q ]1/2/(z-1/2)1, which for the two
exceptional points has the value q 1/x/ 0.577....
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Abstract. Error bounds are obtained for asymptotic expansions of the ratio of two gamma functions
F(x + a)/F(x + b) for the case of real, bounded a, b and large positive x. In particular an assertion of Luke
about a result of Fields is rigorously justified by showing that the error made in truncating Fields’ asymptotic
expansion is numerically less than and has the same sign as the first neglected term. Use is made of some
results for completely monotonic functions and enveloping series.
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1. In 1951 Tricomi and Erd61yi 12] derived an asymptotic expansion for the ratio
of two gamma functions in the form

(1.1)
r(z+a)
F(z+b)
__ml r(b- +j) Ba_b+ za_b_ -b-m(_1)j

a ’)(a) +O(z ),
=o F(b- a)j!

valid for all m->l as z- with larg (z+a)[< r. In (1.1) the quantities a and b are
bounded complex numbers and the BJ’)(a) are the generalized Bernoulli polynomials
defined by

) ea B))(1.2) Y (a), Bo’)(a) 1, Itl<2cr.e -1 =o

A similar result was obtained by Fields [3], who showed that for all m _-> 1

r(z+a) r(1-2p+2j),-(-o):.. -a- ),(1.3)
F(z +b-’ j=o r(1-2p)(2j)[ t2j ,e)wz + O(w2p-l-2m

as w -> oo with larg (w + p)[ < w, where 2w 2z + a + b 1 and 2p a b + 1. Further-
more, in a later paper, Fields [4] gave an improved order estimate for the remainder
in (1.3). Several other authors have investigated the asymptotic expansion of the
left-hand side of (1.1) for essentially the special case a 0, b 1/2 and z n, where n
is a positive integer (see 1], [6], [7] and [9]). Recently Luke [6] pointed out that when
a, b and z are all real, simple adjustments using the functional equation for the gamma
function can always be made so that 0< p < 1/2 (0< a- b + 1 < 1) in (1.3). In this case
the generalized Bernoulli polynomials B’)(p) are positive when k is even and negative
when k is odd so that the series in (1.3) is alternating. Luke. assumed, as in the case
of certain alternating convergent series, that consecutive partial sums of the right-hand
side of (1.3) yield upper and lower bounds for the left-hand side and his numerical
calculations supported this assumption for the special case a =1/2, b 1 (i.e., p =1/4).
However, while this is always the case for large enough values of real positive z in an
alternating asymptotic expansion, it is not known in general at what point this occurs
(see [8, p. 68] for details).

The purpose of this paper is to rigorously justify Luke’s assertion about Fields’
result, and consequently to establish computable error bounds for an asymptotic

* Received by the editors January 28, 1985; accepted for publication (in revised form) January 7, 1986.
t Department of Mathematics, Southern Methodist University, Dallas, Texas 75275.
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expansion of the ratio of two gamma functions for the case of real bounded a, b and
real z. These results make use of some of the properties of completely monotonic
functions and enveloping series. Error bounds for a one parameter family of asymptotic
approximations for the ratio oftwo gamma functions are also established which include
(1.1) in a certain parameter range of a, b. Since only the real case will be considered,
from now on we take z x.

2. A function f(t) is said to be completely monotonic over (tl, t2), where
t2 <= +c if

(2.1) (-1)"f")(t) >- 0, tl<t<t2, n=0,1,2,....

J. Dubourdieu [2] showed that strict inequality holds in (2.1) for all nonconstant
functions completely monotonic over (q, c); that is, if f(t) satisfies (2.1) with t2
and is not constant, then

(2.2) (-1)"f")(t) > 0, t,<t<c, n=0,1,2,. ..
A function f(t) is said to be monotonic of order N if (2.1) holds for n =0, 1, 2,. .,
N. Examples of commonly occurring completely monotonic functions are e-’ and
(t tl) -v, y => 0. Iff(t) is also continuous at tl, then it is called completely monotonic
over [t, t2) and similar definitions exist for (tl, t2] and [fi, t2]. In the standard case,
which is the one appropriate to this paper, tl 0 and t2 . These values for tl and
t2 will be assumed from now on. Completely monotonic functions are often useful in
asymptotic analysis because if f(t) is completely monotonic over [0, c), then

(2.3) If")(t)l<--_lf")(O)l, 0--< <oo, n=0,1,2,. ..
A detailed study of the concept of completely monotonic functions can be found in
[13, Chap. IV]. Next we discuss the notion of an enveloping series.

The series ao+ al + a2 +’" is said to envelop the number A if the relations

(2.4) ]a-(ao+a+.." + a.)l < la.+l, n=0, 1,2,...

are satisfied. The enveloping series may be convergent (to A) or divergent. If A,
ao, al," are all real and

(2.5) A-(ao+a+...+a,)=O,a,+, 0<0,<1, n=0,1,2,...,

then A is enveloped by the series ao + a +. and in fact lies between two consecutive
partial sums. Note also that (2.5) implies that the error made in approximating A by
truncating the series ao+ al +" is numerically less than and has the same sign as the
first neglected term. Following P61ya and Szeg6 [10, p. 33], we say that the series
ao+a+’" envelops A in the strict sense if (2.5) holds. The terms of a strictly
enveloping series have necessarily alternating signs.

By noting that iff(t) is a nonconstant completely monotonic function over [0, c),
then If(t)l, If’(t){, If"(t)[, are strictly decreasing in the interval (0, t), t> 0, we have
the following result (see P61ya and Szeg6 [10, Prob. 140, p. 33]):

LEMMA 1. Iff( t) is a nonconstant completely monotonicfunction over [0, oo), then
f( t) is enveloped in the strict sense by its Maclaurin series for 0 < <

These results are, for the present, all we shall need.

3. The ratio of two gamma functions can be defined by the following integral
representation (see [8, p. 118]):

F(x + a) 1 fx -xt at b-a-1(3.1) Jo e e-(l-e-) dt, x+a>0, b-a>O.
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The variable x will be assumed to be large and positive. The case of large negative x
can be reduced to the above form by using the relationship F(x)F(1- x)= w/sin rx.
To consider a one parameter family of asymptotic expansions of the left-hand side of
(3.1), let c be an arbitrary constant and rewrite (3.1) as

F(x+a) 1 e-t(x+c)t-(a-b+l)G[cl(t) dt, x+a>0, b-a>0,(3.2) r(x+b-----=r(b_a
where

(3.3)
GtCl(t)=e’(C’b+’)(\e’-lt) "-b+l

j/;(a-b+l)
=j=o.’J (c-b+ 1),

from (1.2). Using (3.3) and Watson’s lemma in (3.2), and then employing the method
of extraction of the singular part to remove the restriction on a and b (see [8, p. 119]),
we obtain

(3.4)

where

r(x + a) ’_ F(b-a+j) u!a_b+l)( b+l)(x+c)a_b_j

F(x+b) =o F(b-a)j! -’

+ R(a, b; x), x + min {a, c} > 0,

(3.5) Rt(a, b; x) O((x + c)a-b-m), X "-) 00,

for all rn => 1. With the relationship

(3.6) B)(tr d) (-1)BJ)(d),
we note that (3.4) becomes a real version of the Tricomi-Erd61yi expansion (1.1) for
c =0, and that it becomes a real version of Fields’ expansion (1.3) for c (a + b-1)/2.

To close this section, we mention two special cases of (3.4). If a b + 1 m, where
m is a positive integer, then R(a, b; x) is zero and (3.4) is exact. Also if a- b =-p,
p a positive integer, and Ix/cl> Ib-c/ II, then with moc the series in (3.4) is
convergent and sums to {(x+a)(x+a+ 1)... (x+a+p-1)}-1.

4. In this section we obtain the main result of this paper-a proof of Luke’s
assertion about Fields’ expansion. First assume that Ib al is not a nonnegative integer;
for this case see the remarks at the end of the previous section. By using the functional
relation xF(x) F(x + 1) for the gamma function, as Luke noted, it is always possible
to reduce consideration of F(x + a)/F(x + b) to the case where 0 < a b + 1 < 1. Putting
c=(a+b-1)/2 in (3.2) and (3.3) yields

F(x+a) 1 -t(x+(a+b-1)/2)t-(a-b+l)G[(a+b-1)/2](g) dr, x+a>0,F(x+b---=r(b_a-------- e

(4.1)

where

(4.2)

0<a-b+l<l,

a-b+l

[(a+b-1,/2](t) e’((a-+’)/:’|---L--|
\e-l]

(sinh;/2)
-(’-’+1)

t
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Substituting the Maclaurin series of G[(a+b-1)/2](t) into (4.1), requiring x+
min {a, (a + b- 1)/2} > 0 and using Watson’s lemma then gives Fields’ expansion (1.3).
We now need the following result.

LEMMA 2. The function h (t) (sinh v/7/x/) is completely monotonic over O, oo)
for a>O.

Proof. Recall the well-known infinite product expansion of sin z/z, valid for all
complex z (see [11, p. 114]):

(4.3)
sinz ( z- )1- n27r2Z n=l

Put z iv/7, 0 =< < oo, in (4.3) to obtain

(4.4)
sinh x/7- (1 + 2tr2)r n=l n

Since 0 =< < oo the product in (4.4) is strictly positive, and consequently
sinh

(4.5) h(t)

It is easy to show that h(t) may be differentiated to yield
1

(4.6) h’(t) -ch(t) 2 2,
0_--<

=lt+n 7r

Now the sum in (4.6) defines a function g(t) which is completely monotonic over [0, o);

(4.7) g(t)
1

=1 +//2’7"/’2’

and so (--1)kgk)( t) >= O, k=0, 1,2,..., 0_< < c.
To prove that h(t) is completely monotonic, we proceed by induction. From (4.5)

and (4.6), (--1)khk)>--O for k=0 and k= 1. Now suppose that (--1)khk)( t) >--__ O for
k-0, 1, 2, ..., n. By Leibniz’s rule,

h"+’)( t) (-ah( t)g( t))")

(4.8) =-t
j=0 j

where we have used the inductive hypothesis and the complete monotonicity of g(t).
Equation (4.8) implies that (-1)"/lh"/l)( t) -> 0, 0-<t<oo, thus completing the
proof.

Lemma 1 now implies that h(t) is enveloped in the strict sense by its Maclaurin
series for all 0 < < c. Upon replacing by 2 and noting that 0 < 2 < oo, we see that
the even function h(t2) (sinh t/t) is also strictly enveloped by its Maclaurin series
for 0< < c. It now follows immediately from (4.2) that G[(a+b-)/2]( t) is strictly
enveloped by its Maclaurin series when 0< a-b+ 1 < 1. Consequently, (4.2), (1.2),
(3.6) and (2.5) combine to give

Gt(t) ajt2j= On(t)an+l t2n+2,
j=O

r(2p)/’a+b-1 a-b+1 n2 )(4.9) cr= p=,
2 2 a (2j)!

0<0,(t)<l, n=1,2,3,..., 0<t<c, 0<a-b+l<l.
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Multiplying (4.9) by e-t(x/’)t-2’/F(b- a), integrating from zero to infinity with respect
to and using (4.1) then gives

(4.10)

r(x + a) bj(x + or) a-b-:j
F(x+ b) j=o

an+ t(x+cr) t2n+2-2p
r(b- a)

e- O,(t) at,

r(b-a+2j)
b= F(b-a) aj, x+min{a, tr}>O, n= 1,2,3,... 0<a-b+l<l.

Denoting the left-hand side of (4.10) by I,, we see that

lao+ l fo t(x+r)t2n+l+b-a(4.11) lI"l<F(b-a-------- e- dt=lb.+l(x+) --"-.

Here we have used the fact that O,(t) is continuous on (0, o). Thus, the asymptotic
series Ej=o b(x + tr) -b-2j envelops F(x + a)/F(x + b). Moreover, as

(4.12)

( __.n+__. fO’ t(x+r)t2n+l+b-a )Sign (I,) Sign
\F(b- a)

e- dt

Sign (b,+l(x + tr) a--2"-:),

it follows from P61ya and Szeg/5 [10, Prob. 144, p. 33] that F(x + a)/F(x + b) is enveloped
in the strict sense by the given asymptotic series. This proves Luke’s assertion about
Fields’ expansion.

5. We conclude by using the notion of complete monotonicity to establish error
bounds for the one parameter family of asymptotic approximations obtained from
(3.2). Write Gtcl(t), given in (3.3), as

(5.1)
e((a-c)/(a-b+l))t e((a-c)/(a-b+l)-l)t)-(a-b+l)G[Cl(t)

We shall need the following result.
LEMMA 3. The function f(t)= e-,’- e-C2’/t is completely monotonic over [0, ) if

--C2 < --C < O.
Proof. By straightforward calculation one finds

(5.2) f(k)(t) (--1)kk!
t+, {r(c,t)-- r(ct)}

where

k

(5.3) rk(t) e-’ Y, -ft..j=0

It is easily shown that rk(t) is strictly decreasing on O< < c, and since O=< Clt < C2
it follows from (5.2) that (--1)kf(k)( t) >= O, k =0, 1,2, , 0_-< <o. Consequently f(t)
is completely monotonic over [0, o). 1-1

The case of interest to us is that of a completely monotonic function raised to a
positive power (see (5.1)), so we assume a-b+ 1 <0. To use Lemma 3 on Gtl(t) we
must require (a c)/(a b + 1) =< 0, or since a b + 1 < 0, c -< a. Under these assump-
tions (5.1) then represents a completely monotonic function raised to a positive power.
If-(a-b+ 1) is a positive integer and c<-a, then GtJ(t) is a completely monotonic
function raised to a positive integer power and so is again completely monotonic. (The
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product of completely monotonic functions is completely monotonic.) In this case, by
Lemma 1, Gtcl(t) is strictly enveloped by its Maclaurin series for 0< t<oo, and
proceeding as in 4, we obtain

r(x + a)_ r(b a +j) n(,,_b+l)
r(x+b) s=o r(b-a)j! --s (c-b+l)(x+c) ’-b-s

(5.4)
F(b-a+n+l)
F(b-a)(n+l)!

B(a-b+l).+1 (c-b+l)(x+c) a-b-"-l,

0<0,<1, n=0,1,2,..., -(a-b+l)=p, papositiveinteger, c-<a,x+c>0.

We see from (5.4) that in this case the error made by truncating the expansion has the
same sign and is numerically less than the first term neglected.

Suppose -(a-b+ 1) is positive and not an integer. Lorch and Newman [5, p. 45]
have shown that if-(a- b + 1)> 1, then (f(t)) -(a-b+l) is monotonic of order 5 (at
least) when f(t) is completely monotonic. Coupling their result with (5.1) and Lemma
3 yields the following result:

F(x+a)_ F(b-a+j) B)._b+,)(c_b+I)(x+c),,_b_r(x+ b) s=o r(b- a)j!

(5.5)
r(b-a+n+ l) ti(a_b+l)(c__b+ l)(xnt_c)a_b_n_
F(b_a)(n+l)! ’’,,+1

0<0,<1, n=0,1,2,3, -(a-b+l)>l, c<-a, x+c>0.

Equation (5.5) implies that for the first four terms of the asymptotic approximation
given there, the error has the same sign and is numerically less than the first term
neglected. The above results, in certain parameter ranges of a, b which can be obtained
by using the functional equation for the gamma function, can be used to provide error
bounds for the Tricomi-Erd61yi expansion (1.1) where c 0.

It is natural to ask if the function GtCl(t) in (5.1) is completely monotonic when
-(a b + 1) is positive, not an integer, and c =< a. It can be shown by using some further
results on completely monotonic functions that there exist positive noninteger -(a b +
1) > 1 such that Gt(t) is not completely monotonic over [0, c). To determine the
order of monotonicity of Gt(t) for general c =< a and -(a b + 1) is a difficult question
which, in view of the results in 4, will not be pursued here.

Finally we remark that the results in 4 and this section can be used to provide
some new inequalities for the ratio of two gamma functions, but we make no attempt
here to compare them with previous work in this area.

Acknowledgments. I am grateful to Professor R. Wong for mentioning this problem
to me, and also would like to thank the referees for pointing out the one-parameter
family of asymptotic expansions given in (3.2) and (3.3) and for correcting an error
in the original derivation of (4.10).
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ASYNCHRONOUS EXPONENTIAL GROWTH IN TRANSITION
PROBABILITY MODELS OF THE CELL CYCLE*
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Abstract. An analysis is given of the population dynamics of the transition probability model of the
cell cycle. The model incorporates a probabilistic phase of indeterminate duration and a deterministic phase
of constant duration. Individual cells increase in size according to a prescribed growth law. Sufficient
conditions are established for the population to have the property of asynchronous exponential growth. The
methods of proof use the theory of positive operators and semigroups of operators.

Key words, functional equation, semigroup of linear operators, positive operators, spectral bound,
Banach lattice, exponential steady state
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1. Introduction. During recent years an effort has been made to give a mathematical
description of the cell cycle and the kinetics of proliferating cell populations. There
are many unanswered questions concerning the biological processes occurring between
cell birth and cell division. It is recognized that passage through the cell cycle divides
into several phases. Typically there is an interphase after cell birth (G1), a period of
DNA synthesis (S), a second interphase (G2) and a mitotic phase (M). A variety of
models have been proposed to explain when and why a cell progresses from one phase
into the next. Some models require cells to spend a fixed period of time in one or
more phases. Others require that cell size reach a critical value. Other models concern
inherited properties of cell descendants. Still others involve random transitions. Some
recent mathematical treatments of such processes in cell population models have been
given by Diekmann et al. [3], [4], Gyllenberg [9], Gyllenberg and Heijmans [10],
Hannsgen et al. [11], Hannsgen and Tyson [12], Heijmans [13J, [14], Jagers [15],
Kimmel et al. 18], Lasota and Mackey 19], Lebowitz and Rubinow [20], Rotenberg
[22], [23], Tyson and Hannsgen [28], [29] and Webb [32], [33].

In this paper we will give a rigorous mathematical analysis of what is known as
the transition probability model of the cell cycle. This model was introduced by Smith
and Martin in [26]. General discussions of this model can be found in the article of
Brooks [1] and Brooks et al. [2]. The main idea of this model is the decomposition
of the cell generation cycle into two kinetic states, a probabilistic A-phase and a
deterministic B-phase. New cells enter the A-phase, from which they exit by random
to the B-phase. The B-phase has a fixed duration normalized to 1. After passage
through the B-phase a cell divides into two daughter cells of equal size, both of which
enter the A-phase. The A-phase roughly corresponds to part of (G1), and the B-phase
to the rest of the cycle.

In this paper our main objective will be to determine growth laws for individual
cells and transition probabilities for passage from A-phase to B-phase which are
compatible with the asynchronous exponential growth of the total cell population.
Roughly speaking, anynchronous or balanced exponential growth means that the
density n(x, t) of the total cell population at time (with respect to some observed
property x of individual cells) is asymptotic to eXotno(x), where ho is the intrinsic

* Received by the editors August 12, 1985; accepted for publication June 19, 1986.
f Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235.
t Institut f/Jr Mathematik, Universit/it Tiibingen, D-7400 Tiibingen, West Germany.
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growth constant and no(x) is the exponential steady state. The model we analyze has
been discussed by Hannsgen et al. in 11]. In their paper they study the exponential
steady state under general growth laws and transition probabilities. One of their
conclusions is that no such exponential steady state exists if individual cells satisfy an
exponential growth law. In [12] Hannsgen and Tyson show that if individual cells
satisfy a linear growth law and the transition probability corresponds to a single random
event, then an exponential steady state exists and the population converges to it in a
weak sense. In [33] this convergence is shown to hold in a strong sense. In [6] this
result is extended to a general growth law.

There are two essential elements in our model. The first is a growth function g
which describes completely the growth of individual cells. The size of individual cells
(or of some cell component) increases with time. In both phases of the cell cycle
individual cells obey the same growth law. We suppose the following hypothesis on g"

(1.1) g is continuously differentiable on [0, o), there exist constants g and such
that 0 < g <= g(x) <- , for all x => 0, and there exists a constant ; > 0 such that
2g(x) g(2x) > 8 for all x >- 0.

The assumption 2g(x)-g(2x)>8 was made by Heijmans in [14] for an age-size
structured model of cell populations. The weaker assumption 2g(x)-g(2x)> 0 was
made by Diekmann et al. in [3] and [4] for a size structured model. Both assumptions
rule out the exponential growth function g(x)= kx. The second essential element of
our model is a cumulative probability distribution function fi The cell generation time
T of individual cells can be described as a random variable satisfying Pr {T> t}
jf(s) ds. We suppose the following hypothesis on f:

(1.2) f is a continuous function on [0, ), f(s)=0 for O<-s<=l,f(s)>O for s>
1, 1 f(s) ds 1, and there exist positive constants M and p such that If(s)[ =<
Me-ps, s>_O.

We define M( t, x) as the size ofa cell which at time units before had size x. M t, x)
is the solution of the initial value problem

--M(t,x)=g(M(t,x)) M(O,x):x>-O.(1.3)
Ot

M(1, 0) is the minimum division size (since 1 unit oftime must be spent inthe B-phase),
M(1, 0) is the minimum birth size, 1/2M(1, 1/2M(1, 0)) is the minimum birth size in the
second generation, and so forth. We define T(x, y) as the time required for a cell to

grow from size x to size y. In terms of g

(1.4) T(x, y)=
g(u)

du, O<=x<- y.

We define m(t, x) as the size ofa cell which grows in time units to size x. For < T(0, x),
m(t, x) is the backward solution of (1.3), which means that

(1.5) --m(t,x)=-g(m(t,x)) m(O,x)=x>-O.
Ot

We collect some basic properties of M, m and T:

(1.6) y=M(t,x) iffx=m(t,y) iff t= T(x,y), O<=x<- y, O<-_t<-_T(O,y),



ASYNCHRONOUS EXPONENTIAL GROVCTH 899

Ml(t, x) g(M(t, x))
(1.7) M2(t,x)== x>-O, t>=O,

g(x) g(x)

-m(t, x) g(m(t, x))
(1.8) m2(t,x)= x>-O, O<-t<- T(O,x),

g(x) g(x)

(1.9) x-t<=m(t,x)<=x, x>=O, O<=t< T(O,x),
(1.10) x<-M(t,x)<=x+t, x>=O, t>=O.

Several interpretations of transition probability distribution functions f are given
in 11 ]. Take f(t) fA(t 1), --> 1, f(t) 0, 0 --< _--< 1. The two-transition probability
model of Brooks et al. [2] has fA(t)=(pq/(q-p))(e-Pt-e-qt), p, q>0, p q. Here fA
is the convolution of two densities f(t) p e-pt, f2(t) q e-qt, each corresponding to
a single random transition. The Kendall model 17] has fA(t) (p/(g 1)!)(pt)g- e-pt,
p > 0, g N. This is the gamma distribution function. Cells divide as soon as a fixed
number g events have occurred. These events can happen independently in any order
and all with the same constant probability per unit time. The Rahn model [21] has
fA(t) gp e-pt(1 e-pt)g-l, p > 0, g N. This is the Yule distribution function. The idea
is the same as in the Kendall model except that the g events have to occur in a specified
order. We mention that the one-transition probability model of Smith and Martin
fA(t)--p e -pt, p > 0, is not included in our development, since (1.2) requires f to be
continuous. This case is treated in [6] and [33].

The derivation of our model is similar to the derivation in [ll]. Let lii n(x, t) dx
be the rate at which cells divide with size between x and x at time t. Let (x, t) dx
be the rate at which cells are born with size between x and x at time t. Fix > 0 and
x > M(1, 0). We write a balance equation for the rate at which cells divide at time
with size between x and x + Ax. These cells were born r time units ago, that is, at time
t-r, where r > 0. They must have had a birth size which leads to a size between x
and x + Ax at time t. Thus, they must have had a birth size between m(r, x) and
m(r, x+Ax). Of those cells born between t-r- Ar and t-r the probability that an
individual cell has generation time between o- and r+Ar is f(r)Ar. Thus, the rate
of dividing cells at time with size between x and x + Ax is

n(y, t) dy a(y, t-or) dyf(cr) do"
dm(o’, x)

(m(o’, u), t-o-)m(o-, u) duf(o’) do’.

Divide by Ax and let Ax- 0 to obtain

n(x, t)= r(m(, x), )m(, x)f() .
For a cell dividing with size x at o- time units after birth o- satisfies 1 T(O, M(1, 0)) -<

o- -<_ T(O, x). Consequently,
T(O,x)

n(x, t)= (m(r, x), t-cr)m2(r, x)f(cr) dr.

We must describe r in terms of n. The number of newborn cells at time with size
between x and x + Ax is exactly twice the number of dividing cells at time with size
between 2x and 2x + 2Ax. Thus,

(y, t) dy- 2 n(y, t) dy 4 n(2y, t) dy.
d2x
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Divide by Ax and let Ax40 to obtain r(x, t)=4n(2x, t). We are thus led to the
following functional equation for the density n(x, t):

(1.11)
( f o,x)

ck(x, t),

n(2m(tr, x), t- tr)m2(o’, x)f(o’) do’, t->0, x>M(1,0),

t-->0, 0_-<x-<M(1,0),
t<0, x_-->0.

In (1.11) b prescribes the distribution of dividing cells before time 0.
In order to state our main result we introduce some notation. Let 0< -<p/2,.

Define the Banach space Y-= {h C([0, c); R): h(0) =0, and lim,,_.o e"h(x) =0} with
norm Ilhll,---SUpx_>o elh(x)l. Define the aanach space X--LI((-, 0]; r).

PROPOSITION 1.1. There exists a unique real solution Ao of the equation 1-
2 1 e-sf(s) ds, there exists a unique solution x* of the equation 1 T(x*/2, x*), and
there exists a unique function ho Y satisfying the normalizing condition 1 x ho(x) dx
and the integral equation

e-XoSho(2m(s, x))f(s)mz(s, x) ds dx, X >- X*,

Ox <x*.
(1.12) f T(x*/2,x)

ho(x)
4

0
dl

Let dp X. There exists a unique solution of (1.11) satisfying n (., t) Yfor >- O. Further,
there exists a constant c(ck (depending on oh) such that

(1.13) lim Ile-"o’n( ., t)-c(ck)holl.=O.
t-

The method of proof of Proposition 1.1 will employ the theory of semigroups of
linear operators and the theory of positive operators. The application of these theories
to the study of structured population dynamics has been developed by a number of
authors. Our approach has been particularly influenced by Greiner [7], Diekmann et
al. [3], [4] and Heijmans [13], [14]. We state the basic ideas we will use. Let T(t), >-0
be a strongly continuous semigroup of bounded linear operators in a Banach space X
and let A be its infinitesimal generator. The spectral bound of A is s(A)=-
sup {Re A: A cr(A)}(see [7]). The essential growth bound of T(t), >-0 is COl(A) -=
limt_ (l/t)log(PIT(t)]), where c is the Kuratowski measure of noncompactness
(see [31]). Let L be a positive bounded linear operator in a Banach lattice X (see
[25]). L is nonsupporting if and only if for each b X+, b 0, F X+*, F 0, there
is an integer nl such that for n>-n, (F, Lnb)>0 (see [14]). The following result is
proved in [7] and [33].

PROPOSITION 1.2. Let T(t), >-0 be a strongly continuous semigroup of positive
bounded linear operators in the Banach lattice X. (1) IfCO(A) < s(A), then s(A) Per(A)
and there exists rk X+, ck O, such that Ark s(A)ck. (2) If col(A) < s(A) and s(A) is
a simple eigenvalue ofA (that is, s(A) is a simple pole of (AI-A)- and N(s(A)I-A)
is one-dimensional), then limt_o e-(A>tT(t)= Po, where Po is the projection ofX onto
N(s(A)I-A) given by (1/27ri) r (AI-A)-1 dA (F is a positively oriented circle about
s(A) enclosing no other point of or(A)).

The following result is proved in [24] (see also [14]).
PROPOSITION 1.3. Let L be a positive nonsupporting bounded linear operator in the

Banach lattice X and let the spectral radius r= r(L) be a pole of (AI-L)-. (1) r>0
and r is a simple eigenvalue ofL. (2) There exists ck X+, qb 0, such that Lck rck and
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(F, dp) > 0 for all F X*+, F O. (3) There exists F X*+, F O, such that L*F rF and
F, b > O for all $ X+, 4,30.

2. The semigroup of operators. We observe that X and Y are Banach lattices with
the natural ordering. Define G" X-> Y as follows" for th X

I flT(O,x)(2.1) (Gb)(x)
4 (-s)(2m(s,x))m2(s,x)f(s)ds, x> M(1, 0),

[0, 0_-<x=< M(1, 0).

PROPOSITION 2.1. G is a bounded linear operator from X to Y.
Proof Let b X. Since T(0, M(1, 0)) 1, (Gcb)(x) is a continuous function of x.

Since m(s, x) >= x- s,,
T(O,x)

e’l(G)(x)l=e’4 [(-s)(2m(s,x)) e2ms’’) e-2ms’’)m2(s,x)f(s ds

T(O,x)

<-4Me-’(/g_) 114(-s)lle<=-’) ds

<=4M e-(g/g)ll4ll,.

Thus, limx_oo el(G4)(x)l-O and IIall<-_aM(g/g)ll4llx.
The problem (1.11) can be formulated as

(2.2) n(t) =Gnt, >= O, no c
where n .(-oo, oo) --> Y, nt X, nt( O) n( + 0), 0 <= O, dp X and n(x, t) n( t)(x). The
proof of the following proposition follows directly from the results in [30].

PROPOSITION 2.2. For each b X there exists a unique function n.(-oo, oo)--> Y
satisfying (2.2). If qb X/, then nt X/ for all >= O. The solutions of (2.2) define a
strongly continuous semigroup ofbounded linear operators in X by theformula T( t)dp nt.
The infinitesimal generator of T(t), >=O is Ab=+b’, D(A) {dp X" dp is locally
absolutely continuous, b’( O) exists for almost all 0 <= O, dp’ X, and dp (0) G}.

PROPOSITION 2.3. The essential growth bound of T(t), >= 0 satisfies ol(A)<=0.
Proof By virtue of Proposition 2.4 in [33] it suffices to show that for sufficiently

large there exists a representation T(t) U(t) + V(t), where U(t)l -< C for some
constant C independent of and V(t) is compact. Let b X and define nj" (-oo, oo) --> Y,
j 1, 2, 3, 4, as follows:

n(t)(x)=
4 4(u)(2m(t-u,x))m(t-u,x)f(t-u) du, t>-_O,

-T(O,x)

dp(t)(x), < O, x >- O,

n(t)(x)=
4 n(u)(2m(t-u,x))m(t-u,x)f(t-u) du, >-1, x>=0,

1,0, t<l, x-->0,

16 d()(2m(u-w),2m(t-u,x))m2(u-w, 2m(t-u, ))
-1n(t)(x)=
f(u-)m(t-u,x)f(t-u) dudw, tel, x>-O,

0, t<l, x>-O,
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16 n(w)(2m(u w), 2m(t- u, x))m(u w, 2m(t- u, x))
+1n4(t)(x)= f(u-w)m2(t-u,x)f(t-u) dudw, t>-2,

O, < 2,

(all integrals are taken as 0 whenever the lower limit of integration exceeds the upper
limit of integration). For b X, -> 0, x -> 0,

n(t)(x)=4 n(u)(2m(t-u,x))m(t-u,x)f(t-u) du
t-T(O,x)

=n(t)(x)+4 n(u)(2m(-u,x))m(t-u,x)f(t-u) du

n,(t)(x) + n2(t)(x) + 16 n(w)(2m(u w, 2m(t- u, x)))

m2(u-w, 2m(t-u,x))f(u-w) dwm2(t-u,x)f(t-u) du

n,(t)(x)+ nz(t)(x)+ n3(t)(x)+ n4(t)(x).

Define( U(t))(0)(x) E;=I ns( + O)(x),( V( t)dp )( O)(x) n4( + 0)(x).Then,( U(t)b +
V( t)gp)( O)(x) n( + O)(x) (T(t)6)(O)(x).

Since rn (t + 0 u, x) -> x (t + 0 u), there exists a constant C independent of
t, 0 and x such that

e2r(t+O-u)g -p(t+O-u)e In,(t/O)(x)l<Ce I[(u)ll e du
t+O-T(O,x)

_-< c I1,, e(2’-P)(t+).

Consequently,

e(2"rg-p)(t+O) dOsup e"ln(t+O)(x)l dO < 114,(t+O)ll.dO+CII4,1l
x>=O

Similarly, from (2.3) we see that there exists a constant C, which is changing, but is
independent of t, 0 and x, such that

t+O-1

e’ln2(t+O)(x)l<=Ce Inl(u)(2m(t+O-u,x))l e-(’+-" du
dO

t+O--1

<- Ce e-Zzm(t+-u’x)lldPllxe(2Zg-P)u e-p(t+-u) du
0

<_ cll4llxe e(2g-,)t+o)(t + O-1).

Consequently,

e(2*g-P)(t+)( + 0 1) dOsup eXln2(t+ 0)(x)[ dO < cIl llx
x-->O --t
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Since 2m(u-w,2m(t+O-u,x))>-m(u-w,2m(t+O-u,x))>=2x+(w+u-2(t+O)),

e’Xln3( + 0)(x) =< C e II (w)ll e-2"x e-<w+-2’+)) e-p<’+-w) du dw
1,t0

e(2’,-p)(t+O)< C e-X 4,11,,

Consequently,

ffff Sl eln3( + O)(x)l dO filmily.

Thus, u(t)l <- C, where C is a constant independent of t.
It remains to show that for > 2, V(t) is compact from X to X. Let M be a

bounded set in X. We substitute v=2m(u-w, 2m(t-u,x)) in the integral which
defines n4(t)(x). Since Ov/Ou=2g(m(u-w, 2m(t-u,x)))[-l+2g(m(t-u,x))/
g(2m(t-u,x))] and 2g(y)-g(2y)> 6>0 for all y_>0, we have Ov/Ou>=26g/>O.
Define u g(v, t, x) if and only if v 2m(u w, 2re(t- u, x)) and observe that Oq/Ov <-
t/26g. Thus, for 0 _-> 2- t, x _-> 0

t+0--2 f S(X,W,t+O)

(V(t)dp)(O)(x)= 16 n(w)(v)z(v, w, t+O,x) dvdw
,10 J r(x,w,t+O)

where s(x, w, + O) 2m(t + O- w- 1, 2m(1, x)), r(x, w, + O) 2m(1,2m(t- w- 1,x))
and

z(v, w, + O, x) m2(q(v, + O, x)- w, 2m(t + O- q(v, + O, x), x))f(q(v, + O, x)- w)

m(t+O-q(v, t+O,x),x)f(t+O-q(v, t+O,x))Oq(v, t+O,x)/Ov.

Since In(w)(u)l<=e-lln(w)ll-- e-llnll<=e-llllT(w)ll, (v(t))(O)(x) is
equicontinuous in 0 for 0 [2- t, 0] and in x for x in bounded intervals independently
of b M. We need only show that limx_, e’l(V(t)4)(O)(x) =0 uniformly for b M,
O[2-t, 0]. Since r(x, w, t+O)>-_4(x-(t+O-w-1/2)),

I+0--2 [ s(x,w,t+O)

e’l(v(t)cb)(O)(x)l<-_ Ce e e-p(t+-w) dvdw
,I r(x,w,t+O)

+-2

<-_ C e e-p(t+) e-’r(x’w’t+O) epw dw

<= C e-3x

where C is independent of b M, 0 [2- t, 0] and x

3. Spectral properties of the infinitesimal generator. Let A Ao be the unique real
root of the equation 1 2 1 e-XSf(s) ds. Notice that Ao is positive. We will establish
that s(A) Ao is a simple eigenvalue of A. For A > 2zg,-p and h Y define Lah by

f T(O,x)

(3.1) (Lxh)(x)=
4

0,

e-XSh(2m(s, x))m_(s, x)f(s) as, x> M(1, 0),

0=<x=< M(1, 0).

PROPOSITION 3.1. Let A > 2z,-p. (1) Lx is a positive compact operator from Y to
Y. (2) A P(A) and Ab A4, b # O, if and only if there exists h Y, h 0 such that
c( O) eXh and Lah h.
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Proof. Obviously Lx is positive. To prove Lx is compact let M be a bounded
subset of Y. The substitution tr= 2m(s, x) in (3.1) yields

e(3.2) (Lh)(x)
g(x) o

From (3.2) we see that (Lxh)(x) is equicontinuous in x for bounded intervals of x and
for h in M. From (3.1),

T(O,x)

e’Xi(Lxh)(x)l<-_ Ce e-Xllhllye
dl

--2.rm(s,x) e-pS ds

<= C e f T(O’x)
e-<, +p--2’)s ds C e

where C is independent of heM and x=>M(1,0). Thus, limx_oe*’(Lh)(x)=O
uniformly for h M. Hence, Lx is compact and (1) is proved.

To prove (2) observe by Proposition 2.2 that Ab Ab if and only if b’= Ab and
b(0) Gb if and only if b(0)= eb(0) and b(0)= G(ed(O))= Ltb(0). [3

PROPOSITION 3.2. Let y(x) 1/2M(1, x), x _-> 0. (1) y has a uniquefixed point y* and
y*>0. (2) Letx>=O anddefineyl= y(x), yn+l y(y,), n= 1,2,.... IfO<=x<y*, then
{Yn } increases to y*, and ify* < x, then {y, } decreases to y*.

Proof. Our proof follows [14, Lemma 6.5]. Observe that y’(x)= 1/2(g(2y(x))/g(x)).
Since 2g(x)-g(2x)> 0, we have that y’(y)< 1 for any fixed point y of y. Hence, y
can have at most one fixed point. Since y/l =< 1/2(yn + g), the sequence {y,} is bounded.
If 0-<x < y(x), then {y,} is increasing to a fixed point of y. If x> y(x), then {y,}
decreases to a fixed point of y. The claims (1) and (2) now follow immediately. V1

PROPOSITION 3.3. Let A > 2r-p, let x 1/2M(1, 0), Xn+ y(Xn) n 1, 2,’.’,
and let x*=-lim,_oo2x,=2y*. (1) If he Y, then (Lh)(x)=O for 0-<x_-<2x,, n=
1,2,.... (2) If he Y+ such that h(xo)>O for some Xo>X* and yl=1/2M(1, Xo/2),
y+l /(yn), n-l,2,.-., then (L(x)>Ofor 2y<=x<oo, n=l,2,..-.

Proof. By (3.1) (Lah)(x)=O for O<=x<-2x. By (3.2)

(3.3) (Lh)(X)=g(x) e-r(/’(Lh)(o’)f T ,x do’.

Since (Lah)(x)=O for O<-x<=2x, (LZxh)(x)=O for 2m(1, x)<=2xl, that is, for x -<

M(1, Xl)= 2x2. An induction argument proves (1) in the general case. By (3.2) (Lxh)
(x) > 0 for 2m(1, x) _-> Xo, that is, for x => M(1, Xo/2) 2yl. By (3.3), (L2h)(x) > 0 for

2m(1, x) => M(1, Xo/2), that is, for x => M(1, 1/2M(1, Xo/2)) 2y2. An induction argument
proves (2) in the general case. [3

Define Z {h C([x*, c); R): h(x*) =0 and limx_oo eXh(x) =0} with norm
Ilhllz-sup__>. eX[h(x)[. For A >2z,-p and hZ define Kah by

(3.4) (Kxh)(x)
2 f 2m(l’x) e-XT(’/2"X)h(o’)f(T(x))do’,, x>x*.=

g(x) a,,.

PROPOSITION 3.4. Let A > 2r-p. (1) If h Y such that h(x) =0 for O<-x<-x*,
then (Lxh)l,,..oo) Kxh[[,,..oo). (2) Kx is a compact positive nonsupporting operator from
Z to Z. (3) The spectral radius r(Kx ofKx is positive and is a pole ofthe resolvent ofKx.

Proof. We have (1) from (3.2), (3.4), and the fact 2m(1, x*)= x*. That Kx is a
compact positive operator from Z to Z then follows from Proposition 3.1 (1). To prove
(2) it remains to show that Kx is nonsupporting. Let h Z/, h # 0, F F*+, F # 0.
There exists Xo> x* such that h(xo) > 0. Define {y,} as in (2) of Proposition 3.3 so that
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{2y,} decreases to x* and (Kh)(x)>O for x>=2y,. Let O<=q,(x) < 1 such that q, eZ
and q,(x) 1 for a, -= y, _-< x -<_ b, 2y, + n. Define F, e Z*+ by (F,, k) (F, k. q,), k e Z.
For each keZ, ](F,-F, k)l=l(F,k, q,-k)l<-llFllz.]lk q,-kllz0 as n (since
k(x*) lim,_. k(x)=0). Assume there exists a subsequence such that (F, K’-h) 0
for all n. Since 0 < (F,,., Kx"m h) < (F, Kx"m h), we have (F,,., Km. h) 0 for all n. For
each n there exists a nondecreasing function f,,. on [a,,., b,,.] such that (Fro., k)=
". k(x) df,.(x) for all keZ (see [27, 6.1.4]). Since (K’.h)(x)> for am <=x<--b,.
and (F,,.,K".h)=O, we must have f,,.=0 on [am.,bm.]. Then," (F,k)=
lim,_. (Fro., k)= 0 for all k e Z, which is a contradiction. Thus, Kx is nonsupporting
and (2) is proved. To show that r(Kx)>0 let h e Z+ such that h # 0. From (3.4)

f(Kah)(x) dx
2 e-r(/2"X)h(r)f T x dr dx

g(x) a*

(3.5)

If h [[z 1, then

Ix f T(x*/2,x)

-aSh4 e (2re(s, x))f(s)m(s, x) ds dx

=4 e-aSh(2m(s, x))f(s)m(s, x) dx ds
(s,x*/2)

=(2I;e-XSf(s) ds)f,.h(y)dy

(I )"f f e-’’*
2 e-XSf(s) ds h(y) dy= (gh)(x)dx<-lgTI.

Consequently, lim,_ IK,I 1/’= r(K)> 0. Since K is compact, r(K) is a pole of the
resolvent of Ka (see [16, p. 185]). Thus, (3) is proved.

PROPOSITION 3.5. The spectral bound of T( t), >-0 satisfies tol(A) < s(A)= Ao.
Proof By Propositions 1.3 (2) and 3.4 (2) there exists hoe Z+, ho # 0, such that

Kxoho= r(Kao)ho. From (3.5)

r(Kao) ho(x) dx 2 e-aoSf(s) ds ho(y) dy.

Since hoeZ+, ho#O, we have r(Kao)= 1. Define he Y by h(x)=0, O<-x<=x*, h(x)=
ho(x), x > x*. By Proposition 3.4 (1), Laoh h. By Proposition 3.1 (2),)toe Per(A) and
by Proposition 2.3 tol(A)<-O<Ao<=s(A). By Proposition 1.2 (1) there exists
b 0, such that Ab s(A)d. By Proposition 3.1 (2), Ls(a)cb(O)= b(0), where b(0)
Y/ b(0)0. A calculation similar to (3.5) now shows that 2 e-s(a)f(r)dr= 1
which means s(A) Ao.

PROPOSITION 3.6. The spectral bound s(A)= Ao is a simple eigenvalue ofA.
Proof By Proposition 3.1 (2), b e N(AoI A), b # 0, if and only if b(0) eaoh,

h 0, and Laoh h. By Proposition 3.3 h(x) 0 for 0-< x -< x* and h(x) > 0 for x > x*.
By Proposition 3.4 (1) Kohltx.,oo hltx.,oo). Since r(Kao)= 1, Proposition 1.3 (1) yields
that N(I-Kao is one-dimensional. Thus, N(AoI-A) is one-dimensional. To prove
that Ao is a simple eigenvalue it suffices to show that if b e X such that (AoI- A)2b 0,
then (AoI- A)b 0. Assume -= (AoI- A)b # 0 and (AoI- A)2d? 0. Since
N(AoI-A), the argument above shows that q,(0) eaoh, where h(x) 0 for 0_<- x =< x*
and h(x) > 0 for x > x*. Since (,oI A)4 q,, we have that 4(0) ea4(0) 0 e;h.
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Since 4,D(A), 4,(O)=G$=G(eXb(O))-G(Oeh)=Lxod(O)+k, where
-G(O eXoh). From (2.1)

k(x) 4 1 s e-aoSh(2m(s, x))m2(s, x)f(s) ds

;x ) ))g(x)
T x e-aor(/2"X)h(o. T x do’.

Thus, k(x)=0 for O<=x<=x*, (Lok)(x)=O for O<=x<-x*, n=l,2,..., and
kltx*, Z/, klt., 0. Observe that b(0) LT,ob(0) +=-o L{ok, n 1, 2,. .. By
Proposition 3.3 (1), limn_(Lob(0))(x)=0 for 0_<-x<x*. Thus, b(0)(x)=0 for
O<-x<=x*. By Proposition 1.3 (3), there exists FeZ* such that K*xoF=F and
(F, 1) > 0 for all Z+, # 0. Then, (F, 4,(0)lt,,)>- (F, Laob (0)ltx.,) +
kltx*,oo) (K*oF, (0)ltx*,oo) + (f, kltx*,oo) (f, b(0)lt.,oo) + (F, klt*,>. Con-
sequently, (F, kltx.,oo)= 0, which is a contradiction. [3

ProofofProposition 1.1. The proof follows immediately from the preceding propo-
sitions. Let h Z+ such that Kxoh h and L h(x)dx-1. Since N(I-Kxo) is one-
dimensional, such an h is uniquely determined. Let ho(x) 0 for0 <- x <-_ x*, ho(x) h(x)
for x>x* and ho is the unique solution of (1.12). For cX, (Poch)(O)=c(c)eXho,
where c(b) is a constant depending only on b. Thus, GPoch-c(c)G(eXoho)=
c(cb)Laoho-c(ck)ho. Proposition 1.2 then implies (1.13), since limt_.oolle-Xotn(t)
c(4,)hollY-lim,-.oo liG(e-X’T(t)ek- Pock)lly =O. rq

Remark 3.1. The value of c(b) in (1.12) can be determined in terms of ho. Define
N(t) o n(t)(x) dx, R, and (t) J b(t)(x) dx, < 0. Then

4 n(t-s)(2m(s,x))m2(s,x)f(s) dsdx, t>-O,
N(t) o)

t<0.

A calculation similar to (3.5) shows that N(t) 2 1 N(t s)f(s) ds, >- O. If we define
3: = LI((-, 0]; R) --> R by d 2 p(-s)f(s) ds, p , then N(t) CgN,, => 0,
and No . As in [30] this functional equation yields a semigroup of operators in
by the formula 2r(t)= N,. The infinitesimal generator of if(t), t>-0 is
D() { X" ’ X and (0) }. For > 1

(o’(t),)(0)
Ioo f t+o-1

2 Cb(u)f(t+O-u)du+2 N(u)f(t+O-u)du,
.tO

2 P(u)f(t + O- u) du,

(t+o),

1-t<_O<_O,

-t<__ 0<_0,

O<-t.

An argument similar to Proposition 2.3 shows that w(M)=<0. Further, A Po.(sd),
A > 0, if and only if A satisfies the characteristic equation 1 2 e-aSf(s) ds. If Ao is
the unique real root of the characteristic equation, then lim,_.oo e-X’ff(t)
where o (1/2ri) r (AI )- dA. For A > 0, A Po.(.), (AI ,)-1(I) if and
only if V(O)=ea(O)+x(O), where X(0)=0 ea-)(s) ds and (0)= (qV. Thus,

eXX((AI- M)-O)(O)
I 2 o e-Xf(s) as - g(o).
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By the Residue Theorem

By (1.13)

(o,)(0)
2 eao 5 5s e-ao(S+r)dP(r) drf(s) ds

2 [.T se-"o*f(s) ds

{iona e-ao’n(t)(x) dx= c(ck) G(eXoh)(x) dx

lim e-aotN(t)
t-o

Po.
Thus, c(4)= 3o/o G(eh)(x) dx. We observe that 3o, the exponential steady
state of the total population of dividing cells of all sizes, is independent of g, the
growth law of individual cells.
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ON DETERMINING THE PREDICTOR OF NONFULL-RANK
MULTIVARIATE STATIONARY RANDOM PROCESSES*

A. G. MIAMEEf

Abstract. Algorithms for determining the generating function and the predictor for some nonfull-rank
multivariate stationary stochastic processes are obtained. In fact, it is shown that the well-known algorithms
given by Wiener and Masani [Acta Math., 99 (1958), pp. 93-137] for the full-rank case are valid in certain
nonfull-rank cases exactly in the same form.

Key words, nonfull-rank multivariate stationary processes, generating function, best linear predictor
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1. Introduction. One of the important problems in the prediction theory of multi-
variate stationary stochastic processes is to obtain some algorithm for determining the
best linear predictor in terms of the past observations. Wiener and Masani [9], [10]
solved this problem for the full-rank case, when the spectral density f of the processes
is bounded above and away from zero, in the sense that there exist positive numbers
c and d such that

(1.1) cI<-f(O)<=dl.

Masani [2] improved their work substantially showing that the same algorithm is
valid if in lieu of (1.1) one assumes that

(i) f L;
(1.2)

(ii) f-L.
Several other authors proved the validity of the same algorithm under more general
settings, cf. for example Salehi [8], Pourahmadi [6]. However, all these results are
under the severe restriction of full-rank and there has been no extension of Wiener
and Masani’s algorithm beyond the full-rank case.

The purpose of this note is to show that the algorithm remains valid exactly in
the same manner for the nonfull-rank processes which satisfy the following conditions:

(i) The range of f(0) is constant a.e. Lebesgue measure,

(1.3) (ii) f Lo,

(iii) f# L1,

where A# stands for the generalized inverse (to be defined later) of the matrix A. In
the full-rank case these conditions clearly reduce to the conditions (1.2), and hence
our result generalizes Masani’s algorithm in [2].

Masani’s assumption and approach rests on a characterization [2, Thm. 2.8], for
full-rank minimal multivariate stationary stochastic processes. Our motivation and
assumptions are based on a characterization of Jo-regularity (which we shall call
"purely minimal") due to Makagon and Weron [1]. We will employ Wiener and
Masani’s algorithm to find the predictor of an associated full-rank process (to be
clarified later), which is produced using the technique of Miamee and Salehi [5], and
using this we will obtain our algorithm for the nonfull-rank process.
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f Isfahan University of Technology, Isfahan, Iran. Present address, Department of Mathematics,
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In 2 we set down the necessary preliminaries. Section 3 is devoted to establishing
our algorithm for determining the generating function and in 4 we will show the
validity of Wiener and Masani’s algorithm for the best linear predictor.

2. Preliminaries. In this section we set down notation and preliminaries. Most of
these are standard and can be found in [4], [9] and [10]. Let H be a complex Hilbert
space and q a positive integer. Hq denotes the Cartesian product of q-copies of H,
endowed with a Gramian structure as follows: For any two vectors X (xl, xq) r

and Y (yl,..., yq)T, the superscript T stands for the matrix transpose, in Hq their
Gramian matrix (X, Y) is defined by

(X, Y) (xi, xA)]/q,j:
It is easy to verify that it has the following properties:

(X, X) >_- O,
(x,x)=0 x=0,

E I;
j=l i=1 j=l

where X, , X, are in Hq, i, Bj are constant q x q matrices, and _-> 0 means A is
a nonnegative definite matrix. We say that X is orthogonal to if (X, )= 0. It is well
known that I-/q is a Hilbert space with the inner product

((X, ))= trace (X, ).
A subset M of ilrq is called a subspace if it is closed and AX+BY e M, whenever X
and are in M, A and B are q x q constant matrices. It is easy to see that M is a
subspace if and only if M Mq for some subspace M of H. For any X in gq, (XlI)
denotes the projection of X onto M, and that is the vector whose kth coordinate is
(xlM), which is the usual projection of x onto the subspace M.

A bisequence X,,, n e Z, in Hq is called a q-variae stationary stochastic process if
the Gramian (X,, X,,) depends only on m- n.

It is well known that every q-variate stationary stochastic process X has a
nonnegative matrix valued measure F on [0, 2’], called its spectral measure such that

e-i(m-n) dF(O).

f stands for the Radon-Nikodym derivative of the absolutely continuous (a.c.) part of
F with respect to the normalized Lebesgue measure dO, and it is called the spectral
density of the process.

To every stationary stochastic process X, n e Z the following subspaces are
attached:

M(+o) sp (X,-oo n oo), i.e., the subspace of Hq generated by all X, n e Z,
M(n sp (Xk, -O < k <- n ),
M(-o) f3 M(n),

M’(n)=sp(Xk, kCn).

A q-variate stationary stochastic process is called
(a) Nondeterministic if M(+c)# M(n) for some and hence all n in Z;
(b) Purely nondeterministic if M(-)=0;
(c) Minimal if M’(n) rs M(+o) for some and hence all n Z;
(d) Purely minimal if f’l, M’(n) O.
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If X. is nondeterministic then X. M(n 1) for all n, and hence it has a nonzero
one-sided innovation process

g. X- (XlM(n- 1)).

If X. is minimal then X. M’(n) for all n, and hence it has a nonzero two-sided
innovation process

b, X, (X, IM’(n)).
The corresponding one-sided and two-sided predictor error matrices are defined by

G (go, go) and (o, o),

respectively. (XIM(0)) is called the best linear predictor of lag t,. Clearly X, is
nondeterministic if and only if G # 0 and minimal if and only if # 0. A nondeterminis-
tic (purely nondeterministic) process X, is said to be nondeterministic (purely nondeter-
ministic), offull-rank if G is invertible. The process is called full-rank minimal if it is
minimal and its two-sided predictor error matrix is invertible.

It is useful to note that we have the following inclusions between these various
classes of processes.

PROPOSITION. The following inclusions are valid:
(a) Purely nondeterministic processes

_
nondeterministic processes;

(b) Purely minimal processes minimal processes
_

nondeterministic processes;
(c) Purely minimal processes

_
purely nondeterministic processes.

Proof. (a) This is clear and well known. (b) If a process is purely minimal, then
f’l, M’(n) =0 which clearly implies that M’(n)# M(-) for some n, and hence the
process must be minimal. This proves the first inclusion in (b). Now if a process is
minimal then M’( n rs M(+) for some n. Since M(n 1

_
M’(n) we have M(n 1 rs

M(+). That is, the process must be nondeterministic.(c) Since M(n-1)c__ M’(n) we
have f-I, M(n)_ f3, M’(n), which then shows that purely minimality is stronger than
being purely nondeterministic.

Remarks. (a) Considering the well-known characterization for minimal and that
of purely nondeterministic univariate processes, one can see that neither of these two
classes is a subset of the other one.

(b) All the inclusions stated in the above proposition are proper. This for the first
inclusion in (b) is shown via the next example, and for the rest of them it is either
well-known or can be easily verified.

Example. Let Y, be orthonormal and Z any vector orthogonal to all Y,’s, and
let X, Y, + Z. Then

(i) X, is stationary, because (Xm, X,)=’m-,.o+(Z, Z) depends only on m-n.
(ii) X, is minimal, because otherwise Xo must belong to sp {X: k rs 0} M’(0)

and hence there exists a sequence p, of finite sums of the form

P. E aXk E a( Yk + Z)
kO kO

such that Xo- limp.. Now since

P"=Y’krsO aYk+(kO a)Z= Q,+r,Z and Q,+/-r,Z

the convergence of p, implies the convergence of both sequences Q, and r, to some
Q and r, respectively. Taking limit on both sides of the last equation, we get

Xo= Q+ rZ
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which gives

Yo-Q--(r-1)Z, Yo-Q+/-(r-1)Z.

we see that Yo-Q=0 or Yo =Q. But since each Qn is in sp{Yk’k#0}, we get
Yo sp { Yk" k # 0) which is impossible, because Yn is an orthonormal sequence.

(iii) X, is not purely minimal. In fact, its spectral distribution F((9) (9 + 80, where
8o is the unit mass concentrated at 0, is not a.c. A purely time domain proof of this
fact may also be given. Q.E.D.

It is known that

M(n) 5", sp (g.-k) + M(-oo).
k=0

Consider G as a linear operator on C to C, C being the complex plane. Let J
be the matrix of the projection on C onto the range of G, and we put (4-+j)-i H.
The normalized one-sided innovations are defined by h, Hg,. One can show that [4]

X 5". Akx/- h-k+ (XnlM(-oo)).
k=0

Although Ak’s in this decomposition are not unique, the coefficients Akx/ are in fact
unique and this enables us to associate the following function to our process

O(e’)= ’, Akx/-eik.

k=0

this is called the generating function of the process.
We shall be concerned with the class Lp(1 _-<p =<oo) of all q x q matrix valued

functions g on [0, 2r] whose entries are in the usual Lebesgue space Lp. L+ will
denote the subspace of L2 consisting of those matrix valued functions whose nth
Fourier coefficient vanishes for n < 0, i.e.,

e-g((9) dO 0 for all n < 0.

For any q x q matrix A its generalized inverse A# is defined to be

A# pN(A)xA-PR(A),
where N(A) denotes the null space of A, A-1 denotes the (many valued) inverse of A,
and R(A) stands for the range of A. One can see that A# has the following properties
[7]"

AA#A A, A#AA# A#,
(A#A)* A#A, (AA#)* AA#,
N(A)+/-= R(A#), R(A)+/-= N(A#).

For the ease of reference we state the following two theorems which are due to
Masani [2, Thm. 2.8] and to Makagon and Weron 1], respectively.

THEOREM 1. Let X,, n Z, be a q-variate stationary stochastic process with spectral
distribution F. X, is full-rank minimal if and only if f F’ is invertible and f-lE LI.

THEOREM 2. Let X, n Z be a q-variate stationary stochastic process with spectral
measure F. The process X is purely minimal if and only if

(i) F is a.c. with respect to Lebesque measure; with spectral density f,
(ii) R(f(0)) is constant a.e. Lebesque measure,
(iii) f# El.
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3. Determination of the generating function. In this section we give an algorithm
for determining the generating function of a (not necessarily full-rank) stationary
stochastic process. The result of this section extends Masani’s algorithm developed in
[2] to the nonfull-rank case. Our technique is essentially that used by Miamee and
Salehi in [5], where the following formula for the two-sided prediction error matrix

of a purely minimal process was obtained:

We will continue this work under the assumption that our process is purely minimal
or equivalently assuming that conditions (i), (ii) and (iii) of Theorem 2 are valid. Let
hi, h2,""", hp, hp+l,""", hq be an orthonormal basis for the q-dimensional complex
Euclidean space Cq such that

and

R=R(f(O))=sp(h,,l<-_i<-p) a.e. (d0),

N R +/- N(f(0)) sp (hi, p + 1 -<_ _-< q).

Let el, e2,’’ ", eq be the standard basis of C q. Define the unitary operator U on Co

by Uhi-ei, l-<i_-<q. Letting Rl-sp(ei, 1----<i----<p) then Ri=sp(ei,p+l_<-i_-<q).
Clearly U maps R onto R1 and R1 onto R +/-l and U* maps R1 onto R and Ri onto
R. As usual we will identify any linear operator on Co with its matrix with respect
to the standard basis of C. By our choice of U we have

(3.1) Uf(O)U*
g(O) 0

0 0

where g(O) is a p xp nonnegative matrix valued function whose rank is a.e. equal
to p. Let

Y,, UX,, n Z

be a new stationary stochastic process, then we have

e-i(’-"f(O) dO U*

lfo(3.2)
2

e-’(-’)Uf(0)U* dO

e--" g
dO.

2

This shows that, for p + 1-< k-< q, the kth component yk of Y, is zero for all n Z.
The p-variate stationary stochastic process Z,, (Y,..., yp)T has spectral density
g. Since U takes R onto R1 and R- onto R-, one can see that

(3.3) (UfU*)# U*f#U.

Now since Xn is assumed to be purely minimal, Theorem 2 implies that f#(0) is
integrable. Thus (3.2) implies that g-1 is integrable and hence by Theorem 1, Zn is
full-rank minimal.
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We are going to utilize Masani’s algorithm to obtain the generating function
and predictor Z of this full-rank minimal process Zn, and then use this to get the
generating function and predictorX of our process Xn. The following lemma, which
reveals the close tie between xIt and tb, is crucial in the development of our algorithm.

LEMMA. Let X, n Z be a purely minimal stationary stochastic process with spectral
density f. Let g be the spectral density of the corresponding full-rank minimal process Z,
discussed above. Ifp and It are the generatingfunctions ofX and Z,, respectively, then

here V is the unitary matrix obtained above.
Proo We first note that, since and as generating functions are optimal (cf.

Lemma 3.7 and Definition 4.1 in [3]). Now from (3.1) we get

so f has two factorization, namely the one in (3.4) and

f=*,
where both and

belong to L+; to complete the proof it suffices to show that the factor $ is also optimal
(cf. uniqueness Theorem 4.4 of [3]). To prove this, we first note that since the zeroth
coefficient +(0) of is nonnegative definite and

ti+(O) U* [+(0)0

we have

(3.5)
On the other hand, if

(3.6)

+(0) >=0.

f //*,
is another factorization of f, then

but g * implies that

UfU* (UvU*)(U’,/U*)*

Since is the generating function of Z. one can prove that the function

is the generating function of ,,. In fact we know that the generating function q of a
q-variate stationary stochastic process X is given by

P= Z Anx/-ei’*,
n=O
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where A.’s are the coefficients in the representation

Xo A.g_. + (XolM(-oo))
n=O

of X in terms of its innovation process

g. X.- (X.lM(n- 1))
and G =(go, go) is the predictor error matrix. Comparing Z. with Y. =[Z.IO], we
note that

==o 0 0
+(YIMY(-))"

Although the coefficients arising in this sum are not unique, they will give us the
generating function uniquely, and we have

Thus

y 0 0
e-in

.=o 0 0

I"= A"Z/--e" 01 [z O0] [aIt0 0 0

is the optimal factor of

[A"Zo- ] e-inO
n=0

(3.7) and (3.8) together with the optimality of

imply that

o] => (u+(o)u*)(u,+(o)u*)*.

This in turn implies that

This together with (3.5) shows that is the optimal factor of f. Thus by the uniqueness
theorem mentioned above
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Now we are ready to give the algorithm determining the generating function of
our purely minimal q-variate stationary stochastic process X,"

Step 1. Since f satisfies condition (i) in (1.3) and its range is constant with
dimension p, one can easily see that the rank of the covariance matrix Fo J f(0) dO
is also p. In fact, it can be shown that a unitary matrix U has the property (3.1) if and
only if it can reduce Fo to the form

(3.10) UFoU* [ :]0

with :o being a p x p nonsingular matrix. Using this fact, we can find our unitary
matrix U of this section by finding a U as in (3.10).

Step 2. Taking the unitary matrix U obtained in Step 1, we can form the full-rank
density g as in (3.1). Because f satisfies conditions (ii) and (iii) of (1.3), as we saw
before, g has the properties (i) and (ii) of (1.2). Thus we can use Masani’s algorithm
developed in 4 of [2] to find the generating function xp, of the process with
density g.

Step 3. We can find the generating function of our original process with density
f, via the formula (3.9) above.

Remark. One can similarly extend the other available extension of Masani’s
algorithm (such as that in [8]) for the full-rank case to obtain corresponding algorithms
for the nonfull-rank case.

4. Determination of the predictor. In this section we show that the unique
autoregressive series, of [2], giving the linear predictor in the full-rank case, can be
used to obtain the predictor in our nonfull-rank case. In fact as we will see, exactly
the same formula works in this case as well. We continue to assume that F is a.c. and
the density f of our stationary stochastic process X, satisfies conditions (1.3). Using
the notations and results of 3, we know that

f=U
0

and the density g satisfies conditions (i) and (ii) of (1.2). Thus, using the technique
developed in [2] one can show that

= EkZ-k inHp,
k=O

where

k

Ek C+.Dk-.
n=O

with Ck and Dk being the kth Fourier coefficients of and Ig-l, respectively. Now
one can easily verify that

= Oy_

and

in Hq,

(4.1) IEk :1 .--o [C+.0 001IO 001"
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Since Y, UX., one can also verify that

Hence we have

(4.2)

Letting

n U:g ( k=0 E,ko
2 U*
k=O

0
0 Y-k)

in Hq.

we get the following autoregressive series representation for the best linear predictor X"

X= FkX-k.
k=O

Now let us examine the coefficients Fk in (4.3) more carefully. Doing this, we will be
able to write Fk in terms of the Fourier coefficients of the generating function @ of
our original process X, rather than that of the auxiliary process Z,. From (4.2) we
can write

Now using (4.1), we have

Thus

with

k

F,k n,.+nNk-.,
n=O

But by the lemma we have

(4.4) =U*[
Thus we observe that M. and N, are exactly the nth Fourier coefficients of and

#, respectively.
Summarizing, we have shown that the best linear predictor can be written

exactly in the same form obtained in [2] for the full-rank processes, i.e., we have,, M+nDk-n X-k in Hq

k=O =0

where M,, and N,, are the nth Fourier coefficients of @ and its generalized inverse
(instead of and its inverse -1 in the full-rank case).

0
U, N,,= U.
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of the stochastic integral with respect to binary quadratic approximation.
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1. Introduction. We prove an integration by parts formula where the integrator
and the integrand are independent random functions from two-parameter Wiener (or
Yeh-Wiener) space. In light of the recent great interest in Markov random fields among
probabilists [15], [26] and mathematical physicists [8], [18], [19], [27], [29], it seems
likely that this result and extensions of it will be useful. There are parts formulas in
the literature involving two independent one-parameter processes [7, p. 268], but, as
far as we can tell, the present result is new.

Our interest in this topic came out of our joint work on the Feynman integral [4]
with Kun Chang. In proving that a certain class of functions on one-parameter Wiener
space is in a Banach algebra of Feynman integrable functions, we found it necessary
to move a Wiener variable from the integrand to the integrator. Ultimately we justified
this by proving a parts formula involving two independent Wiener processes, one a
one-parameter and the other a two-parameter process [4, Thm. 3.1]. An additional
nonstochastic function was also involved. The present result was essentially discovered
while we were finishing the earlier paper.

Our proofs here and in [4] are, in some respects, analysis proofs. It is quite likely
that alternate proofs making more use of the machinery of stochastic processes can
be found which will shed further light on these formulas. The second author is pursuing
extensions of these parts formulas in various directions.

Let CI[0, 1 denote Wiener space; that is, the space of continuous functions x on
[0, 1] such that x(0)=0. Let Q=[0, 1]2 and let C2 C2(Q) denote two-parameter
Wiener (or Yeh-Wiener) space; that is, the space of continuous functions f on Q such
that f(O, t) =f(s, O)= 0 for all (s, t) Q. Let ml denote Wiener measure and rn2 denote
Yeh-Wiener measure.

We now briefly describe our results, delaying further precise definitions until later.
In our main result, Theorem 4.1, we obtain an integration by parts formula relating
the stochastic integrals QfEg and o g 2f where bothf and g are elements of C2(Q).
One version ofthe corresponding well-known result for stochastic integrals of functions
of one variable is given in [7, p. 268].

The key to our parts formula is Theorem 3.1 in which we obtain the continuity
with respect to "binary quadratic approximation" (to be defined below) ofthe stochastic

* Received by the editors November 18, 1985; accepted for publication (in revised form) May 20, 1986.
This research was partially supported by National Science Foundation grant DMS-8403197.

" Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323.

919



920 G. W. JOHNSON AND D. L. SKOUG

integral

F(I) := g d2f

for each g in L2(0). This is an extension of a recent result of Cameron and Storvick
[1, Lemma 2.3] in which they obtain the continuity with respect to "binary polygonal
approximation" of the stochastic integral I1o V(s) x(s) for each V in L[0, 1].

2. Preliminaries. The concept ofbounded variation for a function oftwo variables
is surprisingly complex. Several nonequivalent definitions have appeared in the
literature; see for example [5], [6], [9], 10], 17]. (We would like to thank our colleague
Professor Gary Meisters for bringing some of these references to our attention.) The
paper [5] by Clarkson and Adams is old but still useful in sorting out many of the
relationships between the various definitions. Throughout this paper we will use the
definition used by Hardy and by Krause (see [5, p. 825] and [9, p. 345]) which we now
briefly review.

Let A denote the rectangular partition of Q determined by 0 So < S1 <" < Sn 1
and 0 to < tl <" < tm 1. A function f(s, t) is said to be of bounded variation on
Q in the sense of Hardy and Krause provided the following three conditions hold:

(i) There exists a constant K such that for any partition A

(2.1) E If(s,, tl)-f(s,_,, tl)-f(s,, tj_l)+f(si_,, ti_l)l-<K,
i=lj=l

(ii) f(s, t) is a function of bounded variation in s for each [0, 1],
(iii) f(s, t) is a function of bounded variation in for each s [0, 1].
The total variation off over Q, Var (f, Q), is defined to be the supremum of the

sums in (2.1) over all partitions A. It is easy to see [9, p. 345] that conditions (ii) and
(iii) can be relaxed to the requirements that f(s, t) is of bounded variation in s for
one fixed value of and is of bounded variation in for one fixed value of s. It is also
easy to see that if f is of bounded variation on Q then the set of discontinuities of f
lie on a countable number of vertical and horizontal lines.

For later reference we mention that if a function f satisfies condition (i) above,
but not necessarily conditions (ii) and (iii), then f is said to be of bounded variation
on Q in the sense of Vitali [5, pp. 824-825].

Next we give a brief discussion of the Riemann-Stieltjes integral o g df. Letf(s, t)
and g(s, t) be defined and bounded on Q. Let A be the rectangular partition of 0
given above and let ]AI, the norm of A, be given by

lal sup ([(s,- s,_,)- + (tj tj_,)]l/}.

Then g(s, t) is said to be Riemann-Stieltjes integrable with respect to f(s, t) on Q with
Riemann-Stieltjes integral /, if and only if corresponding to any e > 0 there exists a
> 0 such that, for any rectangular partition A of Q with IAI < and any choice of

points (sci, r) with s-i -< : =< si and t_l =< r/ =< t, we have

E g(:,, r/j)[f(s,, t)-f(s,_,, t)-f(s,, tj_l)+f(si_l, tj_l)]-I
i=lj=l

The following well-known theorem [9, p. 561] gives a necessary and sufficient
condition for the existence of the Riemann-Stieltjes integral o g df.
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THEOREM. Letf be of bounded variation (Hardy and Krause) on Q and let g be a
bounded function defined on Q. Then a necessary and sufficient condition that g be
Riemann-Stieltjes integrable with respect to f on Q is that the set of discontinuities of g
have total variation measure zero with respect to f.

COROLLARY. If g is continuous on Q and f is of bounded variation (Hardy and
Krause) on Q then Q g df exists.

The definition of bounded variation used by Hardy and Krause has the important
property that if g is continuous on Q and f is of bounded variation on Q then the
Riemann-Stieltjes integrals g df and ofdg both exist and are related by the usual
integration by parts formula. The definition of bounded variation given by Vitali fails
to have this property since f(s, t) may be of bounded variation on Q while f(s, 1) is
not of bounded variation on [0, 1]; for example f(s, t) s sin (l/s).

A paper of Yeh [31] has a nice discussion of the n-dimensional Riemann-Stieltjes
integral and some of its properties. However his definition is based on the Vitali concept
of bounded variation. Of course all of the results he obtains concerning the Riemann-
Stieltjes integral are true in our more restrictive setting. In theorems involving Yeh-
Wiener space C2(Q), Yeh then adds conditions (ii) and (iii) as hypotheses; so in the
final analysis the setting is essentially the same.

Next we give the definition of the Paley-Wiener-Zygmund (P.W.Z.) integral, a
simple type of stochastic integral, for functions of one and two variables.

Let {j} be a complete orthonormal set of functions of bounded variation on
[0, 1]. For V in L2[0, 1] let

v,,(s) E v,
j=l

The P.W.Z. integral for functions of one variable is defined by the formula

V(x) dx(x):= i,rn V,(x) dx(x)

for all x in C1[0, 1] for which the limit exists.
Let {bj} be a complete ohonormal set of functions of bounded variation on Q.

For g in L2(Q) let

g,(s, t)= (g, dpj)dp(s, t).
j=l

Then the P.W.Z. integral for functions of two variables is defined by the formula

g(s, t)df(s, t):= lim g,,(s, t) df(s, t)
Q noo Q

for all f in C2(Q) for which the limit exists.
In order to state various properties of the P.W.Z. integral we need the notion of

scale-invariant measurability. A subset A of C2(Q) is said to be scale-invariant measur-
able provided pA is Yeh-Wiener measurable for every p > 0, and a scale-invariant
measurable set N is said to be scale-invariant null provided m(pN)= 0 for every
p > 0 [3], [11]. A property that holds except on a scale-invariant null set is said to
hold scale-invariant almost everywhere (s-a.e.).

Following are some useful facts about the P.W.Z. integral (we will state them in
terms of functions oftwo variables; similar properties of course hold in the one variable
setting)"

(2.2) For each g in L(Q) the P.W.Z. integral o g t2f exists for s-a.e, f in C2(Q).
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(2.4)

The P.W.Z. integral Q g a2f is essentially independent of the complete
orthonormal set {bj}. (For us it will often be convenient to let {bj} be the
Haar functions on Q.)

If g is of bounded variation on Q, then the P.W.Z. integral Q g t2f is s-a.e.
equal to the Riemann-Stieltjes integral Io g df.
The P.W.Z. integral has the usual linearity properties when interpreted
properly.

(2.6) The map sending g in L2(Q) to the function Fg on C2(Q) given by Fg(f):=
Jo g t2f is an isometric isomorphism of L2(Q) into L2(C2(Q), m2).

(2.7) The sequence {.(g,df}, considered as a function off converges in L2(C2(Q))
mean to g d2f

Remark. W. J. Park [24] defines the stochastic integral with respect to the two-
parameter (actually p-parameter) Wiener process in two ways: (i) as above except
using the two variable Haar functions for the complete orthonormal set {$j}; (ii)
following the usual approach of the It6 theory. Park shows that these two approaches
are equivalent in the sense that for every g in L2(Q) they are equal for m2-a.e, f in
C_(Q). It is easy to see that they are in fact equal for s-a.e, f in C2(Q). When these
facts are combined with (2.3) above, we see that in our setting the P.W.Z. integral
essentially agrees with the usual It6 stochastic integral. However, these integrals do
not necessarily agree when the integrand contains a random function. For example,
in the one variable setting, the It6 integral lox(t) dx(t) equals (x2(1)-1)/2 for
a.e. xCl[O, 1], while the P.W.Z. integral lo X( t) x( t) equals x2(1)/2 for a.e. x
G[o, 1].

3. Continuity of the P.W.Z. integral with respect to binary quadratic approxima-
tion. As mentioned in the introduction, one of the keys to our proof of the parts
formula is an extension to the two-parameter P.W.Z. integral of a recent result of
Cameron and Storvick 1, Lemma 2.3] concerning the one-parameter P.W.Z. integral.
Their result says that for every V in L2[0, 1], 1o V(s) x(s) is continuous with respect
to "binary polygonal approximation" for s-a.e, x in C[0, 1]. The binary polygonal
approximators for x are piecewise linear functions which agree with x on a certain
set of binary rationals which form a partition of [0, 1 ]. In trying to extend this result,
it seemed natural to use piecewise linear functions of two variables as approximators
for f in C2(Q). There are technical problems with this and we could not see how to
make it work. We have instead used functions which are binary polygonal approxima-
tions in each variable when the other variable is fixed but which are quadratic functions
of two variables. We will refer to these approximators [f], for f as "binary quadratic
approximations." We begin this section by defining [f], precisely and noting several
of its properties.

Let m be a nonnegative integer and consider the division of Q into 22" squares
by means ofthe partition 0= So < s 1/2" <. < si i/2" <. < sam i and 0 to <
tl 1/2 <" < tg =j/2 <. < t2 1. For eachfin C:(Q) we define the mth binary
quadratic approximation [J],, by the formula

f(si, tj)--f(si-1, tl)--f(si, tj-1)+f(si-1, gj--1)
[f],,(s,t):=

S Si_l) tj tj_l)
(s s,_)(t- t_)

(3.1) +f(si, t_) -f(si_, tj--1)
Si Si-)

(S Si_l)
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+f(s,_,, t)-f(s,_,, t_,)
t- tj_l) +f(si-1, tj-1)

(6-6-1)
for (s, t)[S,_l,S,][tj_l, tj], i,j= 1,2,... ,2m.

We first note the following properties of If],,"

(3.2) [f]o(S, t)= sty(l, ),

(3.3) [f]m(Si, t)=f(si, t) at all binary partition points (s, t),
(3.4) If],, Ca(O) for each rn and all f Ca(0),

(3.5) IIEf]ll--< Ilfll for each rn and all f Ca(Q),

(3.6) For each f in Ca(Q), IIf-[f]mll-->0 as m--> +.

(3.7) A direct caclulation shows that

I Is"_ 02If] (s,t)
Var ([f], [si-1, s] t-l, tj]) ds dt

tj-1 OsOt

[fs, t-fs_l, t-fs, t_)+f(s_, t_]
for each i, j= 1, 2,... ,2" (also see [31, p. 413]). Hence for each f in Ca(0) and
rn 0, 1, 2,.-., [f], is of bounded variation on Q and we have the formula

foIot oa[f]m(S’t)
dsdtVar([f],, Q)=

0s 0t

Y Y If(s, t)-f(s_, t)-f(s, tj-)+f(si-1, t_l)].

(3.8) For each s [0, 1], IfIra is a binary polygonal function of in C1[0, 1] while,
for each [0, 1], [f], is a binary polygonal function of s in C1[0, 1], i.e.,
it is linear on each interval [s_, si].

Remark. After reading a preliminary handwritten version of this paper, Chull
Park has kindly pointed out to us that he made use of these "binary quadratic
approximators" in his paper [:22].

Now using our binary quadratic approximators, we make a definition which
parallels Cameron and Storvick’s definition 1, p. 6] of continuity with respect to binary
polygonal approximation.

DEFINITION. A function F" C2(Q)--> C will be called continuous at f Ca(Q)
with respect to binary quadratic approximation if limm_ F([f])= F(f).

We note that if F is continuous on Ca(Q) then it is certainly continuous with
respect to binary quadratic approximation at every f in Ca(Q).

The Haar functions

H(o)(s) 1 on [0, 1]

and

2k-2 2k-1
< s < 2,+-------7-2n+l

2k-1 2k
2,,+--------T- < s _-<

2.+1
elsewhere,
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for n 0, 1, 2, and k 1, 2, , 2" are a complete orthonormal set on [0, 1 ]. Denote
this collection by and let

d:= {Hk)(s)Hq)(t) Hf and Hq) are in }.

Then , the set of Haar functions on Q, is a complete orthonormal set. Furthermore
the elements of d are defined everywhere on Q, are step-functions, and are of bounded
variation on Q.

Remark. Let m be a positive integer and let h(s, t) be a step-function on Q with
partition points at the binary points (si, tj), i, j 0, 1, , 2". Then h (s, t) is orthogonal
to the Haar function H(f)(s)HIq)(t) cg whenever max { n, I} _-> m. Hence the orthogonal
development of h(s, t) in terms of the Haar functions, namely

h(s, t)= E (h, g)g(s, t)

will only involve terms g(s, t) H(f)(s)Hq)(t) with n _<- m 1 and <- m 1.
Next we give two lemmas which will be used in proving our continuity result.
LEMMA 3.1. Let g(s, t)= H)(s)Hq)(t) be any element of (g (here of course n, 1,

k and q are nonnegative integers such that 0 <= k <- 2 and 0 <- q <= 2/). Then for each
m > max { n, 1} and each f C2(Q) we have that

(3.9) f g(s, t)df(s, t)= f g(s, t)d[f]"(s, t).
Q ./Q

Proof. Since m ->_ n + 1 and m >= + 1 we can interpret g(s, t) as a step-function on
Q with partition points at the binary points (si, tj), i, j 0, 1, 2,..., 2m. Since g is of
bounded variation on Q we can apply the ordinary integration by parts formula for
two-dimensional Riemann-Stieltjes integrals [9, p. 666] or [31, p. 415] and obtain the
formula

t)d(f(s, t)--[f]m(S, t)): g(1, 1)(f(1, 1)--If]"(1, 1))

{f(s, 1)-[f]"(s, 1)} dg(s, 1)

(3.10)
/.

-Jo {f(1, t)-[f]"(1, t)} dg(1, t)

+ f {f(s, t)-[f]"(s, t)} dg(s, t).
dQ

First we note that each of the first three terms on the right-hand side of (3.10) equals
zero sincef and [f]" agree at the partition points (si, b) and the jumps of the functions
g(s, 1) and g(1, t) occur only at the partition points (s, 1) and (1, t) respectively.

Next we see that o{f(s,t)-[f]"(s,t)}dg(s,t)=O. This follows from the
definition of the integral since, for any rectangle R a, b] x a,/3

_
Q, if R contains

no binary partition points (si, t), then g is constant in either its first or second variable
and so

g(b, fl)-g(b, a)-g(a, fl)+g(a, c) 0.

Thus Lemma 3.1 is established.
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LEMMA 3.2. Let V(s, t) L2(Q). Then for m =0, 1,2,. ., the left member below
exists for every f C2(Q) and we have

(3.11) V(s, t)d2[f]m(S, t)= V(s, t) ds at.
OsOt

In the special case V(s, t)=H(,k(s)Hq)(t) c, both sides of equation (3.11) vanish
whenever m <= max { n, l}.

Proof. Equation (3.11) follows from [21, Thm. 4] since [f],(s, t) is absolutely
continuous on Q. Next assume that m <= max {n, l} and consider the partition of Q
with binary partition points (si, tj), i,j 0, 1,. , 2". Without loss of generality assume
that n > m. Then for all k, s’ H(k)(s) ds 0, and so, on each square (si_ Si) X (tj_ tj)Si_l

we see that

I" I Hq)(t)Hk)(s) O:Z[f]m(S’ t)

i-" t_ OsOt
dt ds

f(si, tj)--f(Si_l, tj)--f(s,, tj_l)+f(Si_l, tj_l) Ha)(t) dt H(k)(s) ds

=0

from which it easily follows that the right-hand side of (3.11) equals zero. Thus Lemma
3.2 is established.

We are now ready to establish the main result in this section.
THEOREM 3.1. Let V L(Q) and let

(3.12) F(f) := Io V(s, t)Ef(s, t).

Then for s-a.e, f C2(Q), F(f) is continuous with respect to binary quadratic approxi-
mation.

Proof. Assume that the P.W.Z. integral in (3.12) is given in terms of the Haar
functions g. Let

Vo(s, t):=(r-r)r’r)’o--o V)H(o)(s)H(o)(t) V(u, v) dudv

and for m 1,2, 3,.... Let

(3.13) V,,(s, t):= (g, V)g(s, t),
{n, l}<m

where as usual g(s, t)= H(,k)(s)Hq)(t). Next for eachf C2(Q) let

fo(s, t):= f< Ho)(s)Ho)(t) df(s, t)=f(1, 1)

and for m 1,2,..., let

(3.14) fm(S, t):= g2 g(s, t) I< g(u, V) df(u, v).
max{n,l}<m
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Note that the sequences { Vm}m=O and {fro}m=O are expansions in terms of the
Haar functions d. It is quite easy to see that the functions Vm and fm are related by
the equation

for all m.

Vm(s, t) df(s, t)= V(s, t)fm(S, t) ds dt

Next we claim that for each m 0, 1, 2,...

(3.16)
, rrl r:.m,S, t)=fro(S, t)

OsOt

for almost all (s, t)e Q. This is clear in the case m 0 since in that case each side of
(3.16) equals f(1, 1). We will establish (3.16) by showing that both sides of (3.16) have
the same orthogonal expansion in terms of the Haar functions d. First, using (3.14),
Lemma 3.1, and Lemma 3.2, it follows that

g(s, t) Io g(u, v) df(u, v)

(3.17)

fm(S,t)=
ge J
{n,l}<m

gqd
{n,I}<m

g(s, t) fo g(u, v)d[f]m(u, v)

fot fo 02[f] (u, v)
g(s, t) g(u, v)

g tgUOV
{n,l}<m

du dv

{n, l}<m

g(u, v)g(s, t)) du dv.

Using (3.17) and the fact that g is a complete orthonormal set of functions on Q we
obtain that

IoIo IoIotO2[f]m(u’v) h(u,v)dudv(3.18) fm(S, t)h(s, t) ds dr=
OuOv

for all elements h(s, t)= H)(s)Hq)(t) in d with max {n, l}<m. (Simply multiply
both sides of (3.17) by h(s, t) and then integrate with respect to s and over Q.) Next,
using (3.17) we see that

fotfotfm(S,t)h(s,t)dsdt=O
for all elements h(s, t) H(,k)(s)Hq)(t) in with m -<max {n, l}. Also for all such h,
using Lemma 3.2 we see that

fo fo 02[f]m(s’t)
h(s, t) ds dt O.

OsOt

Thus (3.18) holds for all h d and so both sides of (3.16) have the same orthogonal
expansion in terms ofthe Haar functions on Q and so they are equal almost everywhere
on Qo
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Finally, using the definition of the P.W.Z. integral, (3.15), (3.16), and Lemma 3.2,
we see that for s-a.e, f C2(Q)

F(f) := V(s, t)df(s, t)

l+rn fo Vm(S, t) df(s, t)

lira V(s, t)fm(s, t) ds dt

lira V(s, t) ds dt

lira l/(s, t) d[f]m(S,

lira F([f]m),

which establishes Theorem 3.1.
COROLLAR 3.1. Let R [a, b] x [o, ] c_. Q. Let U(s, t) e L(R) and let

N(ZI := U(s, af(s, .
Then for s-a.e, fe C(Q), H(f) is continuous with respect to binary quadratic approxi-
mation.

oo Let g(s, t)= U(s, t)X(s, t). Then Ve L(Q) and

N(f := U(s,

lira g(s, ) d[f](s, t)

lira

lira H([/]).

obtain our main result we will use the fact that the function Ilfll is in L(C, m).
For the sake of completeness we include an elementary proof of a result somewhat
stronger than this (see [16, pp. 159-164] for a related discussion).
LA 4.1. For
oo Let G(I)=exp {fH}, where /=supo If(s, t)l. By [25, p. 30] we

know that G is in L(C, ma) if and only if
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Since m2 is a probability measure it suffices to show that

2’m2{f

C2(Q)" I(f)l > } dA <.
Let N(. denote the standard normal distribution function. Kiefer has shown

[23, p. 455] that m2{f:supof(s,t)>A}<=4N(-A). Thus for A=>2, letting p=
(In ,/0) 1/2 we see that

mE{f: [G(f)[ > h } m2{f: exp {a Ilfll} > * }

m2{f: Ilfll > o}
m[{f: supf(s, t)> O} U {f: inff(s, t) <-O}]

Q Q

--< m2{f: supf(s, t)> p}+ m2{f: inff(s, t)<-p}
Q Q

2m2{f: supf(s, t)> O}
Q

_-<8(-0)

2x/ exp du

2x/ exp du

-< u exp du

8
-pexp

1/28(2 in A ) exp(-]lnA
1/2a=8(2 In A) 1/()

which is in L([2, m)) as a function of A if and only if a <.
COROLLARY 4.1. II/11 e el(C=, m=).
In our next lemma we establish the convergence of the P.W.Z. integral in the

L2-norm on C2(Q) x C2(Q) with respect to binary quadratic approximation in the first
variable.

LEMMA 4.2. Let L" C2(Q) x C2(Q) N be given by

(4.1) (X g):= f(s, t) dg(s, ).

en L([f], g) L( g) in L2-norm as m , i.e.,

(4.2) lira [ IL(g)-L([f],g)12d(m2xm2)(Xg)=O.
m C2 C

oo Using (2.6) we see that forfe C2(Q) and each m=0, 1,2,-..

(4.3) }L(X g)- L([/], g)l= dm=(g) II/- [/] ]l=.
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It follows from (4.3) that

(4.4) f IL(f,g)-L([f],g)[- dm(g)=llf-[f]ll-OdC

Also from (4.3) and the Minkowski inequality we get

(4.5)

IL(f, g)- L([f],., g)l dm2(g)-<_[llfll/ll[f],ll]
C2

_-< Ilfll+llEf] I1]=

411fll =

Now using (4.4), (4.5), the Fubini Theorem, Corollary 4.1 and the Dominated Conver-
gence Theorem we obtain (4.2).

The following corollary to the proof of Lemma 4.2 gives the L2-norm convergence
on subrectangles of Q.

COROLLARY 4.2. Let R a, b] x t, Q and let L: C2(Q) x C2(Q) R be given
by

(4.6) L(f, g):= XR(S, t)f(s, t) d2g(s, t).

Then

lim fc IL(f’g)-L([f]"’g)l-d(mzXmz)(f’g)=O"
2X C2

TrEOREM 4.1. For any rectangle R=[a,b]x[a,B]Q and for m=xm=-a.e.
(f, g) c x c

f(s, t) t)=f(b, fl)g(b, fl)-f(b, a)g(#, a)
R

-f(a, fl)g(a, fl)+f(a, a)g(a, a)

[g(s, 2f(s, -g(, 2f(s,
(4.7)

[g(b, t) df(b, )-g(a, ) df(a, )]

+ g(s, 2f(, .
In fact, given any (f, g) for which (4.7) holds and any Pl, 02> O, (4.7) also holds for
(plf, p2g). Infactfor m-a.e.f, (4.7) holdsfor s-a.e.g andfor m-a.e.g, (4.7) hotdsfor s-a.e.f

Proof Let L:C2 x C2 be defined by the left-hand side of (4.7) (i.e. L is given
by (4.6)) for all (f, g) for which the P.W.Z. integral exists, and let M C: x C2 be
defined by the right-hand side of (4.7) for all (f, g) for which all the P.W.Z. integrals
exist. We first note that for eachf C2(Q), L(f, g) exists for s-a.e.g C2(Q) while for
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each g C2(Q), M(f, g) exists for s-a.e.f C2(Q). To establish Theorem 4.1 it clearly
suffices to establish (i), (ii), and (iii) below.

(i) For each fC2(Q) and each m=O, 1,2,’",L([f]m,g)=M([f],,,g) for
s-a.e.g C2( Q).

(ii) L([f],, g) --> L(f, g) in L2-norm as m --> o (this is simply Corollary 4.2 above).
(iii) For each g C2(Q), M([f],,g)M(f,g) as m-->o for s-a.e.fC2(Q).
Proof of (i). Letf C(Q) and m be given. Then for s-a.e.gC2(Q), L([f,,],g)

exists and satisfies the equation

L([ f]m, g):= If],,(s, t) d2g(s, t)
(4.8)

| IfIra(S, t) dg(s, t).
dR

But, by the nonstochastic integration by parts formula [31, Thm. 4], we know that for
all (f, g) C2 x C2 and all m

[f],,(S t) dg(s, t)=[f],,(b, fl)g(b, fl)-[f],,(b, a)g(b, a)

(4.9)

-If]re(a, fl)g(a, fl)+[f],(a, a)g(a, a)

[g(s, )d[f]m(S, ) g(s, )d[f]m(S, )]

[g(b, t)d[f],(b, t)-g(a, t)d[f],(a, t)]

+ IR g(s, t)d[f]m(s, t).

Next by Lemma 3.2 and the corresponding result for P.W.Z. integrals of functions of
one variable we see that for all (f, g) C2 x C2 and all m, M([f],,, g) exists and equals
the right-hand side of (4.9) above. Thus, using (4.8) and (4.9), we see that for fixed f
and m, L([f]m, g) M([f],, g) for s-a.e.g C2(Q) and so (i) is established.

Proof of (iii). To establish (iii) it suffices to show that for each g C2(Q), each
ofthe seven terms involved in the definition ofM(If],,, g) converges to the correspond-
ing term in the definition of M(f, g) for s-a.e.f C2(Q). This is easy to see for the first
4 terms. Corollary 3.1 assures that this is true for the 7th term also, i.e.,

lim g(s, t) d2[f]m(S, t)= g(s, t) d2f(s, t)

for s-a.e.f C2(Q). Next, using a result of Cameron and Storvick [1,-Lemma 2.3]
together with [28, p. 306], it is quite easy to see that, for example,

lira g(s, fl)d[f],,,(s, fl)= g(s, 1) df(s,

for s-a.e.f C2(Q). Similarly we get the desired convergence for the other integrals
involved in the 5th and 6th terms of M([f],, g) and M(f, g). Thus (iii) is established,
which concludes the proof of Theorem 4.1.

Choosing R Q [0, 112 in Theorem 4.1 and keeping in mind thatf and g vanish
on the left-hand and lower edges of Q, we get the following corollary.
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COROLLARY 4.3. For m2 x m2-a.e.(f, g) C x C:

f(s, t) 2g(s, t)=f(1, 1)g(1, 1)- g(s, 1) f(s, 1)
0,1]

(4.10)

-Io g(1, t) f(1, t)+ Ito,, g(s, t) d’2f(s, t).

In addition, given any (f, g) for which (4.10) holds and any pl, p2 > 0, (4.10) also holds
for (plf, p2g). In fact for m-a.e.f, (4.10) holds for s-a.e.g and for m2-a.e.g, (4.10) holds
for s-a.e.f.

Next, using Theorem 3.1 and Theorem 4.1, we obtain the following interesting
corollary.

COROLLARY 4.4. Form2-a.e.g C2(Q), thefunction of(s, t) g.(s, t) is continuous
with respect to binary quadratic approximation for s-a.e.f in C2(Q). That is to say, for
almost all g C2(Q),

lira [f]m(S, t) d2g(s, t)= f(s, t) dg(s, t)

for s-a.ed in C(Q).
Concluding remarks. Using the techniques of 4 together with Lemma 2.3 of

[1, p. 7], one can quite easily obtain an alternate proof of the parts formula for the
stochastic integral of functions of one variable [7, p. 268] which follows.

THEOREM 4.1(a). For 0 <- a < b <- 1 and ml x ml-a.e.(x, w) in C[0, 1] x CI[0, 1]

(4.11) x(s) dw(s)= x(b)w(b)-x(a)w(a)- w(s) dx(s).

In fact for m-a.e.x, (4.11) holds for s-a.e.w and for ml-a.e.w, (4.11) holds for s-a.e.x.
COROLLARY 4.4(a). For m-a.e.e C[0, 1], the function H(x):= I x(s) w(s) is

continuous wich respect to binary polygonal approximation for s-a.e.x C[0, 1 ].
Proof. Theorem 4.1(a) and Lemma 2.3 of 1, p. 7].
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SOME APPROXIMATION FORMULA FOR STOCHASTIC EIGENVALUES*

DAVID C. BARNES"

Abstract. We consider some random eigenvalue problems of the form L(-) AM(. ), where L(. and
M(. may be ordinary or partial differential operators which depend on a (perhaps multi-dimensional)
random variable to. We generalize some formulas due to Boyce Probabilistic Methods in Applied Mathematics,
Academic Press, New York, 1968, pp. 1-73] which give estimates for the eigenvalues of the form A(to)=
;t*/ g(,o)+ 0(11,o I1). Here A (to) is an eigenvalue corresponding to the random variable to while A* is an
eigenvalue corresponding to some approximating deterministic problem. The term K(to) will be
although it may not be linear in to. These formulas may be used with very general boundary conditions,
including those which contain random coefficients and those which may be nonlinear and nonhomogeneous.
The boundary conditions also may contain the eigenvalue parameter A and they need not be self-adjoint.
We will first give the theory for ordinary equations, then generalize to partial differential equations, first in
a deterministic domain, then in a random domain.

Key words, stochastic eigenvalues, approximation

1. Introduction. Consider the eigenvalue problem

(1) L(y) Agy, L(y) -(fy’)’- qy, 0 < x < I.

We assume the coefficients f, g and q depend on x as well as a random variable
to (tol, to2, , toN), taken from a sample space 1) fl x f2 x. x fN where, for
each x [0, l], probability measures/zi(" are defined on fi. The to may or may not
be independent. When appropriate boundary conditions are given, and with some mild
restrictions on the coefficients, the problem will have eigenvalues A (to) which will then
be random variables defined on f. In this work, we will be concerned with finding
approximations of the form A (to) A * + K (to) + O(11,o 112). Here, A* is an eigenvalue
of an approximating deterministic problem

(2) L*(y*) A*g*y*, L*(y*) -(f’y*’)’- q’y*.

We will first develop the theory for (1), then generalize it to problems of the form
L(y) AM(y), where L(. and M(. are (possibly partial) differential operators having
random coefficients. Finally, we will give a modest treatment of the simple equation
V2u + Au 0 with u 0 on 0, where is a random domain. Throughout we will use
the notation A(.)= (.)-(.)*, and *-ed quantities will all be deterministic; so, for
example, AL L- L*, AA A A * and so on. We denote the mean ofa random variable
by (.) and also use the notations

II,oll=-max {I,o,,o1}, (u, v)- u(x)v(x) dx.
l,J

2. The second order equation. Methods used by D. C. Barnes [3] can be used to
prove the following theorem.

THEORErVI 1. Let y, A and y*, A* be eigenpairsfor (1), (2). Define a random variable
J(to) by

(3) j(to) [A,gy,2+ qy,_f(y,,2)] dx.

* Received by the editors March 28, 1985; accepted for publication April 7, 1986.
f Mathematics Department, Washington State University, Pullman, Washington 99164-2930.
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934 DAVID C. BARNES

Define also a boundary term BT and a random variable K (o)) by
,Ix=l(4) BT=f*y*’y-fy’y*-f*y*’y x--o, K(0)) A +BT-J(0)).

Suppose that y* is normalized so that

(5) g,y,2 dx 1.

Then

(6) A(0)) K(0))+ 02 A*+ BT-J(0))+ 02
where the term 02 is defined by

(7) 02= [AAAyg*y*+A*AgAyy*+AqAyy*-AfAy’y*’] dx.

In the context of [3], 0) was simply a real parameter and (6) was used to develop
some variational properties ofthe eigenvalues A. However, (6) shows that the functional
K (0)) is tangent to A (0)) at 0) 0 and thus will provide a good approximation formula
when 110)11 is small. Now we need to make O2 small by selecting the base problem (2).
One good way to do this is to take

(8) f* (f), g* (g), q* (q).

As an example, we will take the simple boundary conditions, y(0)= y(l)= 0, and use
(6) to approximate (A). We see that

(9) (A(0))) A*- [A*(g)y*2+(q)y*2-(f)(y*’2)] dx+02.

Now multiply (2) by y* and integrate. This shows that the integral term in (9) vanishes,
so (A(0)))=A*+(O2). This estimate has been given by Boyce [4]. Generally, in the
case of homogeneous, linear, self-adjoint, and deterministic boundary conditions, and
in the choice of base problem (8), the result (9) is well known.

It is, however, not at all necessary that the boundary conditions be homogeneous,
linear, self-adjoint or deterministic. Equation (6) holds in any case. The boundary
conditions might even involve the eigenvalue parameter A.

There are only two conditions which are necessary in order to use the approxima-
tion (6) effectively. First of all BT will, in general, involve the values of y at x -0 and
at x I. So we must be able to use the boundary conditions to eliminate, or at least
approximate, the terms in BT which involve y. The second requirement is that the
eigenvalue problem must be well posed when considered as a function of 0). That is,
the eigenvalues, the eigenfunctions and their derivatives must depend continuously on
0). This will insure that the error term O2 is small. Other than these requirements, the
boundary conditions are quite arbitrary.

Suppose we are given constants a, b and random variables 0)i taken from sample
spaces (Ii, i) with 0) (0)1,0)2, (’03) E ’1X ’2 X ’3" Consider the boundary conditions

(10) y(O) + (a + 0)2)f(0, 0)1)y’(0) O, (b + 0)3)y(1) +f(l, 0))y’(1) O.

We select the base problem by letting 0)= O, so that

(11)
f*(x) f(x, 0), g*(x) g(x, 0), q*(x) q(x, 0),

y*(O) + af*(O)y*’(O) O, by*( l) +f*( l)y*’( l) O.
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Using (10) and (11) in (4), it follows that

BT (by*+ oayy*)lx=- (af*y*’ off*y*’y’)l=o.

We now use the approximations y- y*+ O(to) and y’= y*’/ O(to) to eliminate the
terms involving y and obtain the first order approximation

BT y.E(b + toa)lx=- (a o)f*y*’l=o+ O.
Since we have eliminated the terms in BT which involve y, we may substitute this
formula in (6) to obtain first order approximation to A (to) which can be easily computed.

As a second example, consider a slender column subject to a compressive load A
which may cause it to buckle. The critical buckling load is determined by the smallest
nonzero eigenvalue of an equation of the form (1). The eigenfunction y(x) represents
the bending moment of the column in the buckled state. If the load A is applied exactly
on the center line of the column, then the boundary conditions will be y*(0) y*(1) 0.
Suppose, however, that the load at x is applied at a small, random distance to away
from the center line. If the column is pinned at both ends, then the boundary conditions
are [2], [6]

(12) y(0) 0, y(1) Ato, y*(0) 0, y*(l) 0.

We suppose that the shape of the column is deterministic, so that the coefficients f,
g, q do not depend on to. The eigenfunction y* is uniquely determined by (2) and (5)
up to a factor of + 1. Suppose first that to > 0. We then take y* to be the eigenfunction
satisfying y*> 0 for 0< x < so that y*’(l)< 0. However, if to < 0, then we will take
y* to satisfy y* < 0 so that y*’(l) > 0. This will insure, at least for small to, that y and
y* will have no zeros on 0 < x < so that Ay and Ay’ will be small. It also insures that
the approximation formulas will be symmetric about to 0, as is the eigenvalue itself,

Since the problem (12) is not homogeneous, the eigenfunction y cannot be
normalized at will. We still, however, use the relation

(13) gy2 dx 1,
o

in order to force the approximations of y to y*. The three conditions (12), (13) will
serve to determine the two constants in the general solution of (1) as well as A. These
conditions, together with the above sign conventions, will determine the eigenfunction
y uniquely.

Using (4), we find BTA(to)f*(l)y*’(l)to. Since the choice of y* depends on
sign(to), we recast BT into the general form (which works for either y*) BT=
-A(to)f*(l)ly*’(l)to I. Putting this into (6) and solving the resulting equation for A(to)
yields the first order approximation

a*-J(,o)+o a*-J(.,)
(14) X(to) t-O2.

1 +f*(/)ly*’(/)to] 1 +f*(/)ly*’(/)to[

The form of this equation, and physical intuition, suggests that A (to) -< A* but this has
not been proved.

Consider an example of (14). Suppose that the column is uniform. That is,f g 1,
q 0, and use nondimensional coordinates, so that

y"+Ay=0, y(0)=0, y(1)=Ato, and y*=+/-x/sinrx, ,*-"7"2.
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Solving for y and h (to), we find, for given to, that h (to) is the smallest positive root
of the equation

(15) t3to(2t-sin t) =4 sin t, =q- and y 2
2t-sin 2t)

sin tx.

Using (14) we find that

(16) A(to)
1 +rlol + o=.

We will now check the accuracy of this approximation. Rather than attempt to solve
(15) for h(to), it is more convenient to use the inverse functions for I,ol as a function
of =x/-. Solving for ]tol, using both (15) and (16) we find

2 sin 7/-2- 2

2t)’Itol =/ta_2t_sin(
I,ol- o=.

Now one can easily verify that the two right-hand sides are tangent to each other at
the point =Tr, to 0. Thus the approximation (16) will be good for small to.

The sign conventions used in this example essentially amounted to decomposing
the sample space f/into its positive and negative parts, f+ and f/-, and then using
two distinct approximation formulas on each part. Such decompositions can be useful
in other situations as well.

Suppose that either the coefficient functions f, g, q, or the boundary conditions
are not continuous in to. In such an event, the eigenvalue problem may not be well
posed and the methods used here would not apply. Suppose, however, that we can
decompose f/into a disjoint union,

N

(17) f/= U f/,, f/,Nf/j=Q foriCj
i=1

in such a way that the problem is well posed on each f,. We then select approximating
base problems for each ,,
(18) (f*y*i’)’+(h*g*+q*)y*=O, U’)(y*) U2’)(y*) 0

where, for each i, we might select a fixed value of to, f/i and define the approximating
problems by

fi*(x) f(x, toi), g*(x) g(x, to,), q* (x) q(x, to,).

Now construct the piecewise 02 approximation to A (to) using

(19) A(to)=A* +BT-J,(to)+02.,, toelj, J,(to)= A*gy* +qy* -fy* ’2 dx.

The error terms O2.i will be O((to-toi)2) on I. Even though such a piecewise
approximation may not be continuous on all , it will still be a global first order
approximation to A (w).

This also suggests numerical procedures for high accuracy computations. Suppose,
for example, that we need to compute (A). We could then decompose as in (17) so
that ()= 1IN. en solve the N base problems (18) for y and take the mean in
(19) to obtain

(20) (A)= E (A +B-J,(w)) d + O
i=1
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Since each error term in (19) is 0(1/N2), the error term in (20) will be O(1/N). The
obvious thing to do at this point, is to use (20) together with a Romberg style
extrapolation scheme to compute more accurate values for (A).

3. More general problems. These methods will also work on more general problems
of the form

L(y) AM(y), Up(y, to, A) O, p 1, 2,..., 2m,
(21)

L(y)= Y (-1)’(fy’))’), M(y)= Y (-1)(gy))).
=0 -=0

Here,f and gj are random functions, and we will assume that m > m’-> 0. The boundary
conditions may be quite arbitrary, being subject to the same conditions outlined in
the second order case.

Consider any deterministic problem which approximates (21),

L*(y*)=A*M*(y*), Up*(y*, a*)= 0, p=l,2,...,2m,
(22)

L*(y*)= Y. (-1)’(fi*y*(’))’), M*(y*)= 2 (-1)J(g*Y*())))
=0 i=0

We have the following theorem.
THEOREM 2. Let y, A and y*, A* be eigenpairs for (21) and (22). Define a random

variable J to by
m’

,(j)2(23) J(to) ’s,Y f(y.(i))2 dx.
=0 =0

Define boundary terms BT1, BT2 and BT3 by the following equations:

(24) (L*(y), y*)= BT1 +(y, L*(y*)),

(25) (M*(y), y*) BT2+ (y, M*(y*)),

(26) (L(y*), y*)-A*(M(y*), y*)= BT3-J(to).

Suppose that y* is normalized so that

M*(y*), y*) 1, L*(y*), y*) A *.(27)

Then

(28)

(29)

A (to) A * + BT1 A *BT2+ (L(y*), y*) A *(M(y*), y*) + 02,

A (to) A * + BT1 A*BT2+ BT3 J(to) + 02.
The error term 02 is given by

(30) O_ (AL(Ay) A;tM*(Ay) AAAM(y*) ;t AM(Ay), y*)

where A(. (.)-(. )*.
The proof consists of a rather straightforward, but lengthy, computation. First

multiply (22) by y and (21) by y*. Then subtract the equations and integrate to find

(L(y), y*)-(L*(y*), y)= A (M(y), y*)-A*(M*(y*), y).

We now substitute the A notation into this equation, giving

((L* + AL)(y* + Ay), y*)-(L*(y*), y* + Ay)

(,X* + A, )((M* + AM)(y* + Ay), y*)- ;t*(M*(y*), y* + Ay).
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Now multiply out these expressions, collecting all terms of second order into 02 as
given by (30). Next, use the relations A(. (.) -(. )* to eliminate all of the remaining
terms which involve A. Finally, use (24), (25) and (27) to simplify the formula. After
some manipulation, (28) follows. Finally, (26) implies (29).

In the important special case m 2 and m’= 1, we find that

(31)

(32)

(33)

,Ix=lBT1 (f2*y")’y* (fE*y*")’y +f2*y*"y fE*y"y*’ +f*yy*’ f*y’y
BT2 g*l y*’y g* y*y’l ’=lx=O,

x=lT3 (fEy*")’y* fEy*’y*"-fy*’y* + ;t *gy*’y*l=o.

As an example, consider a uniform slender column subject to an axial compressive
load h which may cause it to buckle. Suppose that it is pinned at each end and that
it is supported on an elastic foundation which provides, at each point x, a random
restoring force F(x, tol)Y, which is directly proportional to the displacement y. The
critical buckling load is determined [6] by the first eigenvalue of the system:

y’’+ F(x, tol)Y A (-y"), y(O) y"(O) y( l) y"(1) O.

Take the base problem to correspond to to1 O, so that

(34) y*"’+ F*(x)y*= A*[-y*"], F*(x) F(x, 0).

Using (29) we see that

A(to) A*- A.(y.,)E_F(x, to,)y.2 + (y,,,)2 dx+02.

Multiplying (34) by y* and integrating shows that

(o=*- ((x, oo-*(xly*ax+O.

We can also deal with random boundary conditions. Suppose, for example, that

y’(O) + a + to2)y"(O) O, (b + to3)y’(l) + y"(1) 0, y(0) 0, y(l) 0.

Using (24)-(26) and the approximations y y*+ o(11 [I), we soon find that

BT1 h *BT2+ T3 b + toa)y*’2(l) (a + to2)y*"2(0) + 02.
This approximation can now be used in (29) to obtain an approximation for A(w).

A second example, which has been used to study vibrations of a helicopter roter
(see 1 and the references listed there) is given by

y"" ((1/2)a 2(1 x2 + y2)y,), Ay, 0 < x < 1,
(35)

y(O)=y’(O)-ay"(O)=y"(1)=O, y’(1)=(1/2)y2a2y’(1)-(1/2)Ay2y(1).

We suppose that a and y are fixed but that a is a random variable, a- a*+ to, with
to I. Letting to=0 correspond to the base problem, we use (31)-(33) to find that
BT2- 0 and that

BT1 (A * A )(1/2) y2y*2(1) toy*"2(0) + 02, BT3 -(1/2)A* y2y,2(1).

Substituting this into (29) and solving the resulting equation for A yields the first order
approximation

(36) A(to)
A*- toy*"2(0) J(to) + 02

1 + -12 y2y*2(1)
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Now J(to) is actually independent of to so that J(to) J(0). Letting to =0 in (26) shows
that J(to)= BT3=-1/2A*y2y*2(1). Substituting into (36) we obtain

y*"2(O)
(37) X(to) X*-to

1 +1/23,2y’2(1) - O(to2)"

It follows from this equation that, at to=O, dA(to)/dto<O. Therefore, A(to) is a
decreasing function of to. Thus, we see that A* is a decreasing function of a*.

With more involved calculations, we could allow the coefficients in (35) to be
random also. We will not pursue that idea here.

It is interesting to note that Theorem 1 is not, exactly, a special case of Theorem
2. To see this, let m 1, m’= 0 in Theorem 2, and take

L(y) -(fy’)’- qy, M(y)=gy,

L*(y*) -(f’y*’)- q’y*, M*(y*) g’y*.

Computing the boundary term given in Theorem 2 we find

(38) BT1 A *BT2+ BT3 f*y*’y f*y’y* fy*’y*l=
However, computing the boundary term BT given in Theorem 1 yields a different
result. But taking the difference between the two boundary terms and doing a direct
computation shows that the difference y*AfAy’lo. Since this term is of second order,
we see that either boundary term could be used to get a first order approximation to
A(to). This discrepancy arises from the fact that in the work [3] the O2 terms were
collected after the integration by parts whereas in Theorem 2 the 02 terms were collected
before the integration by parts. It seems difficult, at this point, to decide which method
should give a better result. Such questions would have to be dealt with by a more
careful analysis of the O2 terms.

4. Partial differential equations. These methods generalize easily to partial
differential equations in a deterministic domain . Using Green’s Theorem in place
of integration by parts shows that Theorem 2 can be used when L(.) and M(. are
partial differential operators. Consider the special case ofthe two-dimensional equation

(fu.),+(fUy)y+(hg+q)u=O, in with u+(a+)u=OonO.

Here, g, q, and are random but a is a deterministic function of s, arc length on. For now, is a deterministic domain. Using (29), we see that

a =a*+ (a+) ds+ 1*gu*+qu*-f(u+u) dA+O

where

IIg*u*2da=l.
If l, the length ofthe interval in a one-dimensional problem, was a random function

of some , then a simple change of variable s x/l would give a new problem
on the fixed domain 0 s 1 with random coecients. Theorem 2 would then apply.
In the case of paial differential equations, such a change of variables is much more
dicult. One can, however, appeal to the Hadamard variational formula to accomplish
much the same kind of manipulation.
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Following Garabedian [5, Chap. 15], we consider a fixed two-dimensional domain

* and let (to) be the region whose boundary, 0(to), is obtained by shifting 0*
an "infinitesimal" distance 6 p(s, to) along its inner normal r, so that (0) *.
Here, s is arc length on 0 and to is a random variable. We assume that Op/Oto exists
near to O.

Let A((to)) denote the first eigenvalue of V2u+Au=0, with u=0on0(to),
and let u and Ul* be the eigenfunctions corresponding to and *. It follows from
the Hadamard variational formula [5, Chap. 15] that

A/. --/1( (to)) 1() t -[- O(to2), ,1 fo (S, to)(OU:I 2

* \7/ ds.

Thus we obtain the first order approximation formula

(39) )t((to)) AI(*)+
*

O(s, to) --! as + 0(o:).

As an example of this, consider a triangular domain * bounded by x 0, y 0, and
x+y- or. Suppose the sides x-0, y 0 are fixed but that the diagonal side has a
random variation to. Thus p(s, to) is zero on x=0, y=0 but p(s, to) to on x+y=cr,
and (to) is the domain bounded by the lines x 0, y 0, and x +y- rr-x/to. The
minus sign is due to the inward directed normal. There is a problem at the corner
points since 0* is not smooth there and p is not continuous. However, there do exist
analytic approximations to 0*, 0(to) and p, and the error introduced using them
will be O(toE).

Solving for u*, A *, we find that Ul* 2(sin x sin 2y / sin y sin 2x) and that A 1" 5.
Now the change of variables x (1-rrto/v/), y- j(1- rrto/v2) shows that

(40) al( (to))
(1 rrto/v/)2"

Using Ul* in (39), we find, after some calculation, that

(41) A 1(o/ (to))---- A1 / toA23/2/7r / O(to2).

One can now easily verify that (40) and (41) agree up to second order terms.
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EIGENVALUES ON A DOMAIN WITH DISCRETE ROTATIONAL
SYMMETRY*

BONITA HART DRISCOLL"

Abstract. The spectrum of the Laplace operator on a bounded domain or manifold consists of only
isolated eigenvalues of finite multiplicity. In problems with a high degree of symmetry it is necessary that
these multiplicities are large. The generic structure of the eigenspaces of the Laplace operator with no
symmetry constraints is that the eigenvalues are simple.

We consider the structure of the eigenfunctions of the Laplace operator in a planar domain under
deformations that preserve symmetry under a discrete rotation. There are two types of eigenfunctions:
symmetric and asymmetric.

The main theorem shows that generically, symmetric eigenfunctions are simple and asymmetric eigen-
functions are of multiplicity two. This is a partial proof of the conjecture of V. I. Arnol’d concerning the
codimension of large multiplicity eigenspaces in the space of domains preserving symmetry.

Key words, symmetric eigenfunctions, asymmetric eigenfunctions, generic

AMS (MOS) subject classifications. Primary 58G25; secondary 35P05

Introduction. The spectrum of the Laplace operator on a bounded domain or
manifold consists of only isolated eigenvalues of finite multiplicity. If the domain has
symmetry, for example, and is invariant under the action of a cyclic group, the fact
that the Laplace operator commutes with the group action forces multiplicities in the
eigenvalues. The minimal polynomial for the group generator splits the space into
subspaces. The subspaces determine different types of eigenfunctions and determine
the multiplicities of the eigenvalues.

Let D be the unit disk in Re and A (0/0x)2+ (0/0y)2; then what follows is the
main result of this paper.

MAIN THEOREM. Let A U+ ApU =0 with U 0 on the boundary and p invariant
under the Zp action az e2zri/pg’, then the set of p Ck, k > 2 such that the following:

(a) Symmetric eigenspaces (those corresponding to rotation invariant eigenfunctions)
are one-dimensional;

(b) Asymmetric eigenspaces (those corresponding to irreducible quadraticfactors of
the minimal polynomial for the group) are two-dimensional;

(c) No symmetric eigenvalue equals an asymmetric eigenvalue;
is residual in Ck, i.e., is a countable intersection of open dense sets in a Banach space.

As a corollary we obtain: For a residual set of surfaces of the conformal type of
the disk having Z3 symmetry, the eigenspaces algebraically have minimal dimension.
Note that by "residual" we mean that the measure in the conformal factor p is residual.

The main theorem is actually Theorem 2.8, which establishes for p 2, 3, 4 that
the eigenspaces generically have the lowest possible dimension. We have not included
the details of the case for p even corresponding to f(az)= -f(z), since it is .virtually
identical to the symmetric case, f(az)=f(z). For p => 5 we have only partial results.
In addition to the results in the main theorem, we need to show that eigenspaces
corresponding to different conjugate pairs of complex roots generically have different
eigenvalues. This poses interesting algebraic questions. The computations reduce to
algebraic identities between eigenfunctions. For p<5, these identities cannot be

* Received by the editors October 2, 1985; accepted for publication (in revised form) January 13, 1986.
t Department of Mathematical Sciences, Loyola University of Chicago, Chicago, Illinois 60626.
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satisfied by orthogonal eigenfunctions, hence assuming that they are leads to a contra-
diction. However, for p -> 5, it is possible that there are some rational relations between
eigenfunctions, i.e., these identities may be satisfied in some cases. Results in Eskin,
Ralston and Trubowitz [9] suggest that problems will arise for certain algebraic
manifolds.

The results in this paper originate in a conjecture by Arnol’d [6]. He has conjectured
that the map from membranes into bilinear forms is transverse to the various strata of
the varieties of bilinear forms with multiple eigenvalues.

From this hypothesis, the results of this paper would follow. One would also be
able to determine the codimension of the degeneracies, i.e., the codimension of the
submanifolds in the space of membranes which correspond to higher than necessary
eigenvalue multiplicities. K. Uhlenbeck has used transversality in the problem on a
domain without symmetry [20], [21]. Clearly her technique could be used in the
problem with symmetry on the space ofsymmetric eigenfunctions, but there are inherent
difficulties on the space of asymmetric eigenfunctions. We use a perturbation argument
similar to that used by Albert [2], [3]. The results are easily extended to a larger class
of elliptic operators on an n-dimensional manifold" in particular to the Schr6dinger
operator. We have chosen to restrict the argument to R2 since this case seems to contain
the basic phenomena. In particular the extension to noncommutative or continuous
groups appears to present serious problems.

1. Preliminary results. In what follows fI will be a bounded simply connected
nonempty set in the plane, bounded by a curve of class Ck+3, k => 3, and invariant
under rotation by a 27r/p where p is an integer. Recall that Ck+3 functions are
continuous with continuous derivatives and kth derivative that is Lipschitz with
Lipschitz constant/3, 0</3 < 1. D= {xlx R2, Ilxll--< 1}. The Sobolev space of functions
on the unit disk with distributional derivatives through order k that are p integrable
is denoted HI(D) and, for p 2, Hk(D). Hl,o(D)c H(D) is the closure of smooth
functions with compact support in the interior of D. We will use generic to mean
residual, i.e., a countable intersection of open dense sets.

The first topic we consider is reducing the eigenvalue problem for the Laplace
operator on a domain of the kind considered to one on a simpler set, namely, the
unit disk, D. To do this we use an equivariant form of the Riemann mapping
theorem. Consider a domain 11 c R to be a subset of the complex plane by x (x, y) ->

(x+iy)=z.
LEMMA 1.1. For a domain II as described, l-I invariant under rotation by

0 < a <-27r and pa 27r for p an integer, there is a conformal map g’D--> ll such that
g Ck+E(D) and g commutes with rotation by a.

Proof Pick a point Wo on the boundary of fl and Zo on the boundary of the unit
disk. Choose the unique conformal map g-1 which takes l-I to D with

g-l(ekaiwo)-- ekiZo, k=O, 1,2.

Let h(z)= eiz and h-(w)=e-iw; then

h -1 g h(ekizo)= ekiwo, k 0, 1, 2.

Therefore, by uniqueness, since h-og h maps D--> fl and fixes the same points as
g, h -1 g h g hence g(ez) eg(z).

In the coordinates of the disk used as conformal coordinates for II, we have
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where p Ig’(z)l2. Because g commutes with the rotation a,

p(e"’z) Ig’(e’z) e’lz Ig,(z)l2.
THEOREM 1.2. The problem AnU + AU 0, for invariant under rotation by

a 2r/p, is equivalent to AoU+ ApU 0 for p Ig’(z)l2 and p invariant under rotation
bya.

Rather than consider only p’s that arise from the conformal maps described, we
consider all p e ck(o), k > 2, p(x) 0 for all x, and p invariant under rotation by a.

The problem we consider is the problem of the Laplace-Beltrami operator on Ck

surfaces of the conformal type of the disk.
THEOREM 1.3. Let p D- R+, and a metric on D be given by gij Po. This puts

the set ofp > O, p e Ck(D), k > 2 in one-to-one correspondence with the diffeomorphism
classes of Ck surfaces of the conformal type of the disk. The Laplace-Beltrami operator
in this parameterization appears as p-IA.

Proof. See [13, pp. 366-367] and [10, pp. 88-101].
The rotational symmetry of the domain fl under a induces well-known properties

on the Hilbert space Hl,o H and the eigenvalues of p-lA. Let O be the rotation matrix

O=
cosa -sina

=2r/p.
sin a cos a

For fe H, define O*(f(x))--f(O(x)). Note that 0*p= I so we have an irreducible
representation of the Zp action on H,

Zp {I, O*, 0*2... O’P-’}.
Clearly O* is orthogonal on HI,o(D) and Ho(D). The minimal polynomial for O* is
p 1 which has as possible factors t- 1, + 1 and 2 + c(k)t + 1. Let

H1 {f: (0" 1)f= 0},
H_ {f: O* + 1)0f= 0},

H(k)={f: ((O*)2+c(k)O*+ 1)f= 0, keN}

where N ={k: k= 1,. ., l, l-(p-1)/2 whenp is odd or 1=(p-2)/2 whenp is even}.
We call elements of H1 symmetric functions and elements of He(k) asymmetric functions.

The following are well-known facts commonly used in mathematics and physics.
PROPOSITION 1.4. The equation A U+ ApU 0 has countably many real eigenvalues

that are boundedfrom below by 0 and have nofinite accumulation point. The eigenvectors
for p--A form a complete p-orthonormal basis for H, and the eigenspaces are all finite
dimensional

The Hilbert space H is split into invariant subspaces by the irreducible actions
of Zp, namely

H=H@H_@ Y. He(k).
c(k)

Since O* and p-A commute, it follows that there is a p-orthonormal basis of
eigenvectors for p-A that splits into a basis for H, H_ and Hc(k).

We will proceed with some technical lemmas. The main result is the reduction of
the perturbation problem to a computation on the finite dimensional eigenspace. The
technique used relies heavily on Rellich’s lemma which says that HI,o(D) is relatively
compact in Ho(D) [11, p. 31]. In what follows we use of to mean o f(x) dx with
respect to Lebesgue measure in R2. We include the first lemma, although it is well
known, because the method of proof is typical of the technique used.
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LEMMA 1.5. (Upper semi-continuity of the dimension of the eigenspaces). Let
p ti, x) pi for ti [0, 1 ] where pi converges to p p (0, x) in C. Let Ei { U U Hi,o,
A U+AipiU=O, A is the mth eigenvalue}, where m is fixed and E {U U Hi,o,
A U+ApU =0 and A is the mth eigenvalue}. If E is l-dimensional for all and {A-} is

bounded, then dimension E >-_ I.
This is a well-known result. However we need a construction which occurs in the

proof. We will construct a sequence of eigenspaces Eik, which converges to a subspace
of the eigenspace E in the sense that the orthonormal basis we chose for Ei,k converges
to a subbasis of E in H HI,o(D).

Proof. For U in eigenfunction, by Green’s formula we have:

Hence,

.. (u+ u+ u:) [(-a u) u+ v-] = (px u: + u).
D D

u, , Jo (p’a’ + 1) U.

Since pi--> p in Co and {h} is bounded, there is a constant K such that

p,A, -<- K.

Therefore

In addition we have,

u’ll= <Io..- (K+I)U,=(K+I)IIU, IIo.

A U, +,X,p,U, OA U,

So by regularity theory [11, p. 68],

u, ,= --< c (11 ,p, u, ,o+ u, ,,)
<- K’II U, II,o, K’=C(2K+I).

Since {h} is a bounded sequence in R, there is a convergent subsequence. Call it
{hi}, and let {Ei} be the corresponding sequence of eigenspaces. Choose a pi-ortho-
normal basis { Uk}, 1 _--< k _-< for E. Consider the sequence { UI}.

IIU,111=<-_K’IIU,,IIo=K
from the estimate above. By Rellich’s lemma, there is a convergent subsequence, call
it { Ui}, such that { Uil} U in H H,0. Let {E} be the subsequence of {E} associated
with the subsequence { UI}; i.e., UI is the first basis vector of Eil.

We proceed by induction. Let r_-< and assume we have sequence { Uik} Uk in
H, 1 _-< k-< r- 1 and a sequence of eigenspaces {Eir_l} where

{Ukll<----k<--r--1} CEir-t for all i.

Consider the sequence { Uir} where Ur E-I. Since each Ei_ is /-dimensional and
r_-< l, this sequence is nonempty.

From the earlier estimate,

Uir 21-12 K’II Uir 2Ho K ’.
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So by Rellich’s Lemma, there is a convergent subsequence Uir---> U in H. Let {Eir} be
the subsequence of {Gr-1} associated with the subsequence Gr, i.e., Uir Gr. Choose
subsequences of { Gk}, 1 =< k -< r- 1 by requiring that elements of { Uk} 1 =< k =< r- 1 be
elements of Gr. Call the subsequences { Uik} 1 =< k -< r 1. We now have that { Uik} Uk
1 -< k-< r and Uik G,r to complete the induction.

We must show that { Uk[1 =< k =< l} c E, and is orthogonal in E.
(i) Show AUk + ApUk =0, i.e., Uk E. Recall that {Uk}- Uk in H and pi --> p

uniformly in x, where p Ck(D), k->2 and A--> A. By a regularity theorem, a weak
solution in H is a classical solution [11, p. 67].

SO

and

Clearly

and

then

A Uik -- IiPi Uik O,

D D
for all b C(D).

f ;t,p,U,d-f ;tpG4,
D D

D

(Ab+hpb)U=O for all 4e C(D)
D

and Uk is a weak solution and hence a classical solution of AUk + ApUk O; i.e., Uk e E.
(ii) Show (Ukl U)R =0 for k#j.

U,- G,

Therefore if k #j,

By the same reasoning

U0 --) U,
for all and k # j.

lim (Gkl U0)o, (Uk U)o O.

lim U., Uik)p, UI Uk)o 1.

Hence dim E _-> since E contains orthogonal vectors.
THEOREM 1.6. Let pi p(t, x), A A (h) where limt,_o p p(O, x). Let

Op/Ot(O, x) C(D) and Ei (the mth eigenspace) be l-dimensional for all and fixed.
en dim E and equality implies that there exists a number dA / dt such that for all
U, V e Eo

UV=- pVU.
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Proof. Let U1,’" ’, U be the orthonormal basis for Ex.p constructed in Lemma
1.5. There are sequences { Uik} n Uk, k 1,..., where Uk e Ei and H HI,o(D).
Let V, Y k-- ak Uik. Then V, e Ei and V/ k= akUk V E;

AU+ApU=O

SO

A U+,pU+ X(p p) U+ p(;t ;t) U O.

The image is pi orthogonal to the eigenspace Ei so (AU+ hipiUI Ui)=0;

(A U-t- AipiU-I- Ai(p pi) U q- p(A Ai) U Ui)=O

so

For V/ Ei,

(1.6)

Look at

-Ai

Vi akUik,
k=l

Also

lim Ai U[ V/ lim akhi
i-.oo ti i=k=l tl uIu, 

Since hi-> A, (p-pi)/ti-dp/dt(O) uniformly in x, and Uik _H Uk

limi_,oo
__1

ali ii U U
= akl - (0) U U

(0)ul v).
lim (pUI V)= (pU V)

since E --> n V.
From (1.6), with U V # 0, lim_. (, ,)/6 exists, since

h-A, -h(Op/Ot(O)Ul U) dh
lim
i-,oo ti (UI U), dt"

We have

for all U, V E.

ap ) dhx (o) u v =--d-i (pul v)

COROLLARY 1.7. Let p(t, )eCk(D), k>-2 and assume Op/Ot(t, )eCg(D). Let
q=Op/Ot(O, ) Ck(D). If there exists a U, V E and an eigenspacefor AU+ApU=O
of dimension l, such that (UIV)p 0 and U V)q # O, then there exists an e > 0 such
that dim Et < for 0 < < e, where Et is the eigenspace corresponding to A U+ hp(t, U
O, Ai -> h.
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Proof Suppose not. Apply the theorem to Et,--Ei for ti 0 and E of dimension
I. Then A(UI V)q=-dh/dt(UI V)p =0, which is a contradiction.

2. Main theorem. In this section we prove the main theorem. The technique used
is similar to that of Albert [2], [3]. We define sequences of nested sets. Let

P {p C’(D)]O*p p and p > 0},

Sn {p Plthe first n symmetric eigenvalues of p-lA are of multiplicity 1},

A,,(k) {p Plthe first 2n asymmetric eigenvalues corresponding to
eigenfunctions which satisfy O*:+C(k)O*+ 1 =0 have multiplicity 2},

Tn {p PIP Sn CI An(k) and none of the first n symmetric eigenvalues is
equal to any of the first 2n asymmetric eigenvalues},

So Ao( k) To P.

Then

So =S=S=’’’, S= f) S.,
n=l

Ao(k) Al(k) = A2(k) A(k)= CI An(k),
n=l

To TI T2 D T- (3 Tn.

We show that Sn is open in P and An(k) is open in P, and Tn is open in P. The proof
of openness is an easy consequence of Lemma 1.5. The proof of density is more
complicated and constitutes the rest of the section. We apply the criterion we have
developed in Corollary 1.7 to show that Sn is dense in Sn-1, A,,(k) is dense in An_l(k)
and Tn is dense in Tn-1. The proof consists in showing that the multiplicity of the
eigenspaces can be reduced by at least one (two in the asymmetric case), and of using
a series of perturbations as required. The proof for eigenvalues corresponding to
eigenfunctions satisfying O*f -f is identical to the symmetric case, so for simplicity
it is not included.

We will first prove openness. In what follows, we define simple eigenvalue to
mean: for symmetric eigenvalues the multiplicity is 1 and for asymmetric eigenvalues
the multiplicity is 2.

THEOREM 2.1. Sn, An(k) and Tn are open in P in the Ck topology.
Proof. We shall first consider Tn.
For p e Tn, we must show that there is an e-neighborhood of p such that for all

q with [IP- q[[k < e, the first n eigenspaces of q are simple. We proceed by contradiction.
Assume that for every t> 0 there is a qt such that lip- qtllk < and the dimension

of at least one of the first n eigenspaces of qt is not simple. Since n is finite, we may
assume that the ruth eigenspace is not simple for each t. Let A be the ruth eigenvalue
for p and At the ruth eigenvalue for qt. There is a sequence of qt --> p, with dimension
of the ruth eigenspace >-2 if A is a symmetric eigenvalue or >-3 if A is a asymmetric
eigenvalue. Since qt -> p and D is compact, it is easily shown that {At} is bounded.
Hence by the proof of Lemma 1.5, we have that the dimension of the ruth eigenspace
of p is not simple, which is a contradiction. Restriction to H1 and Hck gives the lemma
for Sn and An(k).

We will now prove the perturbation lemmas, which easily imply density.
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LEMMA 2.2. Let Eo, the nth eigenspace for po, be l-dimensional where > 1 and
Eo c H Then there is a p, Ck close to Po, such that the nth eigenspace ofp has dimension
l.

Proof. The proof is by contradiction. If false by Theorem 1.6 and Corollary 1.7,

+- pUV O

for all U, V e E and all p e P. Then for U, V such that U] V)p 0 we have o pUV 0
and so

Op
)uv=o,

D

A#-O.

Choose p(t, )--po+ t. S where S e P. Then Op/Ot(O, )= S, and S is invariant
under O*. Since U and V are symmetric eigenfunctions, U and V are invariant, under
O*, so by change of variable,

foS" U" V=p lo SUV=O.
/p

But S is arbitrary on D/p, so by the Fundamental Lemma of the Calculus of Variations,
UV=O. Notice that L(U) AU+ ApoU has the weak continuation property [12]. This
means that if U is a solution of L(U)=0 and U vanishes on an open set, U is
identically zero. Since U and V are C2 and UV 0, either U or V must vanish on
an open set which, as we just showed, implies U or V is identically zero. This is a
contradiction.

LEMMA 2.3. Let Eo, the nth eigenspace for Po, be 21-dimensional where l> 1 and

Eo Hc(k). Then there is a p, Ck close to Po, such that the nth eigenspace of p has
dimension <2/.

Proof The proof is by contradiction. As in Lemma 2.2, if the theorem is false,
then for (ulv)p =0 and p(t, )=po+tS, S6P, we have A DSuv=O, A #0.

By change of variable, recalling S is invariant under O*, we have

Suv= SO*(uv) =0.
/p

But S is arbitrary on D/p, so

p-1

(2.3) O*i(uv)=O.
i=0

Let E, =space spanned by {u, O’u} where u E c Hc(k). Notice that Eu is two-
dimensional over the reals since O*u # ku for all k R. For u E, choose v E so
that (u v) 0 and (O’u v), =0. This is possible since dim E >= 4. We notice that
(ulO*v),=O. This is true since (o*)T=(o*)-1, (U+O*u[v)o=O, and -O*-’u=
O*u+u. Therefore -(O*-lulv),=O=(u[O*v). We will show uv=O for u, v as above
by looking at the problem in the complex plane. Let (x, y)--)z C by (x, y)--)(x+ iy),
and let v Eu as above.

u, vH,:(k)=[(O*)2+c(k)O*+l]u=O and

[(0*)2+ c(k)O* + 1]v =0.
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Then

and

(O*-h)(O*-)u=O, A=e2ki/p, k#p and k#p/2 if p is even

(o*-,)(o*-i)v =0.

Define U(z)=O*u(z)-Xu(z), and V(z)=O*v(z)-Xv(z). Then (O*-h)V(z)=
(O*-X)(O*-X)v(z)=O, so (O*-X)V(z)=O or O*V(z)=hV(z). Also, O*U(z)=
hU(z), so O*(Uf’) h U" U’, and hence

(o*)(u#) o*(ug)= u k=l,..-,p.

Therefore

1 p--1 1 p--1

UV---- Z (o*)k(gg) 2p k=O p k=O

By (2.3)

---! 1 [05k+II’(z)OSk+IID(Z) jr" 05ku(z)O5kl)(Z)
p k=O

o*ktl z O*k+ I)( Z ,o*k)(z O*k+

p-1

Z O*(uv)=O.
k=0

Since O* is linear,

p--1 p--1

052 oSk(u)) Z oSk+l(u)) =0
k=O k=O

if (u v)o 0. Recall that (u O*v)o 0 and (O*u v)o 0. Therefore

p-1 p--1

2 o*k+lu(z)O*k+lv(z) Z o*k+I[u(Z)I)(Z)] -’0,
k=O k=0

p-1 p-1

20*u(z)O*%(z) Y., o*(u(z)v(z))=o
k=O k=O

and

p--1 p--1

20*ku(z)O*k+ll)(Z) 2 o*k(u(z)O*I)(Z)) --0,
k=0 k=O

by (2.3) with O*v replacing v. Similarly,

p--1

Z O*%(z)O*+’u(z)=O.
k=0

Therefore UI?=0 so either U or I? is zero on an open set. Hence Im U =sin (2rk/p)u
and Im V sin (27rk/p)v are zero on an open set, so by the weak continuation property
u and v are identically zero.

LEMMA 2.4. Let Eo, the nth eigenspace for po, be l-dimensional >-3, where Eof-)
Hc(k) # and Eofq H1 # (. Then there is a p, arbitrarily Ck close to Po, such that the
nth eigenspace ofp has dimension less than I.
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Proof. As in Lemmas 2.2 and 2.3, we will use proof by contradiction. We will
assume the theorem is false for U Eofq He(k) and V Eofq H1. Let (UI U)p 1 and
(V V)p 1. Notice that HI_LHc(k), for all p, so we will consider U+ V, U- V.

(u+ vl u- v),, (uI u),,-(vl v),, o.
As before, assume the lemma is false, and by Theorem 1.6 and Corollary 1.7, we have
for all p and for U+ V] U- V) 0 where U Hk and V H1,

tgp
U2(o,)( v o.

For p(t, )=p + ts, s P. Since O*s s and O*V V, by change of variable,

o s(U v s E
/p k=0

So since s is arbitrary,

Therefore,

p-1

o*kU2-pV2-- O.
k=O

V2 1 pl O*kU2.
p k=0

Since V is an eigenfunction for p-’A, there is a connected component G of the
set in D on which V is positive bounded by nodal curves of V [8, p. 451]. Consider
AV+ApV=O on G, V=0 on 0G. V is an eigenfunction for this domain G, and since
V> 0 on G, A must be the first eigenvalue [8, p. 451]. The first eigenvalue is simple.
Notice that V 0 on the boundary of G, gives V2= O, so

lP-1
0=- E O*’U

p k=o
on

Each summand is positive, so U2= 0 on OG which says U 0 on OG. Therefore U is
an eigenfunction for A V+ ApV 0 on G and since A is simple this says U V which
is a contradiction since (U V)o- 0.

We shall now prove that S, is dense in S,_, A,(k) is dense in A,_l(k) and T,
is dense in T,_I. We have shown in Lemmas 2.2-2.4 that if the multiplicities are not
minimal we can reduce the multiplicity of the eigenspaces at least one in the symmetric
case, at least two in the asymmetric case and at least one if asymmetric and symmetric
coincide. We shall show the density, by using a sequence of perturbations to lower
the multiplicity of the nth eigenspace one step at a time. By the openness one can
make small enough perturbations so none of the multiplicities of any other eigenspace
is increased.

THEOREM 2.5. Sn is dense in Sn-1 in the Ck topology.
Proof Let pc S,-1 and let Eo, the nth eigenspace of p, have dimension l> 1.

Since S,_ is open in P in the Ck topology (Theorem 2.1), There is a 6 so that if
IIP-qllk<6 then qS,_. By Lemma 2.2, there is an el, e<6 and a Pl with
II - ,ll /1, where the nth eigenspace E1 of p has dimension less than or equal
to l- 1. Notice that p 6 S,_I by construction. We proceed by induction. In what follows
l> 2. For r_-< assume that we have pr- with IlPr-E--Pr-llk < e_i/l where Pr-1 S,_
and the dimension of the nth eigenspace E_I of P-I is less than or equal to l-(r-1).
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By Lemma 2.2, there is an Er, E < and a p, so that [[Pr-l--Prllk < er/l and the
dimension of the nth eigenspace Er of p is less than or equal to l- (r- 1)]- 1 l- r.

We must show lit,- Prll < . Let p Po and look at

IIj=O k j=0

*- 1 - 1
IIp-p ll  

j=o j=o

since r I.
Therefore p S,_ and the dimension of E, is less than l-r. Clearly this process

will terminate only if dim (Eg)= 1 and that must happen before j 1.
THeOReM 2.6. A,(k) is dense in A,_(k) in the C topology.
oofi Use Lemma 2.3 and the same construction as Theorem 2.5.
THEOREM 2.7. T, is dense in T,_.
oofi Recall that

T,_ {p p S,_ A,_(k) such that the first (n 1) symmetric eigenvalues
are all different from the first 2(n 1) asymmetric eigenvalues}.

For p T,_, the nth eigenspace E, is at most 3-dimensional since p
S,_ A,_(k). Since T,_ is open in P, by Theorem 2.1 there is a neighborhood of p
in C so that for q in that neighborhood, q T,_. Using Lemma 2.4, pick p so that
p T_ and the dimension of the nth eigenspace of p < 3. This completes the proof,
since for p the nth asymmetric eigenvalue must be different from the nth symmetric
one.

THEOREM 2.8. T,, is dense and open in P and T f’l=l T,, is residual in P.
Proof. T, is open in P from Theorem 2.1. T, is dense in P from Lemma 2.4.

3. Some examples.
Example 1. The simplest example of a domain with Z3 symmetry is an equilateral

triangle. Let D be an equilateral triangle of side 1, and consider the problem Au + )tu 0
in D with u 0 on the boundary of D. The eigenvalues of A on

(3.1)

are the numbers

D {(x, y): 0 < y < x,/, y < /(1 x)}

=(16"a’(mZ+n-mn), m, n =0, +1,(3.2) h,,,
\ 27 ]

with the following conditions:

(A) m + n is a multiple of 3,

(3.3) (B) m 2n,

(C) n2m.

The multiplicity of Xm. is (1/6) xthe number of times it appears in the lattice (3.2).
The eigenfunctions are of the form
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In this sum (m, n) range over . Z2, where [[ 6 and + is determined by the following

(3.5)

f(m,n)
(n r, n) (m, m- n)

(n-m,-m) (-n,m-n)

(-n, -m) ,
Each transition induces a change of sign in the (m, n) entry of (3.4). Each pair

(m, n) that appear in (3.5) must satisfy (B) and (C).
These results were obtained by M. Pinsky [15]. He also shows that a given

eigenvalue is either symmetric or asymmetric, i.e., either all of its eigenfunctions are
symmetric or all of them are asymmetric. He includes a formula for the multiplicity
of the eigenvalues which shows that the dimensions of the eigenspaces become
arbitrarily large for both symmetric and asymmetric eigenvalues. Hence this example
does not exhibit generic behavior.

Example 2. Domains with Z5 symmetry illustrate what is necessary to complete
the proof for Zp. The minimal polynomial for Z5 is

(t-1)P(t)P(t).

Rotation through a 2r/5 gives an irreducible representation for the group Zs.
Since p-lA commutes with rotation, the 3 invariant subspaces for Z5 are invariant

subspaces for p-lA. Hence the eigenfunction for p-A must satisfy one of these three
equations:

(i) (0"- 1)f= O,

(ii) Pl(O*)f =O,

(iii) P:(O*)f=O.
It remains to be shown that if an eigenvalue has some eigenfunctions satisfying (ii)
and others satisfying (iii) (hence the eigenspace has dimension =>4), one can perturb
p so as to lower the dimension of the eigenspaces. This is the analogue of Lemma 2.4.
From this it would follow that generically a given eigenvalue has eigenfunctions that
satisfy exactly 1 of the equations (i), (ii) or (iii). This would complete the proof that
the eigenspaces for a domain with Z5 symmetry (in fact Zp symmetry) have algebraically
minimal dimension.

Example 3. Consider the Dirichlet problem for the Laplace operator on the unit
disk in R2, that is, A U+ AU 0 where U(1, 0) 0. It can be shown that the eigenvalues
are squares of the zeros of the Bessel functions J,. Let k,,,, be the mth zero of the nth
Bessel function J,. Then

Jn(kn,mr) (k’"r)’{1- (kn"r)--2 (k"mr)4 }2"n! 2(2n+2) 2- 4(2n+2)(2n+4)""
The eigenfunctions are of the form J,(k,,,,,r)(a cos nO + [3 cos nO) where t and/3 are
arbitrary [8, pp. 302-305]. For n and k positive integers, the functions J,(z) and Jn/k(Z)
have no common zeros other than the origin [22, pp. 484-485]. Therefore except for
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n=0, all of the eigenvalues have multiplicity 2, since Jn(kn,mr) CosnO and
Jn (k,,mr) sin nO are independent eigenfunctions.

The symmetric eigenfunctions occur for n 0 (mod 3) and the asymmetric eigen-
functions for n S (mod 3), $ 1 or 2. It is clear that approximately of the eigenfunc-
tions are symmetric. Notice that a given eigenvalue is either symmetric or asymmetric.

We do not see generic behavior in this example for a Z3 action since the symmetric
eigenvalues have multiplicity two. However, the disk is invariant under S and for this
group the example is generic.
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Abstract. We consider finite dimensional nonlinear eigenvalue problems of the type Az AF(z) where
A is a matrix, (F(z))j f(zj), j 1,. , n. Such systems arise as discretizations of a corresponding boundary
value problem. The number of solutions of both equations at a fixed A i+ may differ significantly, i.e.,
spurious solutions occur. We give an upper bound on the number of solutions at a fixed A in case of the
nonlinearities f(z)=exp (z),f(z)=sin z, for polynomial and related nonlinearities. To this end we extend
the equation into C" and use the Brouwer degree for complex analytic mappings. A homotopy argument
yields that, roughly speaking, the number of solutions of the finite system is limited by the number of the
solutions of the uncoupled system z AF(z).
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0. Introduction. We consider finite dimensional nonlinear eigenvalue problems of
the type

(0.1)x Az=hF(z),

where h R/, A (ajk) is an (n, n) matrix which satisfies

aj,R, aj>0, a.i <- O fj k,

(0.2) withstrictinequalityforatleastonej{1,...,n},
k=l
k#j

A is irreducible.

F" i"--> R" is assumed to be diagonally nonlinear, i.e.,

(0.3) F(z) (f(z), ,f(z,,)) withf:-->[.

The properties typically arise in the discretization ofnonlinear boundary value problems
(bvp). Various authors [3], [4], [12] have observed that the solution sets of (0.1)x and
the bvp may differ significantly, i.e., the number of the solution branches of (0.1)x
increases with the number n of meshpoints and (0.1)x admits extra (spurious) solutions
which do not converge to solutions of the bvp as n--> .

In this paper we give an upper bound of the number of solutions of (0.1)x for
the examples f(z)=exp (z),f(z)=sin z, for polynomial and related nonlinearities,
which have also been studied in [3], [4], [9], [12].

Let us consider the bvp

(0.4) -u"= hf(u) in (0, 1), u(0) u(1)=0

with f(z) =exp (z). It is well known [10] that the solution set of (0.4)a is given by the
solid branch in Fig. 1, whereas (0.1)x with a simple discretization matrix A admits
extra solutions (the dotted branches). It is shown in [3] that (0.1)x admits at least 2n
solutions if h is small enough. We will show that there are at most 2" solutions of
(O.1)x for each A > O.

* Received by the editors May 15, 1985; accepted for publication (in revised form) January 13, 1986.

" Institut fiir Angewandte Mathematik, Universitit Hamburg, BundesstraJe 55, D-2000 Hamburg 13,
Federal Republic of Germany.
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FIG.

Another type of spurious solution is obtained by the discretization of (0.4)x with
f(z) sin z. Equation (0.4) admits at most one positive solution, the solid branch in
Fig. 2, whereas (0.1)x possesses an increasing number of solutions as A o [12], the
dotted branches. It is shown in 12] that there are at least (2 3 + 1)n solutions of (0.1)
with a maximum norm less than 3r, if A is sufficiently large. We state that there are
at most 7 such solutions for each A.

A third type of spurious solution occurs in the case f(z)=
(p z)/1 + (p z) + (p z)2 with p > 0 arbitrary which has been considered in [9].

The solution set of (0.4)x has to be a one-dimensional manifold (cf. [10]), the
S-curve in Fig. 3, whereas numerical calculations in [9] show that (0.1)x with n 2

27r

FIG. 2

A

FIG. 3
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meshpoints admits 32 solutions for specific values of A and p, the dotted branch. The
number of solutions increases with n. Our consideration yields that there are at most
3 solutions of (0.1)a for a fixed A. In the last example the system (0.1)a is more
important than the bvp, because (0.1)a describes a chemical reaction in an assemblage
of n biological cells (cf. [9]). zj denotes the concentration of a substrate S in the cell

C which is coupled with its neighbors by diffusion through a membrane. From this
point of view all solutions of (0.1)a are physically relevant.

To obtain our results, two ideas are used. First: relax the coupling between the
cells, i.e., we consider the homotopy

(0.5)a HA (t, z):= ((1 t)I + tA)z- AF(z) 0,

where [0, 1] and I denotes the identity. If 1 we obtain (0.1)a, the fully coupled
state, whereas 0 is the uncoupled state, i.e., a system of n independent equations.
In the latter case the number of solutions of (0.5)a is given by r(A)", where r(A)
denotes the number of solutions of the scalar equation

(0.6)a hf(z)=z, z6.

Now we choose a solution Zo of HA (0, z) 0 at a fixed h and follow the solution curve
(t, z(t)) of HA(t, z)=0 with z(0)= Zo in the direction of t->0. In 1 this is examined
numerically in the case f(z)=exp (z).

In the above examples we are able to show that all solutions of HA (1, z)= 0 are
induced by the solutions of HA (0, z)= 0, i.e., the number is limited by r(h)".

This will be done in 3, 4 and 5. To this end we use a second idea: extend (0.5)a
to a complex analytic mapping in C" for each (t, h ). Now degree arguments for complex
analytic mappings are used to examine the number of solutions of (0.1)a in C". The
special properties of the Brouwer degree for those mappings are listed in 3.

1. Numerical results for f(z)=exl (z). Here we examine a slight modification of
the homotopy (0.5)a with f(z)=exp (z) and the simplest discretization matrix A of
-u". We consider

(1.1)a HA(t, z)= ((1 t)txI + tA)z XF(z) 0,

with the lowest eigenvalue/s of A. This seems to be more promising, since the solution
sets of (0.1)a and of Af(z)=tzz are strongly related. Define A*:=sup{A[(0.1)a is
solvable}, then the results of [15] yield

(1.2) xo*/ a-’ Iloo -<_ x* -<_ Xo*,
where Xo* =/x exp (1)-. Observe that there is no solution of a (0, z) 0, if A > Ao*. If
A < Ao* there are two solutions of Xf(z)=/zz; we denote the minimal one by + and
the maximal one by ..

We have examined (1.1)a numeri.cally for n 3 and n 4 at fixed values of X. If
n=3, there are 2 solutions of Ha(0, z)=0 which we denote in form Zl
(+, +, +), z2(+,*, +),"" z8= (*, *, *). Now we used a path following method as
described in [11] to follow the solution curve of (1.1)a through (0, zj) in direction of
t>0.

If X (X*, A o*), we cannot reach 1 because of (1.2). Results for various values
of X are shown schematically in Fig. 4. If X is decreased further, the branch in Fig. 4
connecting (.,., .) with (,, +, .) will reach 1. Thus there are at least 2 solutions
of (1.1)a at 1 if X is chosen sufficiently small. Fig. 5 shows the case n 4, where
the 24 solutions of (0, z)= 0 are denoted in the same manner.

Quite the same results are obtained in the simple case n 2. Observe that there
is a significant difference between n 4 and n 3. In the first case bifurcation occurs,
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n 3, , 3.44 n=3, A =1.6

(*, *,*(*, +,*) [-
(*,*, +)"(*, +,+)
(+,*,’1
(+, +,*)’

0 0.0032

(*’*’*)_
(*, +,*)

(,,,, +)

(,, +, +)

(+,*,*)

(+, +,,)

(+,,, +)

(+, +, +)

0 0.13

z

(+, +,*)

(+,*, +)

(+,+, +)

n 3, A =0.016

0.38

FIG. 4

but not in the latter. We expect diagrams analogous to Figs. 4 and 5 and for the
example f(z)=sinz. In this case all branches should reach t= 1, if A is chosen
sufficiently large.

With the above computational results the question arises whether all solutions of
(0.1) are induced by the solutions of the uncoupled system. To answer this question
we rewrite (0.1) as an equation in C for each h R+, where F :C C is an extension
of F:R" ". Iff(z)=exp(z) or f(z)=sinz there is a well-defined extension such
that F is a complex analytic mapping. In order to examine (0.1)x in C ", we have to
deal with the Brouwer degree for complex analytic mappings. In the next section we
develop its properties for the reader’s convenience.
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n=4, h =1.6

Z

(*,*,*, +)

(*, +,*, +)

(+,*,*,*)

(+,*,+,*)

(*, +,*,*)

(*, *, + ,*)

(*, +, +, *)

(*,*, +, +)

(+, +, +,*)

(+,+,*, +)

(+, * +)

(+,*, +, +)

(+, +, +, +)

n =4, A =0.016

(*, +, +, *)

(*,*, +,+)

(*, +, +, +)

(+, +,*,*)

(+, +, +,*)

(+,+,*,+)

(+,*,*, +)

0 0.4 0 0.78

FIG. 5

2. The Brouwer degree of complex analytic mappings. Let G be a complex analytic
mapping of an open subset V of C" into C" and let U be a bounded open subset of
V with U c V. By ignoring the complex structure, G (g + ih, , g,, + ih,,),
gj, hj’C"-R can be interpreted as a mapping (g,...,g,, h,..., h,,) from VcR2"

into 2". Let w be a point of :"\G(OU), then the Brouwer degree deg (G, U, w) is
well defined and the usual properties hold (cf. [8] for a detailed discussion).

If the analyticity of G is taken into account these properties can be strengthened.
A detailed description of the following considerations can be found in [5], [7], [14].

Denote by G’(z) the complex Jacobian matrix of G at z=(z,...,z,)=
(Xl+iyl,’" .,x,,+iy,,)C" and by J(G)(z) the real Jacobian of G" V.-.-)2n at =
(x, ., x,, y, ., y,), then we have

(2.1) Det (J(G)())= [Det (G’(z))l,
i.e., the determinant of the real Jacobian is always nonnegative (cf. [5]). Using the
identity theorem, it is shown in [5] that for each connected open subset V1 of V the set

S := {e V Det (J(G)()) O}
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of singular points of G(z):= G(z)+ ez is nowhere dense in V1, if e->_ 0 is chosen
sufficiently small. A theorem of Remmert and Stein [13] yields that the number of
solutions of G(z)= w with z U is finite. These three properties are responsible for
the fact that the following statements hold (cf. [5], [14]).

PROPOSITION 2.1. Let G, V, U, w be as above. Then

(2.2) deg (G, U, w) >- 0,

(2.3) deg (G, U, w)>0 if and only if w lies in G(U),

(2.4) deg (G, U, w) 1 ifand only iffor the component C of Cn\ G(c9 U) which contains
w, G is a one-to-one bicontinuous map of G-I(C)f-] U onto C,

(2.5) deg (G, U, w)_-> 2 if and only if either there is more than one solution in U of
G(z) w, or the unique solution is a singular point of G.

In the following we choose w 0 for convenience. Since there are only finitely
many solutions Zl," , Zm of G(z) -0 in U, the local degree deg (G, zj) is well defined
for each solution zj. By the additivity of the degree and (2.3) we have

(2.6) deg (G, U, 0)= deg (G, z)-_> m.
j=l

Thus the degree is an upper bound for the number of solutions.
If G is a function of U C into C, the degree equals the winding number of

G(OU) with respect to zero (cf. [8]). In this case it is well known that the local degree
deg (G, z) equals the multiplicity of the solution z, i.e., the lowest number k at which
G(k)(zj) O. An analogous characterisation of the local degree is valid in general. Since
G is analytic, we expand G into the Taylor series at a solution z. Without loss of
generality we assume that zj 0.

p(k)Gj(z) (z1,.’. Zn) j 1,’’’, n,
k=l

where .P(k) is a polynomial in zl," z. and homogeneous of degree k. Suppose pike)
is the polynomial of lowest degree in the jth series which is not identically zero. Then
it is shown in [6] that

deg (G, 0)= II kj,
j=l

if the local degree of the map (pk,), p(Ek2),..., p(kn)).C"_.) C is well defined, i.e.,
z--0 is an isolated zero of this map. Otherwise deg (G, 0)>_-1-I=l k (cf. [6]). Thus it
is appropriate to define the multiplicity of a solution of G(z)= 0 by its local degree.
In this respect (2.6) means that the degree deg (G, U, 0) equals the number of solutions
of G(z)=0, each counted according to its multiplicity.

The considerations above and the homotopy invariance ofthe degree yield Proposi-
tion 2.2 which is basic for our considerations.

PROPOSITION 2.2. Let V and U be as above. Suppose H(t,. ): V--)C is complex
analyticfor each [0, 1] and continuous in t. Suppose 0: H(t, )(OU) for each [0, 1].
Then deg(H(t,.), U, 0) is independent of t, i.e., the number of solutions (counted
according to their multiplicities) of H( t, z)- 0 in U is finite and independent of t.

The situation is illustrated in Fig. 6. It is shown in [1], where different methods
are used to examine the solution set of H(t, z) 0, that there are indeed solution curves
connecting 0 and t- 1.
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t=0 t=l

FIG. 6

Now we suppose that the domain U satisfies U U* := {z C"lz* U}, where
z* denotes the conjugate of z. The mappings we consider fulfill the additional property

(2.7) G(z*)=(G(z))*

for all z U. Especially we have GI- = ", i.e., G is an extension of a real mapping.
Suppose 0 G(OU). Let {Zl,’’’,Zk}CR" be the set of real solutions of G(z)=0.
There exists an open subset Wc U such that

(2.8) wn (G-’(0) U)={z,,... ,z}, 0 G(oW).

U\W is an open set such that 0 G(O( U\ W)). By the additivity of degree we have

(2.9) deg G, U, 0) deg (G, W, 0) + deg G, U\ W, 0).

PROPOSITION 2.3. deg (G, U\ W, 0) is a nonnegative even number.
Proof If G(z)=0, it follows from (2.7) that G(z*)=0. Denote by

zl,’’ ", zt, z*,..., z* the solutions of G(z)= 0 in U\ if’, then we have

deg (G, U\ I$z, 0)= Y. deg (G, zj)+ Y. deg (G, z).
j=l j=l

It remains to show that deg (G, zj)=deg (G, z). This has been done in [7, Proof of
Lemma 2].

If G satisfies (2.7), it follows from (2.9) and Proposition 2.3 that the number of
real zeros of G is even if and only if deg (G, U, 0) is even.

3. The casef(z) = exl (z). We choose F(z):-(exp (zl),""", exp (z))and examine
(0.1) in C, i.e.,

(3.1) Az hF(z), h R+, z C.
We will apply Proposition 2.2 to the homotopy (0.5). Clearly Hx(t,.)’C"-->C" is
complex analytic for each (A, t). To compute deg (Hx(0,.), U, 0) on an appropriate
domain U, we deal with the one-dimensional equation

(3.2) g (z) := z h exp (z) 0, z C, h +
on the domain U:={z=x+iyCl[x[<r,y(-zr, +r)}.

PROPOSITION 3.1. Let h > 0 be arbitrary. Then deg (gx, U, 0) 2, if r is sufficiently
large.

Proof Observe that exp (z)R, if z=(x+izr) and that the solution set of (3.2)x
is equibounded with respect to h [, ] with ,, > 0 arbitrary. Thus deg (g, U, 0)
is well defined and independent of h > 0, if r is chosen sufficiently large. An elementary
calculation shows that each solution z U of (3.2)x is real and nonsingular, if
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h <exp (1)-1. Since there are exactly two solutions of (3.2)x, if h <exp (1)-1 we
conclude deg (gx, Ur, 0) 2 for those h. H

Fig. 7 exhibits the real and the imaginary part of the solution set of (3.2) in Ur.
Remark 3.2. There exists an infinite number of solutions of (3.2)x in C for each

h. Elementary calculations yield that there are exactly two solutions z x +/- iy with
y c (kTr, (k + 2)zr) for each number k 1, 3, 5,. .

Now we define U := U7 c Cn. Choose r sufficiently large, then, for a fixed A, all
solutions of Hx (0, z)= 0 are within U. Thus

(3.3) deg (Hx (0,-), U, 0)= 2

by Proposition 3.1 and the Cartesian product formula for the degree. In the following
we denote by Re (z):= (Xl," ", x,), Im (z):= (Yl," ", Y,) the real and the imaginary
part of z (yl + iyl, ", x, + iy,) C.

THEOREM 3.3. Let h >0 befixed. Equation (3.1)x has exactly 2 solutions (counted
according to their multiplicities) with Im (z) (- zr, 7r) . Thus, with h * defined as in 1
there are at most 2 distinct real solutions of (3.1) for each h < h*. At h A* there is
exactly one real solution.

Proof. The assertion follows from Proposition 2.2 and (3.3), if we show that for
each [0, 1 there are no solutions of Hx (t, z) 0 on 0 U, if r is sufficiently large. The
last assertion can be deduced from the results in [2, Chap. 5].

Suppose there exists (t, z) [0, 1 x 0 U with H (t, z) 0 such that z x + icr for
one j {1,..., n}. Then (hF(z)) c and therefore

(3.4) ((1- + tajj zr + ajkYk =0.
k=l
kj

Since Yk [--Tr, 7r] and since A satisfies (0.2), it follows that Yk 7r in (3.4) for each
k with ak O. Since A is irreducible, (3.4) must hold for each j {1,..., n} with
Yk 7r. But this contradicts the second property ofA in (0.2). Using the same arguments
we show that there could be no solution ofHx (t, z) 0 with z x icr forj { 1,. ., n}.

Suppose there is a sequence (t, z(t)) with Hx(t, z(t)) =0 and Im (z(t)) [-Tr, zr]
such that Ilz(t)ll(R):=maxlz(t)l becomes unbounded. Then there is a j0c{1,’’’ ,n}

0 exp (1)-1
)A A

FIG. 7
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such that IXjo(t)l--> o. Suppose Xjo(t)--> . Then we have

A II((1-t)I+tA)z(t)ll<ll(1-t)I+tAll(x+r)/=
IlF(z(t))ll exp (xo(t))

This is a contradiction, since A is fixed.
Suppose Xgo(t)-->-. (1-t)I+tA satisfies (0.2), thus the inverse exists and is

equibounded with respect to t, i.e., I1((1 t)i + tA)- ll(R) < c for all [0, 1]. Therefore

IIz(t)llo(3.5) X-> -->,
cllF(z(t))ll

since [IF(z(t))ll is bounded. Formula (3.5) contradicts the choice of A. l-1

COROLLARY 3.4. Suppose A <--_ A *. The number m ofreal solutions (counted according
to their multiplicities) z R of (3.1)a is even.

Proof. Choose U c C as above and an open subset Wc U as in (2.8) which only
contains the real solutions of Ha (1, z)= 0. Then we deduce

2 m +deg (Ha(l, .), U\ W, 0)

as in (2.9) and m must be even by Proposition 2.3. [3

If we change A in (3.1)a, then we know from Corollary 3.4 that the real solutions
appear and disappear pairwise, as is shown in Figs. 1-3.

Remark 3.5. Using Remark 3.2 and the same arguments as in the proof ofTheorem
3.3, we conclude that there are exactly (2k)" solutions of (3.1)a in the domain
{zC"llm (z) [-kTr, kTr] n} for each odd number k.

If (3.1)a is the discretization of the differential equation (0.4)a, one asks for the
number of symmetric solutions of (3.1)a, since all solutions of (0.4)a are symmetric
with respect to 1/2 (cf. [10]). Suppose that the meshpoints are chosen equidistant. Then
(3.1)a reduces to an equation in Rn/2(cn/2), if n is even and to an equation in
("+l)/(C(n+)/2), if n is odd. Using the same arguments as above, we conclude that
(3.1)a has exactly 2 n/2 symmetric solutions (counted according to their multiplicities)
in the former case and 2(n+l)/2 in the latter. More generally, let L be an (n, n) permutation
matrix which commutes with A, i.e., AoL= L A. Denote by Sc the subspace
which satisfies Lls- I, by its complexification, and by m := dim (S).

THEOREM 3.6. Let h >0 be fixed. Then there are exactly 2 solutions of (3.1)x
(counted according to their multiplicities) in with Im (z) (-Tr, 7r). Thus there are at
most 2 (real) solutions of (3.1)a in S for each h < h*. At h A* there is exactly one
solution in S.

Proof By definition of F(. ), L commutes with F(. and therefore with Ha (t,’)
for each h > 0 and [0, 1]. Thus Ha(t, S)c S. There exist 2 zeros of Ha(0,’) in
S f’) U with U as above. Since there are no solutions of Ha (t, z)= 0 on O U for each

[0, 1], the first assertion follows from Proposition 2.2 as in the proof of Theorem
3.3. The last assertion follows again from the results in [2, Chap. 5]. ]

With an appropriate modification, Corollary 3.4 is also valid in the above case.
All results ofthis section remain valid, ifwe consider F(z) (c exp (Z1) C exp (zn))
with positive constants c.

4. The case f(z)=sinz. We now study (0.1)a with F(z)= (sin Zl,’"" ,sin z2) in
C ". Analogously to 3 we use the homotopy (0.5)a and Proposition 2.2. To this end
we have to examine the scalar equation

(4.1)a ga(z):=z-hsinz=O, zC, h+.
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Since sin z sin x cosh y + cos x sinh y, there are no solutions of (4.1)A with z
+kr+iy, yR,kN. For a fixed k we define U:=(zClx(-kmkr),lyl<r). Let
> 0 be arbitrary then we can choose r > 0 such that for each A [, c) all solutions

of (4.1)A with real part in [-kr, kr], are contained in Ur. If A is sufficiently large, all
solutions in Ur become real and nonsingular. Thus for those A we have

(4.2) deg (gA, U, 0) (2k- 1 if k is even,
2k+l ifkisodd.

By the homotopy invariance of the degree, (4.2) holds for each A > 0, if r is sufficiently
large.

Now we consider the homotopy (0.5)A for a fixed A > 0. Clearly HA (t, is complex
analytic for each (h, t). Define U := U c Cn. If r is sufficiently large, we obtain

(2k- 1)n if k is even,
(4.3) deg (HA (0,’), U, 0)

(2k + 1)" if k is odd,

by (4.2). Now we can prove the following theorem.
THEOREM 4.1. Let h > 0 be fixed. The nonlinear system

(4.4)A Az AF(z), z

with F(z)= (sin zl,"" ", sin z,) has exactly (2k+ 1)" solutions (counted according to
their multiplicities) with Re (z) I-kin kr]", if k is odd and exactly (2k- 1) sol-
utions, if k is even.

Proof. Using (4.3) the assertion follows from Proposition 2.2 if we show that for
each [0, 1], there are no solutions of HA (t, z)=0 on O U, if r is sufficiently large.
Using the definition of sin z and the property (0.2) of the matrix A we can deduce
this as in the proof of Theorem 3.3.

Remark 4.2. With slight reformulations the considerations in 3 concerning the
number of symmetric solutions and the appearance of real solutions remain valid in
case of the above nonlinearity.

Using an argument given in 12], we can show that all solutions of (4.4)A become
real if h increases. Let C" be a zero of F(. ), i.e., (k17r,. , kTr), k N. Consider
F(. as a mapping from R" into itself. Dividing (4.4)A by h and using the homotopy
invariance property, we compute the local degree

deg (A/h F, ) deg (F, ) + 1

if h is sufficiently large. Thus for those h there exists a solution z " of (4.4)A in a
small neighborhood of . This consideration together with Theorem 4.1 yields the
following corollary.

COROLLARY 4.3. For each k there exists a value h (k) such thatfor each h > h (k)
the system (4.4)A admits exactly (2k + 1)" different (real) solutions in [-kTr,. kr] if k is
odd and exactly (2k- 1)" solutions if k is even.

5. Polynomial and related nonlinearities. First we consider (0.1)A with F(z)=
(pl(Zl),""", pn(z,)), where p’C C,j{1,..., n} are polynomials of degree m > 1.
We use the ideas of the preceding sections to prove the following theorem.

THEOREM 5.1. Let h > 0 be fixed and let F(. be as above. Then there are exactly

I-I= m solutions (counted according to their multiplicities) of (0.1)A in C
Proof. We use the homotopy (0.5)A. Each component of HA (t,.) is a polynomial

P’C"C of the form P(z)=p(z)+cb(z), where q is a polynomial of degree one.
Therefore it is easy to see that there exists a ball B c C with center 0 and radius r
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such that for all [0, 1] the solutions of HA(t, z)=0 are contained in B". Since
deg (p, Br, 0) of a polynomial p" C C equals the degree of the polynomial we obtain

deg (HA (0,’), BT, 0)= I mj.
j=l

Now the assertion follows from Proposition 2.2.
Now we consider the third example of 0, i.e., (0.1)a with F(z)=

(f(zl),’’’ ,f(z,)), where

(p-z)
f(z)=l+(p_zl+(p_z)2 zeR, p>0.

If n 2, at most 32 solutions occur (cf. (Fig. 3). The following theorem shows that this
is true in general.

THEOREM 5.2. Let A > O, p > 0 be fixed and F(. be as above. Then there are
solutions (counted according to their multiplicities) of (0.1)a in C".

Proof. We consider the homotopy (0.5)a in C n. But HA (t, is not complex analytic
on C". Thus for eachj{1,..., n} we multiply the jth row of (0.1)a by (1 +(p-zj)+
(p- zj)2) and obtain a mapping/a (t,")" C" C" which is complex analytic for each
(A, t). The solution sets of HA(t, z)=0 and HA(t, z)=0 coincide. There exists a ball

Br c C with center 0 and radius r such that for each [0, 1 all solutions of HA (t, z) 0
are contained in B" c C". Otherwise there would exist a sequence (t, z(t))c C" of
solutions of/-)a (t, z)=0 with Izo(t)l- for ajo{1,’’’, n} and IZ o(t)l>-Iz (t)l for all
j{1,. ., n}. Consider the joth row of HA(t, z)=0,

1(( 1 t) + tajoJo)ZJo 1 + (p Zjo) + (p Zjo)2)

/t aogZ(l+(p-Zo)+(p-Zo))-A(p-Zo)l-O.
k=l
kJo

Since the matrix A satisfies (0.2), the expression on the left converges to infinity, a
contradiction.

Denote by /-)(. the jth row of/a (0,.). /-)" C C is a polynomial of degree
three. Thus by Proposition 2.2 and the Cartesian product formula we obtain

deg (/-)a 1,. ), B", 0) II deg (/rJx, Br, 0) 3 ".
j=l

This proves the assertion.
Observe that/-)(z) =0, zC is equivalent to hf(z) 0 with f(. as above. Thus

also in this example the number of solutions of (0.1)a is limited by the number of
solutions of the-uncoupled state. The considerations in 3 about the number of
symmetric solutions also holds in this case.
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A FAST, ACCURATE ALGORITHM FOR THE ISOMETRIC
MAPPING OF A DEVELOPABLE SURFACE*

JOHN C. CLEMENTS" AND L. J. LEON’

Abstract. This work is concerned with the derivation of a fast, accurate algorithm for the isometric
mapping of a developable surface onto the plane d/t: F->/. The algorithm is based on the relationship
between the ruling lines generating the developable surface g(s, t) and one additional geodesic g(s)
constructed within the surface as the solution of the geodesic curvature equation det (,’,")=0, where t
is the unit normal to the surface g at g and/ is the image of in the plane. Since g as well as the ruling
lines reduce to straight lines in the plane, the isometric mapping procedure is defined in terms of the ruling
line lengths, the arclength along g and the angles of intersection of F and g.

Key words, developable surface, isometric mapping

AMS(MOS) subject classifications. 65, 53

1. Introduction. A surface in R3 is called a ruled surface if it contains a
one-parameter family of straight lines called generators or ruling lines F, which can
be chosen as coordinate curves on the surface. A developable surface is a ruled surface
defined by nonintersecting generators which has the same tangent plane at all points
of each generator. We shall be concerned here with developable surfaces which can
be represented in the form (Fig. 1)

(1.1) S(s,t)=f(s)+tF(s), f’(s)xF(s)#O, s[a,b], t[0,1]

where f and F are twice continuously differentiable vector functions on [a, b].
The term "developable" refers to the property that by a succession of small

rotations about each of the generating lines the surface can be laid flat or developed
onto a plane without stretching or tearing. That is, it can be mapped isometrically onto
a subset of R2. Conversely, a plane surface material can be shaped into a developable
surface with only simple unidirectional bending along the generating lines.

Currently, an important mathematical problem in computer-aided design and
manufacture involves determining whether a given design surface is developable and
if so, the precise dimensions of a plane surface material which will produce that surface
([3], [5], [8]-[10]). The use of developable hull forms in shipbuilding offers significant
advantages in terms of lower cost and faster and simpler construction techniques
([3], [10]). Developable surfaces are also involved in many other industries such as
aircraft manufacture, where they are utilized in the fabrication of airfoil and fuselage
sections. The motivation for this work is based on an industry requirement ([3]) for
a procedure which would permit the very accurate pre-cutting of steel plate sections
greater than 50 feet in length to be used in the construction of developable hull steel
ships. Previous approaches to hull plate expansion have involved the use of circular
arcs generated from offset data ([2]) or the calculation of very fine surface envelope

* Received by the editors November 29, 1983; accepted for publication (in revised form) August 14, 1986.
f Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova

Scotia, Canada B3H 4H8.
t The research of this author was supported in part by the Natural Sciences and Engineering Research

Council of Canada under grant A5338.
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plane sections ([3]) to define the mapping. The first of these approaches makes no use
of the geodesic structure of developable surfaces and is a rough approximation at best.
The second is computationally complex with the potential for serious error propagation
problems. Neither has the capability for error control.

In what follows, a fast, accurate algorithm is derived for the isometric mapping
of developable surfaces onto the plane. This simple algorithm is based on the relation-
ship between the ruling lines f generating the developable surface S and one additional
geodesic (s) constructed within the surface. The algorithm defines a numerical
procedure M for mapping the ruling lines f of S onto the corresponding plane
coordinate lines R of the surface developed onto the plane M" f-+ R. Accuracy control
is achieved through the application of a variable stepsize differential equation solving
routine.

2. Preliminary definitions and results. Let cgk[a, b] denote the linear space

cgk[a, b] {f(s) If is k times continuously differentiable for all s a, b ]).

C will denote a curve in

C" f(s) fl(s) +fE(s)j /fa(s)k

s[a,b],

with componentsf(s), i= 1, 2, 3, and Euclidean norm If(8)l (f(s)+f(s)+f(s))1/2.
Here T denotes the usual vector transpose and and x the scalar and vector products
respectively.

A ruled surface can be thought of as the surface S generated by the continuous
motion of a straight line along a curve C (Fig. 1). It will be assumed here ([7]) that, has the representation (1.1), where:

(i)
(ii)
(iii)
(iv)

f/(s) E c2[a, b], i= 1, 2, 3,
(s)=(rl(s), r2(s), r3(s)) T with r,(s) c2[a, hi, i= 1,2,3,
each point of corresponds to only one ordered pair (s, t),

[0, 1] is the directed distance along f(s) from f(s).

The ruled surface (1.1) is developable if and only if ([7])

(2.2) det (f’ ff’) 0 for all s e a, b]

where ’ d/ds. This is equivalent to the requirement that the tangent planes at every
point on a given ruling line must coincide or that the normals must be parallel (Fig. 1).

Let g(s)=(gl(s),g2(s),g3(s)) r be a curve in R with gi(s) c2[a, b], i= 1,2,3.
The curvature K at (So) on C" (s), a _<-s -< b is given by

,<(So) Ig(so)l I/’(so)l I’(so)lllg’(so)l

where ’(So) g’(so)llg’(so)l. Thus the curvature vector/ has the same or opposite
direction as the principal unit normal N(So) ’(So)/l’(So)l to c at g(So) when
I’(So)] > 0. Here d/do- denotes differentiation with respect to the arclength para-
meter tr. The geodesic curvature K of a curve C" g(s) in a surface S is given by

So) det (’)
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(Uo, Vo)

tangent plane

ISOMETRIC

(Ul, Vl)
(Ui, Vi)

\__

(Xo, Yo) (xl, yl)

ruling line

/

f(b)

MAPPING ,.

FIG. 1. a///: f/.

where a is the unit normal to the surface S at g(So). Two important properties of
geodesics f in a surface are ([8])"

(i) on S is a geodesic if and only if

(2.3) det (,’,"a)= g,’o (g’x a)=0;

(ii) If S is the developable surface given by (1.1), a geodesic in S joining
any two points of S not on the same generator can be represented in
the form

(2.4) g(s)=f(s)+ t*(s)f(s), t*(s) c2[a, b].

Equation (2.3) is equivalent to the requirement that the plane ofcurvature of (provided
N 0) is orthogonal to the tangent plane to $ (i.e. coincides with N) at every point
of in S. Equations (2.3) and (2.4) also ensure that o (’x i) 0 everywhere on
in S.
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3. The mapping ,/: f- R. Equation (2.3) gives

g’(s)= f’(s)+ t*’(s)f(s)+ t*(s)f’(s),

g"(s)= f"(s)+ t*"(s)f(s)+2t*’(s)f’(s)+ t*(s)f"(s)

for s [a, b]. Since g(s) must have geodesic curvature zero, it follows from (2.3) that
t*(s) must satisfy the second order nonlinear ordinary differential equation

(3.1)
t*"(s) =-If" (’x fi)+ t*F’o (’x h)+ 2t*’f’ (’x )]/f (g’x ri)

=F(t*(s),t*’(s))

at each s in [a, b], where a(s) f(s) x T(s) is the normal to the developable surface
at g(s) and (s)=f’(s)/lf’(s)l. The equivalent first order system is given by

u(s)=u(s),
(3.2)

u(s) F(Ul(S), u2(s)),
a --<_ s _--< b,

for U and u2 on [a, b], where ul(s)= t*(s) and u2(s)= t*’(s). The numerical solution
of system (3.2) requires some starting values at s a and involves the computation of
f, f’, f", f, f’ and f". For simplicity, the starting values employed here will be
u(O) t*(a) .5 and u2(a)= t*’(a)=0. Since the denominator of OF/Ou and
is [f o(’x a)]2, these terms are,bounded away from zero except near an edge of
regression and F satisfies a Lipschitz condition [4]. If f (’x a) becomes small, it is
only necessary to restart the solution of (3.2) with a new set of initial conditions. Thus,
t*(s) and t*’(s) can be solved numerically to within a given specified accuracy
using a standard variable stepsize differential equation solving routine.

Let PN {a So < s < s_ <. < sN b} be any partition of the parameter interval
[a, b] and let/(s) be defined by/(s) (s, 1)=f(s)+f(s), s[a,b]. The isometric
mapping of the surface S(s, t) in (1.1), or more precisely the isometric mapping of the
geodesics in , is accomplished as follows (Fig. 1). g(a)=f(a)+()f(a) is mapped to
the origin of the xy-plane, and computing

(a)=(a)-f(a),

(3.3)
to o f(a )l/ 2,

’(a) f’(a)+ t*’(a)f(a)+ t*(a)f’(a),

0o--cos- ((g,’(a) (a))/(}g’(a)llf(a)l))

gives

(Xo, Yo) (-ao cos 0o, -ao sin 0o), (Uo, Vo) (/30 cos 0o,/30 sin 0o),

and Ro (Uo-Xo, yo-Yo) is the isometric image of fo f(a). More important, since
(s) is a geodesic in the developable surface S, its image under the mapping must be
a straight line in the plane and, by our choice of 0o, it must be that subinterval of the
positive x-axis from zero to the point

, I’(s)l as.

That is, the coordinate in the xy-plane of the intercept (si) of the ruling line f(si)
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and the geodesic (s) is always given by (Ii, 0), where

I, Ig’(s)] ds

(3.4)
x/(f+t*r+t*’r)2+(f+t*r+t*’r2)2+(f+t*r;+t*’r3)2 ds

for every i- 1,..., N. To determine the image of f(sl), we compute I and

1 "--Ig(S1)--Y(S1)I-’-" t*(sl)lF(s)l,

(3.5) /3- Ig(sa)-

0-cos-’ ((’(s) (Sl))/(lg’(s)ll(s)l))

where for simplicity it is assumed that always stays within the surface S (that is,
that 0 -< t*(s)=< 1 for all s in [a, hi). Then

(Xl, Yl)= (11- a COS 01,--O1 sin 01)

(3.6) (Ul, t)= (I1 + fll COS 01, 1 sin 01)

R (u xl, Vl y)

and that portion of g bounded by f(a) and f(s) has been mapped isometrically onto
the portion bounded by Ro and R in the plane. Replacing the subscript 1 by 2 in (3.5)
and (3.6) and repeating the operation successively for 2,..-, N completes the
isometric mapping of the surface.

The important calculation in this mapping procedure is the numerical evaluation
of I in (3.4). Consequently, it will be assumed here that a standard quadrature rule
is to be used which is to satisfy a user-specified maximum error tolerance e. This in
turn induces a refinement P {a So ro < r <" < ’M s <. < ’MN SN b}
of Pv and imposes a maximum error tolerance e,. on the evaluation of t* and t*’ at
each point of P.

4. The algorithm. The following algorithm assumes that the geodesic g(s) does
not encounter an edge of regression of the developable surface and hence that the
system of differential equations (3.2) is solvable everywhere on [a, hi. One method for
ensuring this is to restart the mapping procedure with new initial values at that point
on (s) where it crosses one of the boundary curves f and h" that is, whenever
t*() > 1 or t*(z) < 0 for some j.

ALGORITHM. (" f--> R). Given a developable surface S satisfying (1.1) and (2.1)"
(i) specify the error tolerance e1 and a partition P {a So < s <. < s b}

of [a, b],
(ii) choose a quadrature method for evaluating I in (3.4) and a refinement

P {a Zo < Zl <" < z, b} of Pv so that I is computed accurately to

el for each 1,..., N, provided t* and t*’ are computed accurately to
within et*,

(iii) solve the system of differential equations (3.2) for t* and t*’ accurate to et.
on P,

(iv) compute ao =/30 and 0o in (3.3) to obtain

(Xo, Yo) (-ao cos 0o, -ao sin 0),

(Uo, Vo) (/30 cos 0o,/30 sin 0o);
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and
(v) for each i= 1,..., N compute Ii, ci, fl and 0 as in (3.5) and (3.6) to obtain

the coordinates of the ruling-line endpoints of S mapped isometrically,

(xi, Yi) (Ii ai cos Oi, -ai sin Oi),

(u, v) (I +/3i cos 0,/3 sin 0),

onto the plane.

5. Discussion. The algorithm developed here has been applied successfully in the
design and construction of developable hull steel ships and several improvements have
already been proposed. Perhaps the most interesting suggestion has been to compute
two geodesics l(S) and 2(s) simultaneously. This would simplify the remaining
calculations and provide an error check on the calculation of 0, i-1,..., N, which
could be sensitive to error propagation. The restriction of t* to [0, 1] is imposed here
for simplicity only. What is required in practice is a check on the stepsize calculation
in the differential equation solver for (3.2) or on the magnitude of I (’x i)l at each
step. A detailed error analysis for the coupled integral-differential equations (3.4) and
(3.2) is currently in progress.
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ON THE DYNAMIC SHEAR FLOW PROBLEM FOR
VISCOELASTIC LIQUIDS*

HANS ENGLERf

Abstract. Initial-boundary value problems for a third order nonlinear integro-differential equation
describing dynamic simple shear flow for viscoelastic liquids are studied on bounded one-dimensional spatial
domains. Local and global existence results for arbitrary forces and initial data are given under suitable
assumptions on the constitutive relations. Conditions on the forces and on the constitutive equations are
formulated that imply that solutions of the equations tend to a rest state, and the convergence rates are
estimated in terms of the force decay and of dissipation rates that can be derived from the constitutive
equations.

Key words, parabolic integro-differential equations, non-Newtonian liquids, simple shear flow, energy
estimates, asymptotic behavior
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Introduction. The purpose of this note is a study of unsteady simple shear flow
for a class of non-Newtonian (viscoelastic) liquids. Using a general class of constitutive
equations, the equations of motion reduce to a single third order partial integro-
differential equation for the displacement u"

(0.1) utt(x, t)-rl" Uxxt(X, t)= (g(s, ux(x, t)-Ux(X, t-s))xds+f(x, t)).

Here, 0=< x-< 1, > 0, r/> 0, and g is function characterizing certain properties of the
liquid. Details of the derivation of this equation are given in 5.

To solve (0.1), one has to prescribe the initial history of the flow (i.e. u for t-< 0)
and the initial velocity (i.e. ut(x, 0)). At the boundary, the displacement is prescribed
(u(j, t) =f(t)), or traction forces act on the liquid (r/. ux,(.h t)+
o g(s, Ux(j, t) ux(j, s)) as hi(t)) for j 0, 1.

The plan and contents of this paper are as follows" in 1, we give conditions
under which (0.1), together with displacement or traction type boundary conditions,
has local (in time) unique solutions in various regularity classes. We show that certain
a priori estimates on the solution will guarantee that it can be continued for all times
and comment on the relations between regularity properties of the solution and of the
data.

In 2, conditions on the constitutive function g are given under which the boundary
displacement problem has a global classical solution for any choice of smooth data.
If, e.g., g(s, u)=a(s), go(U), then global existence will follow if a(.) is integrable
over R/ and nonincreasing, and if go is nondecreasing (up to an affine function in u).
These conditions reflect a "fading memory" assumption and imply that a certain natural
functional for the potential energy has suitable positivity properties and satisfies a
dissipation inequality. We then use a transformation introduced in-[1] to apply
pointwise comparison arguments for scalar integro-differential equations and deduce
a priori estimates that imply global existence of solutions. In 3, the same argument
is carried out for the boundary traction problem. In this case, global existence can be
shown under slightly weaker conditions.

* Received by the editors August 19, 1985" accepted for publication (in revised form) May 13, 1986.
t Department of Mathematics, Georgetown University, Washington, D.C. 20057.
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In 4, we use a "weighted" energy estimate, similar to an argument used in [8],
to show that first time derivatives of the solution decay at essentially the same rate as
the forces, provided this rate does not exceed the natural decay rate for Newtonian
liquids with the same dynamic viscosity r/in shear flow or the decay rate of the kernel
a(’).

In the last section, we show in some more detail how an equation of type (0.1)
can be derive from theological models and interpret the results. For the theological
backroun of" this paper, we refer to the monographs [3] an [15]. A eneral local
existence result for unsteady flows of weakly non-Newtonian liquids is iven in [1].
Global solutions for extensional aows an small forces are studied in [20] in the case
of a special constitutive equation. There is also a relation between the equations stuie
here and those esoribin longitudinal motions of one-imensional viscoelastic bars
(el. [1], [10], [21]). Abstract parabolic intero-diferential equations related to those
iscusse below have been studied by various authors; see, e.., 12] and its bibliogra-
phy. Finally, model equations for other one-imensional motions of visco-elastic
materials have been studie in [], [13], [16].

Throughout this paper, we use the usual notation for Sobolev an H61der spaces.
Single bars I" enote absolute values or matrix norms; oube bars II" indicate function
norms. In the proofs, we shall sometimes use the same letter c for various constants
that may chane from line to line.

1. Local existence of solutions. In this section, we want to ive conditions under
which the intero-ifferential equation

(1.1) utt(x, t)-uxxt(x, t)= g(s, ux(x, t)-Ux(X, t-S))xds+f(x, t)

with initial conditions

(1.2) u,(x, O) Ul(X), u(x, t) Uo(X, t) for <= 0
and boundary conditions

(1.3) u(j, t)=f(t), or

(1.4) Ux,(j, t)+ g(s, ux(j, t)-u(j, t-s)) ds= hi(t)

has a unique local (in time) smooth solution. Here, x I-[0, 1] and j(0, 1}. We
write (1.1) resp. (1.4) in the abstract forms

(1.5) utt(x, t)- tlxxt(X, t)= F(u)(x, t), respectively,

(1.6) Uxt(j, t)=G2(u)(x, t),

assuming that F and G are defined for smooth functions u:I x (-co, T]-> for any
T < co and are of "Volterra-type," that is, for any 0 =< t-< T

(1.7) u=v on lx(-oo, t]::>F(u)=F(v) on lx[O,t], Gj(u)=Gj(v) on[O,t].

Also, since the unknown function u is given on I x (-00, 0] and since it should be
continuous across 0, one can incorporate Uo into the definition of F and Gj and
assume that these operators are actually defined on a suitable subspace of C(I x
[0, T], R). The modified initial conditions for the problems (1.3), (1.5) resp. (1.5), (1.6)
will then be

(1.8) ut(x, O) Ul(X), u(x, O) Uo(X) for x I.
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One has corresponding linear boundary value problems which have the form (after
integrating once with respect to t)

(1.9)

(1.10)

wt-wxx=o on Ix[0, T],

w(j, t) qj(t) (j O, 1), w(x, O) Wo(X),

w,-W,x=O on Ix[0, T],

w,(j, t) b(t) (j O, 1), w(x, O) Wo(X).

As is well known, these problems have unique solutions w =Ll(O, qg, Wo) (for (1.9))
and w=L)_(o, rb, Wo) (for (1.10)) in various classes of ditterentiable or integrable
functions; L1 and L). are in fact Volterra integral operators with weakly singular kernels
(see [9], [14]). Therefore, (1.3), (1.5), (1.8), resp. (1.5), (1.6), (1.8), can be rewritten
as integral equations. We shall first look for solutions of these integral equations and
then show that in the situation studied here these "mild" solutions are in fact smooth
functions, satisfying the original integro-diiterential equations (1.1)-(1.4). We abbrevi-
ate Ci’J(T) Ci([0, T], CJ(/, R)) and C(T) C([0, T], R) for various integer and
noninteger values of and j and write u C"JT) etc. for the corresponding norms.

The main assumptions on F and Gj are

(1.11) F: C’)( T) --> C’(T) is uniformly Lipschitz-continuous on any
bounded set in C’2(T),

(1.12) (j C’2(T) - C(T) is uniformly Lipschitz-continuous on any
bounded set in C’).(T).

THEOREM 1.1. Let F, Go, G1 be Volterra-type operators with the Lipschitz properties
(1.11), (1.12), and let Uo U I -, fo f [0, T] -, be given functions.

(a) If uo6 C2(I), u C(I),f Ca(T) for some 0<a <1, and

(1.13) uo(j)=f(0), ul(j)=f(O) forj=O, 1,

then there exists a number to > 0 and a unique solution u of

(1.14) ut(x, t)-Uxx(X, t)= F(u)(x,s) dS+Ul(X)-U’(x)

on I x [0, to] that attains the initial and boundary values (1.3), (1.8) and for which ut
and U)cx are still continuous on I x [0, to].

(b) Ifuo6 C).(I), Ul C(I), then there exists a unique solution u of (1.14) on some
1 [0, to], satisfying (1.8) and the boundary conditions

(1.15) u,(j, t)= U’o(j)+ Gj(u)(s) ds, j=O, 1

and for which ut and uo, are continuous on I x [0, to].
The proof will be given by means of a standard fixed point argument. We first

prepare a few well-known results concerning the solvability of the corresponding linear
problems.

LEMMA 1.2. Let L1 resp. L). be the solution operators of the linear initial boundary
value problems 1.9) resp. (1.10).

(a) Ifo C’’(T), 0<a <1, q(j, 0)=0, then
and [L(,, 0, 0)],,,, Ct’( T) for any < a.

(b) Ifq, Ca(T), qg(0)= q,(0)= 0, thenfor-w= LI(0, qg, 0), w, andw,,,,are H61der-
continuous in I x [0, T] (with exponents a with respect to t, min (2a, 1) with respect to x).
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(c) If wo C2(I), wo(j)-w(j) =0, then for w =LI(0, O, Wo), wt and wxx are con-
tinuous on I x [0, T] (and analytic for > 0).

(d) Iffor some a>O, goC’(T), go(j, 0)=0, then [L(,0,0)]x ’(r)for
any < a, and liE=(

(e) Iffor some fl>1/2,rl C3(T) and r/(0) 0, then [L2(0, r/, 0)]xx 6 CV’(T) for
3/= 2fl 1 and ILL2(0, , -<

(f) Ifwo C2(I), W’o(j) =0, then for w L2(0, O, Wo), wt and w are continuous on
I x [0, T] (and analytic for > 0).

Here, the Ci depend only on T, a, and ft.
These regularity results are neither optimal nor exhaustive, but they suffice for

our purposes. Parts (a) and (d) follow from the representation formulae for
inhomogeneous heat equations,

Lj(go, 0, 0)(X, t)= H(X, y, t-s)go(y, s) dy ds with

Hi(x, y, t)=(4rt)-1/2 (exp (-(x-y+2k)E/4t)-exp (-(x+ y+2k)2/4t))

and HE(X, y, t)=l Hly(, y, t)d’+ 1 (see [9]), and from the facts that the solution
semigroups v -> S,(t)(v), Si(t)(v)(x) 1o Hi(x, y, t)v(y) dy, map C(I) into C2(I) with
norms that can be estimated by C. -1, as can be checked directly (see [1]).

The estimates in (a) and (d) then follow in a standard fashion, first for smooth
p and then by approximation in the general case (this is where the compatibility
condition in (a) is needed). Parts (b) and (e) are special cases of the general regularity
theory for parabolic equations ([9], [14]). Part (c) and (f) again follow from the facts
that Li(0, 0, Wo)(X, t)= Si(t)(Wo)(X) and that the Si are suitable analytic semigroups.

Proof of Theorem 1.1. We abbreviate JF(u)(x, t) to F(u)(x, s) ds. To prove part
(a), we look for a solution of (1.14) with the corresponding boundary conditions, i.e.,
for a solution u of

u L,(u- u +JF(u),f, Uo)
(1.16)

Ll(Ul- u,f, Uo)+ Ll(JF(u), 0, 0)= Vl + L(JF(u), 0, 0).

Since Vl(X, t)=Uo(X)+t. UE(X)+Ll(Ul-U:,O,O)+Ll(O, gj, O), with UE(X)=
(1 X)Ul(0) + XUl(1), gj(t) =f(t) uo(j) t. ul(j), Lemma 1.2 shows that Vl c’E(T),
and we rewrite (1.16) with v-u-vl as

(1.17) v= LI(JF(v + Vl), 0, 0).

Fix 3’ (0, 1), let M Vl[I c’2<T) and let K be the Lipschitz constant for F on the set

no- {w C,=(T)lllwllco,<.)<-_2M}. Let to>0 be so small that

(1.18) C t-v(lltl(F(Vl), 0, o)II co,oT)+ 2M) _-< M,

and

(1.19) C t-VK <- 1/2,

where C1 C1(% T) is as in Lemma 1.2(a). Then for Wl, w2 Bo
IlL,(JF(wl), 0, 0)- LI(JF(w2), 0, < 61 IlJ(F(w,)-F(w2))l]c,,O<>

(1.20) <- C, t-llF(Wl)-F(w)llco,O<o)
--< G" K. IIw -
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Using (1.18) and (1.19), it follows that the operator v+ LI(JF(Vl + v), 0, 0) is a contrac-
tion from the complete metric space B={vC’:(to)[llvllco,<-2M} into itself.
Therefore it has a unique fixed point v. By Lemma 1.2(a), v, and v= are also continuous;
therefore u V+Vl is the desired solution of (1.14) with the corresponding boundary
conditions. To prove part (b), we look for a solution of

u L2(ul- ug +JF(u), u(j)+JGj(u), Uo)

L_(ul- u’, u[(j), Uo)+ L2(JF(u), 0, 0)+ L2(0, JGj(u), 0)

and apply a similar argument, noting that L2(u-u’, u(j), Uo) will again have con-
tinuous first time and second space derivatives in I x [0, T] by Lemma 1.2(d)-(f). El

It follows from the proofs that the solutions of both problems will exist on all
I x[0, T] as soon as an a priori estimate in C’2(T) is known, since the existence
interval [0, to] can then be fixed a priori and the solutions can successively be continued
on [to, 2to], [2to, 3to], etc.

As a consequence, we obtain an existence-uniqueness theorem for the original
integro-differential equations. Here, the general assumptions will be

(1.21) g" (0, oo)x+, g, and gu are jointly continuous on (0, o)

(1.22) g.(’, O) e L’(O, oo; ); if I 1, Iwl R, then,

Ig.(t, v)-g.(t, w)laR(t)" Iv-wl with some aR(’)L’(O, oo; ),

(1.23) Uo and Uo,xx are bounded and continuous on I x (-oo, 0].

THEOREM 1.3. (a) Ifu C(I),f Ca(T) for some 0< a < 1,f C’(T), and if
(1.13) holds, then there are a to>0 and a unique classical solution u on I x[0, to] of

(1.24)
u,(x, t)- Ux,,(x, t) Ul(X)- u’(x)

+ g(s-r, u,,(x,s)-u,,(x,s-r))xdr+f(x,s) ds

that satisfies the initial and boundary conditions (1.2), (1.3).
(b) If u C(I), h cO(T), then there are to> 0 and a unique classical solution u

of (1.24) on I x [0, to] that satisfies the initial condition (1.3) and the boundary condition

(1.25) Ux(j, t)+ g(s-r, ux(j,s)-u,,(j,s-r)) drds=u’o(j)+ h(s) ds.

Proof For ve C’2(T), define F(v)(x, t)=jo g(s-r, Vx(X, t)-v,(x, t-r)),,dr
+f(x, t), and v(x, t) Uo(X, t) for < 0; v(x, t) v(x, t) v(x, O) + Uo(X, 0) for => 0.
One easily checks that all conditions in Theorem 1.1(a) are met, and part (a) follows.
Part (b) is proved similarly by defining suitable operators G. l-]

One can use the quasilinear structure of (1.1) to deduce a C’2(T)-bound for the
solution from a c’l(T)-bound.

COROLLARY 1.4. If in (1.22) aR(’) can be chosen independently from R, then the
solution found in Theorem 1.3 can be continued on all I x [0, T]. In particular, if the
derivative ofa solution u can be a priori bounded uniformly on any existence set I x [0, to],
then u exists as a solution on I x [0, T].

Proof Carrying out the differentiation, one sees that (1.24) can be written as

(1.26) u,(x, t)- u,,(x, t)= b(x, t, s) U,x(X, s) as +f2(x, t)
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with a suitable f2 CI’(T*) and certain continuous coefficients b, both depending on
the data Uo and on the solution, where I x[0, T*] is any existence set. Under the
assumptions given above, both b and f2 will be uniformly bounded, with bounds
depending only on the data. Abbreviating the integro-ditterential operator on the
right-hand side of (1.24) by K, we then have for all 1 <p < and all > 0 with
u u

(1.27) < C(p). Iluxxll ,   

By standard regularity results for parabolic equations in LP-spaces 14], it follows that
for the solution of (1.2), (1.3), (1.24)

c 1+

Gronwall’s lemma implies bounds Ilullp<.)+llu, ll:<.)<-C(p) on Ix[0, T*] and
by standard imbedding theorems [14], ux is a priori bounded in C’(T*)f’)C’2(T*)
for any 0</3 <1/2. This implies that in (1.26) the derivatives b, are also uniformly
H/51der-continuous in x and and that f2 is H61der-continuous in t, with exponents
and bounds depending only on the data. Therefore, we have estimates

(1.28) IIK(u)ll

(1.29) c. Iluxxllco.o   ds.

Hence by interpolation

(1.30) Iluxxllco.o , +C( )" [l x llco.o   ds

for any e>0, 0<a<l, with some C(e)>0. Thus by Lemma 1.2(a)-(c)

(1.31) Ilux, llco.o ,)ds+l

with C* a universal constant. Choosing C*. e < and using Gronwall’s lemma, an a
priori estimate for u in C’2(T*) follows, which implies that the solution exists on
Ix[0, T].

A similar argument applies in case (b). In addition to (1.27), we use here that the
boundary operators JG satisfy sublinear estimates as mappings from
LP(O, T; wE"p(I))O WI’p([0, T],LP(I))into C(T), if p>3 (cf. [14]), using first L-theory and then the regularity estimates of Lemma 1.2(d)-(f).

Finally, if ux is a priori uniformly bounded on any existence inteal by, say,
R > 0, then g(t, v) can be made constant for lv > R + 1 without changing the equation
satisfied by u. Therefore, we can choose a(’):aR+l(’) in (1.22) and the previous
arguments imply a c’E-bound and the continuability for the solution.

We conclude this section with some remarks concerning the question under which
additional assumptions the solutions found in Theorem 1.3 will actually satisfy (1.1)
and (1.4).

First, since the right-hand side of (1.1) is always bounded for the solutions found
above, (1.1) will hold a.e. (in fact, in any Lo((0, 1) x (e, to)), p<, e>0). Also, if in
case (a) the are in C2(T), then utt and ut will still be in any LP((O, 1)x(e, to)),
e > 0. For such a result to be true in case (b), one will need that hj CI(T), and one
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can either assume more regularity for the data Uo (e.g., Uox(j," ) C1/2((-00, 0]) will
suffice), or more t-regularity for g, e.g.,

(1.32) Ig(s, v)l as <- CR" h v,

(1.33) Ig(t+h, v)-g(t, v)l<--_bR(t) h v iflvl<-R,
for any small h, with some 3’ -> 1/2.

To obtain classical solutions of (1.1) on all I x [0, to] in case (a), it will be sufficient
to assume that also u’ C(I), f C’(T), f] Ca(T), and that either Uo,x
C’((-oo, 0], C(I)) or that (1.33) and (1.32) hold also for gu instead of g with some
3’ > 0. Also, the natural compatibility condition f](0) u’(j) o g(s, Uo,(j, O)
Uo,c(j,-S))x ds +f(j, 0) will be needed for j =0, 1. Similarly, in case (b) we will have
a classical solution of (1.1), (1.4), if u’ C(I),f C’(T), hj CV(T) with 3’>1/2, and
if corresponding conditions hold that guarantee that the right-hand side of (1.1) is in
C’(T) and the right-hand side of (1.4) is in CV(T) with some 3,>1/2. We omit the
details, which are similar to the conditions in case (a). All arguments leading to these
conditions are straightforward applications of the regularity theory for parabolic
equations.

2. Global existence for the boundary displacement problem. In this section condi-
tions are given under which problem (1.1)-(1.3) has global solutions for arbitrary
forces f, initial histories Uo and boundary displacements f. We assume without loss of
generality that g(t, 0) 0 and define

(2.1) G(t, u)= g(t, v) dv for t>0,

We shall obtain pointwise a priori estimates on the displacement gradient u, based on
(i) a natural energy estimate, using the variational structure of the integral

operator in (1.1);
(ii) a comparison argument for scalar integro-differential equations, using a

technique from 1 ].
We always assume in this and the following sections that t. G,(t, u) is still

integrable for 0< =< 1; more precisely, it will be assumed that for all > 0, lul-< R,
IG,(t, u). min (1, t)l <= dR( t), with dR(’)LI(O, oo). Also, the L2-norm on the interval
I will be abbreviated by I1" 11, and we write (.,.) for the inner product on L2(I).

To carry out the first step, the key assumption on the integral operator is the
following.

(HI) There exist Co>_-0, C1 LI(0, oo;R/) such that for all t>0, u,
(2.2) G(t,u)>--C(t).(u2+l), Gt(t,u)<=Co.(G(t,u)+C(t).-(u2+l)),

(2.3) Ig(t,u)l<=Co.(G(t,u)+Cl(t).(u2+l)).

LEMMA 2.1. Let g satisfy (HI) and the assumptions from Theorem 1.3, let Uo, u
andf be as in Theorem 1.3 and let fl ,f2 C2(T). Then there exists a constant C*> 0,
depending only on the data, T, Co, and C, such thatfor any solution u of the integrated
equations (1.2), (1.3), (1.24) on I x [0, To] and for any 0 <= <= To

(2.4) lint(-, t)ll =+ G(s, Ux(X, t)- Ux(X, t- s)) dx ds + Ilux,(’, s)ll = ds <= c*.
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Proof. We can assume that f(t)= w(j, t) and wx is x-independent. Define

(2.5) E(t)-Ilu,(.,t)-w,(.,t)ll/2+ G(s, ux(x,t)-Ux(X,t-s))dxds,

(2.6) EI(t)=E(t)+ C(s){llUx(.,t)-ux(.,t-s)ll-+l}ds

for 0 <= =< To. Note that E(t) >- 0 by (2.2).
The remarks following Corollary 1.4 show that 1.1 will hold in any Lp(! x e, To)),

e > 0, p finite. Consequently, ut is still continuous in any I x (e, To], and by the
integrability assumption for t. Gt(t, u), E(.) is absolutely continuous on any (e, To].
Differentiating (2.5) then gives, for a.e.

d/dtE(t)=(u,(., t)-w,(., t), u,t(’, t)-wtt(’, t))

+ G(s, Ux(X, t)- ux(x, t-s)) dx ds

+ (g(s, u(., t)- u(., t-s)), Uxt(’, t)) as

(2.7) <-(u,(., t)- wt(., t), u,(., t))+ c. (El(t) + 1)

+ (g(s, u,(., t)-u(., t-s)), ut(., t)-wt(., t)) ds

u,(., t)-w,(., t), u,(., t)- g(s, ux(., t)-u(., t-S))xds

+C.(E,(t)+I),

using an integration by paas. Inseing (1.1) into the last estimate, integrating the
product (u,- w,, u,) by paas and estimating fuaher we obtain

d/dt E(t)-(Uxt(’, t)-Wxt(’, t), u,(’, t)>+ C" (E,(t)+ 1)
(2.8)

-llu,(’, t)]l=+C" (E,(t)+ 1).

Integrating (2.8) from e to and sending e to 0, we obtain

E(t)+ Ilu,(’, s)ll = as

(2.9) C. El(S) ds + 1 + c,(s){llux(,, t)- u(,, t- s)ll = + 1} ds

g. E,(s)ds+llu(x,t)ll=+l +2 C,(t-s). [lu(.,s)ll2ds

with K > 0. Now, for any and some constant Ca (depending also on Uo)

Io (Io’/o )H(.,)H: (.,)H:d+C (’,)H:dd+
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Pick 8 such that K. 8 =]; then (2.9) implies an estimate of the form

E(t)+- II,x,<’, s)ll ds

(2.o)
<_-- C" 1+ (1+ Cl(t-s))" El(S)+ Iluxt(’, )l] = d ds

This implies a bound for El(t), and (2.4) follows.
We now deduce a uniform a priori estimate for u, if additionally

(H2) g(t, u) go(t, u) + L(t)u, with L(. L(0, ; ) and go nondecreasing.

THEOREM 2.2. Assume that Uo, 1, andfare as i eorem 1.3, thatfo,fl E C2(T),
ad that g satisfies the assumptions of eorem 1.3 as well as (H1) and (H2). Let u be
a solution of (1.2), (1.3), (1.24) on some set I x [0, To]. en there exists a constant C*,
depending only on the data and on T, but not on To, such that

(2.11) lug(x, t)[ C* on I x [0, To],

and thus u can be extended as a solution on I x [0, T].
Proof We use a version of a technique introduced in [ 1 ]. For fixed (x, t), integrate

(1.1) (which holds a.e.) from y [0, 1] to x and then from 0 to 1 with respect to y.
Using the abbreviation

(. p(x, u,(, ,
we get the identity (valid for all (x, ) due to the regularity of u)

(u(x, t)-p(x, t)) + g(s, u(x, t)-u(x, t-s)) ds

(.3 g(s, u(y, t -.x(y, -s ys+(-f,(

f(, ay=: (x, t.

Now from Lemma 2.1 Ip(x, t) is bounded independently of x and t, and (2.3) and
(2.4) imply that also IN(x, t)l is uniformly bounded. Dropping the x-dependence and
using (H2), we obtain

’(+ go(-s,(l-(sl+p(l-(s)las+o. (
(.4

+ go(t+s, w(t)+p(t)-ko(s)) ds=k()+ L(-s)w(s) ds

with w(t)= u(x, t)-p(x, t), Lo= Io L(s) ds, and suitable functions ko, k that are a
priori bounded. Also, I(0)1 IIo,llc+ IIllc(i Mo. ssume now that for some
minimal t>0 and all 0Ns< t, Iw(t) (1 +Mo). e’, Iw(s) < (1 +Mo)" e, where M
is some arbitrary constant. IL e.g., w(t)>0, then consequently ’(t)
(1 + Mo)" M. e M. w(t), and for 0N s < t, (s) N I(s)l e’-(t). Then (2.14)
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implies

(l+Mo).M. eM’<--_lLol.(l+Mo).eMt+ ]L(s)le-MSds.(l+Mo).eMt

(2.15)
+lkl(t)l+ go(t-s,p(t)-p(s)) ds

+ go(t+s,p(t)-ko(s)) ds

--<_ C +(1 + Mo)" eMr" ILol+ IL(s)l e-Ms ds

with some fixed constant C. It is clear that (2.15) can never hold if M>
(C/[Lol+o IL(s)l" e-MSds). A similar contradiction can be derived if w(t)-
-(1 + Mo) eMt and M is sufficiently large. Therefore, Iw(t)] _-< (1 + Mo)" eMt for all t,
which gives the desired a priori bound for ux. Corollary 1.4 then implies that the
solution u exists on all I x [0, T].

In [1] the second order equation utt- u,t +cr(u), is treated, and a differential
equation (instead of an integro-differential equation) is derived for w, which allows
us to find a t-independent a priori bound. It is not clear how to do this in our situation.
However, under suitable assumptions (that are satisfied in the setting of 4), an a
priori bound for lu,(x, t)l can be deduced that grows linearly in t.

COROLLARY 2.3. Assume that in (2.4) C* does not depend on T, that f, f’o andf
are uniformly bounded, that in (n2) L=0, and that also ]lux(., t)l <-C*, independent
of t. Then there exists a constant K > O, dependent only on the data, such that for all
(x, t) I x [O, oo)

[Ux(X, t) <= K" (1 + t).

Proof. Using the same arguments as in the proof above, one deduces (2.13) and
observes that the assumptions imply that the right-hand side of (2.13) is bounded,
independent of x and t. Thus (2.14) follows with Lo-0= L(.) and with uniformly
bounded functions ko, kl and p. Denote again by Mo a common bound for Iw(0)l; for
arbitrary M > 0, we then assume that for some > 0, ]w(t)] (1 + Mo)" (1 + M. t) and
Iw(s)[<(l+Mo) (1 +M. s) for s<t. An inequality similar to (2.15) follows which
leads to a contradiction, if M is too big. This proves the corollary.

3. Global solutions for the boundary traction problem. In this section, conditions
are given under which the problem (1.1), (1.2), (1.4) has global solutions for arbitrary
forces f, hj and for arbitrary initial histories Uo. Again, we assume that g(t, 0)= 0 and
define G(t, u) as in (2.1). Instead of (H1), we shall use the weaker assumption

(HI’) There exist Co --> 0, C1 L(0, ; R+) such that for all > 0, u R,

(3.1) G(t, u)>--Cl(t) (u2+ 1),

(3.2) G,(t, u) <- Co" (G(t, u)+C(t) (u2+ 1)).

We also assume the same integrability properties for Gt t, u) and the same abbreviations
as in the previous section.

THEOREM 3.1. Let g satisfy the assumptions of Theorem 1.3, (HI’) and (H2). Let
Uo, ul, f and hj be as in Theorem 1.3, h CI(T), and assume that Uo,x(j,’)
C1/2((-c, 0], R) for j O, 1. Then there exists a solution u of the integrated equations
(1.24), (1.25), (1.3) on all I x[0, T].
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Proof. We use an energy estimate as in Lemma 2.1 and a comparison argument
as in the proof of Theorem 2.2. Define

(3.3) E(t)= Ilu,(’, t)[[2/2 + G(s, Ux(X, t)-Ux(X, t-s)) dxds,

(3.4) El(t)--E(t)+ cl(s)’(llux(’,t)-ux(’,t-s)[12+l)ds.

By the same arguments as in the proof of Lemma 2.1, E(.) is absolutely continuous
on any interval [e, To], and by differentiating we obtain (cf. (2.7))

d/dtE(t)<=(ut( ", t), Un(’, t))+Co" El(t)

(+ Uxt(’, t), g(s, Ux(’, t)-ux(’, t-s)) as

Note that the assumptions imply that utt and uxt exist in LP(I (e, To)). Integrating
the last integral on the right-hand side by parts with respect to x, inserting the equation
and integrating by parts again gives

d/dtE(t)<-_-[[ut( t)[[2+(ut( t),f(’, t))

+ut(1, t). hi(t) ut(0, t). ho(t) + Co" El(t).

Since the boundary power terms can be estimated by, e.g.,

[ut(1, t)" h,(t)l<=1/4l]Ux( ., t)]]:+ C" (1 + ][ut(’, t)ll),
we obtain an estimate

d/dtE(t)-llUx,(’, t)ll2/2+c (El(t)+ 1).

The rest of the argument is as in the proof of Lemma 2.1, and therefore

(3.5) Ilu,(., t)ll2-< C*(t),

where the locally bounded function C*(.) depends only on the data. Integrating now
(1.1) (which holds locally in the LP-sense) from y-0 to y-x and abbreviating
q(x, t)- o ut(y, t) dy, we obtain (for all (x, t))

(3.6)
(ux(x, t)-q(x, t)), + g(s, ux(x, t)-u,(x, t-s)) as

ho(t)- f(y, t) dy k(x, t).

Since (3.5) implies that q is uniformly bounded, we can use the same argument as in
the proof of Theorem 2.2 to infer that w Ux-q is a priori bounded, which implies
the theorem. [q

We note that the argument given here still applies in the case where one of the
boundary conditions is of traction type and the displacement is prescribed on the other
boundary. Obviously a local existence result and the same continuability properties
as in 1 will hold for such a problem. If, e.g., u(1, t) =fl(t) is prescribed (with traction
forces ho acting at x 0), then one defines the energy

E(t)= llut(., t)-f(t)[[2/2+ a(s, Ux(X, t)-u(x, t-s)) dxds
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and uses the same arguments as above to arrive at the estimate (3.5). The comparison
argument remains unchanged.

Also, lux(x, t)l can be shown to grow linearly in (uniformly in x) by using an
argument that is similar to the one in Corollary 2.3 under the weaker assumptions that
in (H2) L(.)-0, that ho and f are uniformly bounded, and that in (3.5) C*(.) does
not depend on (cf. the following section). Finally, by examining the proof of Theorem
3.1, one notices that both the estimates (3.5) and the bound on w depend only on the
supremum norms of the hj and of Uo and Uo,x. Therefore, we can approximate any
smooth hj and any Uo which is only continuous together with its second space derivatives
by H/Sider-continuous data and still obtain uniformly bounded solutions on all I x
[0, T] which will approximate the solution of the original problem (by uniqueness).
Consequently, we have the following corollary.

COROLLARY 3.2. The statement of Theorem 3.1 remains true if only h C(T) and
Uo and Uo,x are bounded and continuous on I x (-oo, 0].

4. Asymptotic behavior of solutiaas. In this section we show decay estimates for
the derivatives of the solutions of (1.1)-(1.4) which imply their convergence to a steady
state u. Instead of (1.1), the equation

(4.1) utt(x, t)-l" u,,,,t(x, t)= g(s, Ux(X, t)-u,,(x, t-S))xds+f(x, t)

will be studied with ,/> 0, and (1.4) will be replaced by

(4.2)

Of course, (4.1) and (4.2) are equivalent to (1.1) and (1.4) by rescaling; here we want
to display the dependence of the estimates on the viscosity" r.

The key hypothesis for g in addition to (HI), (HI’), (H2) for both the boundary
displacement and the boundary traction problems will be

(H3) O G( t, O) <- G( t, u forallueN, t>0;

there is a constant > 0 such that for all u e N, > 0

(4.3) Gt(t, u)+ B G(t, u) <-O.

THEOREM 4.1. Let g satisfy the general assumptions of 1 as well as (HI), (H2),
(H3). Let Uo, Ul andfbe as in Theorem 1.3(a) and assume thatfo andfl are t-independent.
Let b [0, oo) -+ [0, oo) be continuously differentiable, b(O) 1, and assume that 0 <= b’( t) <=

b (t) for some <- , < 2rlrr9. Then for all > 0 andfor any solution of (1.2), (1.3),

(4.4) Ilu,(’,t)ll" IIf(’,s)ll" bl/2(s) ds,

 b(s) Ilux,(’, s)ll z as--< 27rZ(2r/Tr2- )-1

(4.5)
2

{C(uo, ua)+(f Ilf(’, s)ll" bl/2(s) ds) },
where C(uo, Ul) Ilu,(.)ll=+ 2. $o $i Uo.=(x, o)- Uo, (x, dx d,.

(4.1)
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COROLLARY 4.2. Under the assumptions of Theorem 4.1, and if

(4.6) IIf(’, s)ll bl/2(s) as <

(4.7) b-(s) ds <

then there exists ue W’(I,N) with uoo(j) =f (j=O, 1) such that

(4.8) Ilux(., t) u(.)ll = o b-l(s) ds as

Proof of the corollary. For 0 < < s we have

IlUx(’, t)--ux(’, s)ll2 ux,(’, ,) dr

(4.9)

/Ilux,(’,, r)ll=’b(r)dr, ft b-l(,)d, C" It b-l(’)dr.

Then (4.5) and (4.7) imply that u(., t) has a limit in WI’2(L R), as m. Sending
sm in (4.9), the convergence estimate (4.8) follows.

In the case g =0 (where (4.1) reduces to the heat equation), the existence of u
already follows if (4.6) holds with b(t)= 1; thus the convergence result ceaainly is not
optimal. Also, we do not quite recover the "optimal" convergence rate
exp (-2t) for g 0 and f= 0.

For the case of the boundary traction problem (4.1), (4.2), (1.2) we introduce
some additional notation: Let u be a solution. Define the mean displacement U(t)=

u(x, t) dx and u*(x, t) u(x, t)- U(t). Then U can be computed from the equation;
we have

f, f, fo(4.10) U(t)= Uo(X) dx+t" u(x) dx+ (t-s)(F(s)+h(s)-ho(s)) ds,

where F(t)= f(x, t) dx is the mean body force. Also, define (x, t)=f(x, t)-F(t).
Then u* will again satisfy (4.1) and (4.2), with f replaced by , and additionally,

u*(x, t) dx=O for all t.
THEOREM 4.3. Let g satisfy the assumptions of 1, as well as (HI’), (H2) and

(H3). Let Uo, u, fand h be as in eorem 1.3(b), and let b be as in eorem 4.1. en
there is a constant C > 0 such that for all > 0 and any solution u of (1.2), (4.1), (4.2)

b(t). Ilu(’, t)ll = + b(s). Ilux,(’, s)ll = ds

+ b(s)" (h(s)+ h2(s)) ds+ C(uo, Ul)

where C(Uo, Ul) is as in Theorem 4.1.
COROLLARY 4.4. If

(4.12) liT(x, ")11" bl/2(" tl(0, oo; ) and h;(. ). bl/2(. L CI L2(O, ; ),
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IIv(’, t)- v(’, s)llp
l<-jk

and if (4.7) holds, then there is a u Wl’2(/, R), i u(x) dx =0, so that

(4.13) Ilu(., t)- g(t)-uooll,,= o b-l(s) ds as t-.

The proof is similar to the one of Corollary 4.2.
In both convergence results, we are not able to deduce equations for the rest state

u. This reflects the fact that any t-independent function satisfies the equation (4.1),
iff 0. The only exception seems to be the case of a linear g, in which (4.1) is equivalent
to a convolution equation (with a first time derivative), for which an equation for the
rest state can be deduced: If g(s, v) a(s). v with a(t) 0 a’(t) + 6. a(t) and a(.
LI(0, ) (reflecting (H1) and (H3)), then (4.1) is equivalent to

(4.14) u,(x, t)-n" u(x, )= ao(s) u(x, t-s) ds +fo(x, t)

with a.(t)=I a(s) ds and fo(’, t)=u(’)-n" uo,x(’,O)-Io ao(s)uo,(’,-s) ds+
I’of(’, s) ds. Since (H1) and (H3) imply that 0N aoo Io ao(s) ds < m, the limit u then
satisfies

(4.15) (n+aoo).u,+Ul+ f(.,s) ds=nuo,(.,O)+ ao(s)uo,(’,-s)ds.

This shows that u W’(I) in the case of a linear equation and suggests that the
same should also be true for solutions of general nonlinear equations; however, it is
not clear how to show this. A ceain improvement is possible if a sublinear growth
bound for lug(x, t)l is known.
CooA 4.5. Under the assumptions of Corollary 4.2, and if in (H2) L(. )= 0,

then b-()= O(t-) for some > 1 implies that

(4.16) Ilu(’, o(t

for any 2<p<a+ 1, with fl =(a+ 1-p)/p. Similarly, b-(t)=O(e-t) implies

(4.17) Ilu(., t)- )ll - O(e

for any 2 <p < and any fl < TIP.
Proo The assumptions and conclusions of Corollary 4.2 together with the addi-

tional assumption L(. )= 0 allow us to use Corollary 2.3 to conclude that [Ux(X, t)[
K. (1 + t) for all (x, t), with K > 0 depending on the data. Now let 0 < < s <, and
let k0 be such that 2kts<2k+la Then for 2<p, writing [[" [[v for the L(I)-norm
and abbreviating v ux, we have

(4.18)
(ll D(’, 2j-1 t) I)(’, 2Jr)Iloo)’-=/ (11 v(., 2j-1 t) v(., 2Jr)112)2/p

-< C" Y (2Jr) ’-2/p b-’(s) as
<=j<- k+ j-I

using H61der’s inequality, the L-estimate for ux and (4.9). A direct calculation then
shows that u(., t) has a limit in U’(I) with the convergence rates given in (4.16) and
(4.17).
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Proof of Theorem 4.1. Recall that under our assumptions, (4.1) still holds in any
LP(I x (To, T1)) for any finite p, To, T1, and that utt and Uxxt are in these LP-spaces.
Also, by Theorem 2.2, ux is uniformly bounded on any I x [0, T]. Multiply (4.1) by
b(t). ut(x, t), and integrate over I x [0, T]. After an integration by parts with respect
to x, this gives the identity

1 d
2 dt

1
,( 2---(b(t). llu,(’, t)[lz)--b t) Ilut(’, t)ll

(4.19) +rib(t)" []u,,,(’, t)l])+ b(t) (g(s, u,,(’, t)-Ux(’, t-s)), u,,t(’, t))ds

b(t)" (f(’, t), u,(’, t)).

We now note that for t>0, tJo b(t) Ji G(s, u,(x, t)-u,(x, t-s)) dxds is absolutely
continuous in (since u, is still bounded on any I To, T1], 0< To < T) and that
for a.e.

d
b(t)" G(s, Ux(X, t)-ux(x, t-s)) dx ds

dt
(4.20) r

] b(t). (g(s, Ux(’, t)-u(., t-s)), Ux,(’, t)) as
do

due to (H3), the assumptions on b’ and the behavior of G, near t=0. Also, since u,
vanishes at the endpoints of I, by Poincar6’s inequality

-1/2b’(t)- Ilu,(’, t)ll 2 + r/. b(t). Ilux,(’, t)l[

(4.21)
>--b(t)" (rl" ling,(’, t)[l=-- Ilu,(’, t)ll z)

>-b(t). (2r2r/- )(2r:)-. Ilux,(’, t)ll :.
Substituting (4.20) and (4.21) into (4.19), integrating over [e, t] and sending e to 0,
we obtain with c (2rEr/- K)(27r2)-

lb(t)" Ilu,(" t)ll=+c" b(s). Ilu,(" s)ll - as2

(4.22) + b( t) G(s, Ux(X, t) u,,(x, t-s)) dx ds

<--C(uo, u,)+ II/(x, s)l[" bl/2(s) Ilut( s)ll" bl/2(s) ds.
2

We now drop the second integral on the left-hand side of (4.22) and apply Bihari’s
inequality [4]; then (4.4) follows. Inserting this estimate into the right-hand side of
(4.22) and dropping the first and third integral on the left-hand side gives (4.5). U

Proof of Theorem 4.3. By an approximation argument similar to the one leading
to Corollary 3.2, we can assume that the hj and the data Uo are so regular that (4.1)
holds in any L’oc, that ut and U,x, are locally in Lp and that (4.2) holds pointwise for
> 0. Recall that (4.1) and (4.2) also hold for u*, with f* instead of f Multiply the
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equation for u* with b(t). u*, integrate with respect to x and use (4.20) to obtain

1 d 2) 1- d-(b(t)" Ilu,*(’, t)ll --b’(t)" llut*(’, t)ll 2

(4.23) +rlb(t Ilu,,(., t)ll2+d/dt b(t) G(s, u,c(x, t)-u,c(x, t-s)) dxds

<-b(t). ((f*(., t), ut*(., t))+(ho(t), u*(0, t)-hl(t), u*(1, t))).

Since i u*(x, t) dx 0, Poincar6’s inequality implies again

(4.24) -1/2b’(t). Ilu,*(’, t)[[/
with c (2r2,/- )(2r2)-. Also, for any 3’ > 0 there exists Cv > 0 such that

]h(t). u*(j, t). b(t)]_-< ,. b(t). [[u,,(., t)]]+ b(t). h](t)
(4.25)

due to the compactness of the imbedding {u* W’2lff u* dx 0} into C(I). Picking
3’ C/4, inserting (4.24) and (4.25) into (4.23), and integrating with respect to then
gives again (4.11) as before.

Finally, it should be noted that the arguments above also give estimates

(4.26) b( t) a(s, u(x, t) u(x, s)) dx ds <- C( t),

where C(t) is the right-hand side in (4.4) resp. in (4.11). If, e.g., (2.3) is satisfied with
C(t) =0, then (4.26) implies that the right-hand side of (1.1) still decays in a certain
sense in W-’(I). This, together with suitable asymptotic results for weak solutions
of inhomogeneous heat equations, can be used to show that u,(., t) and u,(.,
decay to zero in W-’(I), as

g. Np|e sher tt fr ,dsee|sfie lqhls. In this section, we apply the previous
results to a class of equations that model a certain unsteady flow for certain non-
Newtonian liquids. Typical examples for such liquids are polymer solutions, such as
glues, paints, engine fuels with polymer additives or protein mixtures. The liquid is
assumed to occupy a reference configuration at time -oo with a Lagrangian coordin-
ate system 1 (, , 3). Let y(l, t) denote the position of the fluid particle at time
>-oo, let T(I, t) denote the Cauchy stress at j and (i.e. the stress measured with

respect to the deformed configuration), and let

be the deformation gradient. Assuming that the material is incompressible (i.e. det F 1)
and has density p, the equations of motion are

(5.1) p" ytt div (T. F-r) + f,

where f denotes body forces and the superscript -r indicates the operation of taking
the inverse of the transpose of a matrix (see 11 ]). It is customary to write constitutive
equations for elastic liquids in terms of the "upper convected stress" r- F-1" T. F
and the Cauchy strains (, t)- FT(, t). F(, t). Using the relative strain invariants
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(5.2) I1({, t, s) tr (/({, t). ,--1(, S)), I2(, t, S) tr (,-1(, t). ,(, S)),

a wide class of constitutive equations can then be written as

7r(t) -p( t)/-1 (t) r/" tgt’-I (t)

(5.3) + Wl(s, II(t, t-s), I2(t, t-s))" /-l(t- s) ds

W2(s, Ii(t, s),/(t, s))" /-l(t). l(t s). 1-1(t) ds,

where W :R/ [3, )2"R are suitable functions, p(t) is an undetermined (reactive)
pressure and r/-> 0 is (Newtonian) dynamic viscosity. The dependence on the particle

has been suppressed. Special cases include viscous (r/>0) and inviscid (r/=0)
Newtonian fluids (W =0); various "rubberlike liquid" models, in which typically
W(t, I1, I2)=ai(t) (cf. [3], [15] and the literature given there); the "K-BKZ-model"
[2] in which W Oij W(t, I1, I2) for some scalar function W; in particular the "Doi-
Edwards" model [7], which is a K-BKZ-model [5], derived from molecular consider-
ations, with the separable structure W(t, I1, I2)= a(t) Wo(I1, I2); and various
empirical models, in which one often assumes a semi-separable structure

(5.4) W(t, 11,12) E akj(t)" gkj(I1, I2)
k<=N

(see, e.g., [17]). Some of these models have originally been proposed for the case of
vanishing dynamic viscosity r/(corresponding to, e.g., concentrated polymer solutions
or polymer melts); we shall, however, always assume that r/> 0.

We want to study simple shear flow between two parallel infinite plates (parallel
to the yl.y2_plane of unit separation (in the y3-direction). Using Lagrangian coordin-
ates that agree with the spatial coordinates y, we are thus looking for a motion of
the special form yl(, t)= 1 ...U(3, t), yi(, t)= : for i= 2,3, with volume forces
acting only in the yl-direction and depending only on and :3. It turns out that such
an ansatz is consistent with the equations of motion and with the constitutive assump-
tion (5.3). One finds that in this situation I1(, t, s)= I2(, t, s)= 3 + lux(x, t)-ux(x, s)[2
(writing x for 3), and (5.1) becomes, assuming constant density p 1,

(5.5) utt(x, t)= r Uxt(X, t)+ g(s, Ux(X, t)- ux(x, t-s)) ds +f(x, t),

where g(s, v)=(Wl(s, 3+v2,3+v2)+ W2(s, 3-t-v2,3+v2)) v and f is the sum of the
force componentfl and a contribution from the pressure gradient in the flow direction.

If the liquid adheres to the plates which move parallel to the flow direction, one
obtains the boundary conditions (1.2); if traction forces of magnitude hi(t) and -h0(t)
in the yl-direction act on the liquid at the plates, boundary conditions (1.4) arise. In
applications, one frequently has hj 0, which means that there is a lubricant between
the plates and the liquid. We do not discuss friction type boundary conditions, although
similar results could be shown with the methods employed above. The flow history
for t-<0 is given by Uo; Ul is the flow velocity at 0 (which is allowed to have a
jump across 0). The results obtained in the previous section then have the following
interpretations:

(i) For smooth flow histories and smooth forces and displacements, (5.1) with
the corresponding boundary conditions has a unique local (in time) solution. This
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holds in fact for completely general flows and for a much wider class of constitutive
equations, as was shown in 18].

(ii) One has global existence for arbitrary forces and initial histories, if, e.g., in
(5.4) the aki are nonincreasing, Cl-smooth for >0 and integrable on (0, co) and if
the gki satisfy O/OV(gki(3 +/)2, 3 +/32) )) -M for all v R and some constant M. This
class of functions includes polynomially growing functions and the case in which the
gk are rational functions of their arguments that vanish at o (see [17]) or, as in the
Doi-Edwards model, derivatives of certain elliptic integrals (see [5]). The first assump-
tion would describe a "shear-thickening" liquid, the last two correspond to liquids
that show a "shear-thinning" behavior (which is commonly observed). We note that
in this latter case, the integral operator in (5.5) satisfies a global Lipschitz condition,
such that the arguments of 2 and 3 will in fact not be needed. Also, our assumptions
allow weakly singular kernels ak, which are predicted by some molecular theories
(see [7]).

(iii) If, e.g., in (5.4) for some

(5.6)

and

a,(t) + ai( t) <= O,

(5.7) gki(3+r2,3+r:Z) rdr>-O for all vR,

then forces that decay like e-’t with y < min (8, 2r/r2) give a displacement u in a
boundary traction experiment that reaches a steady state at the same rate. This will
also hold for flows with prescribed boundary displacement, if the plates are kept fixed
after a certain finite time. If the forces decay at a weaker (e.g. algebraic) rate, the flow
velocity will again decay at a comparable rate. It is not claimed that these rates are
optimal, but they show the interplay between the force decay (measured by y), the
Newtonian dissipation mechanism (given by r/) and the dissipation due to the history
dependence in the constitutive law (expressed by 8). Also, no ellipticity conditions
are needed for the differential operators under the integrals in (5.5); suchconditions
will rather play a role in the case of vanishing Newtonian viscosity r/ (see 19]) or for
the study of steady flows. Assumptions (5.6) and (5.7) are always true for various
"rubber-like liquid" models as well as for the Doi-Edwards model with additional
Newtonian viscosity. Finally, using (4.22), one can also show that for decaying volume
forces, space averages of shear stresses and of normal stress differences will decay at
the same rate.
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SOLUTIONS TO THE KORTEWEG-DE VRIES EQUATION
WITH INITIAL PROFILE IN L([)L(R+)*

AMY COHENf AND THOMAS KAPPELER

Abstract. The Cauchy problem for the Korteweg-deVdes equation is considered with initial profile
integrable against (1 + Ix[) dx on R and against (1 + ]x])N dx on R+. Classical solutions are constructed for
N => 11/4. Under mild additional hypotheses the solution evolves in L2().

Key words. Korteweg-de Vries equation, inverse scattering method

AMS(MOS) subject classification. 35Q20

1. Introduction and summary of results. This paper considers the initial value
problem for the Korteweg-deVries equation (KdV),

(1.1)

(1.2)

under the hypothesis that

(1.3a)

ut -6uux + Ux,, 0,

u(x,O)--U(x),

(1.3b)

No diiterentiability is assumed at all. The goal is to find the range of N such that the
problem (1.1), (1.2) has a solution. Our existence theorem is based on a construction
suggested by the inverse scattering method. We show that if N _-> 11/4, then a classical
solution exists in > 0 which approaches its initial profile in an appropriate distribution
sense as --> 0+.

These results improve considerably on earlier work of the first author [3], which
required that U be at least piecewise C as well as that U be integrable against
(1 + ]xl)v dx on R for large enough N. By using Kappeler’s new L2 inverse scattering
result [8], we are also able to get control over our solution as x--c, at least for U
satisfying a rather mild additional hypothesis. These results also improve on work of
Sachs [14], who requires that U(x) be integrable against (1 +]xl)N dx on all of R with
N> 11/4 rather than only on R+ with N >- 11/4. Sachs claims convergence to initial
profile in a weighted L norm on each halfline In, +o); it appears that his proof of
this point is flawed.

There is no direct comparison between our results and the very interesting paper
of Kruzhkov and Faminskii 11 ], in which they prove the existence of a weak solution
to KdV with arbitrary L2 initial data, and show that the solution is classical if the
datum is not only L2 on but also L: with respect to (1 + Ix]) dx on +. While Sachs’
paper uses a ditterent inverse scattering construction from ours (Deift and Trubowitz
[5] rather than Faddeev [6]), Kruzhkov and Faminskii use a different approach
altogether: they cut off and mollify their initial profile, apply results of Yakupov 19]
and Shabat [16] solving KdV with data in C(R), and then take limits.
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In their pioneering paper [7], Gardner, Greene, Kruskal and Miura showed that
if u(x, t) solved KdV and evolved in the Schwartz class , then the scattering data of
the Schr6dinger equation

(1.4) -y"+ u(x, t)y k2y

evolved according to simple first order linear o.d.e.’s in the variable t. By appealing
to Faddeev’s inverse scattering theory [6], they showed that u(x, t) for > 0 could be
recovered from u(x, 0). This idea has been the basis for a succession of existence
theorems [17], [3], [13], [14] employing progressively weaker hypotheses on the initial
profile U.

Rather than give a detailed exposition of the forward scattering theory of (1.4)
we refer the reader to Cohen’s paper [4].

In 2 we analyze the scattering data associated to (1.4) under the hypothesis
UL(R), i.e., U is integrable with respect to (l/lxl’) dx, with N->I. The main
result is Proposition 2.5 which says that generically the reflection coefficient R/ is in
Cv-I(R)O C(---{0}) and limk_,O kR+<C)(k) existsmbut that if U is exceptional,
then R/ is only in C-2()f") CV-(--- {0}) and limk_,O kR+<N-)(k) exists.

In 3 we analyze the kernels I/(x, t) and f/_(x, t) used in the Marchenko equations

(M+ B+(x, y, t) + f+(x + y, t) + B+(x, z, t)f+(x + y + z, t) dz O,

(M B_(x, y, t) + fl_(x + y, t) + foo B_(x, z, t)fl_(x +y + z, t) dz O.

What Gardner, Green, Kruskal and Miura showed was that if u(x, t) solves KdV, and
f+ are as defined below, then

u(x, t)=-OxB+(x, O, t)= +OxB_(x, O, t).

The kernels are defined as follows:

fl+(x, t) F+(x, t) + 2 E c+j exp(-2Kjx + 8K} t)

where

and

where

F+(x, t) .11"-1 foo R+(k) exp (2ikx + 8ik t) dk

fl_(x, t)= F_(x, t)+ 2 E c_j exp (2rjx- 8r t)

F_(x, t)= 7r-11_oo R_(k) exp (-2ikx-8ik3t) dk.

Clearly the existence, regularity and decay of the B+/-(x, y, t) depend on the regularity
and decay of the I,. In 3, we show that for each fixed > 0, 0f//(x, t) is continuous
for 0 -< v -< 2N+ 3/2 and establish algebraic decay rates as x +oo for these derivatives.
We also analyze the decay and regularity of I/(x, t) using the properties of R/ proved
in Proposition 2.5. To study F_, we note just that R_ is quite similar to R/ in its
regularity and decay. Then we see that the decay of f/_ is controlled by that of F_

and that the integral for F_ has stationary points when x < 0. Nonetheless we find that
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if U L, N=>5, and R_n)(k) O(k-x) for h _>-5/2, then O,f_(x, t)= O(IXI -A/2+1/4)
as x---)

In 5 we prove sharper versions of the following results.
Result 1. Suppose U satisfies (1.3a) and (1.3b) with N=> 11/4. Then there is a

classical solution u(x, t) of KdV in > 0 such that

u(x, t)- U(x) in n-l(+o)).
Result 2. Suppose that U L15(I)f’IL2(I) and that R+")(k) O(Ikl

for some X > 5/2, and n 0, 1, 2. Then the solution given by Result 1 evolves in L2(R)
for t>0.

Result 3. Suppose that N_>-3 and that U Lv(R) if U is generic but that U
Lv+l() if U is nongeneric. Suppose further that (l/lxl)’-U(x) is in L2(). If
u(x, t) is the solution to KdV given by Result 1, then x’u(x, t)-x’U(x) in L2(+oo)
as t0fora=0anda=N-1.

We should also remark that the question of uniqueness is still largely open.
Uniqueness is known for the initial value problem for KdV if the initial profile is in
H with s _->3/2 [2], [10], [15]. Uniqueness is also known within the class of solutions
u(x, t) such that u(x, t) and u,(x, t) go to 0 as x- +o and u,,(x, t) is bounded as
x - +o 12]. Kruzhkov and Faminskii 11] have shown that the problem (1.1), (1.2)
is well posed in the class of functions U which are L2 on and L2 with respect to a
weight on +. Unless we add to our minimal hypotheses we cannot show that our
solution u(x, t) evolves in a class where either of these uniqueness theorems applies.

Notational conventions. The operator 0x denotes the partial derivative with respect
to the subscript variable.

f*(x, k) the complex conjugate of f(x, k).

In dealing with functions of x and k, prime (’) always denotes the x-derivative and
dot (.) always denotes the k-derivative; thus

f’(x, k)= Oxf(x, k), f’(x, k)= Okf(X, k).

The space Lv(+oo) consists of functions g(x) such that

]g(x)](1 + Ixl) dx < oo for all finite X.
x

The space L2(+oo) consists of functions g(x) such that

I,,’ Ig(x)l= dx < oo for all finite X.

We use aVb to denote max {a, b).

2. Analysis of the initial scattering data.
2.1. The Jost functions. Suppose that U(x) belongs to L(R) with N_>- 1. Then

the Jost functions for

(2.1) -y"+ U(x)y k2y

are the solutions f/(x, k) and f_(x, k) with the asymptotic behavior

(2.2) f+(x, k)--. e+ik as x +oo, y_(x, k).-- e-ik as x -.
These exist for Im k >-0 and can be represented as

(2.3) f+(x, k)= e’kh+(x, k), f_(x, k)= e-’kh_(x, k)
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where

(2.4) h+(x, k)= 1 + B+(x, y) e2’ky dy,

where, in turn,

h_(x, k)= 1 +I B_(x, y) e-2’ky dy

Further

(:2.7+)

(2.6+)

Here R+= [0, az) and R-= (-, 0]. Moreover, the maps x--> B+(x,. are absolutely
continuous and Fr6chet differentiable from to LI(+). The following estimates are
valid since U L()"

B+/-(x, y) is continuous on x g:.

IB+/-( x, Y)I <= exp t- x)l U( t)l at U(t)l dr,
+y

IOxB+(x, y) + U(x + y)l

<- exp (t- x)l U(t)l dt U(t)l dt U(s)l as,
+y

IOyB+(x, y) + U(x + y)]

--<2 exp (t-x)lu(t)l dt Iv(t)l at Iu(s)l
+y

Analogous bounds (2.5-), (2.6-) and (2.7-) hold for B_(x, y), O,B_(x, y)- U(x + y)
and OyB_(x, y)-U(x +y) in terms of integrals over left-half-lines. See [1], [3]-[6] for
details. Applying these bounds to the forms (2.3), (2.4), one obtains the following.

PROPOSITION 2.1. For any fixed x, the functions y"B+(x, y), y"O,B+(x, y), and
ynOyB+(x, y) are integrable over 0< y < o for 0 <- n <-_ N- 1. Similar results hoMfor B_
with integrability over -o<y < O.

It follows that h/(x, k) and Oh/(x, k) are (N- 1) times continuously differentiable
with respect to k. Indeed, if 1 -< n -< N- 1 and Im k => 0, then

o,[h+(x, k)] (2iy)"B+(x, y) e2’ky dy.

If in addition k # 0, then an integration by parts yields

O,[h+(x, k)]- [n(2iy)"-lB+(x, y)+(2iy)"OyB+(x, y)] e2’ky dy.

(2.9) O,O[h+(x, k)] (2iy)"OxB+(x, y) e2iky dy.

Thus for 1 <_- n _-< N- 1 and for each finite X, kO,h+(x, k) and O,Oxh+(x, k) are uniformly
bounded on {(x, k): x _>- X and Im k >_- 0}.

It is possible to get better information about the regularity of h+(x, k) by using
the approach of Deift and Trubowitz [5, p. 130]. Let

(2.10) Dk(y) e2’k‘ dt (e2’ky 1)/2 ik.

B+/-(x,. LI(+) {"] L(R) L2(R+/-),
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Deift and Trubowitz show that h+(x, k)= 1 +x Dk(t-y)U(t)h+(t, k) dr. The next
several propositions are similar to results in [4]-[6].

PROPOSITION 2.2. Assume that U L(g) with N >- 1. As functions of k with x
fixed in R, h+(x, k) and Oxh+(x, k) are CN-1 on {k: Im k->0} and Cr on {k: Im k->
0, k # 0}. Further kOh+(x, k) and kOOxh+(x, k) extend continuously to k O. Moreover
there are nonincreasing functions K(x) such that for 0 <- n <= N, Im k >- O, and x <-_ < oo

(i) [k Oh+(t, k)[ _-< K(x),
[k] [O,Oh+(t k)[<_ K(x and(ii) Ik[+l

(iii) kO[h+(x, k)]0 and O01x[h+(x, k)]0 as [k[-o, uniformly in Im k_->0.

Proof. We have already noted the claimed regularity on {k: Im k-> 0}. To get the
Nth derivative away from k 0, we differentiate (2.10) N times formally and multiply
by k. Thus if Oh+(x, k) exists then w=-k Oh+(x, k) satisfies the integral equation

(2.11) (I-T)w= r

where

and

T[g](x) --- Dk( x) U( t)g( t) dt

r(x)=-- E C k O[[Dk(t-x)]U(t)O-h+(t, k) dt
’=1

for easily computable C. For any finite X, T is a bounded operator on L(X, );
indeed for m

IlTmgll Ilgll IN(t)[ dt/lk[

Since [ko[D(y)]l 12yl for all v 0, it follows that

Ilrll E C 12(t-x)l g(t)lA(x) at

where

A(x) sup {10h+(t, k)[: Im k ->_ 0, 0 =</x =< N 1, x _<- =< oo}.

Note that A(x) is finite and nonincreasing. One can also verify that

f, 12(t- x)[[ U(t)[ dt <= K(x) for 1 -< v_<- N

where K is the nonincreasing function

12tll g(t)l at + 12xl IN(t)[ dt if x < 0,
K,(x)

12till u(t)[ at if x _-> 0.

So Ilrll in L(X, oo) is bounded by a nonincreasing function B(X)= K(X)Y CK.
It follows that the solution of (2.11) is given by

w=Tmr
m=O
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and that w is continuous in x and k in R x {Im k-> 0}. Further analysis reveals that
w(x, k)/k is indeed Oh+(x, k) and that

Ikoh+(x, k)l=<exp Iu(t)l dt/Ikl B(x).

Continuing in this vein one finds that kOh+(x, k) has a derivative with respect to x
in distribution sense, and then that dlx[koh/(x, k)] is a classical derivative as well,
and satisfies (ii) and (iii).

Remark. The factor (1 + Ikl) -1 in (ii) is necessary because the term with n N in
the sum for r(x)involves kh/(x, k), which grows like

2.2. Regularity and decay of WIf_,f+l and WIf*+,f_l. Let W(k) and V(k) be
defined on Im k -> 0 by W(k) W[f_, f/] and V(k) W[f*+, f_]. Since f_, f/, and f+*
solve (2.1), these Wronskians are independent of x. Evaluating at x 0, we get

(2.12) W(k)= h_(0, k)h’+(O, k)-h’(O, k)h+(O, k)+2ikh_(O, k)h/(O, k)

and

(2.13) V(k) h*+(O, k)h’(O, k)-h_(0, k)h*+’(0, k).

Where ambiguity is possible we reserve prime (’) for O/Ox and dot (.) for a/Ok.
The following propositions follow immediately from the results of 2.1.
PROPOSITION 2.3. Assume U L() with N >-_ 1. Then W C-() CI C (

{0}). Moreover kO[W(k)] extends continuously to k-0. For all n with O<-n<-_N,
limlkl_. O[ W(k) 2ik] O.

PROPOSITION 2.4. Assume U L() with N >- 1. Then V C-() f’) C(
{0}); kO[ V(k)] extends continuously to k 0; and limlkl_ 0[ V(k)] 0 for 0 <- n <-- N.

2.3. Regularity and decay of R+(k), R_(k). Recall that the reflection coefficients
R+ and R_ are defined for k # 0 by

V(k) V*(k)
g/(k) g_(k)

W(k)’ W(k)

We concentrate on R/(k); R_(k) can be analyzed by the same methods. Note that

W(k)R+(k)= V(k)

so that formally

(2.14) W(k)R(+")(k) V(")(k)- R(+)(k) W("-)(k).
0

PROPOSITION 2.5. Assume that U L() with N >- 1. Then R+ Cv( {0}) and
limlkl_,oo kR(+")( k) 0 for 0 <-_ n <= N.

Furthermore
(A) If U is ofgeneric type, then R+ CV-l() and kR(+V)(k) extends continuously

to k=0.
(B) If U is ofexceptional type and N >- 2, then R+ CV-E(R) and both kR+-l)(k)

and kER+V)(k) extend continuously to k=0.
Proof. The regularity away from k-0 and the decay as k +o follow from

Propositions 2.3 and 2.4.
If U is generic then W(k) is nonzero on R and (A) follows by an induction using

(2.14). Suppose next that U is exceptional and that N_->2. Then instead of treating
R/ as the ratio V/W we treat R/ as the quotient of V/k and W/k. In this case it is
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known that Wk is continuous on R and never zero. Since V/k and W/k are CN-2

on R, so is R/. Using (2.14) it is easy to complete the proof of (B).
We now turn to results involving L2 hypotheses as well as L assumptions on U.
LEMMA 2.6. Suppose that y"U(y) Lm() and U(y) Lv+l( for 0 <- v <- n. Then

V(v) L2 for 0 <- v <-_ n.

Proof. Deift and Trubowitz [5, p. 159] have proved that

V(k) I?oo 1-II(y) e-2’kY dy

where there is a constant K such that

IIIa(y)l<=lU(y)l+ KL(y)

for

L(y)= IU(t)l at ify>_-0, L(y)= IU(t)[ dt fory<0.

To show that V() L2, it suffices to show that yIIl(y) L2. Since

II/,(y)l <_- (1 + K=)(IU(y)I=+ L(y)2)

it follows that

;o io ioyII,(y)l dy<-(l+K2) lye(y)l dy+(l+K2) y2L(y)2 dy.

The first term is finite since yU(y) L2. Further

Io )(Iy(y) dy y e()l d y e(t)l at dy
=o =y =y

--< le()l d y Ie(t)l at dy
=0 =o =y

s"ls(s)lds
=o t=o ’+l

IU(t)ldt("

Thus yI]l(y) is in L on +; the proof that it is in L- on - is similar. 13

PROPOSITION 2.7. Suppose that e LN() arid that yne(y) Lm() for 0<= n <= M.
(A) If e is of generic type, then R(+) L() and kR(+")(k) L-() for 0<= n <=

min {M, N- 1}.
(B) If U is of exceptional type, then R(+’) L’() and kR(+n)(k) L() for 0<= n <=

min {M, N 2}.
Proof. The proof is an induction based on the formula

We discuss (A) first. Since W(k) is continuous, never zero, and grows like Ikl at +oo

it follows that 1/W is in L- and that k/W L. Since V e L, it follows that R+ V/W
is both L and L, and that kR+ L.

Keep 0<_- n <_-min {M, N- 1}. We then know that V(") e L and that W() L for
1 -<_ t,-<_ n, then R(+") L CI L and kR(+") L. Result (A) now follows by induction.
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The induction for result (B) is similar, except that in the exceptional case we have
only R+ s C-2. lq

3. Regularity and decay of l+(x, t) and l/_(x, t) for t > 0.
3.1. Properties of F+(x, t). Recall from the introduction that the kernel of the

Marchenko equation (M+ is

l)+(x, t)= F+(x, t) + G+(x, t)

where

F+(x, t) r-1 I_oo R+(k) exp (2ikx + 8ik t) dk

and

G+(x, t) 2 E c+j exp (-2Kjx + 8Kt).
jeJ

Since G+(x, t) is C and decays exponentially as x +oo for fixed > 0, we need to
concentrate on the properties of F/. In the first part of this subsection we use a
representation of F/(x, t) in terms of F/(x) and the Airy function to find out as much
as possible about F/(x, t) without using differentiability of R/(k). Later we report on
what can be said of F/(x, t) using derivatives of R/(k) by a careful extension of the
methods of Cohen in [3]. For convenience, we set

F+(x) := F+(x, O)= 7r- [o R+(k) e2’k dk.
J_

LEMMA 3.1. /f U(x) L(R), then R+(k) L2(R) and F+(x) L2().
Proof. These results are well known; see [5].
LEMMA 3.2. Suppose U(x) L() CI L(+) for some N with N 11/4. en

(a) IF+(x)l(1 + x) N-I dx (,
(b) Io+F+(x)l(1 + x) dx <.
Proof. Because of the exponential decay of G+(x, O) as x- +oo, it is enough to

prove the analogues of (a) and (b) for f/. By Faddeev [6, p. 155], we know that

(3.1) I+(x)l-<- C(x) f U(z)l dz
dx

and

(3.2) Ioxa+(x)- u(x)l C(x) Iu(z)l dz

where each C(x) is a nonincreasing function of x. Now by (3.1)

io In/(x)lx"-’ dx <- c(0) u(z)l dzx-’ ax
=0

c(o) g(z)l X
N-I dx dz

z=O =o

C(O)N-1 IU(z)lz’az<oo.
=0
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Thus (a) follows. For (b), use (3.2)"

Io IoIo/c/(x)lx’ dx<-_ Iu(z)lx" dx/ C(x) Iu(z)l dz x dx.

The first term is finite by hypothesis. For the second,

Iu(z)l dz x dx x IU(z)ldz x- IU(z)l dz dx
=0 =0

zls(z)l dz x-’ Is(z)l dz dx
=0

IU(z)lzdz x- Iu(z)l dz dx

Iu(z)lzdz Iu(zl - ddz
=0 =0

Is(z)lz dz N-’ IS(z)lzdz
=0

since each factor is finite.
By Lemmas 3.1 and 3.2 we know that F+(x) is a real valued function such that

To analyze F+(x, t) with > 0, we use the obseation 13] that F+(x, t) is essentially
a convolution of F+(x) with an ry function:

(3.3) F+(x, t)= (3t)-/ F+(y) Ai (3t)/3 dy.

We use the following propeies of the Airy function 13]"

(3.4) IAi (z)l <
(3.5) Ai ()e C(N) and Ai" ()= Ai (),

Ii( ()1 C2( +11)/-1/ a-,
(3.

IAi( ()1 C(
Because of the different behavior at +m and -m, it is convenient to divide the integral
in (3.3) into pieces. To this end let (x) denote a nonincreasing C function such that

(x)= on -<xl, (x)=0 onx<.
Let (x):= 1 (x). Next set (x) F+(x)(x) for 1, 2. Next set

(3.7) (x, t)
(3t)-l/a F(y) Ai (3t)1/3 dy if t>0,

(x) if 0.

Note that F+(x, t)= F(x, t)+ FE(X, t).
LEMMA 3.3.
(a) F(x, t) is C in
(b) lim+ x OFl(X, t)=0 for nonnegative integers n,j;
(c) o lOaFs(x, t)lx dx < for all j, m.
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Proof. Part (c) follows immediately from (a) and (b). The regularity (a) follows
from (3.7), the rapid decay of all Aij) (z) as z +oo, and the fact that supp F1

___
(-oo, 1].

Now

OF(x, t) (3t) -1/3 F(y) Ai(J) (3t)’i3 (3t)-/3 dy

and

IoF,(x, t)l--< (3t) -(s+’)/3 IF,(y)l dy IAis) (3t)l/3 dy

Setting : (x y)/ (3 t)1/3 we see that the second integral is

I(x, t)= IAij) (:)12(3t) 1/3 d:.
x-1)(3t)-1/3

Since Aij) (:) decays faster than exponentially as :--) +oo, it follows that I(x, t) decays
at least exponentially fast as x- +oo, and (b) follows, rq

We next analyze F2(x, t). Note that supp F2_ [0, +oo] and that Ai ((x-y)l(3t) 1/3)
is less well behaved as y +. A technical remark precedes the analysis.

LEMMA 3.4. There is a constant C such that

IAi (-:)1 <- C(1 v )-1/4 for all real .
Proof. We know that IAi (z)l < 1 for all z, and that there is a K such that

Imi (z)l =< g (1 + I 1) for all z _-< 0.

Choose C max { 1, K }. If : <- 1, then (1 v :) 1 and

Imi (-:)1_-< 1 (1 v )-1/4 C(1 v )-1/4.
If r > 1, then (1 v :)= : and

Imi (-)l<-K(l+)-ll4<--C(1 v )-1/4
since(lv:)/(l+:)_-<l for :>1. Iq

LEMMA 3.5. (a) FE(X, t) is continuous in R x (0, oo).
(b) If 0 <- n <- N- 1, then FE(X, t) o(x-n) as x - +o.
(c) If O<-n<- N-7/4, then o xnlF2(x, t)l dx<oo.
Proof. Because of the support of FE(X) we have

x--y
(3.8) F2(x, t)=(3t) -1/3 F(y) Ai (3t)1/5, dy.

The integrand is continuous in (x, t) e R x N+ for each y. By its definition, F(y)
By (3.4) the integrand is bounded by IF(y)l. Thus (a) follows by Lebesgue’s dominated
convergence theorem.

For (b) we assume 0-< n-<_ N-1, keep x->_ 2, and fix > 0. Let A(x, t) denote the
part of the integral in (3.8) over [0, x/2], and B(x, t), the part over Ix oo). We need
to show that xnA(x, t) and xB(x, t) go to 0 as x +c. Now

x"A(x, t)= x"
.o

F(y) Ai t)l/ dy

x/()/

x" Ai ()F2(x-(3t)l/)(3t) 1/3 d.
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Note :> x/2(3t) 1/3 implies x<-2(3t)l/3. So
x/(3t) t/3

Ix"m(x, t)l<=2n(3t) (n+l)/3 Cnlmi ()F2(x-(3t)l/3)] d
] x/2(3t) 1/3

2"(3t)"+)/3 IF()I ds ="lmi ()1 d
$x/2(3t)/3

The decay rate (3.6) of Ai at + is such that 2"lAi ()12 is integrable on +. Thus
x"A(x, t) - 0 as x - +.Next, since IAi (s) 1 for all s,

Ix"B(x, t)l= x FE(y)Ai
x- y

2
/2 (3t)/3 dy /2Y"[FE(y)[ dy.

Since F L_I(R+) and n N- 1, x"B(x, t) 0 as x +. Thus (b) is proved. For
(c) note that

Io fo Iy ((3)x"l(x, t)l ax x" (3t)-’/
=o
(y) Ai -xt),. ay ax

(3t)-1/3 :oX" IF(y)I Ai (3t)/3 dydx

+(3)-1/3 X IF()l ai
y-x

=o =o (3t)/3 dy&.

Call these terms T1 and T2. It suffices to show T1 and T2 are finite. Now by Lemma 3.4

x y ( { Y--X}) -1/4

r (3-/
=.

x l(ylc v (3/ a ax

Iy ;x’ (Y--X) -1/4

C(3t) -/3 If=(y)l x" 1 v
=o =o (3t)/3 dxdy

ffy ov (Y--X) -1/4

C(3t) -1/3 IF(Y)I x dx dy.
=o (3t) 1/3

It is easy to prove by induction on n that

x 3t),/ dxN (3t)-/Ky+3/4.

Thus there is a function C C(t) such that

r c( I(yy+/ a.
=0

Since n+N N- 1 and F e L_(N+), T1 < m. Next

T= (3t)-" I(Y)I x" Ai Y-
=o =y (3t)l/3 dxdy.

Consider the inside integral I(y) and let =(x-y)/(3t)/3. Thus

I()= (+ (3t)/)lAi ()l(3t)/ d
0

N2(3t)/ (y+(3t)/3)Ai()dNC(t)y+G(t)
=0
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for positive functions Cl(t), C2(t), since :JlAi (:)l LI(R+) for all j=>0. Now

T2 --< (3t)-1/3
=0

because n <= N-7/4< N-1 and F2 L_(R+).
LEMMA 3.6. Suppose 0 <-_j <= 2N+ 1/2. Then
(a) OJOxF2(x, t) is continuous in x (0, o),
(b) OxF2(x, t) o(x-n) as x +ofor 0 <- n <- N. Ifj >- 1, then OOF_(x, t) o(x-)

as x+o for O<-n<-N+1/4-j/2,
(c) o x"lOJoxF2(x, t)] dx < for 0<-_ n <- N--j/2.
Proof. From (3.3) we see

(3.9) OxF(x, t)=(3t) -2/3 FE(y) Ai’
y-x

ti. de.

The continuity of 8F2(x, t) follows from the Lebesgue dominated convergence theorem
and the facts F2(y) Lv-1 with N -> 11/4 and Ai’ (:)= O(11//4) as :--, To show
continuity of JxSxF2 with j 1, we integrate by pas in (3.9) getting

x--(3.10) OxFE(X, t)=+(3t) -/3 Fi(y) Ai 3t)1/3 dy.

Now fix j-> 1

Io ((3.11) OJxF2(x, t)=(3t) -(+)/3 F.(y) Ai<)
x-y
(3t)/3 dy.

We need to show the continuity of 0JOxF2 at Xo, to>0. We keep x>=xo 1, t>= to/3.
The integrand is continuous in (x, t) for almost all y. Further it is uniformly bounded
for x_->Xo- 1:

F(y) Ai) (x-y)(3t) 1/3
y--x

t/3
since j/2-1/4>0 when j-> 1. Further this bound is integrable on + since FL and
the hypothesis on j implies j/2-1/4 <- N. This completes (a).

For the remainder of the proof fix j so 0<-j<=2N+1/2. For part (b) we pick n so
O<=n<=N+1/4-j/2 and keep x>=2. From (3.11) we get

x--yIx"O{OF2(x, )1 <-(3t)-(+/3x" Fi(y) Ai( 3)2 dy.

Let J1 and J2 be the two terms obtained by splitting the integral at y x/2. Note that
y > x/2 implies x" -< 2"y".

J1 (3t)-J+/3x"
.o

F.(y) Ai) .3t)./3, dy

X/(3t) /3

-(3t)-/ax lF(x-(3t)/3) Ai () d
d=x/E(at)/3

after setting =(x-y)/(3t)/3. Note Oyx/2 implies x"2"(3t)"/3". Thus
X/(3t) /3

J (3t)-"-/32" "lF(x-(3t)/3) Ai () d.
dx/2(3t)t/3
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By (3.6) we can find a constant K such that ]s" Ai(j) (sc)[<_-K e- for _->0 and in
particular Is" Ai(j) (:)l <_-K exp (-x/2(3t) 1/3) for >-x/2(3t)-1/3. Thus

x/2

J1 <- (3t)(-")/22"K e -x/2(3t)’/3 ]F(y)I dy.
dO

Since F LI(R+), J1 - 0 as x - +o.
It remains to deal with

J2 J2(x) (3t)-<+l)/3x" I,
/2

F(y)Ai(J) (x-y)(3t) 1/3 dyo

If j 0 and 0 <- n _-< N, then

J2,o(X) -< (3t)-1/32" y"[F(y)[ dy,
/2

which goes to 0 as x +o because F Lv.
Note that (3.6) implies that there is a constant A such that

IAi) (-#)1 _-< aj(1 v st)j/2-1/"

for real :. Thus when j _-> 1 we get

IxXn (Y--X)j/2-1/4

J2d(x) <-- (3t)-(J+l)/32" y [F(Y)IAj I v (3t)l/3 dy
/2

f +(3t)’/3 f<= C(t) y"IF(y)I dy + C2(t) y"lF(y)l(y X)j/2-1/4 dy
/2 +(3t) 1/3

where C1(t) and C2(t) are positive functions of t. The first integral goes to 0 as x -->+
because n _-< N--< N. In the second integral note (y x)/2-/4 is a decreasing function
of x since j-> 1. Keeping x_-> 1, the second integral is bounded by

f y"[F’2( y)[( y 1)j/2-1/4 dy,
+(3t)/3

which goes to zero as x - +c since we assume n +j/2-1/4 <= N and know F L. This
finishes (b).

We finally turn to part (c). Keep 0<= n <- N--j/2 and note n < N for all j=>0.
Now

x"loLo=F=(x, t)l dx <= x" + (3t)_(j+l)/3 Ai( x-y
=o =o t)l/3 F’2(y) dy dx.

Let K1 denote the integral x__o y=o""" dy dx, and let K2 denote the other. Set :=
(x--y)/(3t) 1/3 in K. We get

gl=(3t) -/3 x" ]Ai()()F(x-(3t)/3)[ d dx
=o g=o

=(3t)-/ IAi( ()1 xlFi(x-(3t)/) dxd
=0 =(3)1/3

(3)-/ Ai( (1 IFi( (+(3" dd
=0

(3t)-/32" Ai() y"lFi(y)l dy d
=0 =0

+(3t) n/3 Ai() (#)1#" IFi(y)[ dy <
=0 =0
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since F L]v with N >_- 11/4 and Ai()(sr) has faster than exponential decay as sr--> +oo,
and ]y+(3t)l/3[" _-< 2"(y" + (3 t) "/3:" ).

K2= (3t) -(+1)/3 x" F(y) Ai()
x-y

=o (3 t)i/3 dy dx.

By (3.6)

K2 -< (3t) -(+1)/3 x IF(y)lCf 1+ y-x -/2-/4

=o (3t)l/ dydx

<-- Cf(3t)-(+)/3
=o

IF(y)I =oX 1+(3t)/3] dxdy.

In casej 1 we have j/2-> 0. So for x 1

yy f’ ( Y-I/2-’/4

K2 Cf(3t) -(j+l/3 IF(y)[ x" 1 + (3t)1/3] dx dy
=o =o

N C(3)-(+1/3 IF()(1 +y)++/-/4
=0

since n +-j/2N N Ifj =0, then j/2-< 0 and this argument Nils. However, ifj =0
we get

KN C2(3t) -1/3 IFi(l x + .
=o =o (3t) 1/3

By induction one shows that the inner integral is O(yn+(3/4)). Thus

K C(3)-/ IFi(y)l( +y)*/ y
=0

since we are assuming n N N- when j 0.
The results of Lemmas 3.5 and 3.6 rely on the fact that OF+(x, 0) is in

By contrast our next result does not use estimates on OF+(x, 0). The next result is
used by Kappeler in [9] where he considers KdV with ceain measures as initial data.
Up to this point we have used the Airy function strenuously; the rest of our results in
this section rely on the type of analysis found in Cohen’s paper [3]. Also by way of
contrast, note that the distinction between generic and nongeneric data does not arise
in the Airy function approach, whereas it does arise using the method of [3].
Pooso 3.7. Suppose that U e L(N) with M 3. If U is generic, set N M;

ocheise, set N M- 1. Let R+ be the reflection coecient of U(x). en a function

F+(x, t) - [ R+(k) exp (2i + 8ik3t) dk

may be well defined on R x (0, c) as an improper Riemann integral. Further for each
fixed > O, F+(x, t) is (2N 1)-times continuously differentiable with respect to x.
Moreover for arbitrarily small e(0<e<< 1/2) there are functions Ko,v(t) and Kl,v(t)
such that

IF+(x, t)] <_- ro,( t)x-+’+,
IoF+(x, t) <= K,v(t)x-v+/2+ for 1 <-_j <= 2N 1

whenever x > 12t > 0. K,N(t) can be chosen nonincreasing, bounded as t+, and
O( -/2-) as O.



KORTEWEG-DE VRIES EQUATION 1005

Proof. Use Proposition 2.7 and a careful adaptation of the methods of [3].

3.2. Properties of F_(x, t). Recall that the crucial term in the kernel of the left-side
Marchenko equation is

F_(x, t)= r-1 f_ R_(k) exp (-2ikx-8ikat) dk.

Since R_(-k)- R*(k), this may be rewritten as

F_(x, t) r- I?o R*(k) exp (2ikx + 8ikat) dk.

Because R*(k)- V*(k)/ W(k), the analysis of R/ is easily adapted to R_ and the
regularity of F_ is the same as that of F/. The decay of F_ and its derivatives as
x --> - requires different treatment because there will be stationary points when x < 0,
namely k +(Ixl/12t) 1/2.

The purpose of this subsection is to identify conditions on R_(k) sufficient to
verify the hypotheses on F_ in Kappeler’s L2 inverse scattering theorem [8]. The crucial
point is to see when OF_(x, t) and F_(x, t) are in L2(-c, X) for finite X and
j-0, 1,..., 4. We formulate the results in two ways to allow some flexibility as to
whether we ask R_ to have many derivatives of slower decay or fewer derivatives of
faster decay.

This subsection will not be used until late in 5.
LEMMA 3.8. Suppose the function g has property A(A, N), namely

where

g6 CV(R) forN>=2,

A_>l, A(n)=>max (1, A -n}

Let G(x, t) be defined by

as Ikl- oo for n--0, 1,2,

as lkl--> oo for 3 <= n <- N

and A_->A(3) ->..._->A(N).

G(x, t)= J_ g(k) e8ik3’+2’k dk.

IfN >- A + 3/2, then for > 0
(i) ox G(x, t) O(Ixl as x --> -o for j O, 1, 2.

IfN > (A + 1)/2, then for > 0 there is a such that 0 < << 1 and
(ii) oxG(x, O(Ixl as x-->-oo, j=O, 1,2.
Proof. This proof requires the careful extension and correction of the Appendix

B of [13], i.e., a careful analysis by the method of stationary phase. I-1
Remark. Result (ii) gets a weaker result but requires less regularity in g for fixed

A. The following applications will be used in discussion of the L2 inverse scattering
problem in 5.

Application l(i). Suppose g satisfies A(A,N) with 5/2 < A <= 7/2, N=5, and
A(n)= 1 for 3=<n-<5. Then N=>A+3/2. Part (i) of Lemma 3.8 tells us that for t>0

OG(x, t)-- O(]xl--)/2-/4) O(IX] -A/2+1/4) as X-->--oO.

Since -A/2+1/4<-l, it follows that both xG(x, t) and Ixl t) are in L2(-oo).
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Application l(ii). Suppose g satisfies A(A, N) with A-3, N=3, A(3)= 1. This
requires more decay but fewer derivatives than the previous application. Note that
N> (A + 1)/2. By part (ii) of Lemma 3.8, if > 0, then

for some very small positive/. Thus, in this case also, both aG(x, t) and Ixl/ axG(x, t)
are in L2(-oo).

Application 2(i). Suppose that g C8() and that

g")(k) O(Ikl -o) as Ikl- oo for n O, 1, 2,

g(")(k) O([kl -o(n)) as Ik[- c for 3 <_- n <_- 8

where

o=+e, o<<1/2,

Ao(n) -> max { 1, Ao- n} for 3 =< n =< 8,

4= Ao(3) >= Ao(4) ->_’’’ >= Ao(8).
Let go g and gl g’. Then it is easy to see that go satisfies A(A, N) with A )to and
N 8. One can also verify that gl satisfies A(A, N) with A A1 4 and N 7. Since
8> Ao+3/2 we can apply Lemma 3.8(i) to get

O2Go(X, t) O(Ixl-(o-/-/4) as x- -m,

Since 7 > h + 3/2, we can also obtain

oxGl(X, t)= O(Ixl-(", as x -oo,

Recall that

It follows that

and

j 0, 1, 2.

j-0, 1,2.

1 +x Go(x, t),02Go(x, t):- Ol(X t)
3t

1 1 xa3xGo(x, t) =-6- OlxGl(X t) +- Go(x, t)+OGo(x, t),

1 2 Go(x,t)/ 2Go(t).04xGo(X, t)=- OxGl(X, t) +
2 x

3t
0 x,

03Go(x, t)= O(Ixl -’-(3/4)) as x-

04Go(X, t)= O(Ix[ -1-/2) as x-

We can conclude that for j=0, 1,..., 4 both OG(x, t) and Ixll/20xG(x, t) belong to
L2(-oo).

Application 2(ii). Suppose that g satisfies A(A, N) with h =6, N =4, h(3) =4, and
A(4) 2. Then since 4 > (6+ 1)/2, Lemma 3.8(ii) gives us

OJxGl(X, t)--O(lx[ -(6-j)/2-) asx--oo, j=0,1,2

for some small positive & Also g’ satisfies A(A, N) with A =4 and N 3. Since
3 > (4+ 1)/2, Lemma 3.8(i) gives us

OJxGI(X, t) O(lx[ -(4-j)/2-1/4) asx--c, j=O, 1,2.
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Thus

oLd(x, t)--O(Ixl -+z=-) asx-->-oo, j=0, 1,2,

03xG(x, t)= O(Ixl -/=-) as x--> -co,

04xG(x, t)= O(Ix1-1-) as x-* -.
It follows that for 1=0, 1,..., 4 both O{G(x, t) and ]xl 1/ O(G(x, t) are in L:(-o).

4. The regularity of the solutions of the Marchenko equation. The right-hand side
Marchenko equation is

io(4.1) B+(x, y) + fl+(x + y) + B+(x, z)fl+(x + y + z) dz O.

It is well known [1], [6] that if ll+ e Ll(+oo) fl L(+oo) and if e Ll(+oo), then 12+
generates a compact operator from LI(R+) to El(R+) and from L2(R+) to L2(R+) for
each x by

l-l+[f](y) f(z)fl+(x + y + z) dz.

Theorems 4.1 and 4.2 are similar to results in [4]-[6]. They are stated here in the form
used later.

THEOREM 4.1. Suppose n >-- 1. Suppose that 1)+ Cn+l (R) and that for all finite X
(i) la(s)l(l+ Isl) as <
(ii) /f O<- k<= n, then Ix II)(+k)(s)l ds < oo;
(iii) If O<- k<= n + 1, then sup{lL(x/)l:
(iv) Ix la"+l)(s)l+ds <

Then (4.1) has a unique solution B+(x,. in Ll([+) I1L2(R+). Further x B+(x,. is

(n + 1)-times Frechet-differentiable as a function from R to L2(R+). Moreover OB+(x, y)
is continuous in Rx[O, oo) for k <-n+l. Finally if k<-_n, then 0

L(R+) f’l L(R+).
Proof. Consider first the case n 1"
The existence of B+(x,. in LI(R+) is well known [1], [6]. We need to show (a)

that x--> B(x,. is twice ditterentiable as a function from R to Lz(R+), (b) that
OB+(x, y) is continuous on R OB+(x,. )e LI(R+) for
k=0, 1.

Since 12+ e Ll(+o) it is easy to check that x -> II+x is continuous in the uniform
operator norm on both LI(R+) and L(R+). Thus (I + [l+)-1 also depends continuously
on x in the uniform norm in (L(R+)). It is also easy to see that
into L(R+)"

Iosup la+[g](y)l_-< sup Ig(z)lla+(x+y+z)l dz <= sup Ifl+(s)l Ig(z)[ dz.
y->-O y>=O s>x z=0

It now follows from (4.1) that B/(x,. is in L(R+) as well as in L(R+). To see
the continuity of B+(x, y) we note

B+(Xl, y) B+(x2, Y2) -f/+(x, Yl) + [’+(X2, y2)

B+(x, Z){’+(Xl + Yl + Z) [’+(X2+ Y2 + z)} dz

{B+(x1, z) B+(x2, z)}fl+(x +y+ z) dz.
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Thus

IB+(Xl, y,) B+(x2, y=)l =< la+(x, + y,) l)+(x2+ y2)l
+ sup In -(s)l Ix, / Y,- x2- Y2I }B+(x, ,. )lc’
ss

+sup la+(s)l, IIB+(x,," )- U+(x=, .)llv
s

where somin {Xl +Yl, x2+y2}. The continuity of B+(x, y) as a mapx+ R now
follows easily.

For the rest of this section we will omit the subscripts "+" from B+, fl+, and +.
Where we intend B_ and fl_, the subscript "-" will appear.

Next we ask whether x B(x,. is differentiable as a map LI(+).
For h # 0, set

h(X,y) a(x++h)-a(x+)+ B(x,)a(x+Y+z+h)-a(x+Y+)
h =o h

dz

and for h 0, set

Note that

o(X, y) l’’(x + y) + B(x, z)12’(x + y + z) dz.

B(x+h,y)-B(x,y)
-(I + lO,+h))-l[h(X, )](y).

h

Clearly h(X, L(/) f"l L(/) for all h. Further h(X, o(X, in both L(+)
and L(+) as h 0. Thus

B(x+h, .)-B(x, .) -1 L’lim =-(l+ax) [o(X,’)] in (+)L(+)

Thus

OB(x, y) + OB(x, z)a(x + y + z) dz -o(X, y)
=0

-a’(x + y) B(x, z)a’(x +y + ) .
It now follows that OB(x, y) depends continuously on x and y.

Finally consider the map x OB(x,. as going from N to L(N+). We must show
that it is differentiable. Write B(’(x, y) for OB(x, y). For h 0, set

Oh(X," )= --(I + a+h))[ + h,. )- n(l’)(x, )]"
Since all Bl’(x, are in LI(+) 0 L(+) it follows that Oh (X,’) is in LI(+) 0 L(+).
Computation shows that

f B(x + h, z) B(x, z)
fl’(x + y + h + z) dzh(x,y)=O’(x+y+h) ’(x+y)+

h o h

+ B(,O(x ) a(x + y + h + ) a(x +y + )
h

&

+ B(x, )
a’(x + + h + ) a’(x + y + )

d.
h
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For h 0 set

Oo(X, y) f"(x + y) + 2 B(l’)(x, z)’(x + y + z) dz + B(x, z)f"(x + y + z) dz.

Our hypotheses and earlier results tell us that

,o(X," L2(R+) f’) L(R+).

Now we verify that 4’h(X,’)’g’o(X,’) in L2(+). As a function of y in R+,{fl’(x+
y+h)-l’(x+y)}/h converges to "(x+y) in L2(+) as h-)0. The remaining three
terms in Oh (X, y) are essentially convolutions. It is straightforward to verify the conver-
gence of the factors in these convolutions in L2(+). Thus, still in L2(+), @h(X," )-->
@o(X," as h- 0. Thus

B(")(x + h, )- B")(x,
lim -lim (I + (x+h))-lIh(X,
h0 h h0

So OB(x,. exists in L2(+) and satisfies

=-(I+ llx)-lqo(X, .).

B(x, z)lT’(x + y + z) dz.

The continuity of 02B(x, y) follows from analysis of this equation.
This proves the theorem for n 1. The method extends in the obvious way to

cases where n > 1. F1
THEOREM 4.2. Suppose that fl(x, t) has the following properties"
(i) For fixed > O, fl(x, t) is a C function of x, and

for all finite X.

(ii) The mapping - (., t) is differentiable both as a mapfrom (0, oo) to Ll(+o)
andfrom (0, oo) to L(+oo); x lOrrY(x, t) dx < oo, for finite X.

(iii) The mapping f(., t) is differentiable as a map from (0, oo) to L2(+),
x [OtOxf(x, t)[2 dx < oo for finite X.

(iv) For fixed t> O, the functions f(x, t), Ox(x, t), Ot(x, t), and OtOxf(x, t) are
in L(+).

(v) The functions mentioned in (iv) are continuous on x (0, oo). For each > O,
let B(x,., t) denote the solution of

B(x, y, t) -I- fl(x + y, t) -t- B(x, z, t)(x -t- y + z, t) dz 0,

which is the Marchenko equation with fl fl(x, t). Then
(a) The map - B(x, ., t) is differentiable both as a map (0, oo) LI(+) and as

a map (0,) L2(+). Further both B(x, y, t) and OrB(x, y, t) are continuous in x
[0, ) x (0, ).

(b) The map t--OxB(x,., t) is differentiable as a map (0, oo) L2(R+), and
0tO,B(x, y, t) is continuous in x O, oo) x (0, oo).

OB(x, y) + OB(x, z)l’(x + y + z) dz -f"(x + y) 2 B(l")(x, z)ll’(x + y + z) dz
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Proof. By hypotheses we have ll(x, t) L(+oo) and O,,l’(x, t) L](+oo) for each
fixed > 0. Therefore the solutions B(x,., t) exist in L(/). The continuity of B(x, y, t)
follows immediately, as does the existence and continuity of O,B(x, y, t).

Let 11 denote the operator ll[g](y)= o l’l+(x +y+ z, t)g(z) dz.
We use again the methods of the previous theorem. For h # 0, one gets

B(x, y, + h) B(x, y, t) f B(x, z, + h) B(x, z, t)
h

+ J=o h
f(x +Y + z, + h dz

where

=--h(X, y, t)

l’(x + y, + h)-fl(x + y, t)
h(X’y’t)=

h

+ B(x,z,t)
a(x+y+, t+h)-ll(x+y+, )

d.
h

We have assumed that the map - ll(., t) is differentiable in L(+m). Therefore as
hO, h(x, ", t) converges in L(N+) to

o(X, y, t) Ota(x + y, t) + B(x, z, t)Ota(x + y + z, t) &.

It is easy to see that h(X,’, t) o(X,’, t) also in L(+), whence in L:(+) as well.
Now we have

B(x,.,t+h)-B(x,.,t)
(I + a+h)-l[--h(X ", t)].

h

The operator (I+ +h)-I depends continuously on h in the operator norms on both
L(+) and L2(+). So

lim
B(x, + h) B(x, t)

(I +t)-[-o(X,x ., t)]
hO h

in both spaces; equivalently O,B(x,., t) exists in L(+) L2(+) and satisfies

oB(x, y, ) -a,(x + y, t) B,(x, , )a(x + + , t) &

B(x, , t)a,(x + y + , t) dz.

From this it follows that O,B(x,., t) is in L(N+) and that OB(x, y, ) is continuous in
x [0, ) x (0, m).

Next we study the map OB(x,., t). Set

h

Computation shows that

h(X, y, t) {a(’(X +y, + h) a(l’(x +, t)}/h

+ B(x,, t){a(x+y+, t+h)-a(x+y+, t)}h- &
+ B(x,,t){a(,(x+y+z,t+h)-a(,(x+y+,t)}h- dz
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+ {B(x,z,t+h)-B(x,z,t)}h-lf(l’)(x+y+z,t+h)dz.

Clearly as h->0, we get the convergence h(X, ", t)-> o(X, ", t) in L2(R+), where

XIto(X, y, t) OtOxfl(x + y, t) + Bx(x, z, t)fl(x + y + z, t) dz

+ B(x, z, t)flx,t(x +y+ a t) dz

+ B,(x, z, t)a(x +y+ z, t) dz.

Thus B,(x,., t) is differentiable in L2(R+) and

OtOxB(x, y, t)+ OtOxB(x, z, t)a(x +y + z, t) dz -Oo(X, y, t)

whence OtOB(x, y, t) is continuous and belongs to L(+) as a function of y.
We next investigate the consequences of a stronger decay assumption on ’(x),

namely that there is an a 1 such that

I ’(x)l(1 +lxl dx < for all X in .
x

We make use of an inequality of Faddeev’s [6, p. 160]

(4.2) In(x) + OxB(x, 0) C(x) la’(t)l dt

where C(x) is a nonincreasing function of x.
LEMMA 4.3. Suppose that e L(+) and ’ e L(+) with a 1. Let B(x, y) be

the solution of (4.1) and set u(x) -OB(x, 0). en u e L(+).
Proof Because of (4.2) it suffices to prove that

Q y" In’(t)l dt dy <
t=y

for x=>0.
Now

Q y’ la’(t)l at la’( )l ds dy
=y =y

[l’l’(t)[ Ifl’(s)[ y dy ds dt + II-l’(t)l [a’(s)l y" dy ds dt
=t

1
a+l

If’( t)lt(+1)/2 l)’(s)ls(+1)/2 ds dt

since (a+l)/2_-<a. /q

5. The existence theorem for KdV; properties of the solution. In this section we
describe the properties of the function u(x, t) constructed by the inverse scattering
method and establish the sense in which it solves the problem (1.1), (1.2).
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THEOREM 5.1. Suppose that U L(R) and that U L(R+) for some N_-> 11/4.
Then there is a classical solution u(x, t) of KdV in > 0 such that

(i) OxO U (X, t) is continuous in x for each positive when 0 <-_j + 3 k <- 2N 3;
(ii) u( t) U in H-I(+o) as t- O.
(iii) xnOu(x, t)O as x+c for O<-_n<-_S+1/4-(j+ l)/2.
Proof. For each fixed positive we consider the Marchenko equation

(5.1)

where

and

B+(x, y, t) + f+(x + y, t) + f+(x + y + z, t)B+(x, z, t) dz 0
=0

l+(x, t) F+(x, t) + 2 c+j e-2x+st
jJ

F+(x, t)= 7r- J-o R+(k) e8’’+’ dk.

This F+(x, t) F(x, t)+ F2(x, t) as in {} 3. By appealing to Lemmas 3.3, 3.4, 3.5 and
to the hypothesis N >= 11/4 we conclude that

(a) d,,l-l+(x, t) L(+o),
(b) O,l+(x, t) L’(+) for 0_-< v<=2N-1/2,
(c) 0O/(x, t) L(+) for 0<_- v-<_2N+1/2, and
(d) O+fl+(x, t) L2(+o) for 0 -< v-<_2N-3/2.

Note that N > 11/4 implies that 2N-3/2=>4. Thus our kernel II/(x, t) satisfies the
hypotheses of Theorem 4.1 with 1 <-n <-2N-. So we obtain a solution B/(x, y, t) to
(5.1) such that

B+(x,., t) LI(R+) CI L2(R+).
O,B+(x, y, t) is continuous for (x, y) in (0, o) if _-< n + 1.

O,B+(x,., t)Ll(R+)f-lL(R+) if0v<_-n.

Let u(x, t)=-O,,B+(x, O, t). We must now show that u(x, t) is the desired solution of
KdV.

In addition to properties (a)-(d) of 1+ wc know that in the distribution sense

atl)+(x, t) + o,l+(x, t) 0 for > 0, x 6 .
Since N_-> 11/4, and thus 2N-1_->4 we conclude that l+(x, t) and O,f+(x, t) are
continuously ditterentiable with respect to t, and that

OtiS+(’, t) -03,,1+( t) L(+o) (q L(+o),

0,axe+( , t) -a4xf+( t) L2(+c) I"1 L(+).

In order to apply Theorem 4.2 we need finally to check that f+(., t) is differentiable
in L(+c) for > 0; but this follows from the continuity and decay rate of 1", -fxx.

By applying Theorem 4.2 we now learn that

OtB+(x, ", t) LI(+) n L(+),
O,OxB+(x,., t) L2(+) t"1 L(R+),

and further that all oJ,,oB+(x, y, t) are continuous in R x[0, c)x (0, c) for j+3k <-

2N-2.
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For fixed positive t, it is clear that u has the regularity (i) and the decay rate (iii).
The proof that this function u(x, t) satisfies the KdV equation (1.1) in > 0 follows
Tanaka’s argument in 17]. The condition N _-> 11/4 gives enough regularity to justify
the formal argument.

To prove (ii) we show that u(x, t)--> U(x) in H-I([x, )) as t-->0 for each finite
X. Since B+(x, O, t)= u(s, t) ds for t_-> 0 we must show that B+(x, O, t)-> B+(x, O, O)
in L2([X, o)) as t--> 0. From the Marchenko equation (4.1) we obtain

where

B+(x, O, t)- B+(x, O, O)=-Ql(x, t)- QE(X, t)- Qa(x, t)

Q(x, t)= +(x, t)-+(x, 0),

Q2(x, t) (B+(x, z, t)- B+(x, z, 0)tfl+(x + z, t) dz,

Q3(x, t) B+(x, z, 0){l)+(x + z, t)- 12+(x + z, 0)} dz.

One easily sees that Q(x, t)--> 0 in L-([X, o)) as t--> 0.
Next we show Q3(x, t)-> 0 in L2([X, o)) as t-->0 by showing that

(5.2) liO3(’,
For any h e L2([X, ))

ix h(x)Q3(x, t) dx h(x) B+(x, s-x, O){fl+(s, t)-+(s, 0)} ds dx

_--< la+(s, t)-a+(s, 0) Ih(x)B+(x, s-x, O)ldx ds
=X =X

-<-I1+(’,

Ih(x)N+(x, s-x, 0)1 dx ds
=X =X

Letting denote the second factor, we have

,:t, _-< Ih(x)l2 dx [S+(x, s x, 0)12 dx ds
=X =X =X

_-< Ilhllt,> IB+(x,s-x,O)l dxds
=X x=X

From Tanaka’s paper 17, 1 we have

IB/(x,y,O)I<--K IU()ldz forallx>--X, y>-O,

whence

Thus

IB/(x, s- x, o)l K u(z)l dz for all x >-_ X, s >- x.

_-< Ilh II.(tx,oo K U(z)l dz
=X =X

dx ds) 1/2
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whence tIl__< CIIhll=t, where

c-g g(w)l dw (z-X)=lg(z)l dz < oo.
=X

Now (5.2) follows since h was arbitrary.
Finally we look at Q2(x, t): One finds

Q=(x. t)[[ -,2(rx,oo)) =< [B+(x, a t)-B+(x, z, 0)12 dzdxllQ(. t)[[
=X =0

The second factor is bounded as 0, so we look at the first factor, (t).

B+(x, z, t)- B+(x, z, O)=-Q4(x, z, t)- Q(x, z, t)

where

Q4(x,., t) (I + tx)-l[-+(x --i- [. ], t) +(x --t- [. ], 0)]

and

Qs(x, ", t)= [(I + li)-’-(I+ IIx)-’]fl+(x +[. ], 0).

Thus

s(t) IIQ4(x, ., t)/ Q,(x, ., O)ll(/) dx<=2 (llQ,(x, ., t)ll=/ llQ,(x, ., tll) dx.

There is a bound M such that

II(+a’)-’llo.:/_-<M forX_-<x-<oo, 0_<t_<l

because the operator depends continuously on (x, t) and the kernel decays fast enough
as x +. Thus

Q4(x, ", t)ll,/ <= M la/(s, t)-fL(s, 0)[2 ds

and

IlO4(x, ", t)l[2 dxM (s-X)l/(s, t)-m(s, O)l= ds.

By the form of 12+, fl+ F/ + G+ in 3.1, we need only show

t)-F+(s, 0)12 dsO as t->0.

We already know F+(s, t)- F+(s, 0) in L2(R) so it suffices to show c+, s=lF+(s, t)-
F+(s, 0)l2 dsO. By Proposition 2.5 we know R+CI(R) and R+(k)=O(k-) as
k +oo. We may therefore follow Kappeler’s proofofTheorem 3.1 (iv) in [9] to conclude
that sF/(s, t)- sF+(s, 0) in L2(+oo) as t-0. It remains to make x Q(x.., t)ll - dx-+Oas 0. But, using L2 norms on fl+,

Q(x, ", t)ll II(I/ a)-’(a-a)(I+a)-’ o,,llm(x /[. ], t)ll

<-- Mlla-a’xllo, lltl+(x +[" ]. t)ll.
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The last factor is bounded as t--> 0 so

which we have already seen goes to 0 with t.
This completes the proof of Theorem 5.1. [q

Under certain additional hypotheses we can also study u(x, t) as x-->-.
THEOREM 5.2. (i) Assume that U L(R), that N >- 5, and that R_n)(k) O(Ikl

as k --> +cfor n O, 1, 2 and some A > 5/2. Let u(x, t) be the solution to KdV with initial
profile U in the sense ofTheorem 5.1. Then u( t) evolves in L2(R) for > O. IfN >= A + 2,
then -oo lu(x, t)l=lxl= dx < for any a with A -3/2 > 2a ->_ 1.

(ii) Suppose that U satisfies the hypothesis of Theorem 5.1, that Rf)(k)= O(k-3)
for n =0, 1, 2, and that R)(k) O(k-). Let u(x, t) be the solution of KdV given by
Theorem 5.1. Then u(x, t) evolves in L2() for > O.

Remark 1. The purpose of the extra hypothesis is to allow use of the left-side
Marchenko equation as well as the right-side one, and thereby to study u(x, t) as
x-->-. Sachs did not treat this point. Kruzhkov and Faminskii also show evolution
in L2(), but they consider weighted L2 norms only on +, and their construction is
not conducive to analysis of the long time asymptotics of their solution.

Remark 2. For U in L() it is known that additional regularity of U is a
sufficient condition for additional decay of R_(k). For example, from [4] one learns
that if U(x) is absolutely continuous, U’(x) is piecewise absolutely continuous,
U L(R), U’ L(), and U" L4(), then the hypothesis of (ii) is satisfied. Another
example [20] shows that if xOU(x) is in L() for 0<-m<-4 and 0_<-j_-<4, then the
hypothesis of (ii) is also satisfied.

Proof. (i) We consider the solution u(x, t) provided by Theorem 5.1. We know
from 3 that for > 0

OxF+(x, t)= o<lxi
OF_(x, t)= O(Ixl -x/+1/4)

as x --> +,

as x--> -.
The same decay rates hold for 0,1"1+, 0xfl_. By the forward scattering theory [5], [6]
all hypotheses of Theorem 3.3 in [8] are satisfied at each > 0. Thus we conclude by
Theorem 3.9 of [8] that

u(., t)=-0xB+( ", 0, t)= O,,B_(., O, t)

in Loc() for each fixed positive t, where B+ and B_ are the solutions of the Marchenko
equations

B+(x, y, t) + fl+(x + y, t) + B+(x, z, t)l)+(x + y + z, t) O,
=0

B_(x, y, t) + l’l_(x + y, t) + B_(x, z, t)fl_(x +y + z, t) 0

in L(R+) and LI(-), respectively.
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In the generic case u(x, t)=O([x[ -r+l+) as x->oo for 0<e<< 1/2. In the excep-
tional case u(x, t) O(x-++) as x for 0 < e << 1/2. Since N _-> 5, u(., t) L(a+).
If we know that both A > 5/2 and N_->A +2, then we can pick a so A -3/2> 2a ->_ 1
and conclude that

since 2a + 2(-N+2e) < 1.

Isl="lu , t)l- ds < oo

If we take a so A-3/2> 2a _-> 1, then by Kappeler’s Theorem 3.9 [8] we get

t)l < for t> 0.

Since 2a _-> 1 we get -- [u(s, t)[2 ds < c also. But since u(x, t) is in Ll(+o) f’l L(+)
we can conclude that

_
lu(s, t)l2 ds <, and further that u(., t) LE(R-).

The proof of (i) is completed by combining results on R+, -; the proof of (ii) is
similar.

THEOREM 5.3. For N->3, assume that U LI() if U is generic, but that U
L]v+l() if U is nongeneric. Let u(x, t) be the solution of KdV provided by Theorem 5.1.
Recall B+(x, O, t)- u(z, t) dz. Then

(i) For O<-n<-_N-l,x"B+(x, O, t)->x"B+(x, O, O) in L2(+c) as t->0;
(ii) For each n with 1 <= n <- N 1, if (1 + x

x’U(x) in L(+c) as t->O for all a with 0_-<a_-<n;
(iii) For each n with 1-<_n-<_N-1, ifboth (l+x")U(x) and (l+x)U’(x) are in

L2(+), then also xOxu(x, t)-> xU’(x) in L2(+c) as t->O for all with 0<-_ a <-_ n.

Proof. Because R+(k) is at least C and R’+(k) is O(k-1) as k-> +c, the proof
of (i) may be taken over from the proof of Kappeler’s [9, Thm. 3.1]. We prove (ii)
below; the proof of (iii) is similar.

Start with the representation

u(x, t)- U(x)=Oxfl+(x, t)-Oxfl+(x, O)

+ {B+(x, z, t)- B+(x, z, 0)}0l)+(x + z, t) dz

+ B+(x, z, 0){dxfl+(x + z, t) -0D+ (x + z, 0)} dz

+ {OxB+(x, z, t)-O,B+(x, z, 0)}fl+(x + z, t) dz

+ O,,B+(x, z, O){l)+(x + z, t)- lI+(x + z, 0)} dz,

which is based on the Marchenko equation. Call the five terms on the right T(x, t)
for z,= 1,... ,5. We must show that xT(x, t)-->O in L:([X, oo)) as t->O for arbitrary
X and u 1, , 5. We do this by assuming three technical points which will be stated
when first used but not proved until the end.

Since xU(x)eL(l) for O<_-aNn, Proposition 2.7 tells us that kR)(k) is in
L2(I) for 0 <= a < n, and that R)(k)+ is in L2([) for 0 <= a < N. Thus

X’F+(x) L2() for 0_-< a =< N,
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and

xOxF+(x) L2() for 0-< a <-_ n.

By Kappeler’s method of proof [9, Thm. 3.1] one may show that if 0-</3 _-< n, then

(5.3a) x+(x, t) xf+(x, 0) in L2(+o) as t- 0

and that

(5.3b) afl+(x, t) --> 0[l+(x, 0) in L2(-+-oo) as t--> 0.

The convergence of XTl(X, t) to 0 in L2([X, )) as --> 0 is one part of our first technical
result:

Point 1. If 0-< a _-< n and X is fixed, then

(5.4) XOxll+(x, t)--> xOl+(x, 0) in L2([X, (X3)) as t--> 0,

(5.5) [xl2 10,a+(s, t)--Oa+(s,O)[ dx-->O as t-->0.

Looking at T2(x, t) we see

Ix Ix { IoIxr:(, t>l: dx <- Il ]+(x, , t-Z+(x, , o>[: d

]xl 10a+(x+ z, t)l dz dx

(io_-< [xl [,/(, , t)-,/(, , ol d dx

Ixl= laxf+(x+ z, t)l= dz dx

The second factor is bounded as t-0 by (5.4). Part of our next technical point tells
us that the first factor vanishes as t- 0:

Point 2. Fix X. Then, as t- 0,

(5.6) B+(x,., t) - B+(x,., O) in L2(+) uniformly for x -> X,

(5.7) Ixl2 IB+(x,z,t)-B+(x,z,O)12dz dxO forO-<a<-n.

Looking at the third term we see

Ix fo[xr(x, t[ dx<- [xl I’/(, z, o)ld

Ixl Ioa/(+, -Oxa/(+ a o1 a a

(fX (IoX)2_-< Ixl= In+(x, z, 0)1= dz dx

Ixl= 10n+(x/ z, t)-oxn+(x/ z, o)1= dz dx
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The first factor is finite by (5.6). The second factor vanishes because of the form of
l+ and result (5.5).

For the fourth term, we see

Ix’T4(x, t)l dx <- Ixl" IOxB+(x, z, t)-OxB+(x, z, O)l: dz

I1 la/(+,ll

<= Ix[ IOxB+(x, z, t)-OxB+(x, z, 0)12 dz dx

Ixl a.(x+, , )1 d dx

The second Nctor is bounded as 0 by Point 1. The first factor vanishes by the final
technical result:

Poin 3. As 0

(5.8) OB+(x, a t) OB+(x, a 0) in L(N+) uniformly for x e X,

(5.9) Ixl Io+(x,,)-o.(x,,o)ld dxO for0.

Finally,

)Ix"T(x, t)l dx <- Ix[ IOxB+(x, z, 0)12 dz

I1 In+(,+ z, t)-n+(+ z, 0)l: az d

Ix Io.(x, a o1 e ex

(IoIxl:" I+(x + t)--+(x + z, 0)l: dz dx

Point 3 says the first factor is finite; the second factor vanishes by (5.3a).
To complete the proof of Theorem 5.3 we must now prove three technical points.

Recall that

O+(x, t)= F+(x, t)+2 E c+ exp (8t-2x).
Thus for Point 1 it suces to prove

Point l’.If0un,lnN-landXe,thenas t0

(5.4’) xoF+(x, t) xoF+(x, 0) in L:([X, )),

(s.5’ I IoF.(, -o+(, ol a axO.
x

oof of (5.4’). It suces to treat 0 and n. Recall that

(5.o o.(x, - [ i.( e*’k
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By Proposition 2.7 we know 2ikR (k) is in L2(R). It follows that O,F+(x, t) OxF+(x, O)
in LE(R) as --)0. It is the exponential terms in Oxl+(x, t) that restrict the convergence
(5.4) to hairlines. This takes care of the case a 0. Next we take 1 -< a n _-< N- 1. By
the case a 0 we know

xOF+(x, t) xOF+(x, O) in Lo.
Thus it suffices to prove

xoxF/(x, t)- xoF/(x, O) in L2([2, oo)).

Set (k)= 2ikR/(k) in (5.10). Note that

OxF+(x, t) 7r
-1 (k) 2i(12k2t + x)

C9[ e8ik3t+2ikx]
Ok

dk

(_l)Tr_l f_oo 0 [ (k)][e8ik3t+2ikX]dk.- 2i(12kEt+x)

Repeating this procedure one finds

OxF+(x, t)= (-1)’Tr-11_oo ff’[] e8ik3t+2ikx dk

where 3-[g]=Ok[g/12i(12k2t+x)]. Now ff[] is a linear combination of terms of
the form

()(k)kt
(12k2t+x)+ where 0__< h _-< a, 0-</z -< u,

Since x’OxF+(x, t) is a linear combination of the terms

f?oo k x
Ix,.,(x, t)= tTr-’ 5’(k) (12k2t+x),+

e8ik3t+2ikx dk,

it will suffice to show that as 0

Ia,,,(x, t)-) Ia,,,(x, O) in L2([2, )).

Case v > 0. Here we need I;,,,(x, t) 0 in L2([2, o0)). Since h =< a n =< N- 1 we
know (a) L2(R). For each let W(x, t) denote the inverse Fourier transform of
(a)(k) exp (8ik3t). Now we can see I,,, as the result of a pseudo-differential operator
acting on Wx. The symbol

k,x
p,,(x, k) (12k2 + x)+

has the property that there is a C such that

[o’Oxp.,(x, k) <- C for x _-> 1, 0 _<- <_- 1.

Choose a nonnegative C cutoff function st(x) such that ’(x)=0 for x_<0, ’(x)- 1
for x >_- 2, and 10x" ’(x)[ _-< Mo for all m N. Now for x >- 2

Ix,,(x, t)= t-l[(x)p,,(x, t)ff[ W (x, t)]].
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By a result of Calderon and Vaillancourt (as present in [18, Thm. 3.1, p. 347]) we
see there is a constant Mx independent of for 0-< t-< 1 such that

t-l[(x)p,,(x, t),;[ Wx (x,

Thus, as required, Ix,,,(x, t)-->0 in L2([2, oo)) as t-> 0.
Case v 0. Since 0 =</x-< v, we must show

Ix,o,o,(X, t)--> Ix,o,o,(X, 0) in L2([2, oo)) as t 0.

Now

1 dk
X

Ia,o,o,(X, t)- Ix,o,o,(X, 0) 7r- x) (k) (12k_ + x)
e8ikat e2ikx

+ 7r- (a)(k) (12kii_x).- 1 e2’k dk

1] is in L2([). Apply the same result of Calderon and Vaillancourtand (a)(k)[e8ik3t

to obtain

(X)(k)[e8’k3’-l]’(x) 12k2t+x)
e dk

<= Mlll(X)(k)[e8’k3’

the right side of which clearly goes to 0 as 0. The second term in the difference
Ix,o,o(X, t)- Ix,o,o(X, 0) is treated similarly to complete the proof of (5.4’).

In proving (5.5’) we may assume XI. Let E(x, t) denote
aF+(s, 0)1 ds. We must show

xlxlE(x,t)dxO

as tO.

Divide the integral at x 1. Clearly

x

(x Io.(s, oF+(s, o1 as ax

(x (s-Xo+(s, -o.(s, o as,
=X

which goes to zero by (5.4’). Next

ax {x(x, t(x, x

slo.(s, -o.(s, o1 as (x, t x

slo+(s, -o.(s, o1 as (x, ax.
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The first factor goes to zero by (5.4’). The second also does since

E(x, t) dx (s- 1)lOsF.(s, t)-OsF+(s, 0)12 ds.

This completes the proof of Point 1. l-]

Point 2.
(i) B/(x,., t) - B/(x,., 0) in L2(R/) as 0 uniformly in x => X;
(ii) 1 Ixl=lln/(x,’,t)-’n/(x,’,O)ll4=* dx-’o ast0 for0_-<a-<n.

Proof. We have

IIn+(x,., t)- B+(x,., o) II,_.+)

(5.11) <= Co(x)[ll]+(x +[. 3, t)-+(x +[. 3,

+ I1(I +

where Co(x)=sup {11(I+ ’)-’llo," x_-< w, 0-< t_-< 1}. Co(x) is finite and nonincreasing.
We show that each term on the right of (5.11) vanishes as t->0. First

sup {lln+(x +r. 3, t)-fl+(x +[. ], 0)llk=+): x_-> x} =< In+(, t)-fl+(s, 0)l ds,

which, as we have already seen, vanishes as t-> 0. Second,

[[(I +

- Co(x (y-xla/(y, -a/(, o1 a
Thus

sup {ll(I+ a)-l- (I+ a)-’llo, x>-X}

<-_ Co(X) (y-x)lf+(y, t)-n+(y, 0)12 dy

which vanishes as t0 by Point 1. This completes (i). Because of (i) it suces to
prove (ii) for X 0. Now by (5.11)

IlB+(x,.,t)-B+(x,.,O)l[ 4

C,(x la.(, -a+(, o1 a

+ Co(x) (y-x)la+(y, t)-a+(y, 0)l: dy la+(s, 0)l: ds

where C(x) and C:(x) are nonincreasing. Now first

(ixIxl: Im(, t)-m(, o)1: d & lm(, t)-m(, o)1 d

lm, t-m, 01 d d. lfl+, t-m, 01 d
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Sa+II"+(S t)-+(s, 0)12 ds" s’ll+(s, t)-fl+(s, 0)12 ds,

which goes to 0 as t--> 0 by (5.3a) since a <_-N-1. Next, we see

Io (Ix (ixIx[ TM (y-x)[fl+(y, t)-l’L(y, O)l2 dy Ifl+(s, O)l- as
(y-x)ln+(y, t)-fl+(y, o)l dy s’ ln+(s, o)l

<= K- yll’l+( y, t)-ft+(y, 0)12 dy ylO+( y, t)-fl+(y, 0)12 dy dx

K2 ylft+(y, t)-fl+(y, 0)[2 dy ylO+(y, t)-D.+(y, 0)12 dy.

Both of the last two factors go to 0 with by (5.3a). This completes part (ii).
Point 3.
(i) OxB+(x,., t) -> OxB+(x,., 0) in L2(R+) as -> 0 uniformly in x _-> X;
(ii) x IxllloB+(x, ", t)-OxB+(x,., O)[[2<a+) dx->O as t->O for O=< a _-< n.

Proof. One may verify that

4

(I + [lt)[OxB+(x, ", t) -OxB+(x ", 0)] E Q(x, ", t)
v-----1

where

Ql(X, ", t) [(l + l’l)-(l + II)]OxB+(x, ", 0),

Q2(x, y, t)=Oxfl+(x + y, t)-Oxfl+(x + y, 0),

Q3(x, y, t) {B+(x, z, t) B+(x, z, O)}0xfl+(x + y + z, t) dz,

Q4(x, y, t) B+(x, z, O){Oxfl+(x +y+ z, t)-Oxfl+(x +y+ z, O)} dz.

< Co(X) for all x > X, 0 < < 1 it suffices to prove for each v thatSince II(l + a)-’llop
as t->0

(i) Q(x,., t) --> 0 in L2(R+) uniformly for x ->_ X, and
(ii) c Ix[2’[]Q,(x, ", t)ll2<+) dx-->0.
Case t, 1.

IlQl(x," t)[l<+) --Ilag-all = IloB+(x," 0)11 ==op L (1 )"

SO

sup {ll,(x, ., t)[l2(+): x > X} < K

which goes to 0 with by (5.3). Thus (i) holds.
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Ixl=llQ(x, ", t)ll’ dx<=K x2 slO+(s t)-fl+(s, 0)12 as dx

K x2 sla.(s t)-a+(s, 0)12 ds

X
:-2 sln+(s t)--n+(s,O)l2 ds &

K s31n+(s, t)--n+(s, O)l as
=0

-la.(, -a+(, 01 aa

la.(, -a+(, o1 a la+(, -(s, 01 a,

which goes to zero with by (5.3) since N3 says 3/2N n N N-1. This finishes (ii).
Case 2. This follows directly from Point 1.
Case 3.

[[Q3(x, ", t)[[(+)= {B+(x,z, t)-B+(x, a O)}Oxa+(x+ y+z, t) dz dy
=0 =0

< IIB+(x," t)-B+(x, o)ll = 10a+(s, t)l dsdyL2(+)
=0

IlB+(x,., t)- B+(x,., 0)11 (-x)loxn+(s, t)l2 ds.

Convergence (i) follows by Point 1 and Point 2. For (ii) note

o
Ixl= Q3(x, ,, t)ll 4 dx

Ixlll+(x,., )-B.(x,.,o)ll (-x10a+(,la a.

Since B+(x,., t) B+(x,., 0) in L(N+) uniformly in x 0 we check the boundedness
of the rest:

Ixl (-xloa.(, 1

= lo,n+(, t)l a - lon+(, t)l as

s31a,n+(s, t)l= ds s=lan+(s, t)l= ds.

Both factors are bounded for 0 1 by Point 1.



1024 A. COHEN AND T. KAPPELER

Now

sup {ll Q4(x, ", t)ll=: x-> x} < sup {llB+(x,., 0)11 =" x > X}

which goes to 0 by Point 1. Further

’lxl=’llQa(x,., t)l] 4 dx

x=X
(s-x)la,f+(s, t)-om(s, o)l: ds

2

The second factor is finite and the first goes to 0 by Point 1.
This finishes the proof of the last of the three technical points needed to complete

the proof of Theorem 5.3. [q
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ON A COUPLED REACTION DIFFUSION SYSTEM WITH TIME DELAYS*

C. V. PAOt

Abstract. In a two-compartment model for cellular control by repression there arises a coupled system
of reaction diffusion equations which governs the densities of the chemical species in the compartments.
The reaction mechanism in this model is affected by time delays and the coupling of the equations is through
the interface of the two compartments. The purpose of this paper is to give a qualitative analysis of this
unusual coupled reaction diffusion system with time delays. This analysis includes the existence and
uniqueness ofa global time-dependent solution and the corresponding steady state solution, iterative methods
for the construction of the solution, and local and global stability of the steady-state solution. Also included
is the uniform boundedness of the solution.

Key words, reaction-diffusion equations, upper-lower solutions, time-delayed equations, existence-
uniqueness, stability

AMS(MOS) subject classifications. 35K60, 35R10, 35K20

1. Introduction. In the compartment analysis of certain biochemical reactions
there arise some mathematical models which are governed by a coupled system of
differential equations with time delays. A well-known model for biochemical control
of genes was first proposed by Goodwin [3], [4] and later analyzed by many authors
(e.g. [1], [5], [7]). Goodwin’s model was recently extended to a two-compartment and
a three-compartment model where the spatial effect of diffusion is taken into consider-
ation (cf. [6]). This extension leads to a coupled system of parabolic partial differential
equations with time-delays. A mathematical analysis for the three-compartment model
has been given in [8] where the time-delays only appear in the ordinary differential
equations. However, in the two-compartment model the time-delays also occur in the
parabolic equation which is coupled with an ordinary differential equation through
the interface of the two compartments. This yields an unusual coupling system of
reaction diffusion equations. To include possible spherical or cylindrical interface
between the two compartments, we consider a multi-dimensional diffusion medium II
in m(m--1, 2,"" ,) for the second compartment. In this situation the system of
reaction diffusion equations is given by

Ll[U]= (u)t +(al + b)Ul alu:z+f(vl(X, t- r))
(1.1a) (x F1, t>O),

’1[/)1] (/)1), -- (a_ + b2)vl a2v:

L2[u2] -= (u2),-D1V2u2 + blU 0
(1.1b) (xO, t>O)

z[v:] =- (v2)t D_V:v:+ bv:= g(u2(x, t- r:))

where V2 is the Laplace operator and F1 is the interface between the two compartments
(see [6] for a derivation). In the above equations, (u, Vl) and (u2, v2) represent the
densities of the chemical species in the first and second compartment, respectively, ai
and bi (i 1, 2) are the various reaction rates, Di is the diffusion coefficient, ri is the
time-delay, and f and g are, in general, nonlinear reaction functions with time-delays.
On the interface F, the concentrations (u, vl) and (u2, v2) are related through the

* Received by the editors October 29, 1984; accepted for publication May 22, 1986.
t Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695.
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boundary condition

au2
Ov

(1.2a) (x E El, > 0),

where 1 and/32 are positive constants and a/av is the outward normal derivative on
of/. On the nonintersecting boundary surface F2 the concentration (u2, v2) is required
to satisfy the no-flex boundary condition

(1.2b) Ou2 O, zv---- 0 (x F2, > 0).
Ov Ov

In view of the time-delay the initial condition is given in the form

Ul(X O) I(X), /)I(X, t) ’/l(X, t) (x e F,, -T, -< --< 0),
(1.3)

UE(X, t) SeE(X, t), 2(x, 0) /2(x) (x 1), -T2 ----< _--< 0).

Throughout the paper we assume that 1) is a smooth bounded domain in m, the initial
functions :, h are continuous nonnegative in their respective domain, and f and g
are cl-functions on /--[0, ). Of special interest are the reaction functions

(1.4) fo(v) tro(1 + kov)-1, go(u2) 0U2,

where tro, ko, p and Co are positive constants (cf. [6]). Notice that when fl is the
one-dimensional interval (0, l) and f and g are given by (1.4), problem (1.1)-(1.3) is
reduced to the model given in [6].

The purpose of this paper is to study the existence and stability problem of the
system (1.1)-(1.3) and its corresponding steady-state system. Our discussion includes
the existence and uniqueness of global time-dependent solution and steady-state
solution, method of construction of these solutions and the stability property of
steady-state solutions. Also included is the uniform boundedness ofthe time-dependent
solution. In 2 we use the method of upper-lower solutions to establish an existence-
comparison theorem for the problem (1.1)-(1.3) and to construct some explicit upper
and lower bounds of the solution. Through suitable construction of upper-lower
solutions in 3 we give some sufficient conditions which ensure the local stability and
global stability of a steady-state solution. The existence and uniqueness of a steady-state
solution is discussed in 4 where similar upper and lower bounds of the solution are
also given.

2. The existence-comparison theorem. In this section we investigate the existence
and uniqueness of a global solution to the time-dependent system (1.1)-(1.3). The
basic tool for the existence problem is the monotone method and the associated
upper-lower solutions for coupled reaction diffusion systems (cf. [9]). The construction
of the monotone sequences and the definition of upper-lower solutions depend on the
quasi-monotone property of the reaction functions. Motivated by the reaction functions
given by (1.4), we make the following basic assumptions.

(H) f(/)_->0, g(/)->0, f’(/)_<-0, g’(/)_->0 for7_->0.

The main hypothesis in (H) is that f(v) is monotone nonincreasing and g(u2) is
monotone nondecreasing on [0, a3). With this monotone property of f, g we have the
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following definition of upper-lower solutions. For notational convenience, we write
(ui, vi) to represent the function (Ul, Vl; u2, rE).

DEFINITION 2.1. A pair of smooth functions (, ), (.ui, .vi) are called upper and
lower solutions of (1.1)-(1.3), respectively, if they satisfy

(i) The differential inequalities:

L,[,]-[al2+f(l(X, t--rl))] >--0>= Ll[.Ul]-[al.u2+f(l(X, t-rl))],

(2.1)
,[t,] a2t2 -->-- 0 -->_ ,[.v,] a2.v=,

t[a] >_- o_>- t[

2[t;2]- g(t2(x, t- r2)) ->-- 0>- 2[.v2]- g(.u2(x, t- r2));

(ii) The boundary inequalities:

[2] #2tl 0 [2]
(t> O, x F1),

(2.2)
0/2 0/’/2
_>0>_ "--

02>=0>=
(t > O, x E F2);

(iii) The initial inequalities:

(2.3)

/,I(X 0) I(X) > 0 > I(X 0) I(X)

I(X t)--n,(X, /)--> 0>--.t)l(X, t)--n,(X, t)

t2(x, t) 2(x, t) _--> 0 --> .u2(x, t) sc:2(x, t)

(x, o) n(x).>- o >= v.(x, o) n(x)

(X E F1, [--rl, 0]),

(x l), [--r2, 0]).

Here by a pair of smooth functions we mean (t, t;) and (.u, .v,) are continuous in
their respective domains and are once continuously ditterentiable in and twice
continuously ditterentiable in x for > 0, x f/; in addition, (t72, t72) and (.u2, .v2) are
differentiable in the outward normal direction on 0f/. Notice that in the above definition,
upper and lower solutions are interrelated through the first inequality in (2.1).

Let Dr f x (0, T], $1 F1 x (0, T], $2 F2 x (0, T] and let Dr be the closure of
Dr. Assume there exist upper and lower solutions such that (t, )>= (.ui, .v)>-(0, 0)
on /T (i.e., tT, >_- .u >_- 0, , .v, 0 on T, 1, 2). By using (t), o)) (i, ,) and
(_u(), _v)) (.u, .v) as two initial iterations we construct two sequences
{tTk), ok)}, {_uk), _vk)} from the following iterative process:

(2.4)

L,[t)] a, a(2’-’) +f( k-’)(X, t-- r,)

’1[ok)] a2O(2k-1)
L2[ t2k)] 0

cP2[tS(zk) g(a(2k-1)(X, t-- r2))

((x,t)ES1),

((x, t) DT),



ON A COUPLED REACTION DIFFUSION SYSTEM 1029

Ll[_Uk)] aa_uk-l) +f(k-’)(x, t- rl))

[_vk)] az_v
L_[_u] 0

ze[_v] g(u_ -(x, t- r))

((X,t) ES1),

((x, t) Dr).

The boundary and initial conditions for both systems (2.4) and (2.5) are given in the
form

B[u2k)] fl,uk-’), [vzk)] fl2vk-’) ((x, t)

(2.6) au2k) ave2k)
0 ((x, t) e $2),

uk)(x, 0)= (X), Vk)(X, t) r/,(X, t) (X 11, [--rl, 0]),
(2.7)

uC2k)(x, t) :2(X, t), V)(X, O) q2(X) (X f, I--r2, 0)).

Notice that the two sequences {/k), -(k)’l. (k) /)(k)v ,, {_ui are interrelated through the first
equation in (2.4) and (2.5). Our aim is to show that these two sequences, called maximal
and minimal sequence respectively, are monotone and both converge to a unique
solution of the system (1.1)-(1.3). We first establish the monotone property of the
sequences.

LEMMA 2.1. Let (, ), (.u, .vi) be upper and lower solutions such that ((t, )>-
(.u,~v) >= (0, 0) and let hypothesis (n) hold. Then the sequences {/k), k)}, {uk),"_ui(k)j
obtainedfrom (2.4)-(2.7) possess the monotone property

2.8) _, _)-<_+ -+’ <+’ +1), p, ,= ,))(fik) eg)), k=0, 1,2,’’’.

Moreover, for each fixed k, the pair ak), ok)) and (), pk)) are also upper and lower
solutions of (1.1)-(1.3).

oof The proof of the monotone propey follows along the same line as in [8]
and we give a sketch as follows" Let a) a ff a), o) }) ).
Then by (2.4) and (2.1), (, ) satisfies the relation

(2.9)

LI[I,] L,[,]-(a,E+f(l(X, t- r,))_>- O,

ooc91[1] .o1[ I1] a2/2 > O,
-(’)IL:[:] L:[ t2] L_[u2 J

> 0,

e[e] [] g(a(x, t- r)) >-0.

It is easily seen from the boundary and initial requirement on (ti, ) and (2.6) that

B[] B[tT] -/3, t, => 0,

(2.10)

m :] m(:] #:, -> o,

and

(2.11)
ll(X O) II(X O) :I(X) -> O,

(X, t) t(X, t) Srz(X, t) => 0
I(X, t) ,(X, t)- ’il(X t) >= 0,

e(X, 0) O(X, 0) n(X) _--> 0.

The relations (2.9)-(2.11) and the maximum principle ensure that >=0, >-0. This
proves (t1), 3’)) -< (t), o)). By the property of a lower solution and the monotone
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property off and g the same argument shows that

Finally, the conclusion in (2.8) follows by induction.
To show that (-(k)u, k)) and (uk_,_vk) are upper-lower solutions for each k, we

observe from hypothesis (H) and (2.8) that

(k-1)I,v_ j>_f(v_k)), f(k-1))<=f(k)),
(2.12) k= 1,2,....

g(_u2k-l)) =< g(u_ 2k)), g(2k-’)) >_ g(ak)),

This relation and (2.4), (2.8) imply that

Ll[ak)] a,a(2k-l) +f(_vk-’)(X, t-- r,)) >= a,a2k)+f(v_ k)(x, t-- rl)),

(2.13)
?,[7k] a2(2k-l>_ a2(2k),

=0,

2[t52)] g( ff2-’)(x, t- r2)) => g( 2k)(x, t- r2)).

By the same reasoning, a similar set of reversed inequalities hold for (_1,/ k), _/)k)). Since
the boundary and initial requirements in (2.2), (2.3) are trivially satisfied, we conclude

V(k))that (ak) 3k)) and (_uk), are upper-lower solutions. This proves the lemma.
In view of the relation (2.8) the pointwise limits

(2.14) lim (a), tTk)) (a,, t3), lim (_ul),. _,v()),= (_u,, _v,)

exist and satisfy the relation

(2.15) (_uk), _vk)) =< (_u,, _v,) -<_ (,, t3,) -<_ (fik), k)), k 1, 2,’’’.

By letting kc in (2.4)-(2.7) a standard regularity argument shows that both (ai, i)
and (_u,, _v,) satisfy all the equations in (1.1)-(1.3) except with the first equation in (1.1)
replaced by

Ll[a,]=ala2+f(v_l(X, t-rl)) for(a,, 3i),
(2.16)

Ll[l]=al_2d-f(l(x, t-rl)) for(_ui,

(cf. [2], [9]). In order to ensure that (ai, 3,) and (_ui, _vi) are solutions of (1.1)-(1.3),
we need to show (a,, i)= (_ui, _vi). This is given in the following existence-comparison
theorem.

THEOREM 2.1. Let (i, i), (u.i, v.i) be upper and lower solutions such that (,, i) >-
(u.i, v.i) >-- (0, O) and let hypothesis (H) hold. Then there exists a unique global solution
(ui, vi) to the problem (1.1)-(1.3). Moreover, the maximum and minimum sequences
{ak, k}, {_uk, v_k} converge monotonically to the solution (ui, vi) and

(2.17) (.u,, .v,) k= 1,2,’".
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(2.18)

Proof. Let wi ti-_u, zi i-_v. Then (w, z) satisfies the differential equation

L,[Wl] alw2+f(v_l(X, t- rl))-f(l(X, t- rl))
((x,t)ES,),

wl[Z,] aEZ2

LE[ w2] 0
((x, t) Dr)

e[z] g((x, t- r))-g(_u(x, t- r))
the boundary condition

B[ w2] =/3, Wl,

(2.19) Ow2 OzE0

and the initial condition

[z] tz, ((x, t) e S,),

((x, t) e SE)

Wl(X 0) ZI(X t) 0 (x e Fi, e [-r, 0]),
(2.20)

wE(x, t) zE(x, O) 0 (x e 1, e [-rE, 0]).
In view of Lemma 2.1 and (2.14) it suffices to show that (w, z) (0, 0) on Dr. Clearly
the equations for wl and zl are equivalent to the integral equation

w,(x, t)= e-’(t-’)[alw2(x, "r) +f(_vl(X "r-rl))-f(l(X "r- rl))] d%
(2.21)

zl(x, t)= a e-’2(t+’)z(x, z) dz

where ai a + b, i= 1, 2. To obtain an integral representation for (wE, zE), we make
use of the Green’s function (x, tl#, z) which is governed by the equations

[G]=G,-DV2G+bG=6(x-)6(t-r) ((x,t)Dr),

(2.22)

OG
B[G] =-- +G O ((x, t) e S,),

OG
=0 ((x,t)SE),

G(x, tl, )-0 (x e O,, < ’),
where D, b, and/3 are positive constants, 6 is the Dirac &function and (:, z) is a fixed
point in Dr. This Green’s function can be expressed in the form

d(x, tl, )- F*(x, tl, z)/ V(x, tl, r)
where F* is the fundamental solution of given by (cf. [2, 10])

F*(x, t[s, z)=(4D(t-z))-"/exp[-(bt+lx-[E/4D[t-r[)] (t>r)
and V is the solution of the problem

L[ V] 0 ((x, t) e DT),

(2.23) /[ V] -/[F*] ((x, t) e S,),
0 V 0F*

((x, t) $2),
Ou

V(x, tl, ’) 0

The function F* has a weak singular point at (x, t)=(s, z) while V is a bounded
smooth function in Dr. It is easily seen that by writing F* in the form

F*(x, tl’,’r)=("tr-"/Ee-b’) (4D(t_,r)-,)[( )t; )(,-2u)/E ( [x-[; )]]";-- 4
exp -4D(t )
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where e (0, 1) is a fixed constant, there exists a constant K, independent of (x, t),
such that

(2.24) F*(x, tl z) <= K z)-lx 1 -(n-E/x).

Let G1, G2 be the Green’s function corresponding to (,/) (L, B) and (/,,/)
(, ), respectively. Then the integral representation for (w2, z2) is given by

w2(x, t)= fllD1 GI(X, tiC, r)w,(, z)dCdz,

(2.25) z(x, t)= G(x,

Hence the system (2.18)-(2.20) is reduced to the integral system (2.21) and (2.25). Our
aim is to show that the only solution to this integral system is the trivial solution
(,, , (0, 0.

Let Mo be a common upper bound of f’(v) and g’(u) on [f, 0] and [, ],
respectively. For each xed t> 0 let I111, Izll, be the respective sup-norm of w and
z on a x [0, t] and F x [0, t]. In view of (x, t) (x, t) on F x [-r, 0] and a(x, t)
(x, ) on a x [-r, 0],f and g satisfy the estimate

If(g(x, t- rl))-f(Ol(x t-- rl))l Moll0,-pill, Mollz, ll,,
(2.26)

Ig(a=(x, t- r2))- g(y2(x, t- r=))l Moll a=-=11, Moll w=ll,.
Since by (2.24)

a K,( )-"lx- 1-"+ + M, (i 1, ),

where M is an upper bound of E, an elementary calculation shoWs that for some
constant M3, independent of (x, t; {, r),

fo’ fr ’G’(x"t’{’z)ld{dM3(t’-+t) (i= 1,2),
(2.27)

Using the estimates (2.26), (2.27) in (2.21), (2.25), we obtain

Iw(x, t)l 1-e [allw=ll,+Mollzll,]

(2.28)

Iz=(x, t)l
where M is a constant independent of (x, t). Define

Then the relation (2.28) implies that

(2.29)
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for some constants M*, a. Let tl > 0 be any constant such that M*(1 e-at1 + t- + tl) <
1. Then by (2.29), wll,,=0, But since wll, is a nondecreasing function of we
conclude that IIwll =0 for all t[0, tl]. This proves (i, Oi)=(_ui,_vi) on lx[0, tl].
Using (w(h),z(h))=(O,O) as the initial condition, a continuation of the above
argument leads to the conclusion (ai, )= (_u, _v) on Dr. The above argument also
shows that (t, t3i)= (_u, _v) on Dr is the unique solution of (1.1)-(1.3). This completes
the proof of the theorem.

It is seen from Theorem 2.1 that the existence of a global solution is ensured if
there exists an ordered pair of upper and lower solutions. Such a pair of functions
can be obtained in the form (t, )=(p,p*) and (.u,.v) (0, 0), where p and p* are
some positive constants. Indeed, these constant functions fulfill all the requirements
in Definition 2.1 if/9 and p* satisfy the inequalities

(al + b,)p-(a,p+f(O))>=O>= -f(p*),

(2.30)
bp*-g(p)>=O>= g(O),

p : >= 0, p* r/l(x, t) -> 0 (t [--rl, 0]),

p-2(x,t)>=O, p* => r/2(x) (x l’l, [-r2, 0])

since all the other inequalities in (2.1)-(2.3) are trivially satisfied. By hypothesis (H),
the relations in (2.30) hold if p and p* are chosen such that

(2.31) f(O)p=>max 1,2,--1j,
g(P)p*_->max ,2,b2 J

where sci and are the least upper bounds of :i, r/ in their respective domains. With
this choice of p, p*, (t, t) (p, p*) and (.ui, .v) (0, 0) are upper-lower solutions. As
an application of Theorem 2.1 we have the following conclusion.

THEOREM 2.2. Let f, g satisfy hypothesis (H). Then the problem (1.1)-(1.3) has a
unique nonnegative global solution (u, v). Moreover this solution is uniformly bounded
by (p, p*), where p and p* are any constants satisfying (2.31).

3. Asymptotic stability. The construction of constant upper-lower solutions in 2
ensures the existence of a unique bounded solution to 1.1 )-( 1.3). In order to investigate
the asymptotic behavior of the solution for large values of t, we need to find a different
pair of upper-lower solutions. In this section we study the stability problem of the
system (1.1)-(1.3) for a given steady-state solution. The existence of steady-state
solutions will be discussed in the following section. Here by a steady-state solution
we mean a time-independent function (u, v)= (u, Vl; u, v) which satisfies (1.1),
(1.2) without the time-derivative term.

THEOREM 3.1. Let (u(x), v(x)) be a nonnegative steady-state solution of (1.1),
(1.2) and let hypothesis (H) hold. If
(3.1) -f’(vl)g’(u)<b,b2 (xf)

then (uS, v) is asymptotically stable. If, in addition,

(3.2) sup[-f’(rl)]sup[g’(rl)]<blb2
n>-O 0

then (u, v) is globally asymptotically stable.
Proof. Let p(t), q(t) be some positive functions defined in R and let

(3.3) (’i, i) (1/7 +P, V7 + q), (./’/i, ./-)i) (Ut --P, /)t q).
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Our aim is to find p, q such that (p(t), q(t))-(O, 0) and the pair given by (3.3) are
upper-lower solutions. To achieve this, we observe that (u+p, v+ q) is an upper
solution if (p, q) satisfies the differential inequalities

LI[u] +p’ + al + bl)p a uz +p) f v q( rl)) ->- 0,
l[V] + q’ + (a2 + b2)q a2(v+ q) >= O,

(3.4)
L2[u] +p’ + blp >- 0,
_[v] + q’ + bEq >- g(u+p( r2)

and the initial inequalities

u(x) +p(O) >- 6(x),
(3.5)

u(x) +p( t) >= sC2(x, t),

v(x) + q( t) >- l,(x, t) (x F1, e I-r,, 0]),

v(x) + q(O) >- /2(x) (x e O, e [-r2, 0]).
The boundary inequalities are trivially fulfilled since (u, v) satisfies the boundary
condition (1.2). Using the property of a steady-state solution, relation (3.4) is equivalent
to

p’ + b,p >=f(v q( r,)) f( vl),

(3.6)
q’+b2q>=O’

p’ + bp >= O,
q’+ b2q >= g(u_ +p(t r2)) g(u).

By the same reasoning, (u-p, v- q) is a lower solution if all the reversed inequalities
in (3.4), (3.5) are satisfied when p, q are replaced by -p and -q, respectively. This
implies that p and q must satisfy the additional requirements

p’ + b,p >=f(v) f( Vl + q( r,)),
(3.7)

q’ + bEq >-- g(u)- g(uz-p(t- rE)),
u(x) -p(O) <= ,(x), v(x)- q(t) <-_ r/l(X, t) (x e F,, e [-rl, 0]),

(3.8)
uz(x) -p(t) <= sCz(x, t), v(x) q(O) <--_ rl2(x (x , I-r2, 0]).

For any positive constants p, p., define M MI(p), M2 M2(p) by

(3.9)
M, max {-f’(v + /);

M:-= max {g’(u+ /);
Then all the inequalities in (3.6) and (3.7) are fulfilled if

(3.10)
P’+b’p>=M’q(t-r’)’ q(t-r’)<=P’

(t>0).
q’ + b2q >= Mp( r2), p( r2) <= p

We choose p, p2 such that MM2< bb. This is possible by virtue of condition (3.1).
To satisfy the relation (3.10) we let p, q in the form

p(t)=poe q(t)=qoe
for some e > 0. Then the inequalities in (3.10) hold if

(bl e)po => Mqo e’, q(t r) _-< Pl
(t> 0).

(b2-e)qo>=M2Poeq, p(t-r)<=p
Let Po P e-q, qo P2 e- so that p(t r) =< pl, q(t r) =< p_ for > 0. Then it suffices
to find p, p2 such that

(3.11 M ee(2r’-r2)

b 8 /92 M2 e (2r2--rl)"
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This is clearly possible for a sufficiently small e > 0 since M1M2 < bib2. The above
construction shows that the functions given by (3.3) with p(t)=pl e-(’/rl), q(t)=
p2 e-(’+r2) are upper and lower solutions whenever the initial functions satisfy the
relation

---erl Iv- nil < <,+r=) (X F1, r, 0]),[Ul 1] Ple p e-
(3.12)

I-l e-’+, Iv- 1 e-r ( , [-r, 0]).
It follows from Theorem 2.1 that the time-dependent solution (u, v) satisfies the
relation

uT(x) p e-(’+r Ui( t, X) u(x) +p e
(3.13)

v(x)_pe_(,+q)v,(t,x)v(x)+pe_(,+)
(t>0, x)

for a sufficiently small e > 0. The above relation ensures that (u, v) is asymptotically
stable. Now if condition (3.2) holds then MM< bb for all positive constants p, p.
In this situation the relations (3.11) and (3.12) can be satisfied by choosing p, p
sufficiently large. This implies that (u, v) is globally asymptotically stable. The proof
of the theorem is completed.

Remark 3.1. When p, p are large it is possible that the lower solution (u-p,
v- q) takes negative values. In this situation we need to define some modified functions

ff in place off g and using the same argument as in 8] to show that all the conclusions
in Theorem 3.1 remain true.

4. The steady-state problem. The monotone method for the time-dependent prob-
lem (1.1)-(1.3) can be used to construct similar maximal and minimal sequences for
the corresponding steady-state problem

(a14r bl)Ul al u2 +f(v)

az + ba) 1) a2v
(4.1)

-DlV2u2+bu_=O

(xer),

(xea).
-D2V2/)2 + b202-- g(u2)

By solving the first two equations in (4.1) for (Ul, /91) and substituting into the boundary
condition (1.2), the steady-state solution must satisfy the boundary condition

"t- (/1 bll a + bl u2 (811 a + b, )f a2v2/ a2 + b2)),
oql

(4.2) +(2b/(a2+ b.))v.=O

OU2 O2 0 (X e F2).

Let u u2, v v2 and define

F(v) (fll/(al + bl))f(a2v/(a2+ b2)),

(4.3)
bi ibi

3’,- (i= 1,2).-,ci
Di a + b

G(u) _g(u)
D2

(4.4) --V2U-I"ClIg--O, -V2v+czv= G(u) (xell),

Then the steady-state problem is reduced to the coupled system
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(4.5)
,[u]=---+Vu=F(v),,, [v]-=+V:v=O (xer),

au av
Ou O,

-0 (x e r:).

It is clear from (4.3) that F(v) and G(u) possess the same monotone property as f(u),
g(v) in the hypothesis (H). In view of the quasi-monotone property of F and G we
define upper and lower solutions for the problem (4.4)-(4.5) as follows"

DEFINITION 4.1. A pair of smooth functions (, t;), (g, v) are called upper and
lower solutions of (4.4), (4.5) if they satisfy the relations

--72/ " Cl/ 0 __2 + Cl
(4.6)

-vE+cEB-G()O-V+c-G()
(xe),

BI[]-F()NONBI[]-F(), B:[] N0 BE[if] (x F).
(4.7) 0 Ou O Ov
0> >0>
0v 0 0 0 (x F2).

In the above definition a smooth function is referred to as a continuous function in
fl which is twice continuously differentiable in and has outward normal derivative
on 0ft. Notice that upper and lower solutions for the boundary value problem are
interrelated through the boundary condition.

Let (fi(o), (o))= (a, B), (g(o), (o))= (, ) be initial iterations and construct two
sequences {fi(k), o(k)}, {v(k), (k)} from the iteration process

(4.8)

o(k 0(k)
----0 (Xe r)

and

--V2(k) - C1(k) O, --V2_/.) (k) -" 2_/.)
(k) G(_(k-)) (x ’).,),

(4.9) BI[(k)] F((k-1)), B2[Y(k)] 0 (x E F1)

OU(k) 0/)(k)

0u 0
-0 (x e r).

We again refer to these two sequences as maximal and minimal sequence, respectively.
Just as in the time-dependent problem the maximal and minimal sequences possess
the following monotone properties.

LEMMA 4.1. Let (, ), (_u,.v) be upper-lower solutions of (4.4), (4.5) such that
(t, ) -> (_u, .v) _-> (0, 0) and let hypothesis (H) hold. Then the sequences
{ti(k), 3(k)}, {_U (k), _V(k)} given by (4.8), (4.9) possess the monotone property

(4.10)
(-u(k)’ -D(k)) (_/../(k+l), _D(k+l)) (/,(k+l), o(k+l))

(a(k), 0(k)), k 0, 1, 2,. .
Moreover, for eachfixed k, the pair fi(k), (k)) and (_u (k), _v (k)) are upper-lower solutions.

Proof. Since the proof ofthe lemma follows from the same argument as for Lemma
2.1 we omit the details.
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In view of the monotone property (4.10) the pointwise limits

(4.11) lim (/(k), /(k)) (/, /), lim ((k), _D(k)) (_1./, _/.))
k-oo /-

exist and satisfy the relation

(4.12) (_u(k), _v(k))_<_ (_U, _V)__< (ti, )__< (ffCk, k), k=0, 1, 2, .
By letting k-o in (4.8), (4.9) the usual regularity argument shows that (if, ) and
(_u, _v) satisfy the equations

--V2/, "" Cl/ 0, B,[a] =f(p), --=0,
0v

(4.13)
OU--V2U "]- ely O, BliP] F(3), O,

01)
-V2v + c2_v G(_u), B2[_v] 0, -=--= 0.

In order to ensure that (if, ) and (_u, _v) are solutions of (4.4), (4.5), we must show
that (if, 3) (_u, _v). For this purpose we need to impose some additional conditions on
F and G. Specifically, by defining

(4.14) Mf=-max{-F’(v);v.<-_v<=}, Mg-=max{G’(u);u.<-_u<-}
we have the following existence-uniqueness result.

THEOREM 4.1. Let ((t, ), (u., v.) be upper-lower solutions of (4.4), (4.5) such that, ) >- (u., >-_ (0, O) and let hypothesis (H) hold. If
(4.15) MfMg

then the steady-state problem (4.4), (4.5) has a unique solution (u, v) such that

(4.16) (.u, .v) =< (u, v) =< (t, t) (x

Moreover the maximal and minimal sequences {ak), ffCk)}, {_u(k), _vk)} converge monotoni-

cally to u, v ).
Proof. Let U a-_u => 0, V 7-_v-> 0. Since by the mean value theorem

(4.17)
F(v)- F() -F’(B) V =- trl(X) V

(x),
G(a)- O(_u) O’(a) U =- (x) U

where a and 3 are some intermediate values in [.u, t] and [.v, 5] respectively, relation
(4.13) implies that

(4.18) -V2U-- Cl U--O,

0U
---" ’)/1 U O"1V
Ov

(4.19)
U V

--0
Ov av

-V2V-Fc2V-o’2U (X -),

oV

(x e F2).

Let Pl,p2 be any positive constants such that mg/cl<--pl/P2<--’}12/mf and let W=
plUWpzV. The existence of Pl,P2 is ensured by condition (4.15). In view of (4.18)
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and (4.19), W satisfies the relation

--72Wd- (Pl c1 p2cr2) U d- c2p2 V 0

(4.20)
OW-PlY1U d" (P2’Y2 plO’I) g 0
Ou

(x f),

(xer),

pll-p20"2pll-p2MgO, p2"}/2-plo’lP2"}/2-plMfO,

the nonnegative property of (U, V) implies that

OW
(4.21) -vEw_<-0 (x6f), <_-0 (x01").

By the maximum principle and the nonnegative property of W we must have W 0
on f. This shows that (t, 5)= (_u, _v). The monotone convergence of the maximal and
minimal sequences follows from Lemma 4.1.

To show the uniqueness of the solution, we let (u*, v*) be any solution of (4.4),
(4.5) such that (.u, .v)-< (u*, v*)_-< (2, t;). Then by the iteration process (4.8), (4.9) and
hypothesis (H) the functions (if1, 1’2)(/(1)-u:, (1)__)g) and (_W1, _W2)

v*-_vl) satisfy the relationsU* -1,

--V211 -- C11 0, BI[ 11] F(_/)(0)) F(/.)*) 0,

-V:#:z+cz,,z=G(f())-G(u*)>-O, B2[w2] 0,

-V:_w + c_w 0, Bl[ W_ ] F(v*) F( O()) >- O,

-V2w_2+c2w_2=G(u*)-G(u_())>=O, B2[_w] 0

and O,i/Ou=Ow_i/Ou=O on F2, i= 1,2. These inequalities imply that (_u
(u*, v*)-< (fi(1), 0(1). An induction argument shows that

(4.22) (_u (k, _vk)) -<_ (u*, v*) -<_ (fik), 5k)), k 1, 2, .
Since the sequences {tk,/(k)} and {_u (k), _D (k)} both converge to the solution (u, v) we
conclude that (u*, v*)= (u, v). This completes the proof of the theorem.

Remark 4.1. Unlike systems with both quasi-monotone increasing or quasi-
monotone decreasing functions, the pair (if, t) and (u*, v*) (or (u*, v*) and (.u, .v))
are not upper-lower solutions as defined in Definition 4.1. In fact, if (t, t) and (u*, v*)
are used as the initial iterations in the process (4.8) and (4.9) the corresponding
sequences are no longer monotone. Nevertheless each sequence contains a subsequence
which consists of the same function (u*, v*).

In analogy to the time-dependent problem, the constant functions (, t)- (p, p*)
and (.u, .v)= (0, 0) are upper-lower solutions of (4.4), (4.5) if

(4.23) c2p*-G(p)>-O>--G(O), 3qp-F(O)>=O>--F(p)

because all the other requirements in (4.6) and (4.7) are fulfilled. By hypothesis (H),
it suffices to choose p, p* such that

F(O) G(p)
(4.24) p*-->.

71 c2

Since by the choice of p, p_,

OW
-0 (x e r2).

0,
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This choice of (t9,/9*) and Theorem 4.1 lead to the following.
THEOREM 4.2. Let hypothesis (H) and condition (4.15) hold and let p, p* be any

constants satisfying (4.24). Then the sequences {tok), Ck)} and {_uCk),_Vok)} with
(aCo), Co)) (p, p.), (u_CO), v_CO)) (0, O) converge to a unique solution (u, v) and

(4.25) (0, O) -< (u, v) _<- (p, p*).
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CHAOTIC SOLUTIONS OF SYSTEMS OF FIRST ORDER
PARTIAL DIFFERENTIAL EQUATIONS*

ROBERT WOLFEt AND HEDLEY C. MORRIS’:

Abstract. We consider the system of partial differential equations

0u
--+ (c(x) V)u f(x, u),
Ot

u(t =0, x) =v(x)

where x A, a compact connected subset of R m, u R", and => 0. This is a generalization of a problem
investigated by Lasota [6] and Brunovsky [2], and the methods used are similar to those used by these authors.

Imposing certain conditions on c and f, we show that for v in a certain subset of the phase space the
solution uniformly approaches a limit set of dimension n- 1. We also show that in another subset of the
phase space there are both (a) dense orbits and (b) periodic orbits of all periods. Each of (a) and (b) leads
to a proof of the existence of a type of chaos in this subset.

Key words, first order partial differential equations, semiflow, chaos

AMS(MOS) subject classification. 35B

1. Introduction. This paper is concerned with a particular type of chaotic
behaviour that can occur in a function space. In order that the nature of this particular
type of stochastic behaviour can be appreciated, it is necessary to present some
background information concerning chaos in other types of dynamical systems. There
are essentially three types of situation in which chaotic phenomena have been investi-
gated by mathematicians. These are chaos in one dimension involving maps of the
interval or the circle, mappings of R into itself and chaos in function spaces such as
those associated with the equations of fluid mechanics. We consider each in turn.

Chaos in one dimension. "Chaos" is taken loosely to mean a state where nonperi-
odic motion is observed as a nontransient phenomena. We will give various definitions
of chaos, and show how the concept has been developed and generalized in different
ways. One of those ways leads to the particular form of chaotic motion considered in
this paper.

The first rigorous definition of chaos was that used by Li and Yorke [7] for
iterations of an interval map.

THEOREM (Li and Yorke). Let J be an interval and F J --> J be continuous. Suppose
there is a point a J that satisfies either

(1.1) F3(a) =< a < F(a) < F2(a)
or

Then
F3(a) => a > F(a) > F2(a).

1) For every integer k > 0 there is a point in J having period k.
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2) J has an uncountable subset S (called the scrambled set) that contains no periodic
points and satisfies the following conditions:

For each p, q distinct in S we have

(1.2) lim sup IFn(p)- Fn(q)l > 0

and

(1.3) lim inf IF’(p) F"(q)] O.

For each p S and each periodic q J we have

(1.4) lim sup IF’(p) F’( q)l > O.

This "period three implies chaos" theorem makes the definition attractive, and it
has been widely used. Li and Yorke’s work is partly a special case of a theorem of
Sharkovskii 10].

Kloeden et al. [5] have proposed that the existence of orbits of any given period
should not be a necessary condition in the definition of chaos. Ott [9] uses a definition
of chaos for sequences based on sensitivity to initial conditions and on average
correlation functions.

Chaos in R. How to characterise the n-dimensional analogue of the chaotic
behaviour of one-dimensional systems is not immediately apparent. Marotto [8] has
extended the Li-Yorke theorem to R by introducing the idea of"snap-back-repellers."
If F is a C mapping from R" to R n, then z R" is defined to be a snap-back-repeller
if (a) F(z)=z; (b) there is some r>0 such that all the eigenvalues of DF(x) have
norm greater than one; (c) there is some point Xo with 0< Iz-xol < r such that FM (Xo) z
and IDFI (Xo)l 0 for some M > 0.

Marotto has shown that if a mapping F has a "snap-back-repeller," then it has
a scrambled set of the type defined in the Li-Yorke theorem. Marotto’s theorem has
been further extended by Shiraiwa and Kurata 11 ].

Chaos in abstract spaces. Auslander and Yorke [1] put forward the following
definition, again for discrete dynamical systems.

If X is a compact metric space and a continuous surjection from X to itself then (X, z) is
defined to be a compact system. The point x X is said to be stable if for each e > 0 there is a

3>0 such that d(’"(x),z"(y))<e for each y with d(x,y)< and each nN. The compact
system (X, z) is defined to be chaotic if no point x X is stable and if there is some y X whose
orbit is dense in X.

Chaos may also be observed in function spaces. Lasota [6] has proved the existence
of chaos, in a sense analogous to that of Auslander and Yorke 1 ], for the first order
partial differential equation

(1.5)

ou ou
--+ c(x) =f(u, x),
ot x
u(x, o)= v(x)

where x [0, 1 ], -> 0, and c, f, and v obey certain specified conditions. Here the phase
space is the space of functions v:[0, 1] [0, oo). Lasota’s extension of Auslander and
Yorke’s definition is natural, but, as a result of this extension, the set in which he
proves chaos to exist is not compact.
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Walther [12], and an der Haiden and Walther [4], examine delay-differential
equations. Here the phase space is a function space, C([0, 1], R). A Poincar6 section
is used, and the existence of chaos is proved (in the sense of Li and Yorke) for the
first-return map on this section.

In this paper we extend the recent results of Lasota [6] to a higher-dimensional
situation. In 2 we prove a series of preliminary theorems that generalize those of
Lasota. In order to produce these results we attempt to extend the conditions that
Lasota imposes on scalar valued functions to the vector case. In so doing we also
introduce minor modifications in his results in the one-dimensional situation. The main
result, confirming a generalized form of chaos for the semiflow defined by (2.1) and
(2.2), is proved in 3. Brunovsky [2] has proved some of Lasota’s results by an
alternative means. In our final 4 we generalize this technique to our more general
situation. So that this paper can be read independently of Lasota’s and so that the
differences and extensions we have made can be readily identified it is necessary for
us to review the existing results of [6].

Lasota’s results. We now review the results of Lasota [6].
If D is some topological space, denote the space of continuous functions from

D to the real line by C(D). Denote the space of continuously ditterentiable functions
by C(D), and the corresponding spaces of nonnegative functions by C/(D) and
CI+(D).

If D is a compact subset of R", define the distance between two functions F and
F2 in C(D) to be maxD IFl(X)- F2(x)l.

Consider the partial differential equation (1.5)

ou+ c(x)
ou

Ot -x=f(x, u),

u(O,x)=v(x),

where -> 0 and x A [0, 1 ].
This equation can be used to model a variety of phenomena, in particular the

growth of populations of certain types of cells, including red blood cells.
Assume the following:
1) The functions c and f are both C;
2) c(0) 0 and c(x) > 0 for all x > 0;
3) There is some Uo (0, 1] such that

(a) f(0, u)(u Uo) < 0 for all u > 0, u # Uo, and
(b) f,(0, Uo) < 0;

4) There exist k->0, k2->0 such that f(x, u)<-ku+k2 for all xA, u>=0.
5) f(x, 0) >- 0 for all x A, and f(0, 0) 0.
Under these assumptions the following results are proved:
1) For every v C+(A) there is a unique solution to (1.5). Let b(t; to, Xo) be the

unique solution of

(1.6) c(x)
dt

with X(to)= Xo; and b(t; Xo, r) be the unique solution of

(1.7) dY=f( dpxo( t), y
dt
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with y(0)=r, where bx(t) is defined as b(t; 0, x). Then the solution u(t, x) of (1.5)
can be written as

(1.8) u(t, x)= @(t; qb(0, t, x), v(b(0; t, x))).

2) There is a unique solution Wo(X) to the equation

du
(1.9) c(x) -’;-=f(x, u)

ax

for xA, with Wo(X)=Uo. If v C+(A) with v(O)>O, then (Stv)(x)-> Wo(X) as
uniformly for x A.

3) Let

Vo= {v C+(A): v(0)=0}

and

Vw {v c+(a): v(x) < Wo(X) qx a}.

Define the semidynamical system {S,v},__>o by

(1.10) (Stv)(x) u(t, x)

where u(t, x) is a solution of (1.5).
Then the sets Vo and Vw are invariant under S,; also for each v Vo there is a

To => 0 such that Sty Vw for all => To.
If condition 5 is replaced by the stronger condition
5’) f(x, 0) 0 for all x A

(see [2]), then one can show that the semidynamical system {St},_>_o is chaotic in the
set Vw, that is,

(a) no point of Vw is stable;
(b) there is some v Vw such that the orbit {Sty: t->O} of v is dense in Vw.
Brunovsky [2] shows that there cannot be chaos in all of Vw if the stronger

condition 5’ is not satisfied.
Define a generalized solution of (1.5) to be a function in C+(A) which is the

uniform limit on compact subsets of A of solutions of (1.5). We will normally use the
word "solution" loosely to refer to a generalized solution.

For consistency we will use notation derived from that of Lasota and Brunovsky
where possible.

2. Preliminary theorems. In this section and the next we will generalize the results
of Lasota [6], by proving theorems for an initial value problem involving n simultaneous
equations in one time variable and m spatial variables.

Lasota deals with the nonlinear initial value problem

(2.1)

Ou Ou
--+ c(x) =f(x, u),
ot

u(t=O,x)=v(x)

and the associated semidynamical system

(2.2) (Sv)(x) u( t, x).
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Here the results of [6] are extended to the initial value problem for a system of n
partial differential of the form

(2.3)
--+ (c(x) Vx)u r(x, u),

u(t =O,x) =v(x)

where x is now replaced by m independent spatial variables.
Let A be a compact simply-connected m-dimensional region in R and let A have

a piecewise C boundary 0A.
Let c be a function from A to R" satisfying the following conditions:
(C1) c is a C function of x;
(C2) if the outward unit normal fi(x) exists at x 0A then

(2.4) fi(x)" c(x) > 0.

Thus at all points on A the vector field c points outwards. This is true for the "corners"
by continuity of c.

Let f be a function from A x R to R" satisfying
(F1) f is a C function of x and u.
(F2) We have

(2.5) If(x, u){ < kl{u + k2

for all (x, u) in A x R" where kl, k2 are real numbers, and denotes the usual Euclidean
norm.

As in Lasota’s original paper the method of characteristics is extensively used.
Let tb(t; to, p) be the unique solution of

(2.6)

Let tbp(t) tb(t; 0, p).

(2.7)

dx
dt

-c(x)

X(to) p.

Let O(t; p, r) be the unique solution of

dll
dt

f(6p(t), u),

u(0)-r.

Define T(p) to be the value of at which the curve tbp(t) intersects 0A, if this
intersection occurs. Let T(p)= if the curve does not intersect the boundary.

Define Ao to be the set {p A: T(p)= }.
Define 0Ao to be Ao-int Ao. Thus, for example, if Ao consists of a single point

then 0Ao Ao.
LEMMA 2.1. If c and f satisfy (C1)-(C2) and (F1)-(F2), then the PDE (2.3) has

a unique solution for all x A, u Rn.
Proofi The function is well defined in A because A is compact and c(x) is

Lipschitz for all x in A. The curves {bp(t) are characteristic curves which originate in
A and cross the boundary 0A at most once. (The condition fi(), c()> 0 for 0A
ensures that no characteristic curves enter A from outside.)
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Therefore tp(t) is defined for all -< T(p). Condition (F1) on f ensures that
O(t; p, r) is defined for all in this range. So letting

(2.8) u(t; x) O(t; b(0; t, x), v(tb(0; t, x)))
we have a unique solution to the PDE (2.3).

We will consider, as in Lasota’s paper, generalized solutions, which are limits of
solutions of (2.3); that is, if {u,}7= are solutions of (2.3) and

lim sup lu,(x)-u(x)l 0,

then u is said to be a generalized solution of (2.3).
LEMMA 2.2. T is a continuous function of x.

Proof. Let Xl be a point in A- Ao. We want to show that for any e > 0 there is an
open set in A- Ao containing Xl such that T(Xl)- T(x)] < e for all x in

Now (tl; t, x) is a continuous function of x, since the solution of a system of
ordinary differential equations is a continuous function of the initial values.

Thus if t->0 then th(0; t,.) defines a homeomorphism from gA to a subset of
A- Ao. The sets (0; T(Xl) + e, cA) and (0; T(Xl) e, cA) are thus homeomorphic to
0A, and to Sm-. The open region enclosed by these surfaces contains Xl, since the
integral curve (t; 0, Xl) intersects each surface exactly once, and Xl lies between these
intersections. Similarly any point x in this region satisfies T(Xl) T(x)] < e. can then
be chosen to be any open subset of this region that contains x.

So T is a continuous function of x A-Ao.
LEMMA 2.3. Ao is nonempty, closed and connected.
Proof. To show that Ao is not empty, it is sufficient to show that there is some x

in A for which c(x) 0. For m 1 this follows immediately from the intermediate value
theorem. For m > 1 A can be continuously deformed into B", the unit closed ball in
m-space, with gA becoming S"-1. But any continuous nonvanishing vector field on
B must contain at least one inward-pointing and at least one outward-pointing normal
to Sm-1. (See, for example, Dugundji [3].) Here there are no inward-pointing normals,
and so it follows that c vanishes at some point x in A. Note that (2.4) implies that Ao
is contained in int A.

From every point of oA we can trace back the integral curve by looking at

(0; t, ) for > 0. We can find in this way points in A- Ao corresponding to any finite
nonnegative value of T. Also we have seen that (0; t,.) defines a homeomorphism
from oA to T-l(t) for any finite > 0.

The complement of Ao is U= {xA: T(x)<n}. But T is continuous (Lemma
2.2), and {x e A- T(x)< n} is the inverse image in A of an open set in R, and hence is
open in A. Thus the complement of Ao is a union of sets open in A, and so Ao is a
closed subset of A.

Next suppose that Ao is not connected. Since R is normal we can find disjoint
open sets U and U2 such that Ao has nonempty intersection with both U and U2,
and Ao is contained in U1 U U2. Therefore A-( U U U2) is a closed set which does
not intersect Ao. So there exists

T, max T(x) <
xEA--( UI_J U2)

Consider the set T-(to) for to> Tin. This set T-(to) is contained in U U U2 since

to> T,. Now since b(0; to," defines a homeomorphism from oA to T-(to), it follows
that T-(to) is connected. Therefore, T-(to) cannot intersect both U and U2. Suppose
without loss of generality that T-(to) is a subset of U, and so T-(to) does not
intersect



1046 R. WOLFE AND H. C. MORRIS

Choose e less than the distance from Ao to A- U1 U U2). Thus because (to; 0,.
is continuous we can find xl in the intersection of Ao and U2, and x2 U2 Ao such that

for 0 =< _--< to. Since x(to) Ao it follows that x(to) U2. Therefore, to < T(x) <.
Now consider the curve x_(t). We have

r(,x(O)) T(x) > 0,

and since x2(T(x2)) lies on 0Ao we have

T(,x(T(x))) 0.

Therefore there is some point x on the curve for which T(x)= to. This point is in U,
since to> Tin. But this is a contradiction, since T-(to) does not intersect U.

Therefore Ao must be connected.
LEMMA 2.4. If X0 0Ao, then txo(t) 0Ao for all O.
Proof First, suppose that xo(t) A Ao for some > 0. Then T(,,o(t)) < o, say

T(xo(t)) To. But this implies that xo(t + To) Ao, and so T(xo)< o, which contra-
dicts the assumption that Xo Ao.

Suppose Xo 0Ao with xo(to) int Ao for some to > 0. Choose e with 0 < e <
d(dPxo(to),OAo). Let >0 be such that for all xA with Ix-xol< we have 14,x(t)-
xo(t)l < e for all < to. But since Xo 0Ao we can find x A- Ao with Ix- Xol < 8. Thus
[x(to)-,,o(to)l< e, which implies that x(to)int Ao. But this is impossible since
T(x) < oo.

Therefore xo(t) dAo.
In [6] the function f(x, u) is required to satisfy

(U-uo)f(O,u)<O foru>0, U#Uo,

fu(0, Uo) < 0 for some Uo> 0.

Thus Uo is an attracting stationary point for the trajectory u(0, t).
Here this is generalized to an invariant surface of dimension n- 1, where n > 1,

or two points if n- 1. This surface is to be attracting in the sense that at least locally
f(x, u) points towards this surface, for each x in Ao. Here, however the point 0 R has
been generalized to the set Ao. Thus the question arises as to whether the invariant
surface can depend on the element x of Ao, or whether it must be independent of x.
We find results for the more general case, that is, where the surface depends on x Ao.

We require f to satisfy the following further conditions:
(F3) There is a compact simply-connected n-dimensional subset W(x) of R

associated (continuously) with each point x in Ao with 19 W(x) piecewise C 1.
(F4) For each x in Ao there is an open set R(x) in R n, such that 19 W(x) is contained

in R(x). If x Ao, u R(x) and u 19 W(x) is the nearest point (in the Euclidean sense)
in 19 W(x) to u (if this is well defined) then

(2.9) (U-Ul) f(x, u) < 0.

(F5) If Xo 19Ao, Ill t9 W(xo) then

(2.10) S. (Jr(x, u)S) < 0

where N is normal to 19 W(x) at u and where Jf denotes the Jacobian of f.
Note that Ul(X, u) is well defined for almost all u R". If Ul is not uniquely defined

then f(x, u) may still satisfy (2.9) for each of the several nearest u to u. However, by
an argument similar to that of Lemma 2.3 we see that the vector fields u- Ul and f on
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W(x) cannot be well defined, continuous and nonzero everywhere on int W(x). So
there is some point u int W(x) where u- Ul is undefined because Ul is undefined, and
at this point it is not possible to define f(x, u) such that (2.9) holds for each of the
nearest points of 0 W(x). There may be more than one such point, for if the distance
]U-Ul] has a local maximum at u, then f is necessarily zero at this point.

Let

m min d(0R(xo), 0 W(xo)),
Xo A

and for each Xo Ao let

R’(xo) {u R": d(u, OW(xo))<=m/2}.

Let Ro(xo) be the open subset of R" defined by

Ro(xo) {u R": O(t; Xo, u) R’(dxo(t)) for some t->O}.

Ro(xo) is nonempty, as it contains at least R’(xo). Also, by an argument similar to that
of Lemma 2.3, we see that there is at least one point in int W(xo) that is not in Ro(xo).

Let So(xo) W(xo)- Ro(xo). Clearly, ifv(xo) So(xo) for all Xo Ao, then (Stv)(xo)
So(xo) for all Xo Ao and all _-> 0.

Let 0 be a continuous function from A to R with

0(x) 0 Vx Ao,

O(x) -> d (x, Ao) Vx A Ao,

such that 0 has no stationary points in A- int Ao. Thus if 0 < h =< minxoa d (x, Ao) then
0-1(h) is homeomorphic to S"-. For each h > 0 let

Ah {X C A: 0(X) =< h}.

Then Ah is a closed subset of A, containing Ao in its interior with d (x, Ao)--< h for all
x in Ah, and Ahl a subset of AbE if 0< hi--< hE. Now let th -maXxeoAh T(x), and let

Ah {x A: T(x)=> th}. Clearly Ah is a subset of Ah, containing Ao in its interior. If
0 < hi <= h2, then th, >= th and Ah, is a subset of Ah2. Also if x Ah for some h > 0 then
the characteristic curve x(t) intersects OAh exactly once.

LEMMA 2.5. If C and f satisfy (C1)-(C2) and (F1)-(F5), then there is a unique
C function Wh:A-int mh -’> R satisfying

(2.11)
(c(x) V)Wh f(x, Wh X A int Ah,

wh (x) vh (x) Vx z 0ah.

Proofi The intersection of bx with oAh is unique for all x A-int Ah. Suppose
this intersection takes place at t- z(x, h)_-< 0, and let Xh x(Z(X, h)). Let satisfy

(2.12)
f(x, u),

dt

O(z(x, h)) Vh (Xh).

Now 0 is unique for z(x, h)_-< _-< T(x). So Wh(X)= (0), giving a unique solution to
(2.11).
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THEOREM 2.1. Suppose c and f satisfy (C1)-(C2) and (F1)-(F5). Then we can

define W(x) for all x in A-int Ao; that is, to each x A-int Ao there corresponds a
unique compact simply connected subset W(x) of R (where for Xo 0Ao, W(xo) is as
previously defined), such that if w(x) satisfies

(2.13) (e(x) V)w f(x, w)

and w(x) O W(x) for some x in A Ao, then w(x) 0 W(x) for all x in A Ao.
Proof. Let x A-Ao. If h is sufficiently small, so that x A-Ah, then we can

consider the set of points {wh(x)} arising from different values of Vh at the point Xh
where the characteristic curve through x crosses OAh. Let Xo be a point on 0Ao within
a distance h of Xh. Let Vh(Xh) range over 0W(xo). Uniqueness of solutions (Lemma
2.5) ensures that the resulting set of points {Wh(X)} is homeomorphic to 0 W(xo), that
is, homeomorphic to Sn-1. Denote by Wh(X) the region bounded by this set, and the
set itself by 0 W(x).

We wish to show that as h O, Wh (X) approaches a limit.
Let Ul 0 W(xo) and let N be normal to 0 W(xo) at Ul with 11 the corresponding

unit normal.
Then (2.9) implies

(2.14) lq/. f(x, U -- a) < 0

for a > 0 sufficiently small and for all x in 0Ao. Inequality (2.10) gives

(2.15) . (if(x, ul)lq)< 0 Vx in 0Ao.

Choose h > 0, k > 0 such that if ul 0 W(xo) and N is normal to O W(xo) at I11,

then the following conditions hold:
(a) If x Ah, {NI k, then

(2.16) 11. f(x, ul + N) < 0;

(b) If x Ah, INI < k, then

(2.17) lq. (Jf(x, u + N)lq) < 0;

(c) If INI _<-k then u is the nearest point on 0 W(xo) to Ul + N.
Denote by Wh the set of points {Wh(X)" X A-int Ao}, and consider Whl and Wh2

where h < h2 < h. We want to show that Wh approaches a limit as h- 0, and in order
to do this we use Cauchy convergence.

Let x Ah Ah2. If xl dAb1 and X2 OAh2, we have Whl(Xhl t9 W(xo) and Whl(Xhl
O W(xo). So d(Wh,, W(xo)) < k because N. f(x, Ul + N) < 0 for all Ul 0 W(xo), x Ah,

Let z(x, Ul) be the distance along the normal to 0 W(xo) at u from the intersection
with WhI(X) to the intersection with Wh2(X). (If there is more than one possible value
of z(x, ul) due to multiple intersections, take the largest such value.)

So z(x, u) <2k ifx Ah. Let WhI(X, Ul) and Wh2(X, Ul) be these points of intersection
and so

Z(X, Ul)--" Whl(X Ul)--Wh2(X, Ul).

Therefore z(x, Ul)= lq. z(x, ul), where lq is the unit normal to 0 W(xo) at U in the
direction of z(x, u).
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Then if s represents the arc-length of the characteristic t,, (t) we have

d d /ds"S Z(X, Ill) "Z(X, Ul) "1. (f(x, Wh)- f(x, Wh))/(Ic(x)[)
(Jf(x,

where y is in (0, 1).
So (d/ds)z(x, ul)<O because z is a positive multiple of lI and (2.17) holds. So

z(x, Hi) decreases with s for all Ul in 0 W(xo), x in Ah.
Existence of limh_O Wh. Choose e > 0 (e < 2k). Now there is some ho (0, h) such

that

(2.18) N. f(x, U " N) < 0

for N e/2, x Ah (using (2.7) and (2.15)).
Suppose hi, hE< ho. Then d(Wh,, W(xo))< e/2 for XAho. Hence if Wh,, Wh2 are

on the normal to 0 W(xo) at Ul 0W(xo) and

Z(X, al)= Whl(X Ul)--Wh2(X, Ul)
then z(x, ul) < e for x Aho. We have just shown that z(x, Ul) decreases with s if x Ah.
So z(x, Hi) <-- Z(Xho, Ul) < e ifXho Aho, X Ah Aho. Therefore { Wh (x)} satisfies a Cauchy
condition for x Ah -Ao. Hence if x Ah -Ao there is a limit subset Wo(x) in R"
satisfying Wo(x) limh_O Wh (X). Clearly Wo(xo) W(xo) for all Xo 0Ao for continuity.

By Lemma 2.5 it can be seen that Wo(x) is well defined for all x in A- int Ao since
elements of 0 Wo(x) clearly lie on integral curves of (2.11) and these curves can be
extended until 0A is reached.

Uniqueness. Suppose there are two limit subsets Wol(x) and WoE(X) of Wh(X)
satisfying limh_O Woi(xh) W(xo). Let z(x, Hi) be the distance between Wol(x) and
WOE(X) along the normal to 0 W(xo) at Hi. But z(x, Hi) decreases with s, since both
wol(x) and WoE(X) are generalized solutions of (2.11). Woi(X) is fixed for x 0Ao, giving
limh_,O Z(Xh, Hi) 0 for all Ul W(xo). So z(x, Hi) 0 for all x A int Ao, Ul 0W(xo).
Hence Wo(x) is well defined for all x A-int Ao.

THEOREM 2.2. Suppose (C1)-(C2) and (F1)-(F5) holdfor c and f and that V(Xo)
lies in Ro(xo) for all Xo in Ao. Then the solution u(t, x) of (2.3) has the property that as- oo the distance between the point u(t, x) and the surface 0 W(x) tends to zero uniformly
for x in A.

First we give three lemmas which will enable us to prove this theorem.
Let u(t, x) be the solution to

011--+ (c" V)u f(x, u)
Ot

with

u(t 0, x) v(x)
where c and f satisfy (C1)-(C2) and (F1)-(F5). Define w(u(t, x))= w(t, x) to be the
distance from u(t, x) to the nearest point on 0 W(x). The function w(u) is defined and
continuous everywhere. If this nearest point is unique denote it by ul(t, x). Now if u
and Ul are distinct, then u-ul is normal to 0W(x). Denote u-u1 by N, and the
corresponding unit vector by N.

Let

(2.19) ( t, X) E(w( t, x))2 d-" 1] -1.
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Note that 0 < ff-< 1. Suppose

(2.20)
Off
--+ (c" V)fi f(t, x, u)
Ot

and define

(2.21) fo(t, x,u)=-
f(t,x, u)

LEMMA 2.6. f and fo are independent of t.

Proof Now

0U--+ (c" V)u f(x, u),
Ot

and so

0t 2(11--111)" (f(x, ll)--Onl/Ot--(C V)III)
--+(c. v)a
Ot (w2 + 1)2

Now U--U is normal to the surface 0 W(x), and since u remains on 0 W(x) we have
OUl/Ot tangential to 0 W(x), giving

(u -ul) ---u----z" 0.
0t

Theorem 2.1 states that if w(x) satisfies (c. V)w- f(x, w), and w(x) 0 W(x) for
some x A Ao, then w(x) W(x) for all x A Ao. Suppose that for some x A Ao
and some >- 0, w(x) Ul(t, x) 0 W(x).

Consider (c. V)ul. The function u(x, takes values on 0 W(x). Then (c. V)(Ul-
w) is tangential to 0 W(x), since both u(t, x) and w(x) remain on 0 W(x). Therefore
the components of (c. V)Ul and (c, V)w normal to 0 W(x) must be equal. Therefore

(u-u)" ((c" V)u)= (u-ul)" f(x, u).

In other words lI. f(x,u) is the component of (c. V)u normal to 0W(x) at u,
representing the change in u necessary to keep ul on W(x) as x changes.

Also, if Xo Ao, u 0 W(x), then O(t; Xo, u) lies on W(fxo(t)) for a11 t_-__ 0. So if
u(t, x) satisfies

0U--+ (c" V)u f(x, u),
Ot

u(t=O,x)=v(x),

and V(Xo) 0 W(xo) for each Xo Ao, then u(t, Xo) 0 W(xo) for all Xo Ao, >- 0. Suppose
that V(Xo)= u. Then N. (Ou/Ot)=0 if N is normal to 0 W(xo) at u. So, as before, we
have

(u-el). ((c. V)u1) (U Ill) f(x, Ul).

So if x is in A, u R", then

2[(u-u1)" (f(x, u)-f(x, al))]
f(t,x,u)= (w2+ 1)2

which is independent of for x A, u R". Hence fo is also independent of t.



CHAOTIC SOLUTIONS OF PDEs 1051

LEMMA 2.7. If Xo 0Ao then fo(Xo, Uo) < 0 for all u Ro(xo).
Proof. Let Xo 0Ao. Now

1 1 wE+ 1

(if--l) (wE+l)-1-1 W
E

Therefore, if u is not on 0 W(xo)

(2.22)
fo(xo, u)=

2[(u-u1)" (f(Xo, u)-f(Xo, u,))]
w2(w2 + 1)

2[N" (f(xo, ul + N)- f(xo, Ul))]
INI(INI + 1)

But, since N is normal to 0 W(xo) at Ul, we have N. f(Xo, ul)= O, and N. f(xo, u)< O,
giving

(2.23) fo(Xo, u) < 0.

For u close to 0 W(xo), we have

2IN. ((Jf(xo, Ul)N)+ O([NI))]
fo(Xo, u) INI(INI + 1)

[11. (Jf(xo, Ul)T) -- O(INI)]INI= + 1

But condition (F5) implies that 1. (Jf(xo, ul)lI)< 0. Also, fo(Xo, u) is bounded as u
approaches 0 W(xo). So fo(Xo, u) is continuous and negative for u in Ro(xo).

LEMMA 2.8. If0(x, U)I is bounded for x A int Ao and u R".
Proof For any x A-int Ao, u close to 0 W(x), N Ul(U)-u, we have, similarly

to before,

[11. (Jf(x, Ul)q{ - O(Isl)]
(2.24) fo(x, u)- INI=/ 1

which is clearly bounded as IN[--> 0.
Also,

fo(x, u)= 21NI-=(INI= + 1)-1IN (f(x, u)-f(x, u,))].
We know that If(x, u)l < kllUl + k=. Let

(2.25) F max If(x, u)l.
A-int Ao

uoW(x)

Then

Ifo(x, u)l < 2INI-I(IN[2 + 1)-1[ kllul + k2 + F].
Now assume that

(2.26) U= max lull.
A--int A

uoW(x)

If lul > 2 U then u- ull > lul/2. Therefore

(2.27)
Ifo(x, u)l < 41ul-l(1/2lul :’ + 1)-l[k, iul + k2 + F]

< 81ul-[k, / lu[-l(k2 / F)],
which approaches zero as [u --> .

So [fo(x, u)] is bounded in the compact region x A-int Ao, lu[ < 2U and fo --> 0
as lul--> o. This implies that fo is bounded everywhere.
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Proof of Theorem 2.2. First, show that for each e > 0 there exists 8 > 0 such that
for any tl > 0, p E A, rE R if

1

1 + I(tl; P, r) -Ull2=

then

1
1

1 + it(t; p, r)_ul[2< e

for tl _-< t-< T(p).
If p E A-Ao and s(t)>-0 is the arc-length along the characteristic p(t) from p,

then we can define as -= t(s) because we know that s is strictly increasing with t. Define

z(s) [1 + IO(t(s); p, r)- u12]-1

for s-->0.
Then

d 1
--In(I-z)= f(x,O)
dt 1-z

=fo(x, )

and

(2.28)

d
xx In (1 z) =fo(x, e)/Ic(x)l

g(x, ), say.

Now there are h>0, k>0 such that g(x,u) <0 for XEAh--int Ao, [U--Ul(U)]< k.
So if 1-z < k for p in 0Ao then 1-z remains less than k while p(t)E Ah.
A-int Ah is a compact set and so there is an M maXxA-intA, g(x, u) (because

g=fo/[C[ and fo(x, u) is bounded). Therefore (d/ds)In (l-z)_<- M.
Let m maxxA_i,t A S(X). NOW 1 Z __--< k for x E Ah, and so

In (1-z(s))<=Mm+ln (1 z(s))

for 0 < s -<_ s. Therefore

1 z(s) <- exp (Mm)(1 z(sl)).

Putting =exp (-Mm)min (e,k)we finally obtain 1-z(s)<=e for O<s<=s, giving

(2.29) 1-[1 + IO(t; p, r)--ull2]-’ < e

if t t--< T(p), and

1-[1 + Ig(t; p, r)-u]:]--< &
Now we must show that this gives limt_,oo if(t, x) 1 uniformly for x E A int Ao.
Choose e E (0, 1). Choose such that if

1-[1 / ](t; p, r)-u12]-l<_-
then

(2.30) 1 1 + I(t; p, r) Ul12]-1 E/2
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for all in the range [tl, T(p)]. Now Lemma 2.4 implies that +p(t) is in 0Ao for all
if p is in 0Ao. In other words this characteristic curve lies entirely on 0Ao.

If Xo is on 0Ao, r Ro(xo) and

(2.31)

then

y(t) [1 + IO(t; Xo, r) u,(O)12] -1

,),
dt

which, from Lemma 2.7, is positive if # is not on 0 W(bxo(t)).
Recall that R’(xo) is a closed subset of R" containing 0 W(Xo), and if u Ro(xo)

then there is some to => 0 such that #(t; Xo, u) R’(xo) for all => to. Let

(2.32) a max {fo(Xo, u): Xo 0Ao, u R’(xo)}.

Thus a < 0. Now O(t; Xo, r)6 R’ for all greater than some to --> 0. So for _-> to
d 1

d--- In (1- y)
l y--- f(dPxo( t), )

=fo(+xo(t), q)

because approaches 0 W(cbxo(t)) and never leaves R’(cbxo(t)). So

(2.33) 1-y(t)<=(1-y(to)) e’<t-t).

So there exists tl>0 such that 1-y(t)<6/2 for t>-_tl, rRo(xo). Also, since v is
continuous, there is ho> 0 such that

1 -[1 + Iq’(q; x, v(x)) < 6

for x Ao, such that minxo,o T(x)_-> ft. Now the conditions for the first part are
satisfied, giving

1 -[ 1 + Iq( t; x, v(x)) Ull=]- <
for all => So

e/2
1 -""/2 < e,

since e < 1.
So if t-> t we have +(0; t, x) Ao, and hence

(2.34) l*(t; b(0; t, x), v(b(0; t, x)))-u,I2 < e.

So lim,. [u(t, x)-u] 0.

3. Chaos. Recall that for x Ao, So(x) was defined as So(x) W(x) Ro(x). From
now on we will assume that for each x in Ao, So(x) consists of just one point Uo(X).

Now we show that chaos exists if v(x)= Uo(X) for each x Ao.
Let

(3.1)

and

V+ {v C(A)" v(x) Ro(x) Vx Ao}

(3.2) Vo {v C(A)" v(x) Uo(X) Vx 6 Ao}.
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LEMMA 3.1. Both V+ and Vo are invariant under St where St is an element of the
semidynamical system {St}t_>_o which maps U(to,. to U(to + t,. ).

Proof. Recall that

(Sv)(x) u(t, x)

O(t; Xo, V(Xo))

where Xo b(0; t, x); also satisfies

Now if x Ao we have b(0; t, x) Ao for all _-> 0. Hence

v(tb(0; t, x))- Uo(tb(0; t, x)),

which is in So(tb(0; t, x)). But So(x) is defined as the subset of W(x) for which O(t; x, u)
does not approach 0 W(tbx(t)) as -> o. Therefore if u So(x) it follows that 0(t; x, u)
lies in So(tbx(t)) for all t->_0. Thus for each XAo we have (Stv)(x) So(x), giving
(Stv)(x) Uo(X) for all t. So Vo is invariant under St.

Similarly if v(x) Ro(x) for all x in Ao then (Stv)(x) is also in Ro(x) for all x in
Ao. So V+ is invariant under St. We have shown that if v V/ then (Stv)(x) approaches
0 W(x) as --> o.

Let

(3.3) Vw {v e Vo" v(x) e int W(x) Vx e A}.

We demonstrate that this is a global attractor.
LEMMA 3.2. If e and f satisfy (C1)-(C2) and (F1)-(FS), then Vw is invariant

under St, and for each v Vo there is some To >- 0 such that Stv Vwfor all >-_ To.
Proof Now 0 W(x) is invariant under St since if U(to, x) lies on W(x) for some

to_-> 0 and all x A then u(t, x) lies on 0 W(x) for all x and all t->_ to. Now

(3.4) (Stv)(x) =(t; (0; t, x), v(tb(0; t, x))).

If v(x) lies in O W(x) for all x in A, then (Stv)(x) remains in O W(x) for all x e A and
all >_- 0.

The property of uniqueness of solutions ensures that if v((0; t,x)) is in
int W(tb(0; t, x)) then (Stv)(x)eint W(x) for all t_->0. Similarly if v(tb(0; t,x)) is in
R"-W(tb(0; t,x)) then (Stv)(x)e Rn- W(x) for all t=>0. This, together with the
invariance of Vo, gives invariance of Vw.

Also if v e Vo we know that v(x) Uo(X) for all x in Ao. Since 0 W(x) is contained
in Ro(x) for all x e Ao, it follows that in this case v(x)e int W(x).

So there is some ho> 0 such that v(x)e int W(x) for all x in Aho--int Ao. So if

T0=maXxoAho T(x), xeA-Ao and to>_- To, we have tb(0; t,x)eAho giving (Stov)(x) e
int W(x), because v(tb(0; to, x)) is in int W(tb(0; to, x)).

Now extend Uo to be a continuous function from A to R with Uo(X)e int W(x)
for each x e A.

LEMMA 3.3. Suppose c and f satisfy (C1)-(C2) and (F1)-(F5), and that for each
x in Ao, So(x) consists of the single point Uo(X). Let Vo Vw. Let 8<

maXxAo d (Uo(X), 0 W(x)), and let

(3.5) {Vo+ 1},
with

SV {Sv: v V}.
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For e > 0 denote by We(x) the subset of W(x) consisting ofpoints x such that the
open ball centered at x with radius e lies in W(x). Let e > 0 be sufficiently small so that

for each x in A, We (x) is nonempty and simply connected.
Then there is some to > 0 such thatfor all >- to and all x A, (StV)(x) lies in W(x)

and encloses We (x).
Proof. From Theorem 2.2 and Lemma 3.2 it is clear that there is some to > 0 such

that if > to, x A and v V, then (Stv)(x) W(x) and lies within distance e of 0 W(x).
It remains to show that (StV)(x) encloses all of We(x).

Consider xoAo. Now Vo(Xo) is inside V(xo), and so (Sovo)(Xo) lies inside
(SoV)(Xo). But (Sovo)(Xo)--Uo(Xo), whose distance from 0W(xo) is greater than e.
Hence (SoV)(Xo) encloses at least one point of W(xo). Therefore (SoV)(Xo) must
enclose all of W(xo), since all points of (So V)(Xo) lie outside W(xo).

Now (So V)(x) and W(x) both vary continuously with x. Also, We (x) is nonempty
and connected for each x A. So it follows that for each x A, (S,o V)(x) encloses We (x).

LEMMA 3.4. Suppose c and f satisfy (C1)-(C2) and (F1)-(FS). Let q be an element
of Vw. Let > O, " >- 0 and ho > O. Then there is some to > ’, numbers >- a > 0 with

fl <-- ho and a continuous mapping p from x in As -int A to p(x) R with thefollowing
properties:

1) For all x in As -int A we have Ip(x)-uo(x)l-<_ 8;
2) For each v Vw with

(3.6) Iv(x)-uo(x)[-<max [p(x)-uo(x)[ ’xA-intAo
xOA

and

we have

(3.7)

and

v(x) p(x) Vx A int As

[(Sv)(x) Uo(X) =< max Iq(x) Uo(x)l Vx Ao- int Ao
x0Ah

(Sov)(x) q(x) Vx A int Aho.
Proof. Let

(3.8) qho max Iq(x)--Uo(X) I.
xEOAh

Without loss of generality assume that Iq(x)-Uo(X) _-< qho if X Aho.
Let 0 be a continuous function from A to [0, 1] such that 0(x)- 1 for all x Ao,

0< 0(x)< 1 for all x in int Aho--Ao and 0(x)- 0 for all x outside Aho. Let V be the
subset of V/ consisting of functions that satisfy

(3.9) (x) 1/2O(x)n + Uo(X)

for all x in A-int Ao, where n is some unit vector in R n. Denote by V(x) the set of
points {r(x)" r V}. For each x int Aho, V (x) forms a surface homeomorphic to S"-1,
and Uo(X) lies inside this surface. Denote by (StV)(x) the set of points {(S,r)(x)" r V}.
This is a surface homeomorphic to V(x).

From Theorem 2.2 we know that for each element r of V, (Str)(x) approaches
0 W(x) uniformly for x in A. Also since Uo(X) lies inside V(x) for each x in int Aho,
and q Vw it follows, as in Lemma 3.3, that there exists to> maXxEoaho T(x) such that
q(x) is inside the surface (So)(x) for all x in A. So (0; t,x) Aho for all t->_ to, and
for all x in A.
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Let Oo(t; x) be the solution of

du
(3.1o)

dt
f(,l,(t to x), u)

with Oo(to, x)-q(x). Now Oo(to, X) lies inside (SV)(x). So Oo(t; x) lies inside
(StV)(x) for all t_>-0. Putting t=0 we find that o(0; x) is inside V((0; to, X)).

So [o(0; x)-uo(X)[ < 8 for all x in A-Ao since [(x)-Uo(X)l < 8 for all x in A-Ao.
Now if x 0Ao, then O(to; x, Uo(X)) Uo(X). So there exist numbers ro > 0 and h > 0

such that if XAh--int Ao and uR" with lU-Uo(X)]< ro then we have [(to; x,u)-
Uo(X)[ < qho"

Now by the definition of to we have (0; to, x) int Aho for all x in A. Let fl < ho
such that (0; to, x) As for all x in A and choose a such that

1) 0<a </3,
2) (0; to, x) As -int A for all x in A-int Aho
3) 1(0; ,,(to))--Uo(X)l<ro for all x in A.
Define

(3.11) p(x) (0; x(to))

for all x in As -int A. Now

O(to; 6x(to)) q(6x(to)).

We have shown that IO(0; x)-Uo(X)[ < 8, which implies that Ip(x)-Uo(x)l < for all x
in As int A,,.

Define

(3.12) p max Ip(x)-Uo(X)[.
x0A

Choose v Vw such that

Iv(x)- Uo(X)[ =<p ’x in A,,

v(x) p(x) ’x in As int A.
Now ,(0; to, x) As -int A for all x in A-int Aho, and so

p(,(0; to, x))=v(,0; to, X))

for all x in A-int Aho. Therefore

(Stov)(x) O(to; (0; to, x), p((0; to, x)))

(3.13)
O(to; (0; to, x), o(0; x))

o(to; x)

=q(x)

if x is outside Aho.
If x Aho and (0; to, x) is not in A, then

(S,ov)(x) =q(x)
as before, giving I(s v)(x)-uo(x)l < q o-

If x s Aho- int Ao and (0; to, x) A, then

Iv((0; to, x))- Uo(X) =<p max Ip(x)- Uo(X)[.
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So if x is on 0A we have

lv()(O; to, x))- Uo(X)l-<-}p(x.)- Uo(X)l
--< Io(0; x.(to)) Uo(X)l

--<ro.
Now

and therefore

(Sv)(x)=O(to; tb(0; to, x), v(tb(0; to, X))),

I(Sov) (x) Uo(X)[ I(to; 4(0; to, x), v((o; to, x))) Uo(X)l
--<_ sup I(to; p, r)-uo(x)l

xEAh
Ir-uo(x)l<ro

< qho as required.

THEOREM 3.1. If c and f satisfy (C1)-(C2) and (F1)-(F5) and So(x) {Uo(X)} for
each x Ao, then the semidynamical system {St}t>=o is chaotic in Vw.

Proof First, we show instability of each element of Vw. Let

(3.14) e=1/4 min lU-Uo(X)[.
xEoA

uaW(x)

Choose ( > 0 with

(3.15)
A-int Ao

uoW(x)

Let Vo be an element of Vw; that is, Vo is a continuous function from A to R" with
Vo(X) Uo(X) if x is in 0Ao, and Vo(X) is in the interior of W(x) for each x in A-Ao. Let

(3.16) V {vs Vw: max Iv(x)-vo(x)l < }.
xA

Now there exists ho > 0 such that

(3.17) IVo(X)- Uo(X)[ < t/2

for all x in Aho, since Vo(X)= Uo(X) for all x in Ao.
Choose ql, q: in Vw such that Iql(x)-q:(x)[> 2e for some x in A.
Applying Lemma 3.4 with -=0, we can choose to>0 and Pl, P_ defined on

A,I-int A and A,2-int A2 respectively, with the following properties:
1) Ipi(x)-uo(x)l < 3/2 in the range of definition of pi;

2) For each v in Vw with

we have

Ivi(x) Uo(X)]--< max Ip,(x) Uo(x)l Vx A..
xEOAai

t

v(x) p(x) Vx A,, int A,,

[(Sv,)(x) -Uo(x)l =< max Iq,(x)-Uo(X)] Vx Ao,
xOAh

(Sv)(x) qi(x) Vx A-int Aho.
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Let vi(x) be a continuous function from A to Rn, with

(3.18)

and

[Uo(X) Vx Ao,
vi(x) p,(x) Vx As,-int A,,

[Vo(X) Vx A- int Aho,
Ivi(x)--Uo(X)]--<-- 8/2 Vx Aho

Iv,(x) Uo(X)l--< max Ip,(x) no(x)[ Vx A..
x0A,

Now for x outside Aho we have

Iv,(x)-vo(x)l =o.
For x in Aho-intAo, (3.17) implies that ]vi(x)-uo(x)]_-< 8/2; and (3.18) implies that
Ivo<x)-o<x)l < /2, which gives

I’,,’, (x) -’,,’o(x)l--< .
Also, for x Ao we have

v,(x) Vo(X)= Uo(X).

Hence Ivy(x)-Vo(X)] =< 8 for all x in A, and so v
So

v(x) p(x) Vx As, int A,
Iv, (x)- Uo(X)I _-< p, Vx

Therefore

and so

(Svi)(x) =q(x) for x in A-int Aho,

(3.19)
I(sv_) (x) -(SVl)(x)

at some point x in OA. This holds for all 8 > 0. So there is no uniform convergence,
and each element of Vw is unstable under {St}t>_o.

For the second part of the proof it remains to show that some element of Vw has
a dense orbit.

Let {qn}--1 be a dense set in Vv and suppose that q(x) Uo(X) for all x in A-Ao.
Let

(3.20) b= man lu-uo(x)
xA
w(,)

and let 8 b/2. Choose h1E (0, 1/2) such that Iq,(x) -Uo(X)[ =< b/2 for all x in Ah,. Let ’ 0.
Apply Lemma 3.4 to get a function Pl defined on As,- int As, and a number lOl

such that
1) IPl(X)-Uo(X)[ < 81/2 in the range of definition of p;
2) For each v in Vw with

I(x)-uo(x)l_-< max Ipl(x)-uo(x)l Vx
xOA.I

v(x) p(x) Vx
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we have

[(Sov)(x) -Uo(X)l-< max Iq,(x) -Uo(X)l Vx A,
xOAh

(Sv)(x) q(x) Yx A-int Aho.

For each integer n > 1 let

6.=min(. max [p._(x)-uo(x)[)an_

and choose h.>0 with h. <min (2-", a._l) such that lq.(x)-uo(X)[ (b/2") for all x
in Ah.. Let % t0,n_ 1. Again apply Lemma 3.4 to get p. defined on A.-int A. and

to. to.-l.
Now

0<. <a. <ft. < h. < a.-l<"

Also, lim. . 0, and lim. d =0. Let v be a continuous function from A to R"
satisfying

v(x) ao(X) Vx o,
(3.21) v(x) p.(x) Wx A,. -int A.,

I,x) ox)l max Ipx ox)l.
XAa

Now v is continuous on 0Ao because ip. (x) -Uo(X)i . in the area of definition of p..
Clearly v Vw.

Also

for x Ah. and

if x A int Ah., giving

So

I(s.v)(x) Uo(x)l max Iq. (x) Uo(X)l
X-OAh

b

(S.v)(x) q.(x)

bI(so,)(x) Uo(X)[ <-.
(3.22) [(S.v)(x) Uo(X)l <- Vx a.

Therefore

2b
sup
xA

which implies that {S.V}n%I is dense in Vw.
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4. Periodic orbits. P. Brunovsky [2] proves the following.
THEOREM (Brunovsky). Let A [0, 1]. Assume that
1) The function c maps A to [0, oo), the function f maps A x [0, oo) to R, and both

c andf are C 1"

2) c(0) 0 and c(x) > 0 for all x 0;
3) There is some Uo(O, 1] such that (a) f(0, u)(u-uo)<O for all uO, uP Uo,

and (b) fu(0, Uo) < 0;
4) There exist kl->0, k2>- O such that f(x, u) <= klU + kE for all xA, u->0;
5) f(x, O) 0 for all x A.
Then we have
(a) For each - 0 there is a continuum offunctions v in Vw (defined as before)

satisfying Sv v, that is, functions v that give rise to --periodic behaviour;
(b) The set of all periodic points of St is dense in Vw.
We now wish to prove an analogous result for the more general case. In fact this

theorem generalizes to an almost identical statement.
THEOREM 4.1. Suppose c and f satisfy (C1)-(C2) and (F1)-(FS), and for each x

in Ao, So(x) consists ofjust the one point {Uo(X)}. Then
(a) For each " > 0 there is a continuum offunctions v in Vw (defined as before)

satisfying Sv v, that is, functions v that give rise to --periodic behaviour;
(b) The set of all periodic points ofS is dense in Vw.
Recall that if x A- Ao, then tx(t) is the characteristic curve satisfying

Ot

and T(x) is the (unique) value of for which x(t) intersects 0A. Thus x(T(x)) is
the point of 0A at which this intersection takes place.

We now consider a one-to-one correspondence between functions v" A- Ao-> R
and functions g: 0A x [0,

Let 0A. Let @ be the mapping from the function space (C(A-Ao)) to the
function space (C(0A x [0, ))) defined by

tI)(v)(,, t)=O(t; t(0; t,,), v((0; t, )))
(4.1)

u(t, :)
if u(0, x)=v(x) for all x A-Ao. Thus if g is a function from 0A x[0, ) to R, we
have g @(v) iff

(4.2) v(x) (- T(x); x(T(x)), g(x(T(x)), T(x)))
for all x in A- Ao.

Therefore we can state the following.
LEMMA 4.1. The map P defined by (4.1) is invertible, with inverse given by (4.2).
Note that here one is not necessarily able to extend v to a function from A to R",

as v(x) need not have a limit as x approaches 0Ao.
LEMMA 4.2. Let g be a continuous function from 0A x [0,

W(,) and

(4.3) d(g(, t), 0 W(X)) _->

for some rl > 0 and all >- O, all OA. Then g ( Vw).
Proof. We must show that if xA-Ao approaches Xo0Ao, then limx-,xo

(g)(x) Uo(Xo). This is sufficient, because then we can define

(4.4)
v(x) @-l(g)(x) Vx A Ao,

V(Xo) lim @-l(g)(x) VXo 0Ao.
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Let be a point on 0A. Let 8>0, 0<ho-<_1/2 and define V as in (3.9), that is,

V {Uo+ 1/280n: In[ 1 }

where 0 is a continuous function from A to R, with 0(x) 1 if x Ao, 0(x) 0 if x is
outside Aho, and 0< 0(x)< 1 otherwise. Define StV as {Sty: v V}.

Because V(Xo) Ro(xo) for all x Ao, we know from Theorem 2.2 that for each v
in V, @(v)(, t) approaches 0W() as t-> c. Therefore there is some time t > 0 such
that for each t_> t and each v V we have d(@(v)(, t), 0W()) <

Now p(V)(,t) is homeomorphic to 0W(x). Also for each Xo0Ao, V(xo)
encloses Uo(Xo). So, by an argument similar to that of Lemma 3.1, if => t, then
(V)(, t) encloses the subset of W() which lies at distance greater than ,/ from

the boundary. Thus g(, t) lies inside (V)(, t). This implies that tb-(g)(x) lies
inside V(x) for all x with T(x)>-t. So there is some h > 0 such that V(x) encloses
-(g)(x) for all x in Ah-Ao.

However 8 was arbitrary, and for each Xo 0Ao the surface V(xo) encloses Uo(Xo).
Therefore limx-.xo tb-(g)(x) Uo(Xo), and so g tb(Vw).

LEMMA 4.3. If @(V)(, t) is periodic in with period 7" independent of ,2, then the
solution u(x, t) is periodic with period 7" for all x A-Ao.

Proof. Suppose (Stv)(x) (St+v)(x) for some x A- Ao and some _-> 0. Therefore

(t; (0; t, x), v((0; t, x))) (t + 7"; tb(0; + 7", x), v((0; + 7", x))).

Consider the situation after time T(x). Then

0(t + T(x); tb(0; t, x), v(tb(0; t, x))) # q(t + T(x) + 7"; tb(0; + 7", x), v(b(0; + 7", x))).

But after time T(x) we also have bx(T(x)) 0A. Thus

q(t+ T(x); tb(0; t, x), v(tb(0; t, x))) @(v)(tb(t+ T(x); t,x), t+ T(x))

and

(t + T(x) + 7"; tb(0; + 7", x), v(tb(0; + % x)))

@(v)(tb(t + T(x) + 7"; + % x), + T(x) + 7.).

But since c is independent of t, we have

tb(t + T(x); t, x) (t + T(x) + 7.; + 7., x),

and thus

@(v)(tb(t + T(x); t, x), + T(x)) @(v)(b(t + T(x); t, x), + T(x) + 7.).

But this contradicts the hypothesis that tb(v)(, t) is periodic in with period 7..

Therefore we must have

for all x A Ao and all _>- 0.
If Vo Vw and

(4.5) e < 1/2

(S,v)(x) (s,/v)(x)

min d(vo(x), 0 W(x)),
A-int Ao

denote by V (Vo) the set of functions V {Vo+ fi" Ifil 1}, and denote by S,V (Vo) the
set of functions {S,v: v V(vo)}.

LEMMA 4.4. For each Vo Vw and e as in (4.5), there is some to>0 such that
(SsV (Vo))(x) lies strictly inside (Ss+,V (Vo))(x) for all s >= O, >= to, x A.
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Proofi Each element v of V(vo) is in V/, since v(x) Uo(X) for x in Ao. Hence,
by Theorem 2.2, (Stv)(x) approaches O W(x) as uniformly for x e A. Thus there
is some to > 0 such that d ((Stv)(x), 0 W(x)) < e for each v e V (Vo), x e A and => to.

Now, by Lemma 3.3, if t>=to, x eA, then (StV(vo))(x) encloses {ue
W(x): d(u, 0 W(x))> e}, which in turn contains V(vo)(X). So V(vo)(X) is enclosed by
(StV(vo))(x) for all x e A and all => to. Hence, using the uniqueness of solutions
(Lemma 2.1), it follows that (SV(vo))(x) is enclosed by (Ss+tV(vo))(x) for s->0.

Proof of Theorem 4.1. (a) There is a continuum of functions g: 0A x[0, oo)- R
periodic in with period -, such that g(R, t)e int W(R). Now Lemmas 4.1 and 4.2
imply that each g is in (Vw), and from Lemma 4.3 it follows that for each such g
the associated function u(t, x) is periodic in with period - for x e A Ao. For Xo e Ao,
v Vw, it follows, by the definition of So(xo), that (Stv)(xo) Uo(Xo) for all -> 0. Hence
there is a continuum of initial functions v e Vw that give rise to --periodic solutions
u(t, x).

(b) Choose Vo V, and let

e < 1/2 min d(vo(X), W(x)).
A-int A

Define V (Vo) and St V, (Vo) as before. Let g (Vo).
By Lemma 4.4 we can choose t, such that if >-0 and x A, then (St,+tV,(Vo))(x)

encloses (St V, (Vo))(x).
Now choose p, to be a continuous function from 0A [0, ) to R subject to the

following conditions:
1) For all 0A and 0_-< < t, let f(, t) be in the open region bounded by

(s,v(vo))().
2) For all A and all >- tp let (, t) (, ntp), where n is a positive integer,

and 0 <- t- ntp < tp.
This is possible, since tp was chosen such that (StpV (Vo))() encloses (SoV(Vo))(),

which in turn encloses f(, 0). Thus f is periodic in with period tp.
By Lemma 4.1 we have g () for some r which maps A to R. Also, since , is

periodic in t, and ,(, t) int W() for all >_- 0 and all 0A, f satisfies the conditions
of Lemma 4.2. Therefore Vw.

Now f(, t) lies inside (S,V(vo))() for all -> 0 and all oA. Therefore r(x) lies
inside V(vo)(X) for all x in A-int Ao. Also, since-v Vw, we have

(x) Vo(X) Uo(X)

for all x Ao. Hence for each x A we have

I(x) -Vo(X)l < .
Thus for any Vo in Vw there is some r arbitrarily close to Vo, such that {Strc}t>__o is
periodic in t. Therefore the set of periodic points of St is dense in Vw.

Hence chaos of a type analogous to that of Li and Yorke [7] is present in
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ON THREE-BODY SCATrERING NEAR THRESHOLDS*

F. GESZTESYf AND G. KARNERt

Abstract. Using exponential decay ofthe two-body interactions at infinity we discuss analytic expansions
of two-cluster scattering operators and scattering amplitudes with respect to channel momenta around
(negative) thresholds. An explicit formula for elastic scattering amplitudes in terms of the three-body
resolvent is derived.

Key words, three-body scattering, scattering thresholds
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1. Introduction. This paper continues previous studies of threshold scattering in
nonrelativistic two-body systems (cf. [1], [2]) to the three-body problem. We are
especially concerned with analytic expansions of two-cluster scattering operators and
scattering amplitudes with respect to channel momenta around (negative) thresholds
assuming exponential falloff of the two-body interactions at infinity.

In 2 we introduce our basic assumptions on the two-body interactions, establish
the terminology used throughout this paper, and recall the direct integral decomposition
of channel Hamiltonians. Faddeev’s theory 14] in the Hilbert space version of Ginibre
and Moulin [16] is discussed in 3. Here our presentation essentially follows Amrein,
Jauch and Sinha [3] and Amrein and Sinha [5]. Since we are particularly interested
in the behaviour of the three-particle resolvent near thresholds, we use stronger decay
assumptions on the two-body potentials (of the type Ix[ -a-e, E > 0 as Ixl--> o) than in
[5]. Section 4, which describes continuity and the threshold behaviour of averaged
total cross sections, merely supplements the treatment in [5] (cf. their Remark 3). For
two-body potentials decaying like [x1-5-, e > 0 at infinity we represent the two-cluster
scattering amplitudes as scalar products in L2(6) (in analogy to the two-body problem)
and discuss their continuity properties with respect to energy and angle variables in

5. As a special case of our threshold considerations of two-cluster scattering ampli-
tudes we mention the definition of elastic scattering lengths and their explicit formulas
in terms of the three-body resolvent (cf. also 15]). Finally, using an exponential decay
ofthe two-body potentials in 6, we derive analytic expansions oftwo-cluster scattering
operators and amplitudes with respect to channel momenta around (negative)
thresholds.

2. Notations and basic facts. Greek indices a,/3, y, 8 denote pairs of particles, or
the corresponding third particle, i.e., (1, 2) or 3 (resp. (2, 3), or 1 and (3, 1) or 2). If
all particles are considered simultaneously we denote the triple (1, 2, 3) by a 0 (/3 0,
etc.). If/xj, j 1, 2, 3 denote the masses of the spinless and distinguishable particles
in 3, rn denotes the reduced mass of the pair a (j, l), i.e.,

(2.1) ml=/zfl+/x-’, ct (j, l)

and n denotes the reduced mass of the pair a (j, 1) and the corresponding third
particle, i.e.,

(2.2) n (& +/x,)-1 +/x;’, a (j, 1) p.
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Finally M s3.=1/xj abbreviates the total mass. If ,j 1, 2, 3 denote the coordinates
of the particles in configuration space the center of mass and Jacobi coordinates are
defined by

x, =M-1
j=l

(2.3)

ya Xp (Id,j -i- id,l)-l(ljj d- tZl), t=( l) p.

The associated conjugate momenta are denoted by

j=l

(2.4) k
q M-’( +,)n M-’(n + n,), a (j, l) p

where are conjugate momenta of ,j 1, 2, 3. For later purposes we note that

x -x xv,

y -( +)2’y + (, , v)( +)-’M(/)x,

x (, , v)y -( +)-’x,
(2.5) y -( +)-’y (, , v)[( +)(+)]-’Mx,

y -(, , V)x (, , V)( +)-’x,
y -(, , V)( +)-’x +(, , V)( +)-’x,

afl, ay, V, (a, fl, V)={+l (, an vCn permutation Of (1, 2, 3),
1 (a, , T) an odd permutation of (1, 2, 3).

The total kinetic energy (of the relative motion) is given by

(2.6) (2m)-lk+(2n)-lq, a 1,2,3.

The self-adjoint free Hamiltonian Ho in W L2(6) then reads

(2.7) Ho -(2m)-’a 1 1(2n)-’a, a 1, 2, 3.

We assume that the panicles interact via real, local translationally invariant potentials
v obeying the following hypothesis.

Hypothesis (I). Let v > 0, u LP(3) for some p > 3/2 be real-valued, a 1, 2, 3.
Then v is defined as

(2.s) u(x):(l+lxl)--u(x), :1,2,3.

The total Hamiltonian H in is then defined as the form sum (c [36])

(2.9) H Ho

and the a-cluster Hamiltonian H in reads

(2.10) n h 1 1(2n)-’, 1, 2, 3
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where h, denotes the two-particle Hamiltonian of the subsystem a given by the form
sum in L2(3)

(2.11) ha ho., 4- v,, ho,, -(2m,)-Ax, c 1, 2, 3.

The corresponding resolvents are denoted by

(2.12)

Go(Z) (Ho- z)-’, z ’\[0, ),

O(z)=(H-z)-’, zep(H),

Oo,(z)=(no,-z)-’, zp(no,),

go,(z)=(ho,-z)-1, zp(h,),

go,,(z)=(ho,o,-z), z fig\J0, oo), 1,2,3

where p(.) denotes the corresponding resolvent set. Concerning the spectra of the
operators involved, we remark that

tress(h,) tres(ho,,) o’es(no) [0, o),

tress(Ha) ](2) 00), ](2) inf

re(H)=[Eo2),o), E<oz)= inf r(h),
1,2,3

(2.13)
O’d(h)c[E (2) 0) (if (2) <0, otherwise empty) is finite,O,t

Eos) inf r(H > -o,

o’a(H) [E<o), Eo)) (if Eoa) < Eo), otherwise empty) is finite, a 1, 2, 3

where r( ), ra (") denote the corresponding essential and discrete spectra (for proofs
el. e.g. [11], [31], [39]). For additional results on the point spectrum ov(H) of H see
Lemma 3.8.

Next we introduce the channel structure. Let E_,o)(h,)L2(t)
1in span {q,lhq, eq,, (q,, q,’) 6,,j,j’ 1,..., N}, a 1, 2, 3 denote the nega-
tive point spectral subspaee associated with h,, where N, < denotes the number of
negative bound states (counting multiplicity) and e <0 denote the corresponding

< 2 < < N < 0 (not necessarily distinct). The channel sub-eigenvalues of
space c is then given by

(2.14) d/t {qt} () L2(I 3", days), j 1, N,,, a 1, 2, 3

(O{ q{ (xa)) and the cluster subspace d//, c reads

N

(2.15) d/t, E(_oo,o)(ho,)L2( 3, d3x)(R) L2(3, d3y,,,), a 1, 2, 3.
j=l

The corresponding ohogonal projections onto and are denoted by E and E"

E =(,.)@1, E @ E,
j=l

(2.16)
EE ,E, j 1," , N, a 1, 2, 3.

The (u,j)-channel Hamiltonian H in is then defined by

(2.17) H HE ,.)@[-(2n,)-Ay+e], j= 1,..., N, a 1,2,3.
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Clearly

(2.18) trp(H{)=, O’ess(H{)=o’,c(H{)=[e{,c), j=I,’",N, a=1,2,3.

(trac(") denotes the absolutely continuous spectrum.) Finally we introduce the zeroth
channel (0, 0). Define

(2.19) e=0, =, E= 1;

then H Ho is the corresponding cluster (channel) Hamiltonian.
In order to discuss scattering theory, we introduce
Hypothesis (II). Suppose H(I) holds and define

(2.20) e {z lv so, /: - for some L2(3), # 0}

where

(2.21) vY2(x,) sgn (v,(x,))lv,(x,)l ’/2, a= 1,2,3.

Then we assume that

(2.22) e {e+ U e} f-I [0, co) , a 1, 2, 3.

Obviously (2.22) implies the absence of zero-energy resonances and nonnegative
(embedded) eigenvalues as well as

(2.23) tress(ho,)=O-ac(ho,)=[O, cx3), c 1,2,3

(cf. [31], [36]). H(II) implies the existence (cf. [30], [37]) and completeness (cf. [12],
[16], [17], [20], [21], [25], [26], [30], [34], [35], [38], [40] and [41]) of the wave
operators 1.j in defined by

(2.24) f’J e "I-I e -itI-ls lim E a 0, 1, 2, 3.

More precisely we have

N

Ran oo1+ @ ( Ran f7 ,,c(H),
a=lj=l

(2.25)
gE, a 0, 1, 2, 3.

Here and in the following sections we always assume that in a two-cluster channel
(a, j), a 0, j runs from 1 to N whereas for a three-cluster channel (, 1), 0,
equals zero. For weaker two-body spectral assumptions cf. [12], [24], [34], [38]. The
absence of the singular continuous spectrum of H follows from [26], [29]. The
corresponding scattering operator S in , defined by

(2.26) S (a’)*, a, 0, 1, 2, 3,

describes scattering from channel (a,j) into channel (,/): S describes elastic
scattering, S, #j (i.e. # const. ) inelastic scattering, S, a # fl rearrangement
scattering, S breakup scattering, S the scattering of three free panicles. We recall
that

(2.27) HSg SgH, a, O, 1, 2, 3.

Clearly Sg maps onto and unitary of the scattering operator is equivalent to

N

(2.28) ,o t,o . S *= ’=S oS,,o) + 2 o, 1, 2, 3.
a=lj=l
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Each eigenvalue e < 0 of ha together with e =0 defines a threshold for the
three-body system. We introduce

(2.29) O,={e<O,j=l,...,N,}, a=1,2,3, 0={0}U U 0,.

Finally we turn to spectral representations associated with H, Ho. Define

(2.30) 3, (2n,)-l(q)2 + e, w Iql-q S, a 1, 2, 3,

S2 the unit sphere in 3. The spectral representation (cf. [3]) of H then reads

(2.31) q3 L2((e, ); L2($2))

and the corresponding spectral transformation a// is given by

(2.32)
q/( (R) b)(A, w)= (27r)-3/2n/212n,(A --eJ)] ’/4

d3yo, exp (-i[2n,(A e)]’/2wyo,)ck(yo,),

b E L2(?3), a 1, 2, 3.

As a consequence

(2.33) 1,2,3.

In addition we define

(2.34) U J//,E,, a 1,2,3

and (cf. [3], [5]) M(A,A)’(A) L2($2),

(2.35) (M(A, A)g)(w) UEAg)(A, w), g (A), a 1, 2, 3.

Here A denotes a multiplication operator in with one of the following functions
(cf. (3.4)and (3.5))" Ivo(xo)] /2, v/2(xo),()(y,), (x)l%(y)1-1, v/=(x)l(y)1-1,
g(x, xo) where Ig(x, x)l-<-exp [lxl](x) for some K < (-2m,e)1/2, d L2(3),
fl 1,2,3, fl # a.

It remains to discuss Ho. Let

(2.36)
x (2mv)-’l k,l2 + (2n,)-’lqvl2,
w lk,l-’ kv S2, q m-’nlkl= + lq}=]-’/-q, 3,=1,2,3.

Then Woo= (w, q) parametrizes the ellipsoid E

(2.37) Es= {k, q,l(2m)-’lk12+(2n)-’lql= 1}, 1,2,3.

The spectral representation of Ho is

(2.38) = L2((O, oo); L2(ES))
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and the corresponding spectral transformation Uo reads

Ub)(A, o9, q)= (27r)-314(nvmv)3/2(1 -Iql)/zAz]/

2.39) 1.i.m. f d xv dR--oo Jlxvl<=R,lYvl <-R

exp (-i[2mvA (1 -Iql)]/oox i(2nvA)l/2qyv)6(x, Yv),

Consequently

(2.40) UHo( U)* d)t )t 1 tu).
(o,o)

Similarly to (2.35) we also define M(A, ,)" (A) L(ES)

(2.41) (M(A, h )g)(o, q) UAg)(A, oo, q), g (A)

where now A denotes a multiplication operator in with one ofthe following functions:
Iv(x)l 1/, 4)(x), where b LP(3) for p=2 or p=3,/3= 1,2,3.

3. The three-particle resolvent G(z). In this section we shall discuss the three-
particle resolvent G(z). We closely follow [5] (see also [3], [1]). Due to the stronger
decay assumptions in H(II) (and in H(III) defined below) when compared to [5] we
extend their results to be valid near thresholds contained in 0 (cf. (2.29)).

We alternatively use H(II) and the following hypothesis.
Hypothesis (III). Let b>0 and us LP(l3)ntL(l3) for some p> 3/2 be real-

valued, a 1, 2, 3. Then v is defined by

(3.1) V,(X)=e-bI’Iu(x), a 1,2,3.

In addition we assume that

(3.2) e {e+ t_l eS} fq [0, oo), a=l,2,3

(cf. (2.20)).
Obviously H(III) implies H(II) and both H(II) and H(III) imply v

L(53) VI L3/2(3), a 1, 2, 3. The exponential decreases of v at infinity assumed in
H(III) will be used in 6 to derive analytic expansions of scattering operators and
amplitudes with respect to channel momenta near thresholds in 0\{0}.

LEMMA 3.1. Assume H(II) and hq= eq, e <0, q L2(/3) for some j=
1,..., N, a 1, 2, 3. Then eKll L2(3) for all K < (-2me)/2 and (1 +[. [a)
H2’1(/3), fl [0,2+ 1). /f in addition H(III) holds then eKl’lq n2’l(l3) for all <
(-2me)/2.

Proof. Using H(II) the result is due to [36] and [5]. Suppose H(III) then
e’oL, Ivl’/e’l L() for all r < to= (-2me)/2 by Theorems VI.6 and VI.7
of [36]. From

q{(x) -(4r)-’ Ie d3y e-’ol’-rllx-yl-’v(y)O{(y)
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we infer

I(voL)(x)l (47r)-o J d3y

+ (47r)-1 f3 d3y e-I’-’IIx-yI-Iv’(y)IIL(Y)I

I(v),(x)l + I(v):(x)l.
Clearly e’l}(V$)al e L(3) for all < o by the above remarks. Next we get

el(v6)l=(4)-f dYde(o-’elv(y)l e(o-’Zlo()[

elyl[$(y)lelZl}(z)

f d3xlx-yl-Zlx-z[-z elXl e-olX-yl e-olyl elXl e-olX-Zl e-oll
3

(11" I1 the Rollnik norm [36]) using Fubini’s Theorem,

(3.3) f d3xlx-yl-lx z[-2 const. [y- z1-1,

and the Schwarz’ inequality. Thus el(VOL)l L2(3) for all < ro and we only
need to note

V(eKl10)(x) K e"lxl(lxl-lx)q,(x)+ el’t(V0)(x).
Next we introduce

(3.4)
p,(y,)

f + ly,l) -1-’/2
e-%lyl

if H(II) holds,
if H(III) holds,

0 < as < inf ,
/3 ,9_,3

(3.5) /, (y,,)=
f(1 + lyl)-l-/ if H(II) holds,

e-aly,l if H(III) holds,

0<t< inf ()inf1,2,3 /3 1,2,3

(3.6) o’,, (x,)=
f(1 -1- IXc I) if H(II) holds,

e-’1)‘1 if H(III) holds,

(3.7) t(x)=
f{(1 -Al- lXa l)--l--v/2 if H(II) holds,

e-alx’l if H(III) holds; a=1,2,3

and denote by p(;) resp. tr(&) the multiplication operators in

((d/)(x,, y,)= ((y,)d/(xo,, y,), (d’O)(x,, y,) -)oo, (x,)O(x,, Yo,),
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LEMMA 3.2. Assume H(II) or H(III). Then the following operators are in

(i) lul’/(Iv,l + 1)-1, Il’/=(Iv,l + 1)-1, Ivl’/=(Ho+ 1) -1/2,

Introducing for z c\,

(3.8)

Dll,y(z)-- E Dlo,vga(Z)
c=l

We recall the following lemma ([5]).

1/2/-2 [,., 1/2, 1/2 1/2w(z)- ,o)lvl z(z)- uy
1/2 1/2x(z) ()11 x(z) x(z),

1/21/(z)0, Y(z) v (),,V(z)= v
Ko (z) 1/,, E)a(z)o,, K1 Ep,UT 1

1/Ea(z),L(z)=v
Doo, (z) v/=(1 E)(z)loll/=(1 ),

Dol,(z)= E Doo,(z)(z)

/=(1 E)(z)lol’/=(1 )o/=E(z)&,
Dlo, Ulvll/(1-),

y, 6= 1,2,3.

LEMMA 3.3. Assume H(II) and z c\. Then all operators defined in (3.8) are in
e).,
LEMMA 3.4. Assume H(II). Then
(i) W(z), y, 6 1, 2, 3 converges in norm as z --> A + iO, uniformly in A . For

y# 6, Wv(z) (Y() for all z qg, Wv(z)_ Ydoo(Y(), z cC
(ii) p,,EG(z)p converges in norm as z-->A+iO, uniformly in

p,E,,G,,(z)p,, 3oo(Yg) for all z c, a 1, 2, 3.
(iii) v’/=(1-E)(z)lol/= converges in norm as z--> A +iO, uniformly in

a 1,2,3.
(iv) 1/2 11/2o v ,..,,(z)[ va +()forT,+6, Imz#O,%6=l,2,3.
Proof (i), (iii) and (iv) are due to [5] and based on [22]. Due to our stronger

decay properties in p we infer (ii) for all A from
N

(3.9) p,,E,,G,,(z)p,, ES(R)p,,[-(2n)-lay -(z-eS)]-lp
j=l

lull/UEa, Ivl’/=E,, , 1, 2, 3.

(ii) O1O e-lllul’/=E, y , pUEy e-llluzl 1/,
lEye-llluzl/Up1, y, ,, y, =1,2,3 ifH(IiI) holds.

If only H(II) holds replace e-ll by (1 +lxl)-=-.
-1(iii) Ivyl/Ep, y , p Ep,, a, , y, 1, 2, 3.

(iv) IE, Ivll/2E1, a 1, 2, 3.

(V) laEa, , 1, 2, 3.

Proof See [5] for the proof under H(II). If H(III) holds one can follow their
methods using the second paa in Lemma 3.1.
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since N < oo and p L3/2(3). We also note that (iii) immediately follows from

v/(1 E)a(z)lvl’/-= d ei’v/2Eac(h) e-"lvl 1/2

@exp (-i(-2n)-Ay), Im z > 0

(similar for Im z < O) and from ([20])

[]. 1/2Ec(h e-ih 1/2 L’
For the following it is convenient to define

(3.10) =
and to represent linear operators T" by T { Ta}a,fl=l,2,3. Then we have

z() w(z)-

(3.11) Z(z) X(z’)-[X(z)-X(z)]Z(z),

Y(z)= V(z)-[X(z)-X(z)]r(z), Im z#0.

In addition we define

(3.12) =
A A A A

and represent linear operators U: by U= { Ut},t=o,1 such that

(go) ( go, gl .g=
g

For Im z # 0 we introduce

A

K(z)
[g- K(z)g

/’
(3.13)

A

](z): go go+ L(z)gl,
g

with Ko,r(z), K,, Lv(z) given by (3.8) and

A

(3.14) D(z)= {Ds,(z)}s,,=o,1
with Ds,,v(z) defined in (3.8).

Then we have the following lemma ([5]).
LEMMA 3.5. Assume H(II) or H(III) and Im z rs O. Then

(i)

(ii)

(iii)

(z)K(z)= V(z),

J(z)D(z) [g(z) -(z)]J(z),
[14- tYC(z)][1-2(z)]=[1-;(z)][1 + ff’(z)] 1,

i.e., [1 + l(z)]-I 3(/-),
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(iv)

(v)

(3.15)(vi)

[1 +.(z)- (z)]-I (e),
1 + D(z)]-1 exists,

’(z) [1 + ’(z)-(z)]-lJ(z)K(z) J(z)[1 + D(z)]-lK(z).
A

Since Dlo (W) but Dlo oo(W) we define in (cf. [3], [5])

(3.16) N= /)10 A(z) (1 N)[D(z)- N], Im z 0.

We recall the following lemma ([3], [5]).
LEMMA 3.6. Assume H(II) or H(III) and Im z O. Then

A A A

(i) N is nilpotent, ]r2 0, (1 + N)-1 1 N.
A A

(ii) 1 + A(z) is invertible if and only if 1 + D(z) is since

A A A A A A

[I+A(z)]-I=[I+D(z)]-I(I+N), [I+D(z)]-I=[I+A(z)]-I(1-N).

LEMMA 3.7. Assume H(II) or H(III). Then
A A

(i) A(z) oo() for all z c;
A

(ii) A(z) converges in norm as z-> A + iO, uniformly in A and

lim ,(z)ll 0, z .
A

(iii) A(z) is analytic in z c\[E(o2) ), E(02) inf,=l,2,3 tr(h,).

Proof Following [5], we treat Doo(Z), Dol(z), Dll(z) in some detail for later
purposes (cf., e.g., Lemma 6.2).

(a) Doo,va(z) vlv/2(1 Ev)[Go(Z)- G(z)Go(z)]lvl 1/2

(3.17) -[1-v/2(1-E,)G,(z)Iv,I
1/2 _--1 1/2,

Lemma 3.4(iii), respectively, Lemma 3.2(iv) apply for the terms [. in (3.17). Lemma
3.4(i) applies for -o’l/Go(z)ll 1/ and Go(Z)ll1/. Clearly Doov(z), is analytic in
z [0,).

1/2(b) Dol,(z) =[1-
(3.18)

1/-[ El]Go(Z)UEO(z)p,
The terms [... in (3.18) have already been discussed in (3.17).

,,1/ z)]$;1E&_[u ]EG(z)p(3.19) _v,l/2Go(Z)vEG(z)p [v o
Lemma 3.2(iii) and (v) apply for vlEfi and Efi. Lemma 3.4(i) applies for
v/2Go(z). The operator EG(z)fi is treated in Lemma 3.4(ii). In paicular (3.9)
shows its analyticity in z[e,) (and hence analyticity of ol(z) in z
[Eg2, )). The operator wyGo(z)vEG(z) can be discussed identically to (3.19)
after replacing

(3.20) (c) Dll,v(z)=[filEve-bllu[l/fil][u/EE]fiEG(z)p,
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if H(III) holds (if only H(II) holds replace e-blxl by (1 + Ixl)-2-) and Lemma 3.2(i),
(ii) and Lemma 3.4(ii) apply. Again E311(z is analytic in z \[Eo2), o).

A

(d) lim IIA(z)ll 0, is proved in [16] (for z \[0,c)) and in [19].

Next we define
A A A

(3.21) ={z c (z + i0) -, Y(, # 0}, = +LI g-
and note the following lemma.

LEMMA 3.8. Assume H(II). Then

(i) g’ is a compact subset of of Lebesgue measure zero;

(ii) era(H) g(’l (-oo, Eo)) is finite, crp(n) c , crp(n) f’l (-oo, O) f’l (-oo, O)
consists of eigenvalues ofH with finite multiplicity accumulating at most at zero.

Proof. For (i) cf. [16], [19], [23]; for (ii) see [11], [16], [19].
Lemma 3.7 implies Lemma 3.9 as follows.
LEMMA 3.9. Assume H(II) or H(III). Then

A A A

[1 + D(z)]-I (f) forallzC\.

A A
Moreover D(z) converges in norm as z h + iO, uniformly in h and [1 + D(z)]-converges in norm as z- h + iO, h

_
fg, uniformly in h A, A c \fg compact if z varies

in A+/-={z CglRe zA, Im z[0, +1]}.
Finally we get for the three-particle resolvent G(z)
LEMMA 3.10. Assume H(II) or H(III). Then

A
,-,, pv{J(z)[1 + D(z)]-K(z)}p-’lvl /2, %8=1,2,3

A A
is norm continuous in z as z- A +/- i0, A ’, uniformly continuous in A A, A \
compact if z varies in A+/- cf Lemma 3.9).

Proof The proof follows from

go 1/=/,go,v + vv ZE,]vEvG(z)Pvg,,

and Lemma 3.2(i), Lemma 3.4(ii), from Lemma 3.9, from

Ko,(z)p;’lvl’/ v/Z(1 E)a(z)lvl’/

which is discussed for y in Lemma 3.4(iii) and for y # 6 in Lemma 3.7 (cf. Doo.vn (z)),
and from

by Lemma 3.2(iii).
2Using the above methods, one can easily prove that G(z)e

L2_l_v/2(t6)), z G c\and converges in (L+u/2(?6), L2_l_u/2(l6))-norm as z - A +/- i0,
A \g’, uniformly in A cA, A c \g’ compact, if z varies in A+/-, where
L2(?6; (1 /lxl-/ lyl) d3xc d3ya). In fact one can prove HiSlder continuity of G(z)
for z in compacts not intersecting g (cf. [16]).
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4. Continuity of averaged total cross sections. Given the results of 3 we rederive
the continuity results for averaged total cross sections in [5]. Because of our stronger
decay assumptions in H(II) when compared to [5] we are particularly able to discuss
the threshold behaviour ofthe scattering operator, resp., the cross section for two-cluster
initial channels.

In the following the operatorM(A, it introduced at the end of 2 plays a central
role. From the definitions (2.35) and (2.41) one infers

M(AB, it) M(A, it )B, Ran (B) (A),
(4.1) M(A, it)=M(EA, it), a=O, 1,2,3,

Mo(A, it Mo(EA(Ho)A, it XA(it )Mo(A, it ), it e A a Borel set

where EA(Ho) denotes the spectral projection associated with Ho. We recall ([5])
LEMMA 4.1. Assume H(II). Then
(i) For a O, a and Ig(x,x,)l<-elX14(x,), 4, L(3), K < (-2maeJa) 1/2,

we get M(gK it) 32(, L2(S2)), it _-> e and M(gK, it) is continuous in -norm for
it-->_ eJ, a 1,2,3.

(ii) Let a SO, a # fl; then ML(Iv, I’/=,x), ML(p,A) 4(a, L(S)), it >--e and
both operators are continuous in 4-norm for it >= e, a 1, 2, 3.

(iii) Assume LP(93), wherep 2 or 3 and denote by dp the operator ofmultiplica-
tion by b(xv). Then Mo(bv, A) 3( L2(ES)), it _->0 and M(b, it) is strongly con-
tinuous in it >= O. Moreover M(bv, it) 3o(t’, L2(ES)) as long as dpv O.

Introducing the decomposed operators ([3])
(4.2) gO3,(it) S.(it)-6.l, h [sup (e, e), c), a#0, /3=0,1, 2,3,

we obtain the splitting ([5])

(4.3) R.(it) (1)R.(A) h-(:)R.(it), a 0, /3 0, 1, 2, 3,

where

A

it [sup (e., e), c)\

(’)R,(it) -27ri Z M(Ivvl 1/2, it )MJa( "U,Y1/2, it ):g,(4.4) it
/=1

represents the Born-term (for/3 =3’ cf. (6.4)) and

(2’R.(it) 2ri [1 + dtao,v ,v] M(lvl ’/2, A)
=1

A A

(4.5) .{J[I+D]-IK}(A+iO)M(upI,A)* h [sup (e, e), ).
For extensive discussions of analyticity propeaies ofS(A) using dilation analytic

two-body potentials v we refer to [6], 10], 18] and [33]. Trace relations in connection
with three-paaicle systems appeared in [8], [9]. The corresponding emann surface
and resonances in case of exponentially decaying two-body interactions are studied
in great detail in [7].

Going back to Lemma 4.1, we obtain the following.
LEMMA 4.2. Assume H(II) and a O. en R,(A) 2(L2($2)),

A
2(L2($2), LE(E)) and R(A) is continuous in 2-norm for A
fl =0, 1,2,3.

oof The only difference to [5] concerns the fact that H(II) allows to include
threshold points sup (e, e) 0. In fact, one can follow [5] step by step, replacing its
Proposition 1 (which excludes thresholds) by our Lemma 3.9.



1076 F. GESZTESY AND G. KARNER

By (4.2) one obtains analogous results for the decomposed scattering operator
sL().

Next we turn to the concept of averaged total cross sections for initial two-cluster
channels as defined, e.g., in [3]-[5]:

(4.6) a(A)=r[2n(A-e{)]-llR(A)ll, 0, /?=0,1,2,3.

Hence we get the next theorem.
THeOReM 4.3. Assume H(II), 0 and B =0, 1,2, 3. If sup (e{, e) g’ then

ag,(A) is continuous in A (sup (e, e), oo)\’. In addition we obtain the threshold
behaviour

Elastic case: a fl, j I.

(4.7) (A) O(1).

Inelastic case" a fl, j # (i.e. const, ff).
[O((A e)-’/2), e > e,

j(4.8) -0 (/)ASsup(e,e/)
(O(1), e=e

O’a. O((A e.)l/2), e, < e.,

Rearrangement case: a fl, fl O.

’O((h e))-’/ el,e>
O( h e ’/, e. e,(4.9) #(A) asp(eLe)

(O(1), e=e.
Breakup case: fl=O.

(4.10) a(x) o o( 1/=).

Proof. The continuity statement is due to Lemma 4.2 of [5]. The threshold
behaviour (4.7)-(4.9) can be read off from

M(fT, A )(w, x, y,,) (2r)-3/=n/[2n,(A eJ)]/4f(x(x, y), yr(x, y,))
(4.1)

exp (-i[2n( e)]’/%y)q4(x), # o
wheref denotes the operator of multiplication by f(xT, yr) (i.e. f v711/=, "u7/, vTp-
according to (4.4) and (4.5)). The estimate (4.10) follows from

IIMo(l  l [ [ q)l
ql-< ds

2mT(2nT)3/ II ql--<l

(’, (2nA)’/=q)ll,

where

__> L2(S2)M(IvI’/’ ):
f-’-> (M(Ivl l/=, /z)f)(w) 2-’/21x l/a(lv,ll/"--’f)(tx

is a "two-particle" operator and

if(" P) (27r)-3/2 f3 d3y e-ipYg(" y)’ p E 3

g e ,.(6

1/20)), 0)S2
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denotes the partial Fourier transform. Observing

IIM(Ivl 1/, )11@ (2r)-= 1/=11 v II1 <,
we infer

IIvlll f d3q(1-lqlZ)l/2Azll(., (2nA)’/Zq)l122M?,(I vl ’/Z, A g <= const.
al ql=<l

<= const. IIvlI,A ’/= J- dPlI?( ", P)II

const. IIvll,llgll@A

5. Continuity of two-cluster scattering amplitudes. In this section we consider
two-cluster scattering amplitudes and prove their continuity with respect to energy-
and angle variables. Again we discuss their threshold behaviour, in particular we define
the concept of elastic scattering lengths and derive an explicit formula in terms of the
three-body resolvent.

In order to obtain an expression for the scattering amplitudes as a scalar product
in (in analogy to the two-body case, cf. e.g. [1], [2]) we introduce

Hypothesis (IV). In addition to H(II) we assume that u= Ll(3), a 1, 2, 3.
According to [3] the scattering amplitude for two-cluster initial channels are

proportional to the integral kernel of R=(A), more precisely one defines

(5.1) f,=(A, to w,)=-2"rri[2n= (A-e)]-li2g=(A, wlo,w),
aO, /3=0,1,2,3.

Thus f= splits up into a Born-term and a remainder as can be seen from (4.3)

(2)f=fJ=(A, w= + to)= ’)f,=(A, w= + tol) + (A, to= +
(5.2)

a S0, /3 =0, 1,2,3, A [sup (e, e),)\.
We start with the elastic case a =/3 0, j =/.

^jTHEOREM 5.1. Assume H(IV), a 0 ande : . enf(, ) is continuous

with respect to (A, w, )e {[e, )k)} x S2x S2. In particular

(5.3)

(5.4)

(1)fJ= (, tO "- (.

=-(2r)-ln= E (Iv3"l lIE
3,=1

2)f=(A, to o3) (2"n’)-’n= E

exp (i[2n=(h e)]1/Eto=y=)@,^j
t3"
1/2

exp (i[2n=(h e)] ’/2 "jw=y=)@),
(h, w, 33)e [e, o0) x SEx SE,

3

E (pT’lv, ’/ exp (i[2n=(h -e)]ll2y=)d/,
T=I =1

A

p3"{J[ 1 + D]-IK}3"(A + iO)p-llvl’/2v/2 exp (i[2n= (h -eJ)]ll2toJay=)J)

(h, to, a3{) e {[e, oo)\ g’} x SEx SE.
Here (., .) means the scalar product in = L2(6; d3x=d3y=), ip ip(x=) and in
obvious notation the plane waves in (5.3) and (5.4) depend on the variable y=. The
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threshold behaviour reads

(5.5) ^Jf,(A, to{ --> to,) O(1).

Proof. Clearly

I1 ’/= e#’rq, y # a ( [2n(A- e)]1/2)

is strongly continuous in (A, )e )x Se, by dominated convergence since

Iol ’/= e’OZ IIA const. Ilolllllll , .
Similarly pllvv[l/2 e#Y, a is strongly continuous in (A, g) e [e, ) x S2 since

lpl[vvl/2 e’#ZYff const. [ dax daze[1 + Ixl]=+l(x)l=E1

=< const. I1(1+1" I)’+/=4 11u II, < oo,

by H(IV), Lemma 3.1 and

ly.l<-Iyl+lxl (el. (2.5)),

p2(yv) =[1 + lyl]+ =<[1 + Ixl]=+[1 + lyl]+.

By Lemma 3.10, pv{(J[I+D]-IK)}v(A +i0)pll/= is norm continuous in A e
A

[e, oo)\ completing the proof. El
The inelastic case a =/3 # 0, j # is contained in the following theorem.
THEOREM 5.2. Assume H(IV), a #O,j # l(i.e.d/J # const, d/l and sup (e, e) .

Then f(A, to --> to t is continuous with respect to (A, to;, to2) e
A

{(sup (e, e), oo)\ ’} x SEx S2. In particular

-1 (A e)-l/4(h e) ’/4<’f(a, ,o-.,o)= -(2,,) .
(5.6)

exp (i[2n,(A e)]’/2w ’o,y,)d/,v.r’/2

exp (i[2n,(h -e)]’/zooy,)q),

82o., w t,, e (sup (e e.), oo) x x S,
(2)/’0 ( to --> to) (27r)-’n(a e)-’/4(a e2) ’/4 E E

y=l 8=1

(p-llv,(’/= exp (i[2m(A --el)]’/:to2y,)d/l, p,

(5.7)
A

{J[1 + D]-IK}.,/6 (/. -- iO)o-g’lvl ’/v/:z exp (i[2n,(h -e)]’/2oy,)d/i.),

(h, w, w) e {(sup (e, e), co)\ $’} x S x S2.
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The threshold behaviour reads

O((A e)-1/4),

--j /0((A --e)/4),
A,l, sup (ea,ea)

tO(l),

e> e,
e <e,
e eo.

Proof. The proof is identical to that of Theorem 5.1.
Finally we discuss the rearrangement case a #/3, a # 0,/3 0.

A
THEOREM 5.3. Assume H(IV) a 0, /7 0, a /7 and sup (e e) g. Then

fg(A, o + w) is continuous with respect to (A, w, w) {(sup (e, e), oo)\ g}
S2 S2. In particular

(1)i"/j [. 1/4-.,.-i1/4(}I. e)-l/4(A e)l/4, ,<,,, <<, --> <,,)= -(2,,,-)-’ ,,<, ,,

Z (Iv,l’/-%’/exp(i[2n,(h-e’)l’/’-o’y,)
",/=1

(5.9) 1/2 -3a -/2

exp(i[2n, (A e)]/2ooy,)q,),

(A, to, to) (sup (e, e), o) x S2x S2,
(2) C/ [l 1/43/4t )1/4., :ta, +) (2)-’. ,. t’" e{)-’/4(a e

3

Y. Z (,oT’lv-,,I ’/:
,y=l

exp (i[2n(a -e)]’/2toy3)

(5.10) q, p,{J[1 + D]-IK},(A + io)p-llvl 1/2

v/2 exp (i[2n,,(a -e)]l/2toy,)b),

A
{(sup (e, e), oo)\ $’} x S=x S2.

The threshold behaviour reads

(s.ll)
h Ssup (ea,e0)

O((h e)-’/4), e > e,
O((h e)’/4, e<<J e,
O(1), e e.

Proof Since the discussion of (2)fg is identical to that of Theorem 5.1 we only
consider (1)fg. For ,/3 (y# a) the corresponding proof of Theorem 5.1 applies.

ioJogJv O’3/2For y= fl (y a) e gs is strongly continuous in (h, aJ) [e oo) x $2 since

el’ll ja L2(/3) for all < (-2m<eJ) 1/2 by Lemma 3.1. In addition Iv1112-3120<, e’qlYtlll3"
is strongly continuous in (A, w) e e, oo) x S2 since

t"
IIv, ’/---/o e’4Jr.gsll const. 16 dax: daze[1 +lxl]--’/-Io(:)ll@’(z:)l

const. II(1 +l’l)--"/ll,lllvl’/@’ll < fla. O
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Scattering amplitudes have also been discussed in [27] on the basis of Faddeev’s
original treatment ([ 14]) (cf. also [32]). Analyticity properties of scattering amplitudes
in the case of dilation analytic two-body potentials are studied in [10], [18], [19]. For
exponentially decaying two-body interactions their analytic continuation to the corre-
sponding Riemann surface is considered in [7].

Finally we turn to a discussion of elastic scattering lengths.
DEFINITION 5.4. Assume H(IV), a S0 and e g. Then the elastic scattering
A is defined bylength

(5.12) f,(A, w o<A,<, lim -+ ).

An explicit expression for A in terms of the three-body resolvent G(z) (in
analogy to the two-body situation [1], [2]) reads as follows.

THEOREM 5.5. Assume H(IV), a O, e
_ . Then

3

(5.13)

A
-(27r)-’n,, Z Z (P-’lv,/l’/2qs, p,{J[l+

7=1 8=1

l12l12a,j

3

(2rr)-’n, Y. (Iv,ll/2qs, ""/"’/2""s
3,,=1

% 8= 1,2,3.

(5.14)
a<,, (2r)-’m<,(Iv<,l ’i, vi2)-(2zr)-’m<,(Iv<,l’i=, ,i2,,.

-o<, .: -iO)-’lv<,l’lvl:i)
/,,i, i0)-’1 /==(2zr)-’m=(lv=l’/,[l+,,,, ,,.o.= v,l’/:]-v= ), a=1,2,3.

For the physical relevance of scattering lengths in three-body systems see, e.g.,
[28] and the references cited therein.

6. Analytic expansions around thresholds in 0\{0}. Finally we use the exponential
decay of v in H(III) to extend our previous threshold considerations by deriving
analytic expansions of two-cluster scattering operators and amplitudes with respect to
channel momenta near points in 0\{0}.

We start with (() denotes
LEMMA 6.1. Assume H(III) and a O. IfM(h ), A >_- e denotes one ofthe operators

M(iv111, h ), y a, M((fi), h ), M(()r-lv1112, h ), y # a then (h eJ)-14MJ(h

Remark 5.7. The analogue of (5.13) in the two-body case reads for ha (cf. [1], [2])

Proof. This is obvious by the proof of Theorem 5.1.
Remark 5.6. For ego E(o2), E(o2) g, .,JoO.oo is real.
Proof. It suces to note that by Lemma 3.10
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is analytic in (a- eJ) 1/2 near zero in 2(, L2(S2))-norm. Moreover MJ(A) is analytic
in (A Ao) near zero in 2(, L2(S2))-norm for all Ao > e.

Proof. (a) Taking f3" Ivvl 1/2 in (4.11) and observing (’y a)

f d3x, d3y,lv,(cx, + dy,)lexp(2[2n,lX el]’/:lY,l)lq,(x,)l

d -3 Ii6 d3Xol, d3zo exp (212n1 -eLl]/lz,l/d)lv,(z)l

exp (212nlA el]l/=clxl/d)lqL(x)l= < oo

for IA el sufficiently small the assertions follow for M(lv,[ /-, x), 3, c concerning
the expansion near e. Similar for the expansion near Ao> e. (Note that el’lvv--
e-(b-’)l’luv E LI(3) for e > 0 small enough.)

(b) Taking fv (t) in (4.11), we infer the assertions for M((t), A) from

f d3x, d3y,l(y,)l exp (212nlA el]/ly,l)lq,L(x,)l < oo

for Ih- eLI small enough.
(c) Choosing f3"-- (-)-v Ivl /= in

M(()-1/33,Ivl/=, x) as follows: Noting
(4.11) we prove the assertions for

X3" cx + y3" c’x, + d’y,, y # a,

Id’/dl <: 1, c’- d -1 d’c 1

(cf. (2.5)) we obtain

d3xo, d3y,(-:(c’xo, + d’yo,) exp (-blcx, + dyl)lu(cx + dy)l

exp (2[2n,,lA -el]l/lyl)lq,(x)l

< d-3 f d3xa d -1 -1
ZOt p--2([c’--d d’C]X, + d d’z,) e--blz’lluv(zo,)l

exp (212n=lA eLl]/=lzl/d)

exp (212nlA eLI]mclx,l/d)lq2(x)l-
<-d-3 1 d3x’d3z’ exp (2a,lxl)exp (212nlA -el]l/clxl/d)lq,(x)l

6

exp (2a, lzl) exp (212n=lA -el]l/lz,l/d) e-blz=llu,(Z,) < oO

for Ix- eLI small enough since

a3" < inf [-2mo e,]/2,
/3 1,2,3

2a3" <b. l-I



1082 F. GESZTESY AND G. KARNER

LEMMA 6.2. Assume H(III). Then D(A + iO) is norm analytic in (A--/0) 1/2 near

zero for all Ao<0. Thus [1 + D(A + i0)]-1 is norm analytic in (A -Ao) 1/2 near zero for
A

all Ao < 0, Ao .
Proof. Cf. Lemma 3.7. (a) Doo,v(z) is analytic in z [0, ) and hence in (A -Ao).
(b) Dol,v(z) is analytic in z [E2), ) because of the term EG(z), the

rest is analytic in z [0, ).
fiEG(z)p= (7, )$7@e-alY’l[-(En)-lhy,-(z-eT)]- e-aly;I

ho < e’EG(z) is norm analytic in (z- ho) near zero.
ho> e, ho e, m 2, , N’pEG(z)p is norm analytic in (z ho) near zero.
hoe,ho=e for some m=l,. ., N’EG(z) is norm analytic in

(z ho)1/ near zero.
(c) Dlo,v is independent of z.
(d) D,v(z [’Ev e-blxllull/l][u/E]EG(z) and hence (b) applies

again.
Altogether A + i0) is norm analytic in (A -Ao) 1/2 near zero for all Ao < 0. U

LEPTA 6.3. Assume H(III), a O, fl 0 and sup (e, e) . en Rg(A)
(L2($2)) and Rg(A) is continuous in -normfor A [sup (e, e),). Moreover
Rg(A) has the following threshoM expansions valid in l(L2(S2))-norm when
]A sup (e, e)l is small enough"

Elastic case" a fl, j I.

(6.1) R(A) E J;R,,(A -e)"/2.
n--1

Inelastic case" a fl, j (i.e. const. ).

(6.2)

-sup (e, e/)]1/4 E R,,..[A -sup (e, e/)]"/2,
n=0

R 0 (A) E /o,,(A e)"/2 e e.
n-----1

Rearrangement case" a ft.

(6.3)

n/2-sup (e, e)]1/4 2 R,..[A -sup (e, e)]
n=0

R,(A) E /,.,.(A e)"/2, e,; e.
n-----1

Proof. (a) (1)R(A): The elastic and inelastic cases directly follow from Lemma
6.1. The rearrangement case is treated as follows"

(’)R(A) -27ri M(IvI’/, z )M(--1/2, h ),

and hence the summand y/3 is treated identical to the (in)-elastic case. For y=
/3 (y a) we use

(6.4)

and again Lemma 6.1.
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A
(b) (2)Rg(A)" Since [1 + D(z)]- has been considered in Lemma 6.2 we concen-

trate on the "MJ" and "KM"-terms"

and we need only to apply Lemma 6.1 and the proof of Lemma 6.2 to obtain the
corresponding 2-expansions.

"KM": 8 # a.

j --1gl,vM(vp A )* [aE,p][Evlvl/2]M(p- vl12, A )*,

(Ko,Tpllvl/)(A + iO)M(v/, A )* v2( 1 ET)Gv(A + iO)lvll/M(v/, A )*

/2(1-ET)GT(z)lvl/ is analytic in zand we apply again Lemma 6.1 since v T

Given Lemmas 6.1-6.3, we are able to formulate the following.
THnOgnM 6.4. Assume H(III), a O, 0 and sup (e,e . en theaveraged

total cross section d,(h) is continuous in h (sup(e, e),) and has the following
Taylor (resp. Laurent) expansions near the threshold sup (e, e)"

Elastic case" a ,j 1.

(6.5) Z r,,(h -e) r,o 4r[A
n=0

Inelastic case" a , j # (i.e. const. ).

-0 (h) Z 6",,.(h e n/2O’aa ea > ea,
--1

^l"(6.6) tr- (X) Y ,,(h e)"/2, e < e,

(h) Y ’,,,,(h e)"/:z, e eL.
n--O

Rearrangement case: a ft.

@(X) X o’:..(h-e)"/:

n=--I

(6.7) ,() y 0 < e,o-,..( -e)"/2, e
n--1

(A) X &.,(h e)"/, e e.
n=0

Proof. All expansions directly follow from Lemma 6.3. Since without loss of
generality we may assume u, E L(/3), a 1, 2, 3 (otherwise v,(xo,)
e -b’lx,,,I e-(b-b’)l%luo,(Xo,) =- e-b’lxlu(xo,), 0<b’ <b, u LI(13) f’)Lp(3) for some p>
3/2 and we need only to replace (b, u) by (b’, u’), a 1, 2, 3) Definition 5.4 applies
and yields the assertion for - in terms ofAO’ac,0
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Our final result reads
THEOREM 6.5. Assume H(III), aO, flO and sup(e,e) . Then the

scattering amplitude f(A, to to) is continuous in (A, to to)
{(sup j S2 S2e e 1), )\} x x and has the following Taylor (resp. Laurent) expansion
near the threshold sup (e, e):

Elastic case" ct fl, j I.

(6.8) f,.,,(to,-+ta)(a-e,)"/2,
n=O

il to ---> A,Ii,co,Ok

Inelastic case: a fl, j (i.e. d/ const. 6).

f,,,(A, to ---> to’ (A e)-’/4 E 0f,.,(to-.> to,)(A e)"/2,
n=O

e > e,

(6.9) f,(h, to -> to) (h e/a) 1/4 E ?lj (tO --> tO/a)(,, e,,,) "/2,
n=O

eJ < ea,

f,(a, to --> to/) f,,,.,,(w --> to)(a e)"/2,
n=O

ej e

Rearrangement case: a ft.

fo(A, toJa "> toll3) (A. eJa) -’/4 ’. fo,.n(toJa "> tO)(A e)"/,
n=O

(6.10) f(Z, to --> to) (A e)i/4 ’, .lj ,j. ,.., --> to)(A e)"/2,
n=O

’lj j n/2f(A, oo o) f,,,(o) o)(A e)

Proof. The proof is a direct consequence ofTheorems 5.1-5.3 and Lemmas 6.1-6.3.
Given the expansion (6.8) one can define higher-order low energy parameters

such as the elastic effective range parameter similar to the two-body case (cf. 1 ]). We
omit the details.
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Abstract. A new Lie algebraic technique based on the idea of fractional differentiation is evolved for
constructing new models of representations of the Lie algebra sl(2, C). Some of the Lie algebra elements
in the new models are differintegral (integral-differential) operators while the basis vectors turn out to be
solutions of differintegral equations
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1. Introduction. In [7], irreducible representations of the Lie algebras sl(2, C),
the oscillator algebra and the algebra of the Euclidean group in the plane have been
determined, and models of these representations have been constructed in terms of
first order differential operators (the operator types A, B, C’, C", D’) acting on spaces
of functions of two complex variables z, t. The basis vectors f,,(z, t)= Z,,(z)t of such
irreducible representations have turned out to be such that Zm(Z) are functions of
hypergeometric type. This connection between Lie algebras and special functions has
led to recurrence relations, differential equations, generating functions and addition
theorems for the functions of hypergeometric type. Later, in [8], the type A,. ., D’
operators have been used as building blocks to construct more complicated models of
irreducible representations of these Lie algebras. Some of the Lie algebra elements in
these models are second order differential operators. Furthermore, the models have
been constructed in such a way that the basis vectors turn out to be special functions
satisfying second order nonhomogeneous differential equations.

In this paper we propose to use type A and type B operators as building blocks
for constructing new models of irreducible representations of the Lie algebras sl(2, C).
The method that we employ for this construction will be based on the idea of fractional
differentiation. These new models will be such that some of the Lie algebra elements
in them are differintegral operators, while the basis vectors turn out to be solutions of
ditterintegral equations.

In 2, we define the fractional (or generalized) derivative of order c of an analytic
function f(z), written as Df(z), and then make use of this to express fractional
derivative representations of some special functions which we need in our discussion.

In 3, we discuss the generalized Leibnitz rule for the fractional derivative of the
product of two analytic functions. We introduce a new operator 9, defined as f(z)=
zl-XD-Xf(z), and thereafter make use of the rule for obtaining operator expressions
for -IL, L= z, z(d/dz), z2(d/dz). The new expressions turn out to be ditterintegral
operators.

In 4-6, we consider the type A and type B representations of sl(2, C) [7, Chap.
5]. The basis functions corresponding to these representations are in terms of 2F1 and
1F, respectively. Through -IL, the type A,B operators induce new sets of Lie
algebra operators, the corresponding basis vectors turning out in terms of 3F and
respectively. This leads to the construction ofnew models ofrepresentations of sl(2, C).

* Received by the editors May 29, 1985; accepted for publication (in revised form) June 3, 1986.
t Department of Mathematics, University of Kuwait, Kuwait.
t Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
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2. Fractional derivative representation. In 1731, L. E. Euler considered the concept
of fractional differentiation when he extended the familiar formula

dngp

d"
=P(P- 1)(p-2) (p- n + 1)zp-"

(p_ n)!

to n a, where a is as usual arbitrary, by writing

F(p+l)
(2.1) Dzp zp-".

F(p-a+l)

In fact, it was this formula which led Euler to invent the gamma function for fractional
values of the factorial: F(p + 1) p !.

It immediately follows that if

(2.2) g(z) E a,,z’, [z < R,
n=O

then, for 0 <lz[ < R,

(2.3)

D’(zPg(z)) Z a,,D’zp+"
n=0

a,,
F(p+n+l) zp+._,.

,=o F(p+n-a+l)

Relation (2.3) fails to have meaning when p is a negative integer. Using (2.3), we
list the following results:

a; F(X) a,
z(2.4) Daz-" za-l F1 ,8,

z
F(/z) /3,

r(x z_ a,/3,
(2.5) D-’ za-12F1 a,/3,

z 3F2 z 0<[zI<l,
y; r() y, ,;

:10 az, bz(2.6) Daz-" z’-le"ZlF
fl, F(/x)

gt-lFl:l
’t;

0<lazl, Ibzl <c,

(2.7) D (1- bz)-’2F
y; 1

)r(a)
z/z_ 2:1;o{O, x. ;--,

az, bz
F(/z) F,:,;o\ /z: y; --;

0 < (lal + Ibl)lzl < 1,

{ } F(X) z’-’l:2;’(a’/3’A;fl’;= )(2.8t Dzx-" zX-lF2(a; fl, fl’; % Y’; z, t)
1-’(/z) --o:2;1

y,/x; y’;
z,

(2.9) D-’{z-eZh2[a;y,y’;-z, t]}
F(h)z,,_G::i2(y-a’h; a, l+a-3’; -t)r() , y; y,; z,
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r() z,_lFli;; -zt,(2.10) D-" zX-eZqt2[a; a, fl; -z, t] =r() t -, ,;-;
O<lzl<oo, Itl <oo,

(2.11) D-’{z

where [10],

(2.12)

-1(1- z)-OF2[ t, ,’’" a, y," l-Z-z’ ]}
( " )F(A) z F1;2o -zt,

r() /3’. ,, ;--,
0<lzl<l, Iztl+ltl<l,

pFq
fll ,flq

z

Izl< ifp_-<q; Iz[<l ifp=q+l,

zmt
(2.13) 2(a; , ; z, t)= Z (a)m+,

.-=O()m(Y). mIn’ olzl<, oltl<,

(2.14) F2[a; , ’; % ’; z, t] Z (a)m+.()m(’). zt
,=o ()(’) mn’ Izl+ltl<,

A..w((a)’(b)’(b’); )FcF;, z,
(c)’(e);(e’);

(.1)

a...w((a)’(b);(b’); )’" (c). (e); (e’);
z,

(2.16)
B’ [bt gmtn

m,.:o =, ()m-. H=(e)m ,,=1, ,.
3. Generalized Leibnitz rule. Consider the Leibnitz rule from elementary calculus

for the derivative of the product of two functions u(z) and v(z):

Duv= Df-"uD:v.
=0

A reasonable guess for the generalization of this result to fractional derivatives is

This guess is indeed correct and it was given as early as 1867 by A. K. Grunwald
[2]. It has been proved by A1-Bassam [1] and Osier [9] in a manner different from
that of Grunwald.

In order to construct new models of representations, we introduce, for con-
venience’s sake, operators and N- defined as

(3. f(l

(3.3)
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Indeed

(3.4) 50-f(z) -’f(z) f(z).

Using (3.1), one arrives at the following:

(3.5)
d-1-z z+(, -p) dz_,

(3.6) - z Zzz+ 1-/z,

(3.7) _l(z2 d) d d-=zz+(l/A-21a’)z-(A-) dz-1.

Note that d-/dz-1 is an indefinite integral in disguise.

4. Representation D(u, no). Consider the representation D(u, mo) defined for u,
mo e C such that 0 _-< Re mo < 1 and u + mo are not integers [7, Chap. 5]. The representa-
tion space W has a basis {fm}, m S {mo+ n: n 0, + 1, .}, such that the action of
s/(2, C) on W is given by

(4.1)
J+fm=(m-tl)fm+l, J-fm=-(m+u)fm_,,

(j+j- + j3j3 j3)f u( u + 1)fro.

JZfm mfro,

The operators {J+, J-, j3} satisfy the commutation relations

(4.2) [j3, j+] +/-j+/-, [j+, j-] 2j3,

and as such generate a Lie algebra which is an isomorphic image of the complex Lie
algebra sl(2, C) [7, p. 7].

4.1. Type A operators. The type A operators {j+, j-, j3} satisfying (4.1), and
indeed (4.2), are

)J+=t zm+t---u
Oz Ot

(4.3) J- t-l[ z(1 z)
0 0 ]t--+z(q+u)-u
Oz Ot

0j3=tm
Ot’

and

(4.4) fm(Z, t) EFl[m u, -q u;
-2u;

The multiplier representation T induced by the operators (4.3) on :, the space
of all analytic functions in a neighbourhood of (Zo, to), is

(4.5) r(g)q(, t) (d + bt) a + a

zt c+)atxf (d+bt)(at-c(z-1))’ d+
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Ibt/d[<l, Ic/atl<l, Ic(z-1)/atll, -warg a, arg d 7r, and

( a ) ad-bc l,g=
c

lies in a sufficiently small neighbourhood of the identity element

e=(10 )eSL(2, C).

Now we use the type A operators as building blocks for constructing a new model
of irreducible representations of sl(2, C).

To illustrate the method, we rewrite, with the help of (2.3),

J+fm=t z--+t---u =(m-u)fm+l,az at

fm(Z, t) 2Fl[m-u,-q-u; zt,
-2u;

as

Oz- -2u,/x;

(m- U)Z1-A Z-1 3F2 z
Oz"-x -2u, I

It follows that

(4.6)

where, by (3.6),

(4.7)

K+hm=(m-u)hm+l,

)K+=-lJ+=t z +t--+l-lz-uat

and

(4.8)

Similarly,

(4.9)

where

hm(z, t) z-13F2[m-u,-q-u,A; ]zt,-2u, tz

m mo+ n,

K-hm -(m-i-u)hm_l, K hm mhm

n=0,+l,+2,. ..

(4.10)

-lj- t-l[z(1 z)
a o

K- t+(q+u+2lx-l-A)z
k Oz Ot

0-1+l-/x-u+(A-/z)(q+u+/x)0-]
(4.11)

oK3= -1j3 t-
Ot
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Indeed,

(4.12)
[K3’ K+/-] +K+/-’ [K/, K-] 2K3,
(K/K-/ KaK3- Ka)hm u(u / 1)hm.

We have thus constructed a new model of irreducible representation D(u, too) in
terms of diilerintegral operators {K/, K-, K3} such that the vectors hm(z, t) defined
by (4.8) form a basis of the representation space. Writing hm(z, t)- Z,,(z)tm, in terms
of the functions Z,(z) the above relations take the form

z++m-.-u z.(l=(m-uz/(,

(-+(-.(q+ u+. -r+ (q + , +.- +-u-. m

.z(l=-(m+uz_(zl,

d2 d
(4.13) z2(1-z)-z2+Z{(q+2u+3tz-3-A-m)z+2(1-tz-u)} d---

d-1
+(;-)(q+ u+) dz_,+z

{(A -tz)(q+u+tz)+(q+u+21-A-1)(1 + rn-u-l)}]Zr,(Z)
=(1-tZ)(l +2u)Zm(z).

The multiplier representation T’ induced by the K-operators on is

[T’(g)h](z, t)= N- exp -J+ exp(-cdJ-)exp(’J3)(h)(z, t)

(4.14)
-[ T(g)(h)](z, t), e/:= d-.

By (4.5) it follows that

T’(g)h](z, t) -1 (d + bt)" a + a

(4.15)
x(Nh)

(d+bt)(at-c(z-1))’ d+

Ibt/d < 1, c/atl < 1, Ic(- 1)/atl < 1 and g e SL(2, C) lies in small enough neighbour-
hood of e so that the above expression is uniquely defined.

In [5, 2] it has been shown that 16 of the Horn functions of two variables [3]
can be realized in terms of type A operators. In paicular, the function

(4.16) F= F[mo- u; -q- u, ’; -2u, ’; , t]

satisfies the Casimir eigenvalue equation

(4.17) (j+j- + j3j3 j3)F u(u + 1)F

as well as

(4.18) [j3j3 j+j3 + (mo- fl’)J+-(2mo- y’+ 1)j3]F mo(y’- mo- 1)F.
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Likewise, it can be shown that

(4.19) G- t%(1 t) u-too 2Fl[m- -2u;

is a simultaneous solution of

(4.20) (j+j- + jaj3_ ja)G u(u / 1)G

and

(4.21) [j3j3-j+j3-l- moJ+-(2mo+ 1)j3]G -mo(1 + mo)G.

Thus, by (2.5) and (2.8), it follows that

(4.22) 1 tmz-ll:2’l(m-u’-q-u’X;’;)z,o:2; : -2u, ; y’;

satisfies the ditterintegral equation

(4.23) (K+K- + K3K3- K3) Y(1 u(u + 1)Ygl

as well as

(4.24)
while

(4.25) ff(2 tmoz_l( l t)u_mo 3F2[ mo- u, -q u, A
-2u,/x; 1

is a common solution of both

(4.26) (K+K- + K3K3- K3)2 u(u + 1)Y(2

and

(4.27) [K3K3-K+K3+moK+-(2mo+I)K3]o= mo(1 + mo)2.
Now, we have the expansions [6], [11],

(4.28) T’(g), E k,,,(g)hmo+,, i= 1, 2,

each valid in a region determined by the inequalities (4.15).
The identities which follow as special cases from (4.28), are as under:

--o:2;1 :y,/z;y’; 1-t’1-
(4.29)

-n=o-----7-3F2 Z 2F1 to t,
y,/z; y’;

[K3K3- K+K + (too- ’)K+ -(2too- y’+ 1)K3] tl mo(y’- mo- 1)1,

z tot

(4.30)

<1,

(l c_ t)_F]::;;(,tz a;; zt cz )y;--; (c+t)(1-c-t)’c+t

I; r(+n) +n,,; 2Fl(+n,l+-y-n; n+l; c)
r(a) 3F2 z t,

=-oo y, tz; F(n+l)
c zt cz
<1, Ic/tl<l, (c/t)(1-c-t)

/ -- <1,
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I. ,,/z; 1 =,=o 3F2

In (4.30), the terms corresponding to n --1, -2, -3,. are well defined in view
of the relation

(4.32)

lim 12F[a+s’l+a-Y+S;]cs->-k r(1 + s) 1 + s;

(a--k)k(l+a--y--k)kckEF a, 1+a--y;
k! l+k;

c

The above identities are valid for all a,/3,/3’, y, y’, A,/x C such that a, a-y
are not integers and % y’,/x # 0, -1, -2,. ..

4.2. Type B operators. The type B operators {J+, J-, j3} and the corresponding
basis vectors {fm} satisfying (4.1) as well as (4.2) are

J+= t(z+t-z+u+lOz Ot

)(4.33) J- -1
Z-- t--+ u + 1
Oz Ot

o
j3 =t

Ot’

and

(4.34) f,(z, t)-- r<"+)_._,(z)t

L(U_+ul)l(Z) are generalized Laguerre functions defined as [10]

(4.35)
F(l+a+n) -n;(#(z)

r(l+ a)r(l+ n)
,F

1 + a;

(4.36)

The multiplier representation induced by the J-operators on the space is

T(g)f](z, t) (d + bt)-"-1 a +-t exp
d + bt]

zt a_t__+..cf (at + c)(d + bt)’ d +

]c/at[ < 1, [bt/d[ < 1, -Tr < arg a, arg d < 7r, ad bc 1, and g lies in a sufficiently
small neighbourhood of the identity element e SL(2, C).

As in I, the operators J+, J-, j3 give rise to the operators K/, K-, K3:

K+=-J+=t z+t-z+u-I+(l-A) 2
Oz Ot

(4.37) )K- -lj- t- z t--+ u -/z +2
Ot

K3__ -lj3 t-
Ot
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such that

(4.38) K+hm (m- u)hm+l, K-hm -(m + u)hm-1, K3hm mhm,

F(u+m+l) z_12F2[l+u-m,A; Z(4.39) hm(z, t)
F(2u+2)F(m-u) 2+2u,

Again

(4.40)
[K3 K+/-] +K+/- [K+, K-] 2K3,

(K+K-+ K3K3- K3)hm u(u + 1)hm.

If we write hm(z, t) Zm(z)tm, in terms of the functions Zm(Z) the above relations
become

Z--dz+(ix-A)z_l + m+u-tz-z+2 Zm(Z)=(m--u)Zm+I(Z),

+u-+- z()=-(m+uz_(,

(4.41)
[ d d
Z
2 (2U 2--Z)Z +(--A)(U m--l)

d-
dz_ 

+(2g + m u A )z +(m 2u)( + 1)] Z(z) =0.

The multiplier representation T’ induced by the K-operators on is

[T’(g)h](, t)=- (b+dt)-- a+ exp
d+bt]

(4.42)
(h)

(a + c)(d + bt)’ d + bt]

Ic/al < 1, Ibt/dl < 1 and g e SL(2, C) lies in a suciently small neighbourhood of the
identity element so that the above expression is uniquely defined.

It has been shown in [4] that

(4.43) F t.e[1 + u + too; 2 + 2u, ’; -, t]

satisfies both

(4.44)

and

(4.45)

(J+J-+j3j3-j3)F u(u+ 1)F

[j3j3 _. ,)/t__ 2mo- 1 )j3 J+]F mo(y’- mo)F,

while it can be shown that

(4.46) G tin(1 t)-l-u-me 1Eli 1 + u + mo;

k 2+2u;

is a common solution of

(4.47) (j+j- + jaj3_ ja)G u(u + 1)G

and

(4.48)

z]

[j3j3 j-j3 + moJ- (1 + 2mo)J3]G -mo(mo+ 1)G.
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Therefore, by (2.6) and (2.9), it follows that

(4.49)

satisfies

(4.50)

as well as

(4.51)

while

1"1"2( l + u m" A l + u + m’ m- u;
1 zl-I tmGo2l Z,: 2/ 2U, tZ T’;

(K+K-+ K3K3- K3) u(u + 1)1

K3K3 + (T’- 2mo- 1)K3- K+]W mo( T’- mo)H,,

(4.52)

satisfies

(4.53)

as well as

(4.54)

2 z-ltm( 1 t)_,_u_ moF,i,;o\,.,;o/h" 1 + U + mo;--; --,z z)/x 2+2u;; 1--t

(K/K-+ K3K3- K3)"2 u(u + 1)2

[K3K3- K-K3+ moK-- (1 + 2mo)K3]2 -mo(mo+ 1)2.

From the expansions

(4.55) T(g)i E j,,hmo+,, i= 1, 2,

we obtain the following identities"

(4.56)
(l-t)- Fo1211\ ,.

--:/x, T, T,

(a). [a + n, X;
?0. 2F2 1_

C

1;Ok
(l_c_t)_F,::,;o(h" T-a;

1+
/z Y;,

(4.57) L r(v-a+n) a-n,h;

F(T a) 2F2
T,

2F1(7-a / n, 1-a+n; l+n; c)
r(l+n)

T’;
to t, It[< 1,

-zt zt )(c/t)(1-c-t)’c+t

t", <1, Ic+tl<l,

5. Type B representation ’u. Consider the representation ’u of sl(2, C), 2u not
a nonnegative integer. The representation space W has a basis {fro}, mS=
{-u + n: n-->0}, such that the action of sl(2, C) on W is given by

J+fm=(m-u)fm+, J-fm=-(mWu)fm_l, J3fm--mfm
(5.1)

(j+j- + jaj3 ja)f u( u + 1)fro.

where the terms corresponding to n =-1, -2, -3,. are well defined because of the
relation of the type (4.32).

The above identities are valid for all a, y, y’, A,/ C such that a and y-a are
not integers and y, y’,/x # 0, -1, -2,. ..
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The type B operators {J+, J-, j3} and the basis functions {fro} satisfying (5.1) are
[7, p. 188]

J+=t zm+tm--Z--U
Oz Ot

(5.2) j_ t_l( O
z--t--u
Oz Ot

0J3= t-
Ot

and

(5.3) fm(Z,t) F(-2u)ntL(-z’-l)(z)t", m -u+nS.
F(n-2u)

The representation ’u can be extended to a local multiplier representation T of
SL(2, C) on the space of all functions analytic in a neighbourhood of the point
(z, to) (1, 1).

Thus

(5.4) [T(g)f](z, t)=(d+bt) a+ ebzt/(a+bt)f((a zt a_t_+__c
+ c)(d + bt)’ d + bt]’

]c/atl < 1, Ibt/d] < 1,f and g lies in a small enough neighbourhood of e $L(2, C)
such that the right-hand side of the expression is uniquely defined.

As in 4, the operators J/, J-, j3 induce operators K/, K-, K3

K+= -J+ +t---z-u-i+l+(l-A)
Oz Ot

)(5.5) K- -lJ- -1 g---- t---- U --/Z + 1
Oz Ot

0K3= -lj3 t-
Ot’

K+h=(m-u)h+l,
(5.6)

where

K-h,, -(m + u)hm-1, K3hm mhm,

(K+K-+ K3K3- K3)hm u(u + 1)hm,

A" ]Z m,(5.7) hm(z, t) 2F2 -2u,/z;

In view of the fact that

(5.8) [K,K+/-]=+/-K +/-,

m=-u+nS.

[K+,K-]=2K3,
we have constructed a new model of irreducible representation ’u of s/(2, C) in terms
of ditterintegral operators {K/, K-, K3} such that the functions hm(z, t) defined by
(5.7) are basis vectors.

The multiplier representation T’ induced by the K-operators is

[r’(g)h](z,t)=N-’ (d+bt) a+ exp
d+bt]

(5.9)

(Nh)
(at + c)(d + be)’ d + bt]



1098 M.A. AL-BASSAM AND H. L. MANOCHA

Ic/at[ < 1, Ibt/dl < 1, ad- bc 1, and g lies in a sufficiently small neighbourhood of
e SL(2, C).

It can be easily shown that

(5.10)

satisfies

(5.11)

as well as

(5.12)

F b2[-2u; -2u, y’; -z, t]eZt

(J+J-+j3j3-j3)F u(u+ 1)F

[j3j3 .q_ (2u d- 2"- 1)J3 J+]F -u(u + 2") F.

It therefore follows that

(5 13) z-I-, vvo( -2u:a;--;Fi2
2" -2u, I;;

satisfies the diiterintegral equation

(5.14)

as well as

(5.15)

The expansion

-zt, t)
(K+K-+ K3K3- K3)ffto= u(u +

[K3K + (2u + 2"- 1)K3- g+]i

(5.16) T’(g)= pn(g)h_+,
n--0

leads us to an identity

(5.17)

2" A;--;
zt, + c),.

2’./x, 2’; m;

(,/). [-n,,; ] ]C n.z F 2"+n,

We are not discussing type A representation ’u since the operators defining it do
not fit into the fractional derivative approach.

6. Type A representation Su. consider the representation u of s/(2, C), 2u not a
nonnegative integer [7, p. 205]. The representation space W has a basis {fro}, rn S
{u-n: n =0, 1, 2,...} such that the action of sl(2, C) on W is given by

(6.1)
J+f (m U)m+l J -(m + U)fm_l,

(j+j- + j3j3 j3)f., u(u + 1 )f.,.

j3f,, mf,,,

The type A operators {J/, J-, j3} here are (4.3) while

(6.2) fro(Z, t)=2Fl(-n,-q-u;-2u; z)tm, m=u-n, n=0, 1,2,....

Accordingly, K-operators induced by the J-operators are (4.7) and (4.9), while the
corresponding basis functions h,, (z, t) are

(6.3) hm(z, t) z- [-n’-q-u’A; ]zt,3F2
-2u,/.;

re=u-n, n=0,1,2,...,
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where

K+hm (m u)h,+l, K-h,, -(m / u)h,_l, K3hm mh,,,

(6.4) (K+K-+K3K3-K3)hm=u(u+I)hm,
[K3,K+]=+K+, [K+,K-]=2K3.

The multiplier representation T’ of SL(2, C) in consequence of the K-operators is
(4.15). That is,

T’(g)h](, t) - (d + bt) a + a

(.5
(Nh)

(d+bt)(a-c(z-1))’d+

Ibt/d < 1, Ic/atl < 1, I(c(z- 1))/atl < 1, and g lies in a sumciently small neighbourhood
of e e SL(2, C).

It can be shown that

[ --z 1](l-z)q+t(6.6) F F2 2u; -q u, a’; -2u, fl’;
1 z’

is a solution of both

(6.7) (j+j- + j3j3 j3)F u( u + 1)F

and

(6.8) [JJ+J-J-(u+a’)J-+(1-2u-’)J]F=u(1-u-’)F.
Therefore, it follows that

.2.o(--2u,’:--q--u,A;--; z )(6.9) z"-1 F2o fl" -2u, ;; t’

satisfies

(6.10)

as well as

(K+K- + K3K3- K3)fft= u(u + 1))

(6.11) [K3K3+K-K3-(u+a’)K-+(1-2u-fl’)K3]=u(1-u-fl’).
From the expansion

(6.12) T’(g)= Y, qn(g)hu-n,
n=0

valid in a region to be determined by the inequalities (6.5), we obtain the following
identity as a special case:

z l+bt)t’

(6.13)
(a’)n(fl) -n, a, h;

2F1
,=o n !(/3’),

F).
/3, ; /3’+ n;

1



1100 M.A. AL-BASSAM AND H. L. MANOCHA

We are not discussing type B representation S u since it would lead to the identity
(5.17) again and as such give no new results.

7. Conclusion. As we have seen, the operator has been highly instrumental in
constructing new models of irreducible representation of sl(2, C), induced by type A
and type B operators. For h =/z all the new models reduce to the known ones.

We have not included the discussion on representations of the oscillator algebra
or the Lie algebra of the Euclidean group, based on type C’, C", , operators, since,
to deal with these, we need to define the operator in a different way. However, we
propose to discuss this in a separate article.

Acknowledgment. The authors record their thanks to the referee for suggestions
which have led to a better presentation of the paper.
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A GENERAL FORM FOR SOLVABLE LINEAR TIME VARYING
SINGULAR SYSTEMS OF DIFFERENTIAL EQUATIONS*

STEPHEN L. CAMPBELLf

Abstract. A canonical form is derived for all linear solvable systems E(t)x’(t)+ F(t)x(t)=f(t) with
sufficiently smooth coefficients E, F. Using this form it is shown that for all smooth enough solvable systems
a class of recently defined numerical imbedding methods and an algorithm to compute the manifold of
consistent initial conditions always work. In addition, necessary and sufficient conditions are given on E (t),
F(t) to insure solvability in the case when E(t), F(t) are infinitely differentiable.

Key words, linear time varying system, implicit, descriptor, singular, solvability, numerical imbedding,
consistent initial conditions, approximation
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1. Introduction. The theory for linear time invariant singular systems (also called
differential-algebraic, descriptor, implicit or constrained) has become well developed
over the last decade (see [3], [4]). However, progress on the linear time varying problem

(1.1) E t)x’( t) + F( t)x( t) f( t)

is more recent and has been less complete. Work on (1.1) initially took either the form
of algorithms utilizing repeated coordinate changes and differentiations to reduce (1.1)
to some type of canonical or explicit form [18], [21], or of traditional numerical
methods such as backward differences [12].

The canonical form approach was continued in [6], [10], [19]. However, examples
in [6], [10] showed that there were solvable systems (to be defined shortly) which
could not be put into these canonical forms. It was also observed in 19] that backward
difference methods do not converge for all solvable systems although they do work
for certain important classes of problems [2], [14], [15], [19]. (Note also [13].) In an
attempt to rectify this difficulty, a different numerical approach was introduced in [7]
and further developed in [8], [9]. This method was shown to work for many of the
standard classes of singular systems (1.1) including some for which backward differen-
ces failed and the approach of 18], [21] was numerically impractical. This paper will
bring together some of this previous work.

First, we shall give a result which exhibits for the first time the structure of all
sufficiently smooth solvable systems. In particular, we will show that the counter-
examples in 10] are, in a sense, "generic". Using this structure result, which is similar
to, but different from, that of [10], [19], we show that the method [7] works for all
sufficiently smooth solvable systems and that [7] also provides a tool for the theoretical
analysis of (1.1). Also, under the added assumption that E, F, f are infinitely differenti-
able we develop a test for solvability that can be verified directly from E, F and their
derivatives without any time varying coordinate changes.

2. Terminology and the canonical form. Let 5 to, tl] be a finite subinterval of
the real line. We assume that E, F are n x n (possible complex) matrix valued functions,
n >= 2, and E is singular for all 5. We do not assume E has constant rank. To avoid

* Received by the editors August 26, 1985; accepted for publication (in revised form) June 3, 1986.
This research was supported in part by the National Science Foundation under grant DMS-8318026 and
the Air Force Office of Scientific Research under grant 84-0240.

f Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.
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technical difficulties we assume E, F, are 2n-times diiterentiable andf is at least n-times
differentiable where diiterentiable is taken throughout this paper to mean continuously
diiterentiable.

The system (1.1) is solvable on if for every such f there exists at least one
continuously dillerentiable solution x. (This is a form of target path controllability
[24].) Also, all solutions for this f are defined on all of , are at least diilerentiable,
and are uniquely determined by their value at any . Finally, all solutions of the
homogeneous equation Ex’+ Fx =0 are at least (2n / 1)-times diiterentiable and if f
is m-times differentiable with n_-< m_-<2n, then the solution x is (m-n/ 1)-times
differentiable.

This definition may appear somewhat cumbersome, but when E, F are constant
it is equivalent to the usual definition of solvability [3 ], [4] and allows us to concentrate
on structural questions without worrying ifwe have lost diiterentiability during coordin-
ate changes.

Those x for which (1.1) has a differentiable solution such that X(to)- x are
called consistent initial conditions at to.

Two singular systems Ex’+ Fx-f and /’+/5 =f are said to be equivalent if
there exists 2n-times diiterentiable nonsingular H(t), and (2n + 1)-times diiterentiable

nonsi.ngular, K (t) such that letting x K and multiplying by H changes Ex’/ Fx-f
into E’+F =f. That is,

(2.1) HEK , HEK’+ HFK , Hf f.
Finally, from [6], a system is in standard canonical form (SCF) if it takes the form

(2.2) y’+ C(t)y g(t),

(2.3) N(t)z’+z=h(t)

where N is strictly lower triangular independent of and (2.2) may be absent. Note
that (2.3) has only one solution for each h [6]. By an additional coordinate change
on y, one could rewrite (2.2) as y’(t)- g(t). Systems equivalent to one in SCF are
clearly solvable.

If E, F are real analytic, then (1.1) is solvable if and only if it can be put into
SCF 10]. However, not all solvable systems can be put into SCF. In 19], Petzold and
Gear show that if (1.1) is solvable, then there is a collection of open intervals ,,i such
that U i is dense in and on each , (1.1) can be put into SCF. However, the
coordinate changes and canonical form need not be continuous on [10].

Example 2.1. Let N_, N+ be any two n x n nilpotent matrices. Let b(t) be a
(2n/ 1)-times dif[erentiable function on [-1, 1] such that b()(0) 0 for 0-< i<=2n+ 1.
Let F(t)=I, E(t)-dp(t)N_ if t<_-0 and E(t)=ck(t)N+ if t>0. Then it is not hard to
show by the next lemma that

(2.4) Ex’ + x f
is solvable on [-1, 1 ]. If, for example, the nullspaces of N/, N_ do not intersect, then
(2.4) cannot be put into SCF.

LEMMA 2.1. IfN is an n x n 2n-times differentiablefunction such that any n-product
ofN and its derivatives is zero, then Nx’+ x f is solvable on and the unique solution
is

(2.5) x=(I+ ID f I ID+ ID 2 + (-1)"-(JrD)"-l)f
where N is the operator of multiplication by N and D is the operator of differentiation.
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Proof. By assumption, (ND)
In Example 2.1, a projection onto the nullspace of E(t) could exhibit a jump

discontinuity at zero. An example where the projection is not even piecewise continuous
is given in [10]. The next result gives the first general structure theorem for solvable
systems and show that the previous examples are typical of how a solvable system can
fail to be equivalent to a system in SCF.

THEOREM 2.1. Suppose that (1.1) is solvable on #. Then (1.1) is equivalent to a
system in the form

(2.6a) y’+C(t)z’-g(t),

(2.6b) N(t)z’+z=h(t)

where (2.6a) may be absent and (2.6b) has only one solution for each sufficiently smooth
h(t). Furthermore, there exists a family of disjoint open intervals #i such that LJ # is
dense in and on each the system (2.6b) may be transformed by H, K as in (2.1) so
that (2.6b) is in SCF. In particular, on the equivalent system will have the form (2.6)
with N( t) at least 2n-times differentiable and strictly lower triangular independent of t.

Before proceeding to prove Theorem 2.1 we point out that the key differences
between Theorem 2.1 and those of [10], [18], [19], [21] are that, while the structure
is less detailed and the systems (2.6a), (2.6b) are not completely decoupled, the
coordinate changes and matrices in (2.6b) are defined and sufficiently differentiable
on all of # and not just on LJ . Also, we do not make assumptions of analyticity or
constant rank so that Theorem 2.1 applies to all solvable systems which have smooth
enough coefficients.

Proof. Suppose that (1.1) is solvable. First we wish to get (1.1) in the form

(2.7a) x’ + Aly’ + Cx =fl,

(2.7b) Azy’ + By f2
with the bottom equation having only one solution for sufficiently smooth fi If the
associated homogeneous equation of (1.1) has only x 0 as a solution, (1.1) is already
in the form (2.7b) with (2.7a) absent and this step is complete. So suppose there are
nontrivial solutions of (1.1) with f=0. Let {bl,...,b,} be a basis for these
homogeneous solutions. By the assumption of solvability {b,.-., b,} are linearly
independent for each and (2n + 1)-times differentiable on all of #. Then there exists
{t}r+l, ", @n} equally smooth such that [b, , b,] is invertible on # (see [22]
for example). Let x . Then (1.1) becomes

EO:’+(EO’+ FO);=f
or

(2.8)
LEu E22J L2A F2uJ

where E=[Eo], E’+ F=[Fo]. We omit the tilde and use Xl, Xu to denote our
new variables. We shall now show rE,, has full (column) rank. Suppose that ’ 5LE21J
such that rE, is not full rank. Let b be a nonzero constant vector such thatI-EElJ
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Define - E2(t) c if t ,
f(t)

t)j if t= t.

Then f is 2n-1 times differentiable on . However xl In It-/’[b, x2=0 defines an
unbounded solution on 3\{/’} which contradicts solvability. Hence r1,1 has fullLE21J
(column) rank on .

Thus there exists a 2n-times ditterentiable nonsingular matrix P such that

Multiplying (2.8) by P gives that our system is now

(2.9)

and by the construction of @, E2x+ F2x2 --f2 has only one solution for each f2. Let
x2 S2. Then (2.9) becomes

[ ](2.10) EIS] Xl -t"
E2SA J F2S+ E2S’ 2 f2

Suppose for the moment that it is possible to choose 2n + 1-times differentiable S such
that S and E2S’+ F2S are both invertible for every . Then we have (2.9) with F2
now nonsingular. Multiplying (2.9) by

yields the equivalent system

which is (2.6). To complete the proof, we need to verify that one can define S as
indicated. Suppose that p- dimension of the w space in (2.11). Let cCm be the Banach
space of m-times continuously differentiable p x p complex valued matrix functions
defined on 3 with IIx IIx where II" is the sup norm on Co. Let
(x) E2x’ + F2x with E2, F2 from (2.9). Let l’m be those X = which are nonsingular
for every . We need the technical fact that

(2.12) For rn => 0, f/, is an open dense subset of

Lacking a reference for (2.12), we include a proof. Clearly f/m is open in CCm SO we
need only show f/, is dense. Suppose T %\,,. Take e > 0. Then there exists P CCm
such that liP-TII,, < e/2 and P has polynomial entries. Let E be the set of all
eigenvalues of P(t) for all e . Then E has no interior as a subset of the complex
plane. This follows from the fact that P(t) is real analytic in and hence the eigenvalues
are continuous functions of which are analytic except at a finite number of values
[16]. Hence there exists a number el>0 such that el <e/2 and elSE. Let H P-el.
Then H fm and IIH- TII < e as desired. This completes the proof of (2.12). Now
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take f,. By assumption on (solvability) there exists a 1 such that () .
Let e be such that the e neighborhood of o is in fro. By (2.12) there exists
((I)j) C2 ’2n+1 such that in . But then () () in o. Let f be such
that < . Then 2n+l and () , o 2, so that y is
the required S. This completes the proof of (2.11). To get the structure of N we use
the fact that if X(t) is any continuous matrix function on , then there exists a
countable collection of disjoint open inteals such that U is dense in and
rank X is constant on each . One can then do the reduction process of [19] (or
Silverman [21]) where on each step it may be necessary to break each into another
countable family.

It would be nice if the matrix C could be eliminated in (2.6a) so that (2.6a) and
(2.6b) were completely decoupled. We are not sure if this is always possible. However,
note that if we let z u + Tw in (2.11) and then add -T’ times the second equation
to the first, then (2.11) becomes

(2.13)
0 N w’

+
I w, f2

If T’N-T= C has a smooth solution on 5, then (2.13) is in the form (2.11) with
C =0. There are several sufficient conditions for this including the solvability of
N*X’-X C* where denotes the pointwise conjugate transpose and X- T*.

The next section applies Theorem 2.1 to the numerical methods of [7]-[9].

3. Application to the imbedding method. Theorem 2.1 should not be considered a
method of solution but rather a very useful theoretical fact.

In [5] and Lemma 2.1 it was shown that the solutions of (1.1) will generally
involve not only f and its derivatives but also derivatives of E, F. For simple small
scale problems it may be possible to differentiate and solve for variables [20]. This
may not be practical on larger or more complicated problems. One of our goals then
is to develop a theory as directly in terms of the derivatives of E, F, f as possible.
While the proofs involve time varying coordinate changes the results do not.

Suppose that (1.1) is solvable and that ’ 5. Let

(3.1) c,(?) for c E, F,f, x, ’ #
i!

so that

(3.2) c(t) E cfi’, 8 t- t

(where (3.1) is a Taylor approximation with a remainder if c is not analytic). Substituting
these expansions into (1.1) gives that for any j > 0 (j less than the smoothness of E,
F, x,f)

Eo
E + Fo
E2+ F1(3.3)

-,+E-
or

(3.4)

2Eo
2El + Fo 3Eo

2E_2+ F-3 jEo

Xl fo Fo
x A F

Xo

x Xo f
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where all the terms in (3.3) depend on t. Note that ’j is singular since Eo is. The
system (3.4) (or (3.3)) is said to be smoothly 1-full on if there exists continuously
ditterentiable nonsingular R(t) on such that

R(t)j(t) L(t)

where I is n x n. In this case, if [Ro," , Rj-1] is the top n rows of R(t) we have that

j--1 j--1

x E R,F,xo+ Z R,f,
i=o i=o

or

(3.5) x’( t) Q( t)x( t) + q( t).

Thus the solutions of the original descriptor system (1.1) corresponding to consistent
initial conditions are also solutions of the nonsingular system (3.5) provided (3.4) is
smoothly 1-full. But solving (3.4) for x, given Xo, is the same as evaluating Q(t)x(t)+
q(t) in (3.5) given x(t), t. This makes it possible to numerically solve (1.1) by
numerically solving (3.5). This is discussed in more detail in [7], [8]. The key then in
utilizing the approach of [7], [8] is that j be smoothly 1-full. Notice that (3.3), (3.5)
only require that E, F, are (j- 1)-times differentiable, and as we shall see one may
usually assume j n + 1. However, forming xj requires x to be j-times differentiable
which usually requires extra smoothness from E, F,

An example in [7] shows that 1-full for each does not imply smoothly 1-full.
LEMMA 3.1. Let

(3.6) M(t)=[M1M3 M
where M is n x n and suppose that M is smooth on and has constant rank. en M
is smoothly 1-full on

oo Suciency is obvious. Suppose M is 1-full for each and has constant
rank. From the 1-fullness assumption the submatrix [] has full column rank for all
t. Thus there exists a smooth inveible Rl(t) such that

R(t)M(t)=
0 4"

But M has constant rank by assumption since M does. Thus there exist smooth R(t),
R3(t) such that

Hence

(3.7)
R2 0 0 0

Now multiply both sides of (3.7) on the left by

0 I 0 toget 0’ [’I O] R;-1

0 0 I 0 0 0
(3.8)
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But M is 1-full for each t. Thus M22 "--0o Since all the row operations given by R2,
ME1, R1, were smooth, we have the proof of Lemma 3.1. [3

Note that in Lemma 3.1 we may take smooth to mean m-times continuously
diiterentiable or real analytic so that r is as smooth as M. Thus if E, F, f are 2n-times
ditterentiable, then Q, q, in (3.5) will be at least 2n-j + 1 times ditterentiable and (3.5)
will imply the solutions are (2n-j / 2)-times ditterentiable.

In [7] it was shown that for some j -< n + 1 one has j is 1-full and constant rank
for many known classes of solvable systems. Using Theorem 2.1, we now show that
in fact this holds for all solvable systems with smooth enough coefficients. Let (X)
denote the range (column space) of a matrix X.

THEOREM 3.1. Suppose that (1.1) is solvable on and E, F are 2n-times differenti-
able. Then

(3.9)
(3.10)
(3.11)

has constant rank on for j n + 1,
is smoothly one-full on for j n + 1,

:()+ :(g) C" for every C for l_-<j_-<n+l.

Proof. Suppose (1.1) is solvable. As shown in [7], performing smooth coordinate
changes amounts to doing block row operations and right to left block column
operations on , j where the blocks have size n x n. Thus (3.9)-(3.11) are not altered
by such changes of coordinates. By Theorem 2.1 we may assume that (1.1) is in the
form (2.6). Thus

I
0

0

0 NI/I
0 C2

0 S
0
0

C1 21 2Co
0 2No
0 2C1
0 2Nl+l

(3.12)

31 3Co
0 3No

".. jI jCo
o jNo

o o
0 i

0 0=o o"

.00.

If we perform column operations to eliminate the Ci we see that (3.9), (3.11) hold for
(3.12) if and only if they hold for

NVO I

1+1 2No

Note that because of the block lower triangularity of j that (o)+ (.o) Cn
implies (’)+() =Cn for l<=j<=jo. Also if j in (3.13) is 1-full, then so is 8’ in
(3.12). Thus it suffices to prove Theorem 3.1 for (3.11), that is, the subsystem Nx’+ x =f.
Suppose that N is n x n. Now since (1.1) is solvable, at a given one may take
arbitrary. Thus (3.11) holds for (3.13). Hence rank ()-> (n- 1)j for all t, l<=j<=2n,
since rank ()= n. Now by Theorem 2.1 there exists disjoint open intervals i such
that U i is dense in and Nx’+ x =f can be put into SCF on each i. But then on

the new coefficient matrices in ’ are all strictly lower triangular independent of t.
Then since any n products of the N are zero, we can use a variation of a row operation
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argument used in [7, Thm. 4.3] to show that j is 1-full and has rank (j-1)n on
if j > n. But j is a continuous function of and thus the rank can only drop at a
discontinuity of the rank. Hence rank () -<_ (j 1) n on the closure t_J o for j n + 1.
But we already have rank () ->_ (j 1) n on o CI so that rank^ () (j 1) n on

and has constant rank if j- n / 1. Now we can show that j is also 1-full. Let
t be the span of the first n standard basis vectors (el," ", en) in Cn. Notice that

(3.14) is 1-full ifand only if+/-(), where denotes nullspace

and _L is determined by the usual inner product on C. Suppose j n / 1. Since j has
constant rank there exists a continuous basis 1,’" ", s for its nullspace. But then
ek* 0r 0 on LJ for 1 _-< k _-< n, 1 _-< r _-< s implies, by continuity, that ek*
which is . Thus by Lemma 3.1 and (3.14), we have that (3.10) holds.

Theorem 3.1 has several important consequences.
COROLLARY 3.1. If (1.1) is a sufficiently smooth solvable system, then the numerical

methods of [7], [8] can be used, in principle, to integrate it.
Thus the method of [7], [8] is in fact a general method for (1.1).
COROLLARY 3.2. Suppose E, F are n-times differentiable where m >-2n and (1.1) is

a solvable system. If m / 1 n >=j >- n / 1, then r/- dim (((t))) is independent of
and j. Furthermore, for any given n-times differentiable f, the solutions to (1.1) form an
n rl )-dimensional manifold.

From [9] we now have the following theorem.
THEOREM 3.2. Suppose that (1.1) is solvable, E, F are 2n-times differentiable and

n/ 1 >-_j>- 1 /(size of N in (2.6b)). (In particular, j- 1 / n suffices.) Then the linear

manifold of consistent initial conditions is precisely the set of all Xo such that (to)X-
( to) (to)Xo is consistent. Equivalently, ( to) (to)Xo is in the range of e( to). Thus
one may determine the manifold of consistent initial conditions by

Computing W such that W- 0 and rank W-nullity of;
Solving W*Xo W*for Xo.

We have then that if (1.1) is solvable it is straightforward, if time consuming, to
compute the initial conditions and integrate the equations.

However, none of the development so far, other than Theorem 2.1, tells us whether
(1.1) is solvable on and the actual implementation of (2.6) is difficult. We now
address this problem by deriving algebraic criteria on ’j, to ensure solvability.
The criteria are to be numerically verifiable. The next result is a partial converse to
Theorem 3.2.

THEOREM 3.3. The system (1.1) with E, F, n x n and real analytic is solvable ifand
only if there is an integer jo 1, n + 1 such that

(3.15) Rank (o) is constant on

(3.16) o is 1-full at each
(3.17) (o(t)) + (o(t)) C" on.

Proof [Only if]. The only if part follows from Theorem 3.1 and the observations
that all transformations may be replaced by analytic ones. In particular the Q, R of
(3.5) will be analytic so that we get that if f is analytic, then so is the solution x.

Lemma 3.1 goes through for any level of smoothness. The next lemma uses real
analyticity in an essential way and will be used to prove the sufficiency of (3.15)-(3.17).

LEMMA 3.2. Suppose that E, F, f are real analytic and has constant rank on

If is 1 -fullfor every and if (1.1) is solvable on any subinterval of, then (1.1)
is solvable on .
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Proof. Assume that gj is 1-full for every 5 and has constant rank. Then by
Lemma 2.1 it is smoo.thly 1-full..Suppose that (1.1) is solvable on 5 c 5. Let x be a
solution of (1.1) on 5. Pick to 5. Let : be the solution of x’= Qx + q for 5 such
that 2(to) 5(to). Then g is analytic on 5 and g x for ff since x’= Qx + q for

Thus Eg’+ Fg f for 5. Since E, g, F, f are all analytic on 5, this relationship
must hold for all by analytic continuation and is a solution of (1.1) on 5. This
shows that solutions of (1.1) exist for any analytic The uniqueness follows from the
fact they are also solutions of (3.5). Thus (1.1) is solvable on
Then using the existence of the SCF on 5 gives solvable for f

We can now complete the proof of Theorem 3.3.
Proof of eorem 3.3 [If pa]. If the system (1.1) is one-dimensional then the

theorem is true. Suppose then that (1.1) is a minimal-dimensional counterexample to
Theorem 3.3. That is, (1.1) satisfies (3.15)-(3.17), but is not solvable on an inteal
By Lemmas 3.1, 3.2, it is also a counterexample on any nontrivial subinteal
Note that E, F are n x n matrices with n 2. Since (1.1) is assumed not solvable, E
must be singular for some 5. But (3.15) then implies E is singular for all 5. Let
p be a positive integer such that rank E p < n for all 5. Then there exists analytic
nonsingular H such that

where 11 is p X p. We now use the fact that (3.15)-(3.17) are unaffected by changes
of coordinates. Multiplying (1.1) by H gives the equivalent system

0 F21 FJ w

where (3.15)-(3.17) still hold. But if (3.17) holds, then it must be that (E) + (F) C
and similarly for (3.18). Thus

0 0 F21 F22J

and [Fa Fa2] must be identically full row rank. Hence there exists a nonsingular real
analytic O(t) such that [F2, G2] O=[0 ] with a inveible. Letting

changes (3.18) to the equivalent system

But by (3.17) F must be nonsingular. Multiply (3.19) by

to give
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Take j to be the jo of (3.15)-(3.17). Then for (3.20) the g’j, take the form

(3.21) gj 0 I

Ellj_ d- Fllj_2 E12j-1
0 0

and

(3.22)

FllO
0

Fill
0

F1 lj-1

0

0

I
0

0

0.

By assumption ()+()=C". Let u, v be any two vectors such that gja +
Cp 0)lY"-P__q C" where C"0)0 means n arbitrary entries followed by s zero entries.
The fourth row of .g’ in (3.21) shows that the p + 1 through n entries of u are zero and
thus (1o)+ (:11o)= Cp. Pick a point toe . Then there is an analytic matrix Q(t)
such that EloQ(t)+ Fllo is invertible on a neighborhood of to. Let U be the solution
of U’= QU, U(to)= I, let u Ut, and restrict (.3.20) to the subinterval . We still have
a counterexample to Theorem 3.3 except now Fll in (3.20) is nonsingular. Multiplying
by ’-] we finally get that our counterexample is

(with new El, E2 u, t, g). Also now

(3.24) ,gj

Elo E2o
0 0

EI + I E2 2Eo
0 I 0

Elj-1 E2j-
0 0

2E2o
0

(j-1)E+I (j-1)E2 jEo jE20
0 I 0 0

I 0

0 I
0 0

Notice that if

(3.25) E1 u’ + u g
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is solvable, then so is (3.18), which is a contradiction. Since E1 has smaller dimensions
than E it suffices to show (3.15)-(3.17) hold for (3.25) to obtain a contradiction. Using
the I blocks in (3.24) and doing row operations on gj to zero the remaining entries
in those columns we see that

E10

E1-1 jElo j 20

(3.26)

I

is 1-full iff (3.24) is. But j 1-full implies X is 1-full and Ej is the matrix for (3.25).
Thus (3.16) holds for (3.25). Since E is real analytic we may take a subinterval on
which it has constant rank so that (3.15) holds for (3.25). There remains only to verify
(3.17) for (3.25) to complete the proof. We may assume j=>2. Then by assumption on
(3.24), (3.17) holds. Observe that then one can find u, v so that ju+v gives any
vector in Ji=l@ (Cp0) "-P) The last row implies that the jn- 2 block entry, of u is
zero. Let be j with the (j- 1)E2o entry zero. Then this says ()+()=Cp.
But (Xj_l) + (-1) =Co-1)p since -1 is the n(j- 1) x n(j- 1) principal submatrix
of/. As noted X is the j matrix for (3.24). Thus (*i)+() =C" for (3.25) for
=jo- 1 n. Since E1 has dimension less than or equal to n- 1, we have (3.25) satisfies

(3.15), (3.16), (3.17) which is a contradiction.
COROLLARY 3.3. Suppose that E, F, f are real analytic on ‘9. Then (1.1) is solvable

on ‘9 if and only if (3.15) holds on .9, (3.17) holds at to, and (3.16) holds on a dense
subset of ‘9.

Proof If (3.17) holds at to, it will hold in some subinterval [to, to+ e]. Now use
Lemma 3.2, Theorem 3.3, and (3.15).

We can extend the proof of Theorem 3.2 to cover infinitely difterentiable functions.
To do this, observe first that if E, F are infinitely ditterentiable and (1.1) is solvable
on ‘9, then by considering only infinitely ditterentiable solutions one may get (2.11)
where Nw’+ w =f2 has only one infinitely ditterentiable solution for each infinitely
ditterentiable f2. However, if Nw’+ w 0 and w is not infinitely differentiable it follows
that w 0 on LI ‘9 and hence w 0 on ‘9. Also, as noted earlier if E, F, f are infinitely
ditterentiable, then so are Q, q and hence x. Thus for E, F infinitely ditterentiable, we
may consider solvability to mean that x, f are also infinitely ditterentiable. This version
of Theorem 2.1 is actually slightly weaker, since solvability is taken to mean for every
infinitely ditterentiable f, (1..1) has a solution. This does not immediately imply that
for every n-times ditterentiable f, (1.1) will have a smooth solution. If we call this
weaker form of solvability c%solvability, then Theorem 2.1 becomes the following.

THEOREM 3.4. If (1.1) is c-solvable, then (1.1) is equivalent to (2.6) where all of
the functions including g, h are infinitely differentiable.

Using Theorem 3.4, we may generalize Theorem 3.3 as follows.
THEOREM 3.5. The system (1.1) with E, F infinitely differentiable is c-solvable if

and only if there exists a jo>= n+ 1 such that (3.15)-(3.17) hold.
Proof The "only if" part follows from Theorem 3.1. To prove the "if" part,

suppose that E, F, f are infinitely differentiable on ‘9 and that (3.15)-(3.17) hold for
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jo -> n + 1. There are a countable number of open intervals #i such that O ,9i is dense
in # and rank E is constant on each #i. Premultiplication (on each #) gives

x=f.0 F3 F4
By (3.17), the matrix IF3, F4] has full row rank and we may do a change of coordinates
x Vy to give

0 0
y+ Y=f

with new N, F. A premultiplication gives finally that

As shown in [7] these coordinate changes do not affect (3.15)-(3.17). Thus Ny+
Fy =g satisfies (3.17) with ion n. Continuing in this manner we get that there exists
a countable family of disjoint open inteals N such that U N is dense in N and on
each N there exists P, so that premultiplication by P and letting x y transfers
(1.1) to standard canonical form [6] so that (1.1) is solvable on each
are defined only on N.

By assumption on , there exists smooth nonsingular N on all of N so that

with X of full row rank. Now (1.1) is solvable on each N and from [2], [8] we have
the solutions are given by (3.5) and the constraint matrix 0(t):

(3.27)

(.a

and g, h are differential operators applied to

g(t) i(tg(i)(t), h(t) i(tg(i)(t).
=0 =0

By assumption on j, , the coefficients Q(t), 0(t), (t), i(t) arc in [].
Also since O(t) has full row rank on by (3.15), (3.16), (3.17), there exists a change
of coordinates W defined on so that 0(t)W(t)= [0 I]. Then (3.27), (3.28) becomes

(3.29) x QlX + Qx+ q,
(3.3o) x[ Q:x + Qx:+ q,
(3.31) 0= x:+ h

where [Qj] Q-I(QW- w’), [q,] W-lq. But (3.29)-(3.31) characterize the solutions
of (1.1) on . Letting f=0 in (3.29), (3.30), (3.31) gives, on each ,

x=QlX, O=Q:x.

However, dim x is the dimension of the solution manifold on so Q2 0 on U .
By continuity Q2 0 on . Returning to (3.29)-(3.31) we now have

(3.3) x Q11x Q:h + q,
(3.33) O=-Q22h+q2-h’.
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Given an f [5], by solvability of (3.23) on 5i, we have (3.33) trivially holds on
[.J 5i. But then (3.33) holds on 5 by continuity. Thus (3.32), (3.33), and hence (3.19)-
(3.21) have dim x2 linearly independent solutions defined on all of 5. But by construc-
tion these solutions satisfy (1.1) on LI 5. By continuity they satisfy (1.1) on 5. [3

Observe that if we let

.x Ex + Fx, ?7[x x Qx, x R X

then we can write

(3.34

Also this proof does not actually require infinite ditterentiability. Being 3n-times
ditterentiable would suffice.

4. Comments. This paper provides a fairly complete theory for (1.1) based on the
ideas of [7]. In particular, the numerical approaeh of [7], [8] works on all smooth
solvable systems. For infinitely differentiable coefficients, it works if and only if the
system is solvable. The conclusion (3.34) implies that the operator L is what Emre
calls left-admissable [11]. Examining this connection with [11] would be a major
digression and will be done elsewhere.

One difficulty in working with (1.1) is that a system Ex’+ Fx=f with E, F close
in the Ilm norm to E, F need not be solvable, and if solvable, need not have solutions
close to those of (1.1). However, using the differential equation (3.5), Theorem 3.1
and Corollary 3.2, we can now make the following statement (Theorem 4.1). While an
immediate consequence of 3, this is the first result of its kind we are familiar with.

THEOREM 4.1. Suppose that E, F, E, F are in (2n where r is a parameter. Suppose
that E-> E, F F in c2n as z- Zo. Suppose that Ex’+ Fx f is solvable for each
and that for j n + 1, rank (g’f) rank (g’j) for all 5. Then Ex’ + Fx f is_ solvable.
Furthermore, the manifolds of initial conditions and solutions are also continuous in " at

’o.
Proof. The only part that needs proof is that gj is 1-full. But this follows in the

same way we extended 1-fullness to the closure of U in Theorem 2.1. D
COROLLARY 4.1. Suppose (1.1) is equivalent to a system in SCF. Then there exist

polynomial matrices in t) E, F such that E --> E, F -> F in c2 as " ’o. Ex’+ Fx f
is a solvable system for every -, and the solution manifold is continuous in " at o.

Proof. Take (2n polynomial approximations of both the SCF and the coordinate
changes that put it into SCF.

This argument does not work if (1.1) is not equivalent to a system in SCF. We
do not know if the polynomial solvable systems are dense (in the sense of Corollary
4.1) in all solvable systems.

Theorem 3.3 (or Corollary 3.3), to our knowledge, supplies the first explicit
characterization of solvability. However, it appears to involve a great deal of computa-
tion. We shall now show how this may usually be done simultaneously with the solution
at little additional overhead.

Suppose then that we have (1.1) on to, tl] with E, F, f real analytic or infinitely
differentiable. At to, rank (cj(to))=ro is determined, possibly by a singular value
decomposition (SVD) and (3.16), (3.17) are also verified. This SVD may also be used
to estimate the conditioning of (3.4). Suppose that we now proceed to numerically
solve (1.1) by integrating (3.5) as described in [8]. First a QR factorization is performed
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on the first n columns of j to yield

(4.1) QTj HEEJ’
and Rll is nonsingular and upper triangular. If this cannot be done, then we could
use an SVD. If this still fails to produce a nonsingular Rll, then either the problem
is not 1-full or is too numerically ill conditioned. Suppose then we have that (3.4) is
now (4.1). Now perform a QR on H22 using column pivoting so that (3.4) is now

(4.2) 0 R22 R23 z1 2
0 0

where R2 is nonsingular, upper triangular, and (to-n) (to-n). If Rzz is not that
size, then use an SVD instead of a QR. If R)_2 is still not the correct size, either we are
near a place where (3.15) is violated or the problem is too ill conditioned to proceed
directly (note [23]). Similarly, if el, e)_ are not negligible, then (3.17) is being violated
numerically. It is probably not necessary to check 1-fullness at every time step and
one can often use the basic solution in (4.2) by setting z2 0 and backsolving for xl.
However, there are a couple of ways to check 1-fullness. One is to use elementary row
operations to use R).)_ to zero R. Then E is 1-full if and only if R3 is also zeroed
out. An alternative is to perform Householder transformations (which need not be
saved) on the right of the coefficient matrix in (4.2) to get

Rll R12~ e3 Xl fl
(4.3) 0

0 0 0 z2 0

where/22 is again upper triangular. If e3 is not negligible, we consider the system to
not be 1-full, (3.16) is violated and we stop. If e3=0, then we solve (4.3) for z and
then x by back substitution to get

(4.4) : -R 2z:f.
and proceed with our integration scheme.

The decisions require, as is often the case with numerical procedures, making
decisions on numerical rank [15], [23]. However, if (1.1) is solvable on , with smooth
enough coefficients, then there exists a precision and step size (depending on the
conditioning of the algebraic equations) and the system (3.5) which will permit us to
integrate (1.1) (equivalently (3.5)). Conversely, if (1.1) is not solvable on all of , then
there is a stepsize h such that using any stepsize smaller than this will lead to the
determination that (3.15) or (3.16) are violated and the problem is not solvable. In
any event, the conditioning of the required algebra in (3.4) over is independent of
the stepsize, whereas the conditioning of the algebraic problems in a backward
difference scheme increases as h decreases.

Finally, note that showing the solution x of (1.1) satisfied (3.5) required f to be
in (2n (or (2r if there was a SCF) since we need X,+l to exist. However, by taking
limits in c one may show that iff (,, then x satisfies (3.5) for some q with the
same Q.
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Abstract. We present a study on the local structure of the set of solutions of one-parameter nonlinear
problems, based on a recent generalization of the Implicit function theorem. We show how the combination
of some nondegeneracy condition together with a priori requirements allows one to treat both cases without
or with change of scale. The approach we develop is self-contained and provides most of the classical results
on "nondegenerate" bifurcation with various improvements and extensions. Also, the suitable change of
scale, if any, is shown to be as predicted by Newton’s diagrams. Applications to standard model problems
in nonlinear P.D.E.’s are given.
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1. Introduction and preliminaries. Let X and Y be two real Banach spaces and
G(= G(/x, x)) a mapping of the variables/ R and x X with values in Y such that
G(0) =0. We intend to show how a generalization of the Implicit function theorem
(Theorem 1.1) can be used for finding the zero set of G around the origin. The first
step of our method is classical insofar as it makes use of the Lyapunov-Schmidt
reduction so that the problem becomes equivalent to a finite-dimensional one, the
mapping G being replaced by the so-called reduced mapping. Unfortunately, the
assumptions on the reduced mapping involve higher-order derivatives whose expression
in terms of G rapidly becomes very intricate. This fact is even more pronounced when
a preliminary change of the parameter/x into + rp for some suitable integer p >= 2 is
necessary.

Our first aim has been to give a sharp criterion for the generalization ofthe Implicit
function theorem mentioned above to be available under "simple" assumptions on the
mapping G, whether the parameter/x is changed or not. What we mean by "simple"
will be made precise later in this section and makes explicit a condition already
considered desirable by most authors, who have formulated appropriate particular
hypotheses in this aim. Of course, this does not mean that there is no problem of
interest which does not fulfill our conditions: for instance, bifurcation near a degener-
ated eigenray does not fit into our framework in general.

The basic form of the criterion we use is established in 2, but its most useful
versions are derived in 4. The effect of its combination with Theorem 1.1 are briefly
examined in 3 (no change of parameter) and in more detail in 4 ( + r/P). In both
cases, we obtain results of regularity of the curves that are better than the existing
ones (when any exist at all) and our study applies beyond the classical framework.

The analysis of 4 naturally leads to the observation that the value of p in the
change of scale not only cannot be arbitrary but is uniquely determined as a rational
number (or -) that becomes available for our purposes as soon as its value is an
integer. Integer or not, an a posteriori verification shows that it is exactly as provided
by using Newton’s diagrams. Besides, it is related to another integer K whose meaning
in the problem is evident by showing that p must divide c or c- 1. Hence, the two
cases p n and p - 1 only bear a general discussion. Heuristically, this explains

* Received by the editors October 8, 1984; accepted for publication (in revised form) June 17, 1986.

" Universit6 Pierre et Marie Curie, Laboratoire d’Analyse Num6rique, 4 Place Jussieu, 75230 Paris
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Texas 75275.
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why they have already attracted attention in general problems (especially p K 1 in
the study of problems of bifurcation from the trivial branch). Note however that
noninteger values ofp have sometimes been successfully used; for instance in problems
of bifurcation from the trivial branch when the linearized operator has a nontrivial
generalized null-space (see Landman and Rosenblat [10]).

The location of the curves of solutions of the equation G(/z, x)= 0 with respect
to the hyperplane/z 0 in R x X is fully discussed from the parity ofp. Our conclusions
cover the concepts of "regular," "turning" or "hysteresis" point as well as "super-
critical, subcritical" or "transcritical" bifurcation point.

This paper contains conclusions related to those of Crandall and Rabinowitz [4],
McLeod and Sattinger [11], Magnus [12], Szulkin [19] and Buchner, Marsden and
Schecter [3], which follow with various complements and extensions. Problems beyond
their domain of validity (including standard ones) can also be treated. The results we
present are then fairly general though accurate. It is noteworthy that they all derive
from the criterion of 2 in conjunction with the nondegeneracy condition of Theorem
1.1: the whole theory thus reduces to these two basic aspects after technical manipula-
tions which are precisely the purpose of 3 and 4. Related computational algorithms
are described in [15], [16].

Due to the abundant literature devoted to the subject, special attention has been
given to problems of bifurcation from the trivial branch, although existence of a known
branch plays no role in this approach. In particular, nonexistence of a nontrivial
generalized null-space (i.e., direct sum ofthe null-space and the range) for the linearized
operator is shown to be a necessity imposed by the standing nondegeneracy condition.

Examples of application to nonlinear partial differential equations are given in
5. Other examples of interest in which the usual properties of the mapping G may

significantly differ are, for instance, concerned with the determination of steady sol-
utions to systems of ordinary differential equations.

We shall now develop a few preliminaries. Throughout this paper, the mapping
G is supposed to be of class c-, m -> 1, on a neighbourhood of the origin in R x X.
We also assume that the partial derivative D,G(O) is a Fredholm operator with index
0, namely, that the space

(1.1) X Ker DG(O)

is finite dimensional, and that the space

(1.2) Z2 Range DxG(O)

(is closed and) has finite codimension with

(1.3) dim X codim Z2 N -> 0.

Let X2 and Z1 be two topological complements of X1 and Z2, respectively,

(1.4) X X@X2, Y= ZI O) Z,

so that dim Z1 codim Z_ N and

(1.5) DG(O)I Isom (X_, Z:).

Note. A previous version of this work, announced in [14], required X Y and
made use of generalized null-spaces. These restrictions have disappeared in the present
exposition.
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Here is the basic tool we use in 3 and 4 for determining the local zero set of
the mapping G. A slightly more general statement can be found in 14, Thm. 3.2] and,
with a loss of one degree of regularity at the origin, is also proved in Buchner et al. [3 ].

THEOREM 1.1. Let n >= 0 be a given integer and X1 and Y1 two real vector spaces
with dimension n + 1 and n, respectively. On the other hand, let f be a mapping of class
c,,, m >-_ 1, defined on a neighbourhood ofthe origin in X1 with values in Y1. Assume that

(1.6) DJf(0) 0, O<-j<-k-1,

for some 1 <- k <- m. Denoting by q the polynomial mapping

(1.7) q’l - q()= Dkf(o) (1)k Y,

assume further that for. every nonzero solution 11 of the equation q(l)=0 the
derivative Dq() (X1, Y1) is onto.

Then, the zero set of the mapping q in the whole space X1 is the union of a finite
number O <-j <-_ knl of lines through the origin and the zero set of the mappingfaround
the origin off(1 consists of exactly v curves of class c,, awayfrom the origin and c,n-k+
at the origin, where each of them is tangent to a different one of the lines in the zero set

of the mapping q (1.7).
Remark 1.1. (i) When n 0, Theorem 1.1 applies with any 1 _-< k-< m but the best

result is obtained with k 1" Theorem 1.1 is then nothing but the Implicit function
theorem, a fact somewhat hidden by the obviousness of the situation. Conversely, if
k 1, Theorem 1.1 applies with n 0 only since the mapping q (1.7) is the trivial one
q- 0. Thus, assuming n > 1 implicitly requires k _-> 2.

(ii) When n 1 and k 2, Theorem 1.1 gives a result which is better than when
using the classical Morse lemma (providing cm-2 regularity at the origin instead of
c,--). However, in this case, Theorem 1.1 follows from an improved version of the
Morse lemma that can be found in Kuiper [9].

Remark 1.2. The assumption we make on the mapping q (1.7) in Theorem 1.1
will be referred to as "condition of R-nondegeneracy" and abbreviated as (R-N.D.)
according to the denomination used in 14]. Some comments on how it can be checked
in practice are given in [3], [15].

Remark 1.3. As an odd continuous mapping from m into n always vanishes
on the unit sphere of " when m > n, we find that v-> 1 when k is odd. When k is
even, Buchner et al. have proved that v is even too [3, Thm. 2.7].

We shall use Theorem 1.1 in the following way: Let X be another real Banach
space (in practice, " will be x X but the real variable will not alwa.ys be/x) and H
a mapping of class c-,, m -> 1, on a neighbourhood of the origin in X with values in
Y such that H(0) 0. Assume that DH(O) is a Fredholm operator with index 1, namely
that

(1.8)

is finite dimensional, and

(1.9)

(is closed and) has finite codimension with

(1.10) codim Y2 n => 0,

. Ker DH(O)

Y2 Range DH(0),

dim X n + 1.

With 0 as an understanding.
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Let X2 and Y1 be two topological complements of X and Y2, respectively. Denoting
by P1 and P2 the (continuous) projection operators onto Y1 and Y2, respectively, and
after Lyapunov-Schmidt reduction, finding the local zero set of H near the origin
amounts to finding the local zero set of the reduced mapping

(1.11) IEXI-f(I)=PIH(I+p(I)) E Y1,

where the function b with values in X2 and of class ccm around the origin is characterized
through the Implicit function theorem as solving the equation

(1.12) P2H(I + b(1))-0.
The local zero set off can be determined by using Theorem 1.1. Nevertheless, in

proportion as the index j grows, the derivative DJf(O) becomes more and more
complicated in terms of H because of the increasing number of derivatives of b
involved in its expression. As a result, writing down the corresponding assumptions
on H and checking that they are satisfied seems to be impossible even for relatively
small values of k.

However, there is no difficulty if k 2" indeed, implicit differentiation of (1.12)
shows that D(0)=0 and it follows that the first two derivatives of the mappings f
and P1H() at the origin coincide. This raises the question of whether a simple
criterion can be found ensuring that the assumptions of Theorem 1.1 can be checked
with the mapping P1H() instead of the reduced mapping. In this case, DJf(0)
P1DH(O)Iyc)J, 0 =<j =< k, a particularly simp,le expression in terms of H. Such a criterion
will be established in 2. In 3, we take X- R x X with generic element (/x, x) and
H G. Next, observe that if p is an odd integer, the solutions of the equation
G(r/p, x) 0 are in one-to-one onto correspondence with the solutions of the equation
G(/x, x)- 0 since the mapping r/- /P is a c homeomorphism. If p is even, the
solutions of the equation G(rlp, x)- 0 provide those of G(/x, x)- 0 with/z _-> 0 only.
In order to get the solutions with/x <_-0, we must consider the equation G(-Qp, x) 0
as well. That is why, in 4, setting cr +/- 1 we take X R x X with generic element
(r/, x) and H(7, x) G(crqp, x). It is shown that the integer p must have specific values
and that the criterion of 2 keeps a simple form in terms of G, providing other
assumptions made in the literature as particular cases. The usefulness of our generaliz-
ation is exemplified in 5 on a model problem. Also, it will be obvious that both
choices tr 1 and tr =-1 are equivalent when p is odd (_->3). For this reason the case
when the parameter p is unchanged will be referred to as the "case p 1" for the sake
of convenience.

2. A criterion for the first nonzero derivative. Let the mapping H be as in 1.
Assuming n =codim Y2 =dim Y => 1, we shall give a criterion for the first nonzero
derivative at the origin of the reduced mapping f (1.11) to coincide with the first
nonzero derivative at the origin of the mapping PH(I).

Given any integer 0-< l-< rn we define the quantities

(2.1) kl(l) min {0 <=j <- 1, PDH O) r 0},

(2.2) kl(1)=min{O<--j<--l,DH(O)l:,J#O}.
In a moment, we shall also need to consider

(2.3) k(l) min {O <-_j <= l, P=DH(O)[<:, # O}.

In the definitions (2.1)-(2.3), it is understood that min () + and it is then immedi-
ate that k(1) (resp., kl(/), kl(/))=+ if the derivatives of the mapping PH (resp.,
HI,, P=HII) vanish up to order l, whereas kl(/) (resp., kl(/), k2(l))<-I otherwise.
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As a first step, we establish a simple estimate on the mapping 4.
LEMMA 2.1. Around the origin in the space fill, one has

(2.4) I1 ( ,)11 O(IIP2H(I)II),
and

(2.5) IIPH(I)II O(11(1)11)
so that the derivatives at the orkin of order am of the mappings and PaHlyc vanish
up to the same order.

Proof. The mapping 4 is characterized by the condition (cf. (1.12))

P2H(;I+ t(l)) 0.

Hence, from Taylor’s formula

(. o=P(I+ eD(+4(" 4,( .
Since the mapping H is of class at least, the mapping

A(;1) P2DH(;1 + tt(l)) dt e (X, Y)

is continuous w.r.t. around the origin of ,. As A(0) P2DH(O) is an isomorphism
of X2 to Y2 from the assumptions made in I, one has

A() Isom (X, Y)

for i close enough to the origin. Thus, (2.6) becomes

P2H(I)--A(I)" t)(l),

or equivalently

t(;l)---A-1()1) P2H(;I).

This yields the relations (2.4) and (2.5) since the norms of A(I) and A-(;) are
bounded around the origin. Our last assertion follows from elementary arguments.

Given an integer 0 <_- _-< m, it is immediate on (2.1)-(2.3) and the definition of the
spaces X, Y and Y2 that

(2.7) kl(/)_-> 2,

(2.8) k(l) >_- kl(l) >_- 2.

Let us now specify the value of by setting

(2.9) k=min{O<-j<-m, P1DJH(O)l(:;:,?#O}.
Clearly, from (2.7),

(2.10) g_>max (kl(k), kl(k))_-> 2.

THEOREM 2.1. Assume n>-I and k defined by (2.9) is finite (i.e. 2<-_k<-m). If
(2.11) k_-< kl(k) + kl(k) 2,

the reduced mapping (1.11) verifies
(2.12) DJf(O) O, 0 <-j <- k 1,

(2.13) Dkf(o) P1DkH(O)I(y,) # O.
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Proof. First, observe that

(2.14) kl(k) min (k, k(k)).

With (2.10) and since k <- m we find kl(k) <- k<=m. Expanding the mapping P1H
about the origin, we get

k 1
P1H() E _,P,D’H(O) ()+o(1111).

j----kl(k j:

For -1+ b() we obtain

1
f(l) I. PIDJH(O) (1 - () (1)) -[- o 1 -j=kl(k)

As (0)--0 and is of class cm, one has (1)= o(ll,ll) and the remainder in the
above formula can be replaced by o(ll ,ll ), Thus

(2.15) f(-,)= E
j=kl(k) i=0

Due to Lemma 2.1 and the definition of k(k), the derivatives at the origin of the
mapping vanish up to order k(k)-1 when k(k)< 4-c and up to order k when
k(k)- +o. In any case, (2.14) shows that they vanish up to order k(k) 1. Hence

I1 ( ,)11 O(ll ,llk’(k)).
Each term in the sum (2.15) is then of order

o(ll , I1 -’ ’)

For 1 =< i<-j, this term is actually in the remainder of order k. Indeed, j+(kl(k) 1)i
is an increasing function of so that

j+(kl(k)-l)i>-_j+kl(k)-I whenl<=i<=j.

As j runs over the integers kl(k)," .., k

j+ kl(k)- l >-_kl(k)+ kl(k)- l > k,

from condition (2.11). To sum up, (2.15) simplifies in the form

f(l)
1

)j k).:=k,(k)P,Dn(o)"_()1 - o(11,

But, by definition of k and since -1, the expressions P1DJH(O) (1)j vanish for

kl (k) _-<j < k and we are left with

=.,PIDkH(O) (.1) k +f(1)

Since f is of class ", m _-> k, the above relation shows that the first nonzero derivative
of f at the origin is of order k with

Dkf(o) p1DkH(O)I(&),,
and the proof is complete. []

Note that criterion (2.11) is always satisfied if k 2 since k1(2)- k1(2)= 2 as it
follows from (2.7), (2.8) and (2.10). More generally, condition (2.11) is vacuous if
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k=kl(k) or if k=kl(k) since kl(k)->_2 and kl(k)->2. The case when k=kl(k)<+c
amounts to assuming

(2.16) DJH(0)I,J=0, O<-j<-k-1 (vacuous if k-2),

whereas k kl(k) < +c if and only if

(2.17) P1DJH(O)-O, O<-j<=k-1 (vacuous if k=2).

A more restrictive version of (2.16) and (2.17) which is also more frequently encountered
in the literature (often implicitly) is

(2.18) DH(0) 0, O<-_j<-k-1.

Combining Theorems 1.1 and 2.1, we find the following.
THEOREM 2.2. Let H be a mapping of class cgm, m >-- 1, on a neighbourhood of the

origin in X with values in Y such that H(O)- O. Assume that DH(O) is a Fredholm
operator with index 1 and set X1 Ker DH(O), Y2 Range DH(O). Let X2 and Y1 be
two topological complements of the spaces X1 and Y2, respectively. Then, dim Y1 n and
dim X1 n / 1. Let P1 denote the projection operator associated with the decomposition
Y- Y1) Y2. Define

k=l ifn=O,
(2.19)

min{O<-j<-m, P1DH(O)l(yc,)JO}>=2 if n>-_l.

When n >-1, and in this case only, set

k(k) min {0_-<j <-_ k, P1DH(O) 0} _-> 2,

kl(k) min {0 <-j <- k, DH(O)I(:;c,? 0} _-> 2

(2.20)

(2.21)

and assume

(i) k < +oo,
(ii) k_-< kl(k)+ kl(k)-2 (vacuous for k- 2),
(iii) the mapping

(2.22) 1 -’1 P1DkH(O) (1)k Y1,

verifies the condition (-N.D.).2

Then, the zero set of the mapping (2.22) consists of 0<- , <= k lines thr.ough the
origin in the space f( and the zero set of the mapping H around the origin ofX consists

of exactly , curves of class c,, away from the origin and of class c-k+l at the origin
where each of them is tangent to a different one of the lines in the zero set of the mapping
(2.22).

Remark 2.1. It is easily seen that k, kl(k) and kl(k) are independent of the choice
of the spaces X2 and Y1. The same is true as concerns the fact that the mapping (2.22)
verifies the condition (R-N.D.)" Indeed, let Y be a second space such that- Y Y[ 0) Y2
and call P the associated projection onto Y. As P[P2 0 one has P- PP1. Also,
Ker P- Y2 and hence PIY, Isom (Y1, Y). The assertion is now immediate from
this observation. As a result, Theorem 2.2 is independent ofthe choice ofthe Lyapunov-
Schmidt reduction. Actually, from a result of Beyn [1] showing the equivalence (in
some precise sense) of any two Lyapunov-Schmidt reductions, it can be shown that
the order of the first nonzero derivative of the reduced mapping (1.11) at the origin

Recall that the condition (R-N.D.) was defined in Remark 1.2.
With 0 as an understanding.
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and the fact that it verifies the condition (R-N.D.) are always independent of the choice
of the Lyapunov-Schmidt reduction.

3. Applications to one-parameter nonlinear problems: the case p = 1. In this section,
we come back to the situation described in 1" given two real Banach spaces X and
Y and a mapping G(= G(/, x)) defined and of class ", m -> 1, on a neighbourhood
of the origin in R x X with values in Y such that G(0)= 0, we consider the problem
of finding the local zero set of G near the origin. As this paper is intended to emphasize
the role ofthe change ofparameter in this problem, we shall especially bring prominence
to situations in which a direct approach (i.e. without changing the parameter/) fails
or does not provide all the desirable information.

As in 1, we shall assume that DxG(O) is a Fredholm operator with index 0 and
set

(3.1) X1 Ker DxG(O),

(3.2) Z2 Range DxG(O).

Given two topological complements X2 and Z1 of X1 and Z_, respectively, we
shall denote by Q1 and Q2 the (continuous) projection operators from Y onto Z1 and
Z: and, whenever necessary, write the generic element x X in the form x Xl + x2,
X 21, X2 22. Since D,,G(O) has index 0

(3.3) N dim X1 dim Z1 --> 0.
Setting X= x X with generic element - (/x, x) we shall see how the general

results of 2 apply when H G. First, one has

(3.4) DG(O) (tz, x)= IxDG(O) + DG(O) x,

so the null-space and the range of DG(O) depend on the alternative DG(O) Z2 or

DG(O)
_
Z2.

First case. DG(O): Z. In the notation of 2 and from (3.4)

(3.5) X Ker DG(O) {0} x X X,

(3.6) Y2 Range DG(O) D,G(O)Z2.
From the above and our assumptions on G, the space Y2 is closed. Besides, due

to (3.3), dim ’ codim Y2+ 1 N. Thus, the codimension n of Y_ is

(3.7) n N- 1.

When N 1 (i.e. n 0), Theorem 2.2 applies without any further assumption and
the zero set of G is made of exactly one curve of class m. This curve is tangent to
the one-dimensional space X {0} x X1 at the origin ("vertical" tangent). Note that
no information is provided as concerns its location in R x X relative to the hyperplane
/z 0. This will be complemented in 4 (case "p ").

When N->_2 (i.e. n _-> 1), k is defined by (cf. 2 and (3.5)-(3.6))

(3.8) k=min{O<-j<-m, PiDG(O)l(x)}O.
Assuming k < +c (i.e. 2 _-< k _-< m) one has

(3.9) k(k) min {O<-j<-k, DG(O)[(x,)O}.
In contrast, k(k) involves derivatives of G in all directions

(3.10) k(k) min {0<_-j <= k, PDG(O) 0}.



1124 PATRICK RABIER

Theorem 2.2 will apply if k < +c and

(3.11) k=< kl(k)+ kl(k)-2 (vacuous for k= 2)

and the mapping

(3.12) x, X P1DG(O) (x,)k Y1,

verifies the condition (R-N.D.). If so, the largest number of curves in the zero set of
G is kN-1 and the curves are of class ,-k+l at the origin and m away from it. Here,
the two particular cases when k kl(k) or k k(k) (ensuring that (3.11) holds) are,
respectively,

(3.13) DG(O)I(x,)J =0, 0_-<j _-< k- 1 (vacuous for k 2),

(3.14) PDG(O) =0, 0_-<j_-< k- 1 (vacuous for k 2).

In the next section, we shall consider the quantity

(3.15) K =min {0--<_j=< m, QIDG(O)I(x,)J O} >- 2.

When N 1 (i.e., n =0), one has k 1 in Theorem 2.2 and, in particular, k < K. On
the contrary, when N => 2 (i.e., n => 1) the inequality k => K holds. Indeed, since Ker P1
Y2 Z2, one has PQ2 0 and hence P1 PQ1 so that k-> K from the definitions.
Anticipating some of the results of the next section, it is not without interest to notice
that the equality k K holds in most cases (when N-> 2). Indeed, k K unless K <+
and the K-linear mapping QD,G(O)[(x,) has one-dimensional range RQDG(O). In
the applications, a consequence of this observation is that the necessary assumptions
in the study of the same problem, after we change the parameter Ix in
the next section, will not differ too much from those we make here. The main advantage
in considering the approach of 4 will be that it provides the information on the
location of the branches relatively to the hyperplane Ix 0 in R x X, which is not
available here.

Remark 3.1. For N_-> 2, a simple case when k K is when K is odd and

(3.16) QD,G(O). (x) 0 for every x Xl-{O}.

Indeed, the unit sphere in the space X is connected when N => 2 and the polynomial
mapping QIDG(0). (Xl) is odd if K is odd. Assuming that it takes its values in a
one-dimensional subspace of Z, we deduce that there is a point on the unit sphere
in X1 at which it vanishes, contradicting (3.16). Condition (3.16) will appear again in
4 regardless of the parity of K for other reasons. Note that it is not very restrictive

since the spaces X1 and Y have the same dimension (generically, a homogeneous
polynomial mapping between two spaces with the same dimension is known not to
vanish away from the origin according to a classical result in elementary algebraic
geometry; see e.g. [6]).

Second case. D,G(O) Z2. As D,G(O) Z2, there exists s X such that

(3.17) DG(0) = DG(0).
From (3.4) one has

(3.18) f Ker DG(O) {(Ix, x- Ix:), (Ix, x) e x X}-x X,

(3.19) Y2 Range DG(O)= Z2.
Thus, Range DG(O) is closed and dim’ codim Y2+ 1. The codimension n of Y2 is

(3.20) n N.
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When N--0 (i.e. n-0), Theorem 2.2 applies and the zero set of G is made of
exactly one curve of class c-,. This curve is tangent to the one-dimensional space
’1e c R x X ("oblique" tangent). This is the case when the origin is referred to as a
"regular point."

When N-> 1 (i.e. n >-1), a complement of the space Y2 (3.19) is nothing but a
complement of Z2. In other words, Y1--Z1 and k is defined by

(3.21) k=min {O<=j<-m, Q1D-iG(O)Iy,:)O}.

Assuming k <+ (i.e. 2 <- k <= m) one has

(3.22) k(k) min {O<=j <- m, DG(O)lf O},

(3.23) k(k)=min{O<=j<=m, QDG(0) 0}.

Theorem 2.2 applies if

(3.24) k<-kl(k)+kl(k)-2 (vacuous for k=2)

and the mapping

(3.25) (Ix, x) 1 Q1DkG(O) (Ix, x) k Z1 (= Y1)

verifies the condition (R-N.D.). If so, the largest number of curves in the zero set of
G is ks and the curves are of class cm-k+ at the origin and c-, away from it. The
cases k= kl(k) or k= k(k) (ensuring that (3.24) holds) are, respectively

(3.26) Q1DJG(O)=O, O<-j<-k-1 (vacuous for k=2),

(3.27) DJG(0)I(:) 0, 0-<j _-< k 1 (vacuous for k 2).

As in the previous case when D,G(O) Z2 and assuming N >-1, define

(3.28) =min {0-<j <- m, QDxG(O)Ix O} >- 2.

As {0} x X1 c ’, it follows from (3.21) that

(3.29) k_--<K.

Recall when D,G(O)2:Z2 and N _>-2 that the opposite inequality k _-> K holds and we
observed that the equality is true in most cases. The latter conclusion is no longer
appropriate here. Nevertheless, the condition k- r is necessary for the mapping (3.25)
to verify the condition (R-N.D.) when N_->2. Indeed, if k<, the derivative
QDkxG(O)l(xl)k vanishes and the N-dimensional space {0} x X is readily seen to be
in the zero set of the mapping (3.25). Thus, it does not consist of a finite number of
lines when N_-> 2 and the mapping (3.25) cannot verify the condition (R-N.D.). As it
will be seen on the example of problems of bifurcation from the trivial branch, this
may be a serious reason for the failure of the approach developed in this section. Thus,
when D,G(O) Z_, performing a change of the parameter/x may be a necessity, not
merely for locating the curves but for proving their existence (or nonexistence) as well.
When N- 1, k need not equal as we shall now see.

Assume then N-1. Denoting by (.,.) the pairing between the space Y and its
dual Y’, one has

(3.30) Qly (y*, y)yl,
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for every y Y where yl is a given nonzero element of the one-dimensional space
Z1 Y1 and y* Y’ is characterized by

(3.31) (y*, y} 1, (y*, y) 0 for every y e Z2.
As the space X1 is one-dimensional too, we may set X1 =RXl, where Xl is a given
nonzero element. In the discussion below, we shall limit ourselves to considering the
case D,G(0)=0, to which the general situation D,G(O)eZ2 reduces by changing
G(ix, x) into ((ix, x) G(ix, x-ix). If D,G(0) 0, we may take so=0 so ’ R x X1
and the mapping (3.25) is

(3.32) (IX, Xl) t [1 X X QDkG(O) (Ix, x)k e Z.
From (3.30)-(3.31), the above mapping verifies the condition (-N.D.) if and only if
the mapping

(3.33) (ix, t) ff2 _.> (y., DkG(o) (Ix, tx)) e ,
does the same. It can be shown (cf. [15] for details) that a sufficient condition for this
is that a certain determinant does not vanish. For k 2, this determinant is that of the
quadratic form (3.33) (Morse condition) and the condition is also necessary (this
remains true for k 3 but not for k => 4). When k 2 the result is well known but it
does not seem to be widely reported for a general k.

We shall now examine in some detail the example of problems of bifurcation
from the trivial branch. With X Y the mapping G is of the form

(3.34) G(Ix, x) x (,o+ Ix )Lx + r(Ix, x),

where L(X) is a compact operator and )toR-{0} a given real number. The
mapping F is of class c,-, rn -> 1 (with values in X) and F(Ix, 0) 0 for Ix around 0 R.
In particular

(3.35) Or(0) 0, O<-_j<-m.

We shall also assume

(3.36) D.DxF(0) =0,

(3.37) DxF(0) =0.

The case when 1o is not a characteristic value of L (i.e. N =0) is obvious and
well known. When 1o is a characteristic value of L (i.e. N-> 1), the integer k is defined
by

(3.38) k=min {O<-j<=m, Q1DJG(O)l(nXXl)J#O}.
PROPOSITION 3.1. Assume that 1o is a characteristic value of L. Then, a necessary

condition for our conclusions to hold is

(3.39) X Ker (I- AoL)@ Range (I AoL).

Ifso, k 2 and we can take ZI( Y1) XI( Ker (I AoL)) without loss ofgeneral-
ity. The criterion (3.24) is then vacuous and it suffices to assume that the mapping

2
(3.40) (Ix, Xl) R x Ker (I-)toL)--> --ooIxXl + Q1D2F(0) (Xl)2 Ker (I AoL),

verifies the condition (-N.D.).
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Proof. Due to (3.36) one has D,DxG(O)=-L. Next, by definition of X1
Ker (I hoL),

1
O,DDO(O) x, =-oO,X,

for every x X Hence,

(3.41) Q1D,D,G(O)Ix, OCev X1 Z2( Y.).

Let us first assume X1 c Z2. From (3.35), (3.36) and (3.41) the value of k is k 2
if and only if Q1DEF(0)Ix,)2#0. The criterion (3.24) is satisfied and the mapping
(3.25) reduces to

(/z, x,) R x X, - Q,D2xF(0) (Xl)2 Zl(= r,).

But the above mapping does not verify the condition (R-N.D.) because of the elements
of the form (/z, 0) in its zero set at which its derivative vanishes. Therefore, when
X1 c Z2, the analysis of this section may be available with k->_ 3 only. In this case,
however, the criterion (3.24) is not satisfied. To see this, it suffices to prove that
kl(k) k(k) 2, that is to say that the derivatives DEG(O)lmx,)2 and QIDEG(O) do
not vanish. This will follow from the relations

D,,DxG(O)Ix, O, Q,D,DxG(O) O.

Indeed, assume by contradiction that D,D.G(O)[x,=O, namely Lx --0 for every
x e Ker (I- AoL). Thus, Ker (I- AoL) {0} and we reach a contradiction with the fact
that Ao is a characteristic value of L. Now, assume by contradiction that QID,DxG(O)
0. This means QIL=0 and, as QI(I-AoL)=O by definition of Q1, we find QI=0,
namely Z2 X, again a contradiction.

To sum up, we must assume X1 Z2. From (3.41) it follows that k 2 and the
criterion (3.24) is satisfied. The mapping (3.25) becomes

2
(/, Xl) R X X -- -----QlXl -]-- Q,D2F(0) (Xl)2 Z

to

Its zero set contains the pairs (/z, 0),/z and its derivative at such a point with/z 0
is the linear mapping -(2/Xo)Qllx..(x,z1). The nondegeneracy condition
requires it to be onto, or, equivalently, one-to-one since dim X1 dim Z N. This
means QlX s0 for every x X1. In other words, X fqZ.= {0} which amounts to
saying that X Xlq)Z2. As Z2 Y2 and we observed in 2 that Theorem 2.2 was
independent of the choice of the complement YI( Z) of Y2, we may choose Z1 X1
and the proof is complete, l-]

When N 1, condition (3.39) is often referred to as "Crandall and Rabinowitz
nondegeneracy condition." For N-> 2 it also appears in McLeod and Sattinger 11 ].
Assuming that (3.39) holds, it is easily checked that the assumptions we make and the
conclusions we draw by using Theorem 2.2 are indeed the same as in Crandall and
Rabinowitz [4] when N 1 (including the regularity of the curves at the origin). When
N _-> 2, our conclusions are as in McLeod and Sattinger 11 under somewhat weaker
assumptions. Besides ours, they also require that

(3.42) Q1D2F(0) (Xl)2 0 for every X X -{0}

(replacing AL by L(A) as in [11] does not affect this remark). Although very little
restrictive in the applications, condition (3.42) merely ensures that bifurcation occurs
transcritically, as in the case N--1 for a quadratic nonlinearity. The largest number
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of bifurcated branches is 2v- 1 and the curves are of class ccm- at the origin, "away from it. Apparently, the result of regularity at the origin is new when N-> 2.
Bifurcation is ensured since k 2 is even (cf. Remark 1.3).

4. Applications to one parameter nonlinear problems: the ease p->_2. Let the mapping
G sa.tisfy the general hypotheses of 1 and 3. Given an integer p >= 2 and with r + 1,
let X denote the space X with generic point (r/, x). We intend to use Theorem 2.2
with the mapping H H, where

(4.1) H(r/, x) G(trqp, x).
As p->_ 2 and by differentiating

(4.2) DH,(O) (’0, x)= DxG(O) x

so that the spaces ’ Ker DH(O) and Y_ Range DH,,(O) are independent of tr and
p. More precisely

(4.3) X Ker DH,(O) x Ker DxG(O) x X,

(4.4) Y Range DH(O)= Range DG(O)= Z2.
As dim X1 codim Z2 N, the operator DH,(O) is a Fredholm operator with index 1.
Here, the codimension n of Y(= Z2) is

(4.5) n N.

A complement Y of Y in Y is of course any complement Z1 of Z with associated
projection operator P Q1. When N 0 (i.e. n =0) Theorem 2.2 applies. As in the
previous section, this situation is essentially obvious and no further information is
provided here. We shall henceforth assume N >= 1. When finite, the value k defined
by (2.9) with H H is the order of the first nonzero derivative of the mapping
QH,,Ix at the origin (that k does not depend on tr will be shown in Proposition
4.1 below). We shall characterize it in terms of G: for every integer 0_-< l-< m, define
the set

(4.6) I(l)={(i,j)NxN, O<-i<=j<=l, OlD- Dx 0}.

Now, for 0 =< =< rn and p-> 2 we introduce the mapping

(4.7) x(l, p)=min {pj+(1-p)i, (i,j) I(/)}.
Clearly,

(4.8) X(I, p)= +oo => II(1)=,
while there is at least one pair (i,j)eIl(l) such that pj+(l-p)i=xl(l,p) when
I(l) since If(l) is finite in any case.

PROPOSITION 4.1. Let 0 <-- <-- m be given. Ifxl( l, p) > l, the derivatives ofthe mapping
Q1HIax vanish up to order at the origin. In contrast, ifxl(l, p)<-l, one has

(4.9) k=xl(l,p)
(so that k is independent of tr) and

(4.10)
k! v-c n-’n G(0) (x)’Q1DkH,(O) (r/, Xl) k (O’T]p, .lX..’. -,’x e Z

pj+(1-p)i=k

Proof. For every pair (h, i) of integers and provided that the derivative of order
h / if H is defined, one has

h hDxl[Dn x,)]lx,=o.QIDnDx,H,(O) Q1 H,(O,



ONE-PARAMETER PROBLEMS 1129

hAs H(n, x) depends only on 7
p (cf. (4.1)) it is easily checked that DnHo.(O, Xl)=O

unless h is a multiple of p, namely h p(j i) for some index j >= i. Besides, a simple
calculation based on Taylor’s formula yields

Hence,

DPn{-i}H(O, x,)
[P(J-i)]! Y-’G(0, Xl)
(j-i)! D

(4.11) Q1DP,(j-’)
[P(J- i)]!

DxH(0)=
(j-i)!

QDJ-’D’"-’,IG(O),
hwhile all the expressions Q1DnDxIH(O) vanish if h is not of the form p(j-i). Any

nonzero derivative of the mapping Q1HIax, at the origin is then of order p(j- i)/
for some pairs (i,j) with <_-j. This order is less than or equal to a given integer 0 <- <= rn
if and only ifp(j i) + pj + 1 p) <-_ and the derivative involves indices i, j) I(l)
only. Our assertions follow at once from this observation.

For 0_-< _-< m again, let us now introduce the sets

(4.12) Ii(l) {O<= <-j <= l, Q1D-’DG(O) O},

(4.13) i1(/) {0__< <=j <= l, D-’DG(O)I(x,), 0}.

To these sets, we associate the mappings

(4.14) x(l, p) min {pj+(1-p)i, (i,j) I1(/)},

(4.15) xl(l, p) min {pj+(1-p)i, (i,j)m i1(/)}.

Arguing as in Proposition 4.1 we see that the derivatives of the mapping Q1H (resp.,
Hlax,) vanish up to order at the origin if XI(I, P) > (resp., XI(I, p) > l) and Xl(/, P)
(resp., xl(l, p)) is the order of the first nonzero derivative of the mapping QIH (resp.,
Hlax) at the origin if x(l,p)<-I (resp., x(l, p) <-_ l). In the notation of 2 (cf. (2.1)
and (2.2)) this means that

(4.16) Xl(l, p) <- :=> Xl(l, p) kl(/), xl(l, p) <- ==> xl(l, p) kl(/),
where kl(’) and kl(.) are defined through the mapping H H. Since kl(/) kl(/’)
(resp., kl(/) kl(/’)) when both sides are finite as it is obvious from the definitions,
we obtain

{xl(l,p)<-_l and x(l’,p)<-_l’}==>Xl(l,p)=g(l’,p),
(4.17)

{xl(l,p)<-I and xl(l’,p)<=l’}=>xl(l,p)=xl(l’,p).
Finally, as I(l) is contained in both sets 11(I) and i1(1) for every 0 =< =< m, it is

clear that

(4.18) x(l, p)=>max (x(l, p), xl(l, p)).

When we combine the above observations, and according to the definitions, it is
easily seen that

PROPOSIXION 4.2. Let 0<--_ <- rn be such that x(l, p)<-- I. Then

kl(X(l,p))=Xl(l,p), kl(x(l,p))=xl(l,p).
We shall now see that Theorem 2.2 cannot be used with the mapping H unless

k and p have specific values. The quantity

(4.19) =min {0-<_j_-< m, QDG(O)IxO}>=2,
we have already encountered in 3, will play a key role.



1130 PATRICK RABIER

THEOREM 4.1. Assume that Theorem 2.2 applies with H H. Then

(4.20) k=x(r,p)=K<+

and the mapping

(4.21),

Q1D"H,(O) (rl, Xl)"
1

oi_-<_-<,,, (j- i) i!
pj+(1--p)i=r,

r-’r’ G(0). (x)’ Z(or/P)J-Q1--- tz

verifies the condition (R-N.D.). In addition

(4.22) K<=XI(r,p)+x’(,p)-2

and the integer p is characterized by

(4.23) p=max -,(i,j)ell(),j<
(in particular, p is independent of tr).

Proof. Since k is finite by hypothesis, it coincides with the order ofthe first nonzero
derivative of the mapping Q1Hlax at the origin. From the first part of Proposition
4.1 it follows that there is an integer 0_-< _-< m such that Xll(/, p) =< and hence k x(l, p)
from the second part of Proposition 4.1. By hypothesis, the mapping (4.10) verifies
the condition (R-N.D.). If the pair (k, k) is not in the set I(1), qP is in factor in (4.10)
since pj+(1-p)j =j k for each pair (j,j) I(l). But this is impossible. Indeed, as
p->2, the mapping (4.10) and its derivative vanish on the N-dimensional space
{0} x X1, contradicting the condition (-N.D.) since N-> 1. Thus

(4.24) Q1DkG(O)I(x,)k O.

On the contrary

(4.25) Q1DG(O)[(x,)=O, O<-j<- k-1,

for there is no pair (j,j) I(l) with j < k since this would contradict the relation
k =x(l, p). The relations (4.24) and (4.25) characterize k as being (cf. (4.19)). In
particular, K <+oo; hence the pair (r, ) is in the set I(). Thus, X(,P)<=
pr+(1-p)= and Proposition 4.1 show that k=xll(,p), which proves (4.20).
Besides, the mapping (4.10) with k and is nothing but (4.21) (and verifies
the condition (R-N.D.)).

Next, from (4.20), (4.16) and (4.18),we find kl(k)=Xl(K, p), kl(k)= X1(, p) and
the criterion k<-k(k)+ kl(k)-2 reads as (4.22).

Let us finally show that p is characterized by (4.23): from (4.20) and for every
pair i, j) I(r ), one has pj + 1 p)i => X(r, P) r or, equivalently, p >- i)/(j i).
It suffices to prove that there is a pair (i, j) e I (r) with j < for which pj + (1 p) .
If there is none, the mapping (4.21) reduces to

(4.26) (n, xl) x X - Q1D, G(0). (x) Z1
because there is no pair (i,j) I() withj < such that pj+(1-p)i K by hypothesis
and there is no such pair with j > either since p => 2 and hence p + (1-p)i > .

But the mapping (4.26) as well as its derivative vanishes on the line {0} since
>-2, so that it does not verify the condition (R-N.D.). [3

Remark 4.1. It is easy to check that the value of p given by (4.23) is exactly as
provided by using Newton’s diagram (see e.g. Sattinger [18]).
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The proof of the converse of Theorem 4.1, which is the useful version in practical
applications, is based on the same arguments and is omitted. The result is stated in
Theorem 4.2 below.

THEOREM 4.2. Assume K < +o (i.e. 2 <= K <= m) and suppose that formula (4.23)
defines p as an integer Then,

(4.27) 2<_-p_-<K

and the order of the first nonzero derivative of the mapping QH=Ix at the origin is

(4.28) k=XI(K,p)=K.
Also, the expression of this derivative is given by (4.21) and

(4.29) kl(k) XI(K, p), kl(k) XI(K, p),

so that the criterion k<=kl(k)+ kl(k)-2 takes the form
(4.30) K<=XI(K,p)+xI(K,p)--2.
Finally, if (4.30) holds and the mapping (4.21) verifies the condition (R-N.D.), Theorem
2.2 applies with H H.

Remark 4.2. Observe that K and the sets I(K), II(K) and~ Ii(ff) are independent
of the choice of the space ZI(= Y1) and of the complement X2 ofX (= R x X). Thus,
Theorem 4.2 is independent of the choice of the Lyapunov-Schmidt reduction (in
particular, p is independent of it).

According to Proposition 4.2 one has X(K, p) => 2, XI(K, p) -> 2. Hence, the criterion
(4.30) will be satisfied in particular when K =XI(K, p) or K X(K, p), for instance, if
the set I(K) coincides with either set II(K) or I(K). In such a case, the value of p is
without importance, but we shall find that weaker and simpler assumptions can be
made to ensure one of the relations K XI(K, p) or K XI(K, p) by taking the value of
p (given by (4.23)) into account. Besides, we shall see in 5 that there are standard
problems in which the full criterion (4.30) cannot be limited to any of these simple
two forms.

We now give prominence to two necessary conditions for Theorem 4.2 to be
available. The first one is important because it will allow us to derive precise information
on the structure of the zero set of the. mapping H and is a common hypothesis in
these problems. The second one is not usual and shows that there are only two values
of p for which a general discussion is possible.

PROPOSITION 4.3. A first necessary condition for Theorem 4.2 to apply in full is

(4.31) Q1DG(O)" (Xl) 0 for every x XI-{0}.

A second necessary condition is that p is a divisor of K and (0, /p) I(K) or p is
a divisor of K-1 and (1,[(K--1)/p]+I)II(K).

Proof. To show (4.31), we parallel the beginning of the proof of Theorem 4.1: if
there is an element x X-{0} such that Q1DG(O). (Xl) =0, r/p factors out in the
expression (4.21) for this specific value x. As p _-> 2, the derivative of (4.21) at (0, Xl)
has rank deficiency _->1, contradicting the condition (R-N.D.).

The second assertion follows from the observation that the mapping (4.21) cannot
verify the condition (R-N.D.) if there is no pair (i,j) I(K) such that pj+(1-p)i K

and i= 0 or i= 1. Indeed, in this case, the expression (4.21) involves pairs with i_-> 2
only and vanishes together with its derivative at the points of the line R x {0}. Therefore,
there must be a pair (io,jo) I(K) for which io=0 and pjo K so that p divides K and
(0, K/p) Ill(K) or io 1 and pjo+ (1 -p) K so thatp divides K 1 and (1, [(K 1)/p] +
1)I(K). I-]
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Remark 4.3. As the sole pair (j,j) such that pj+(1-p)j(=j)= K is obviously the
pair (K, K), (4.31) means that there is no element of the form (0, xl), xl X-{0} in
the zero set of (4.21). When N 1, (4.31) is not an additional assumption.

A classification of the mappings G to which Theorem 4.2 may apply is then based
on the divisors of K or K- 1 (observe in passing that and - 1 are always prime to
each other). A general discussion is then impossible unless p K or p K- 1. These
cases will be considered later on.

To complete these general considerations, we now show how the structure of the
local zero set of G can be derived from the structure of the local zero set of the
mappings H. Of course, we suppose that the assumptions of Theorem 4.2 are fulfilled
so that the latter consists of a finite number ,-< K (possibly 0) of curves of class
fig" away from the origin and c,-K+ at the origin, where each of them is tangent to
a different one of the lines in the zero set of the mapping (4.21). Let

(4.32) t->(r/(t),x(t))[xX, r/(0)=0, x(0)=0
be such a curve. From the above, the parameterization can be chosen so that
((dr//dt)(O), (dx/dt)(O)) is a nonzero element of the zero set of the mapping (4.21)
(this can be directly established by looking at the proof of Theorem 1.1 and examining
how Theorem 2.2 is derived from it). In particular, (dx/dt)(O) X1 and, using Remark
4.3, we deduce

(4.33) (dr//dt)(O) O.

Also, for each curve (4.32) except that one tangent to the line R x {0} at the origin
(when it is in the zero set of (4.21)), one has

(4.34) -(0) O.

Remark 4.4. From Proposition 4.3, the line R x {0} is not in the zero set of (4.21)
when p is a divisor of K since the pair (0, K/p) belongs to the set I(K). On the contrary,
it is in the zero set of (4.21) when p divides 1 because there is no pair (0,j) I()
such that pj for p would also be a divisor of K. These remarks are independent of
the choice tr 1 or tr =-1.

Assume first that p(_->3) is odd. The zero sets of the mappings G and H are
homeomorphic and Theorem 2.2 applies with H or H_I equivalently (the verification
of this fact is obvious). Thus, the zero set of G consists of the v(= v_l) distinct curves

(4.35) - y(t) (r/P(t), x(t)) R x X,
where (4.32) is one of the vl curves in the local zero set of H. As p_->3, (d//dt)(O)=
(0, (dx/dt)(O)): if p is a divisor of K, one has (d),/dt)(O)O (cf. (4.34) and Remark
4.4) and the v curves (4.35) are of class ccm-K+l at the origin, ccm away from it. If p
is a divisor of K- 1, (dy/dt)(O) 0 except when y corresponds with that curve (4.32)
which is tangent to the line R x {0} at the origin. As a result, all the Vl curves in the
zero set of G except possibly one are found to be of class ccm-+l at the origin and
ccm away from it. The remaining curve is easily seen o be cCm away from the origin
but we can only conclude to its continuity at the origin. Observe finally from (4.33)
that r/(t), and hence r/P(t), takes positive and negative values as is varied around
the origin: all the vl curves (4.35) cross the hyperplane/z -0 at the origin.

Next, assume that p(>_-2) is even. Taking or= 1, the solutions of the equation
Hi(r/, x) 0 provide the solutions of the equation G(/z, x) 0 with /x _-> 0. These
solutions are then obtained through the /1 Curves

(4.36) t-’y+(t)=(r/P(t),x(t))xX,
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where (4.32) denotes any of the ’1 curves in the local zero set of HI. Contrary to what
happens when p is odd, the ’1 curves (4.36) are not distinct here because HI(-, x)=
H(l,x), so that the curve (-l( t), x( t)) is in the zero set of HI as soon as ((t),x(t))
is in it. Clearly, they provide the same curve y/ (4.36) and, except in one case, are
distinct. To see this, notice from (4.33) that the vectors ((dl/dt)(O), (dx/dt)(O)) and
(-(dl/dt)(O), (dx/dt)(O)) are not collinear unless (dx/dt)(O) --0, which happens, for
one curve only, when p divides K- 1. Thus, when p is a divisor of K, each curve (4.36)
is provided by two distinct curves in the local zero set of HI and the exact number of
distinct curves (4.36) is ,1/2 (hence, , is even; this can be found a priori since p is
even and divides , so that r is even and it suffices to apply [3, Thm. 2.7]). The
regularity of the curves is the same as when p is odd. When p is a divisor of - 1, the
two curves (Tl(t),x(t)) and (-l( t), x( t)) with (dx/dt)(O)-O are both tangent to the
line x (0) at the origin and hence coincide (which merely means that the curve is
symmetric with respect to the hyperplane /=0, but of course not that (t)--0). The
corresponding curve y/ (4.36) is then a half-branch emerging from the origin into the
half-space/ 0 in x X. The exact number of curves y/, including the half-branch,
is (91/ 1)/2 (hence, 91 is odd, as is since p is even and divides K- 1) and, except
for the half-branch, their regularity is the same as when p is odd.

Taking t--1 and by the same arguments, we find that the solutions of the
equation G(, x)= 0 with k--< 0 are provided by the /"--1 curves

(4.37) t- y_(t)-(-,lP(t),x(t))xX,

where (4.32) is one of the u_ curves in the local zero set of H_I. There are 9_1/2
distinct curves y_ when p is a divisor of and (9_1+ 1)/2 when p divides -1
(including a half-branch emerging from the origin into the half-space/ _-< 0 in x X).
The regularity results are identical to those when r 1.

Observe that the exact number of curves in the zero set of G is always u + u_)/2.
This is obvious when p is a divisor of r. When p is a divisor of - 1, a first estimate
is [(ul + u_)/2]+ 1. But if we do so, the two half-branches emerging from the origin
into the half-spaces / _-> 0 and / 0 are counted separately while they extend each
other as a single branch.

To complete this section, we shall examine in some detail the two particular cases
p K and p r- 1, as motivated by Proposition 4.3.

The casep r. From Proposition 4.3, the pair (0, 1) is in the set I(). Conversely,
it is immediately checked that p-- if (0, 1) I](K). By definition of the operator Q1,
we deduce

(4.38) p DG(O) : Z2.
Surprisingly enough, we find again the first case ofthe classification of 3. The criterion
(4.30) becomes

(4.39) r Aq(r, r) +XI(K, r)-2,

where the quantities (, r) and Aq(, K) are easily found to be

(4.40) /"I(K, r) min {0_-<j --_< , DG(O)[(x,) 0},

(4.41) XI(, K) min {0-<j=< , QDG(0) 0}.

The only pairs (i,j) such that O<=i<=j<=r and rj+(1-)i=K are (0,1) and
(r, r). Therefore, the mapping (4.21) (with p= r) reads

(4.42) (’rl, Xl) E X Xl - O’r "rlQ1DG(O) + Q1DG(O) (Xl) E Z1
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In 3, the analysis of the same problem led us to consider an arbitrary complement
Y1 of RDG(O)O)Z2 in Y with associated projection operator P1. Proposition 4.4
applies to this notation.

PROPOSITION 4.4. Both mappings (4.42)1 and (4.42)_1 verify the condition (R-N.D.)
if and only if
(4.43) Q1D,G(O) (Xl) 0 for every Xl XI-{0}

and the mapping

(4.44) Xl e Xl - P1D, G(O) (Xl) e Y1

verifies the condition (E-N.D.).
Proof. We already know that whether or not the mapping (4.42) verifies the

condition (E-N.D.) is independent of the choice of the space Z1 (cf. Remark 4.2) and
that the condition (4.43) is necessary (Proposition 4.3). For the sake of convenience,
we may then suppose

(4.45) z aDG(O)(R) Y.
If so. Q1D.G(O)= D.G(O), P1 Q1 QIP1 P1 and the operator (Q1- P) is the projec-
tion onto the space D,G(O) associated with the decomposition Y-D.G(O)O)
(Y10) Z2). Thus. the mapping (4.42) is

(4.46) (rl, Xl)IxXItrK!rl"D,G(O)+Q1D,G(O) (Xl) Z1.
Assume first that (4.46)1 and (4.46)_1 verify the condition (R-N.D.). Let Xl X1

be a nonzero element of the zero set of the mapping (4.44). One has

Q1D,G(O) (Xl)=(Q1-P1)D,G(O) (Xl).
From the above, the right-hand side is collinear with D,G(O). As a result,
QD,G(0) (Xl) AD,G(0) for some real number h. For either tr 1 or tr -1 (and
for both if K is odd) there is r/ such that trr r/= -h so that the pair (7, Xl) is in
the zero set of the mapping (4.46). Let Yl Y1 be given. In particular, Yl Z1 and
there is a pair (z, SOl) R x X1 such that

o’( !)rl-l zD,G(O) + Q1DG(O) ((Xl)-1, 1) Yl.

Projecting onto Y1, we find KPID,G(O). ((x1)-l,:l)=yl, which proves that the
mapping (4.44) verifies the condition (R-N.D.).

Conversely, let (,/, Xl) x X1 be a nonzero element of the zero set of the mapping
(4.46). Observe that 0 from (4.43) and it is obvious that Xl 0. Projecting onto
Y1, we see that Xl is a nonzero element of the zero set of the mapping (4.44). Let
zZ1 be given and set yl=PlZl. From (-N.D.), there is :1X1 such that
D,G(O). ((Xl) K-l, :1)=Yl. As (Q1-P1) is the projection onto D,G(O) and by
definition of Yl, one has rQID, G(O) ((x)-1, 1) Zl + ,D,G(O) for some real num-
ber A. Setting =-A/(trr(r !)r/-1) it is clear that

rK( !)r/-lrD,G(0) + QID, G(O) Xl) "-1, s1)= Zl

so that the mapping (4.46) verifies the condition (-N.D.). iq

As p divides , all the curves are of class c,-K+l at the origin and c,- away
from it. Note when N 1 that the assumptions we make in 3 in the analysis of the
same problem are weaker and the results we obtain there are better: for instance, it is
known from 3 that the local zero set of G is made of exactly one curve. Here, the
information is only "at most K" but existence and uniqueness can also be derived
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from the special form of the mapping (4.42). More generally, by arguments similar
to those we used in Proposition 4.4, the maximum number of lines in the zero set of
either mapping (4.42) (hence the maximum number of curves in the zero set of G)
can be shown to be K v-1, an improvement over the general estimate Kv that is due
to the fact that p r. Also, when N 1 in 3, the curve in the zero set of G is found
to be of class " around the origin instead of ,,-K+I here. However, its location with
respect to the hyperplane/x 0 in R x X cannot be specified under the assumptions
of 3. The hypotheses of this section are trivially satisfied as soon as the criterion
(4.39) is fulfilled (in particular, note that Y1 {0}) and the origin is a turning point if
r is even, a hysteresis point if r is odd, which agrees with well-known results.

When N _-> 2, the assumptions of 3 are no longer weaker in general" the analysis
involves the order of the first nonzero derivative of the mapping P1G(0," )lx at the
origin, denoted by k, and we observed that k -> . Here, the equality k K is a necessity
from Proposition 4.4. However, this is not really restrictive since it was already
mentioned in 3 that the equality k r holds with most of the values D,G(O): Z2.
If so, the result of regularity and the estimate on the number of curves is the same.
Condition (4.43) is not required in 3 but it is also little restrictive in practice (see
Remark 3.1). A more significant difference is observed between the criterion (4.39)
and its analogue of 3, which, when k , is -<_ kl()-b kl(:)-2, where

k() min {0-<_j _-< , DG(O)[(x,) 0},

k() min {0_-<j =< , PDG(O) 0}.

On comparison with (4.40) and (4.41) we see that kl(K)=X(, ) but there is no
relation between k() and X(, K) in general so that either criterion may be satisfied
while the other one is not. This is not surprising since a simple examination shows
that there is no explicit relation between the two reduced mappings when D,G(O) : Z2.

The case p - 1. Of course, this case requires the a priori assumption _-> 3.
From Proposition 4.3, the pair (1, 2) belongs to I(), namely

(4.47) Q1D,DxG(O)O.

Also, from the equivalence (4.38) we must assume that

(4.48) D,G(O) Z2.

Conversely, it is easily checked when (4.47) and (4.48) hold that p 1. The criterion
(4.30) is then

(4.49) K < X(K, - 1)d-xl(, t- 1)-2.

Elementary considerations lead to

(4.50) XI(K, r 1) min {0 <-j <- , DG(O)l(xlJ 0},

unless DG(0) =0 and DG(O)I(xJ=O, 0-<_j_-<r-1, and, if so

XI(, K-l) r-1.

Next, in any case, Xl(x, x- 1) is computed to be

(4.51) Xl(r, K- 1) =min {0-<_j=< r, Q1DG(0) 0}.

It is easy to check that the only pairs (i,j) such that O<-i<-_j<- and (-l)j+
(2-)i= K are (1,2) and (r, r). Thus, the mapping (4.21) (with p=-l) becomes

(4.52) (,q, Xl) R x XI O-r .q"-aQ1DuD,G(O) Xl + Q,D,G(O) (x)" 6 Zl.
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As stated by Proposition 4.3, a necessary condition for this mapping to verify the
nondegeneracy condition of this paper is

(4.53) QDTG(0) (Xl) # 0 for every x XI-{0}.
As an example, we shall consider the problems of bifurcation from the trivial

branch as they were already encountered in 3: with X Y, the mapping G is of the
form

(4.54) G(/z, x) x- ()to+ tx)Lx + r(/x, x),
where L e (X) is compact, )to is a characteristic value of L and the mapping F is of
class ", m >-2, around the origin of N x X with values in X and verifies F(/z, 0)= 0
for/z around 0e N. In particular

(4.55)
and we further require that

(4.56)
(4.57)

DF(0) 0, 0 _-<j =< m,

mDr(0) =0,

mr(0) 0.

Under these assumptions, the zero set of G was determined in 3 when the decompo-
sition

(4.58) X Ker (I-)toL) 03 Range (I )toL)
holds. If so, we can make the choice Z X1 Ker (I )toL)) without loss ofgenerality.
We were able to settle the two cases when dim Ker (I-)toL) 1 or when dim Ker (!-
)toL) ->- 2, QD2F(O)I(x,) # 0 and the mapping

2
(/z, Xl) x Ker (I-)toL) oo/xx + QDF(0) (x) Ker (I-)toL),

verifies the condition (g-N.D.).
We shall now assume that QDF(O)I(x,=O. Clearly, is defined by

(4.59) =min {0_-<j_-< m, QDF(O)[(x,y#O},
so that ->3. As D,G(0) 0 and QD,D,G(O)=(-1/)to)Q[x,, conditions (4.47) and
(4.48) are satisfied if and only if Ql[x, 0 (i.e. Ker (1 )toL) Range (I )toL)) so that
p= r-1. From (4.50) and (4.51) the quantities X(, r-1) and X(r, -1) are given
by

(4.60) X(, 1)= min {0_-<j -< , DF(0)[(x,y # 0},
(4.61) X(, - 1) min {0_-<j-< , QDF(0)#0}.
The mapping (4.52) is then

(rt, xa) x Ker (I )toL) -qK-Qx+ QD,F(0) (x) e Z.
)to

Because of the elements of the trivial branch in the zero set, it is easily seen that the
condition (4.58) is still necessary for the above mapping to verify the condition
(g-N.D.). Again, we may then take Z =X(= Ker(I-)toL)) and, with this choice,
(4.52) reads

(4.62) (rl, x)ffxKer(I-)toL)-’rl"-xl+Q1DF(O) (xl)Ker(I-)toL).
)to

The condition (4.53), necessary for it to verify the condition (-N.D.), is equivalent to

(4.63) QIDF(0) (xl) # 0 for every Xl e Ker (I-)toL) -{0}.
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As p r 1 divides r 1, the only curve in the local zero set of G for which continuity
at the origin only can be proved in general is the curve tangent to the line x {0} at
the origin. Here, it is then the trivial branch itself so that the bifurcated branches are
of class ccm-+ at the origin (and m away from it). The location of these curves with
respect to the hyperplane /z 0 is as described before in the general comments and
their number cannot exceed rN 1. When N 1, r 1 is always an overestimate since
r-> 3 and we know that there is exactly one bifurcated branch. When N 2, it is
possible to show that a more accurate and optimal estimate is r + 1 but we are not
aware of a general improvement. When N 1, all the assumptions of this section are
satisfied provided the criterion (4.49) is fulfilled and bifurcation is transcritical if r is
even, supercritical if r is odd. This agrees with well-known results.

When N => 2, our assumptions coincide with those of McLeod and Sattinger 11]
except for the criterion (4.49) which, in [11], is replaced by

(4.64) DF(0) 0, 0 <_-j <-_ 1,

an assumption that makes (4.49) trivially fulfilled. The result on the location of the
curves is identical but, beyond continuity, no regularity of the curves at the origin is
proved in 11 ].

Remark 4.5. Assumption (4.64) can be found in a number of publications (see
e.g. [5], [11], [17], [18]). Two somewhat more general forms of (4.64), corresponding
to the cases ---/’I(K, K--1) and r --/’I(K, K- 1) respectively, are

(4.65) Q1DF(0) 0, 0<_-j_-< r-l,

or

(4.66) 0, 0 =<j =< 1.

Both assumptions are mentioned in [3] and, again, both make the criterion (4.49)
trivially fulfilled. Nevertheless, as already mentioned, there are quite standard problems
in which (4.49) cannot be reduced to any of these simplified versions (see 5).

5. Examples. In this section we shall briefly examine the usefulness of some
aspects of our approach. We begin with the problem

(5.1) -Au --/U " /,/4 + US(__ higher-order terms) 0, u H(12),
where f/c2 denotes the square (0, r)x (0, 7r). Problem (5.1) is a typical model of
bifurcation from the trivial branch. Denoting by L (H-(f/), H(fl)) the inverse of
-A, an equivalent form of (5.1) is

(5.2) u-ALu+L(u4+uS+ ")=0, uH(l)).
The characteristic values of L are of the form Ao a2+ b2 where a and b are positive
integers and the multiplicity of Ao equals the number of such distinct pairs (a, b).
Assume first that o is simple, hence o 2a2. Then, it is known that there is exactly
one bifurcated branch passing through ()to, 0). If a is odd, it can be shown by classical
arguments that bifurcation occurs transcritically. This situation corresponds to the case
--4 in 4 and the criterion (4.49) holds trivially. On the contrary, if a is even,
determining whether bifurcation occurs transcritically or supercritically requires the
examination of derivatives of the reduced mapping of order >4. This is precisely when
the criterion (4.49) is useful: one can easily check that --5 and (with the choice
p u 1 as obtained in 4) xl(5, 4) X(5, 4) 4 so that (4.49) is fulfilled and it follows
at once that bifurcation occurs supercritically, as if the term u4 were not present and
the problem were

(5.3) -Au )tu + uS(+ higher-order terms) 0.
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A similar observation remains true when we study bifurcation at a multiple character-
istic value. For instance, bifurcation near the point (10, 0) in the problem (5.1) can be
equally studied by the method of McLeod and Sattinger [ 11] or that of 4: bifurcation
occurs transcritically and there are three bifurcated branches. But bifurcation near the
point (5, 0) (3,0 5 is double) cannot be analyzed under the assumptions of [11] nor
those of [3]. Note that the situation is worse than when Ao is simple since not merely
the location but the very structure of the solutions is unknown. Again, it can easily be
shown that K =5 while X1(5,4) =X1(5,4) =4: due to the criterion (4.49) we see that
bifurcation near (5, 0) occurs as in the problem (5.3). Further investigation shows that
there are exactly four bifurcated branches, located supercritically. This example can
be embedded into a general problem, namely

(5.4) -Au-Au+P(u)+euK(+higher-orderterms)=O, uH(f),

where f (0, 7r) x (0, 7r), K >_- 3 is odd, e d: 1 and P is an even polynomial with degree
<_- 1 and valuation k_-> 2. Bifurcation is studied near the point (Ao, 0) where Ao is a
double characteristic value of L= (-A)-1 of the form Ao 5a-(a -{0}). In any case,

is then defined as in 4. If P-0, one has Xl(, 1) =XI(K, 1) r and the
criterion (4.49) is trivially fulfilled. If P0, it is easy to check that XI(, -1)=
XI(K, K-l)= k so that (4.49) reduces to the assumption K--<_2k-3 (which requires
k_-> 4 and _-> 5). After rescaling r/, the mapping (4.62), identifies with

where the coefficients aaj+l > 0 are explicitly given through the Eulerian function F.
Arguing as in Bolley [2] it can be shown that the above equation has nontrivial solutions
(a,/3) for tr e only, and in this case its zero set is made of the nine lines generated
by (1, 0, 0), (1, 1, 0), (-1, 1, 0), (1, 0, 1), (-1, 0, 1), (r/o, 1, 1), (-r/o, 1, i), (r/o, 1,-1)
and (-r/o, 1, -1) with

((--1)/2 ) 1/(K--l)

r/o- aES+l
j=0

The nondegeneracy condition is satisfied (such a verification is often straightforward,
although sometimes lengthy, when the zero set is known explicitly) and we conclude
that problem (5.4) exhibits exactly four bifurcated branches emerging from the point
(Ao, 0), located supercritically if e- 1 and subcritically for e--1. By comparison,
the same statement is made in [2] for the problem with P 0, e 1 and no higher-order
term

-Au-Au+u =0

only (the equation -Au Au u cannot be considered in [2] due to growth conditions
imposed on the nonlinearity). If P 0, our conclusions do not follow from 11] either.

These examples show what criterion (4.49) (or its analogues in other problems)
can be good for. They clearly establish that the exponent governing the structure of
the bifurcation set in problems like (5.4) depends on the characteristic value Ao and,
to some extent, allow to determine this "leading" exponent as Ao is varied. Other
nonlinearities in which the Nemytskii’s operator does not only depend on u but also
on the generic point x f (and also possibly on A induce similar phenomena. Problems
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with nonlocal nonlinearities, such as von Kfirmfin equations, can be considered as
well. In this last example, the criterion (4.49) is trivially fulfilled and the nondegeneracy
condition alone has to be examined (see H61der and Schaeiter [7]).

Showing that the condition (R-N.D.) remains appropriate in the study of problems
in which no branch of solution is known a priori is our next purpose. For simplicity
of calculations and since we do not intend here to discuss the usefulness of some
version of the criterion of 2, we shall consider the problem

(5.5) -Au AoU + u =/f, u H(),
where tieR2 is again the square (0, r)x (0, r), f is a given element of the space
H-(fl) and Ao is some eigenvalue of-A. With L= (-A)- o(H-l(’]), H()) the
problem becomes

(5.6) u ALu + L(u) IF, u Hol(fl),

where we have set F Lf. We shall assume

(5.7) F Z Range I AoL),

so that the problem falls into the ease D,G(O) Z: of 3 and 4. When Ao is simple,
hence of the form Ao 2a:, the solutions are given by a single curve. Further, if a is
odd, it is easy to cheek that r 2 so that the origin is a turning point (if a is even,
higher order derivatives of the reduced mapping are needed to conclude). We shall
apply our method to the study of the ease when Ao is double. More precisely, we shall
assume that ,o a2+ b2 with a 0 and b 0 odd (and distinct). We leave it to the
reader to cheek that the analysis can be made without changing the parameter by
the method of 3 and we shall focus on the method of 4 since it provides additional
information on the location ofthe curves. The null space Ker (I- AoL) X1 is generated
by the two normalized eigenvectors b and 4b (the inner product on H(f) being
the usual one (u, v)= VuVv) with

2
b(t, S) rvo sin at sin bs

and b(t, S) b(S, t). With the choice Z X1 one has

Q1F y+y,
with Yb Yb [ and :

Yb + y2b 0 from (5.7). After renorming F (i.e. rescaling/) it is
not restrictive to assume

2
Yab 4r" yEba 1.

It is easy to check that K 2 and, after rescaling /for ease of calculations, the mapping
(4.42)o. identifies with

(5.8)o- q a fl - ( ’Y b"q
2 + Aa2 + 2B fl + Bfl :)--trYbarl
2 + Ba2 +2Ba + Aft

2,

where

16 16ab
A- B=

9ab’ (bE 4a2)(a2 4b)"
Applying Proposition 4.4 we can see that the condition (4.43) is automatically satisfied
from the relations A B and A+ 3B # 0 (the former follows from A/B < 1 and the
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latter holds because a2/b2 could not be rational otherwise). Taking Y1 [(Yba,--Yab)
in Proposition 4.4, it suffices to prove that the mapping

a, fl RE- Ayba Byab)a 2 + 2B(yba --yah)aft + Byb,, Ay,b fl 2

verifies the condition (-N.D.). As the above mapping is quadratic, it is equivalent to
check that the discriminant

A(F) =y-(+ 1)YabYba-Fy2b
is nonzero (which will happen for most choices of F). Note that A(F)> 0 regardless
of F when (A/B)+3>O but the sign of A(F) will be negative for some choices of F
if (A/B)+3 <0. If A(F) < 0, the zero set of (5.8) reduces to the origin for both tr= 1
and tr =-1. In other words, the origin is an isolated solution of the problem (5.4) for
those F with A(F)< 0. Note that the condition (A/B)+ 3 < 0 is satisfied with Ao 26
so that this situation does happen. If A(F)>0, the zero set of (5.8) depends on r
and F. More precisely, define Ki, 1, 2, to be the two distinct roots of the polynomial4

Byba Ayab K2 + 2B(Yba Yab K + (Ayba Byab 0

and set

O, (By,,b + Ayb,)K+ 2B(y,,b + yb,,)K, + (Ay,,b + Byb,,).

It can be shown that 0i 0, 1, 2 (an easy way is to observe that either relation 01 0
or 02 0 would contradict the fact that condition (4.43) is satisfied) and the discussion
is as follows: if 01 and 02 have the same sign, the solutions of problem (5.4) near the
origin consist of two curves located on the same half-space -> 0 or/ -< 0 (depending
on the sign of 01 and 02). If 01 and 02 have opposite signs, the solutions of problem
(5.4) near the origin still consist of two curves, but one of them is located on the
half-space/ _-< 0 and the other is located on the half-space -> 0. That both situations
do occur depending on Ao (with the same F) is easily seen: take for instance

F --(tl q" t31 "}- tl + 51)"
Z

Then, if Ao 10, one has 01 > 0 and 02 < 0 while, if Ao 26, one has 01 > 0 and 02 > 0.
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THE SADDLE-NODE SEPARATRIX-LOOP BIFURCATION*

STEPHEN SCHECTERf

Abstract. We study vector fieldx -f(x), x 2, having at some point an equilibrium of saddle-node
type with a separatrix loop. Such vector fields fill a codimension two submanifold X of an appropriate
Banach space. We give analytic conditions that determine whether a two-parameter perturbation of : -f(x)
is transverse to X. The new condition is a version of Melnikov’s integral around the separatrix loop. If it is

nonzero, then as one perturbs away from =f(x) in the direction in which an equilibrium of saddle-node
type persists, the separatrix loop breaks in a nondegenerate manner. This integral is shown to be nonzero
for the two-parameter pendulum equation fl / / sin b p at its organizing center.

Key words, saddle-node separatrix-loop bifurcation, Melnikov integral, pendulum, Josephson junction

AMS(MOS) subject classification. 58F14

1. Introduction. We shall be concerned with vector fields

(1) : =f(x), xR2

having at some p R2 an equilibrium of saddle-node type with a separatrix loop F (see
Fig. 1). We assume that the saddle-node has one negative eigenvalue and, of course,
one zero eigenvalue. Such vector fields fill a codimension two submanifold E of an
appropriate Banach space of planar vector fields. Consider a two-parameter unfolding
of(l),

(2) . (X, /11, /22), X ( []2, /1, //2

where f(x, 0, 0) =f(x). We shall give a computable condition that determines whether
the family (2) is transverse to E at (Ul, u2)= (0, 0).

If the transversality condition is satisfied, there is a smooth nonsingular change
of coordinates in parameter space,

such that

(o, o)(o, o),

=jY(x, u(,u,1,/x2), Uz(,U,a,/x2)) rf(x, I1,

has the bifurcation diagram of Fig. 2 in a neighborhood of (/Zl,/z) (0, 0). The curve
C lies in {(/xl,/x2)"/Xl <-0,/x>-0}. It has a quadratic tangency with the g2-axis at

FIG.
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FIG. 2

(0, 0). The phase portrait of =f(x, Ixl, Ix:z) in a fixed neighborhood of F that is
positively invariant for each vector field =f(x, Ix1, Ix:z) is as follows (see Fig. 2):

1) Ixl 0, Ix2 0; a saddle-node and a separatrix loop.
2) /21 > 0; no equilibria, a unique stable closed orbit near F.
3) IX 0, /’/’2 < 0; a saddle-node.
4) Ix1< 0, (Ixl, Ix2) below C; a saddle and a node.
5) Ixl < 0, (Ixl, Ix2) on C; a saddle and a node; the saddle has a separatrix loop.
6) Ix < 0, (Ix1, Ix2) above C; a saddle and a node; there is a unique stable closed

orbit near F.
7) Ix1 0, Ix2 > 0; a saddle-node and a unique stable closed orbit near F.
This bifurcation diagram is developed in [4], except that it is mistakenly stated

there that the curve C is transverse to the Ix_-axis.
Perhaps the best known example of this bifurcation diagram occurs in the study

of the differential equation for a pendulum with linear damping and constant applied
torque, which are the two parameters (see [3], in which the same equation arises in
the study of the DC current-driven point Josephson junction). In 5 we show that the
pendulum equation satisfies our transversality condition at its organizing center. Thus
the pendulum equation is a generic two-parameter unfolding of the saddle-node
separatrix-loop bifurcation.

The heart of this paper is the study, in 3, of Melnikov’s integral (see [2]) around
a saddle-node separatrix loop. The same method allows one to study time-periodic
perturbations of a saddle-node separatrix loop. This subject is treated in the companion
paper [6]. There the motivating example is the pendulum equation with, in addition,
sinusoidal applied torque (or, equivalently, the AC-DC current-driven point Josephson
junction).

2. Statement of results. We shall consider vector fields =f(x), x 2, satisfying
the following conditions at some p

(i) f(p) O.
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(ii) Dr(p) has eigenvalues 0 and -A, where A > 0.
Let u be a right eigenvector and w a left eigenvector of the eigenvalue 0, with w chosen
so that wu > O.

(iii) wD2f(p)(u, u) > O.
(iv) =f(x) has a separatrix loop F at p.

Assumptions (i)-(iii) say that ;=f(x) has a saddle-node at p with one negative
eigenvalue (see [7]). Moreover, the assumptions imply that u (not -u) is one tangent
vector to F at p (see Fig. 1). Let v be a right eigenvector of Df(p) for the eigenvalue
-A, chosen so that v is also tangent to F at p as in Fig. 1.

Let ; =f(x, Vl, V2) be a two-parameter family of vector fields on 2 such that
=f(x, 0, 0) satisfies (i)-(iv), and

(v) f(x, v, rE) is Ck+l k > 5
(vi) wD,f(p, O, O) > O.

Assumptions (iii) and (vi) imply that peurbation in the positive Vl direction eliminates
the equilibrium p, while peurbation in the negative 1 direction splits the equilibrium
in two (see [7]).

According to [7] there is a Ck function a(v2), with a(0)=0, such that =
f(x, v, v2) has an equilibrium of saddle-node type near p if and only if v a(v2).
Let f(x, , )=f(x, Vl, rE), where (1, 2) and (Vl, rE) are related by

(), .
Then

(3) 2=f(x,,g)

is Ck, and has an equilibrium of saddle-node type near p if and only if gl O. Let
p() denote the saddle-node equilibrium near p of 2 =f(x, O, ); p() is C k. If

<0, there are a saddle and a sink of (3) near p; if 1 >0, there are no equilibria
of (3) near p.

If w and z are vectors in 2, let w A z wz2-WEZl. Let q(t) be a-solution of
=f(x, 0, 0) with q(0) F. Consider the expression

dp
(0) limf(q(t),O,O)exp[-oldivf(q(s),O,O)ds]

(4)
+ exp divf(q(s) O, O) ds f(q(t) O, 0) (q(t), 0, 0) dr.

a2

THEOREM 1. e limit in (4) exists and is a negative multiple of v. e improper
integral in (4) converges. IfI # 0, then there is a Ck-2 curve () _2+(),
# O, such that for (1, #=) suciently small, (3) has a separatrix loop near F if and
only if #l () and I. (u v) 0.

The integral in (4) is just the usual Melnikov integral used to study peurbations
of a separatrix loop at a hyperbolic saddle (see [2], [5]). The limit in (4) is zero in
the case of a hyperbolic saddle, but must be retained in the case of a saddle-node.

The bifurcation diagram presented in 1 holds if I. (u A v)> 0, in which case
separatrix loops occur for #1 (#2) and #20. If I. (u A v)<0, this bifurcation
diagram holds after the fuher change of parameter #=-#=.

We remark that in order to compute I in applications, the only knowledge of the
function (2) that is needed is ’(0).

We shall now give a precise interpretation of the condition I # 0 as a transversality
condition. Let E denote the space of Ck+l vector fields, k 5, on a closed diskD RE,
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with the CTM topology. Let E’= {f E’f satisfies, at a unique pc Int D, conditions
(i)-(iii); and all other equilibria of f in D are hyperbolic}. E’ is a Ck codimension
one submanifold of E [7]. Let E {f E’-f satisfies condition (iv), and F c Int D}.
We shall show in 3 that E is a Ck codimension two submanifold of E, in fact a
codimension one submanifold of E’. Let =f(x, vl, v2) be a two-parameter family of
vector fields in E with =f(x, 0, 0) E. Assume in addition that =f(x, Vl, v2) satisfies
conditions (v) and (vi). Make the change of parameters /xl Vl-a(v2), /x2 v2
described earlier.

THEOREM 2. Thefamily : f(x, vl, P2) is transverse to E at (Pl, P2) (0, 0) ifand
only if I # 0.

3. Proof of Theorem 1. The equilibrium (p, 0, 0) of

(5) =f(x,/Xl,/X2), ki,1 0, /22 0

has a 3-dimensional neutral subspace. The center manifold theorem 1, 9.2] yields a
3-dimensional Ck local center manifold Noc of (5), tangent at (p, 0, 0) to this subspace.
Nloc meets each plane R2x {(/xl,/x2)}, (/xl,/x2) small, in a curve. NloREx {(0, 0)}
contains a portion of F x {(0, 0)} that is tangent at (p, 0, 0) to (u, 0, 0).

Let N denote the global center manifold that contains No, i.e., the union of all
integral curves.of (5) that meet No. N meets each plane REx {(/Xl,/X2)} in a curve,
which we denote N(/Xl,/X2) x {(/Xl,/X2)}. Thus N(/Xl,/X2) is a curve in R2. Let L be a
line segment in RE perpendicular to F at q(0). Then for (/xl,/X2) small, N(/Xl,/x2)
meets L transversally near q(0). Therefore for (/Xl,/X2) small there is a Ck function
x(/xl,/x2) such that x(0, 0) q(0) and x(/xl,/x2) N(/Xl,/X) L. Since a Ck vector
field has a Ck flow, there is a Ck family of solutions of (3)

qC(/Xl,/X, t), (/Xl, /X2) small,

such that qC(/xl,/x2, O) x(/xl,/x2). Then qC(0, 0, t) q(t), and each curve qC(/xl ,/X2, t)
lies in N(/Xl,/X2). For/Xl < 0, q(/xl,/X_, t) is a branch of the unstable manifold of the
saddle of (3) near p. Similarly, qC(O,/X2, t) is the unstable separatrix of the saddle-node
of =f(x, O,/x2) near p (see Fig. 3).

We shall now define a/x-dependent change of coordinates on R2 that will make
possible our computations. According to 1, 9.2] there is a Ck change of coordinates

(6) y(x,

defined for (x,/xl,/x2) near p, 0, 0), such that 1 y p, 0, 0) 0; (2) Nlo f’] R {(/X 1,/X2)}
is transformed into the line Y2 0, which is therefore invariant; (3) the lines Yl constant
are mapped into each other by the flow. In other words, in the new coordinates we
have a Ck differential equation of the form

1 a(yl, /Xl, /X2), 3)2 y2b(yl, Y2, /xl, /x2).

Since P(/X2), defined in 2, is C k, we may assume that P(/X2) is transformed to (0, O)
for all/x2. In other words, a(O, O,/X2) O. Since the stable manifold of =f(x, O, O) at
p is necessarily transformed into the line yl--O, it is easy to arrange that

(7) D,y(p, 0, 0)u (1, 0), D,y(p, O, O)v (0, 1).

Taking into account assumptions (i)-(iii) and (vi), we have

(8)
32-

with r/> 0, h(0, 0, 0) > 0, h (0, 0, 0) h.
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FIG. 3

LEMMA 1. There is a Ck-2 mapping p(8,/z2), defined for (8, 2) near (0, 0), with
values in R2, such that p(O, O)-p, and

fi saddle-node of: f x, O, tx2) if 8 O,
p(8,/x2) is saddle of Yc=f(x,-82,/z2) if S>O,

sink of f(x, -82,/x2) if 8 < O.

Moreover, the mapping (8, tx2) - (p(8,/z2), -82, tx2) is a C k-2 diffeomorphism of a
neighborhood of (0, O) in 2 onto a neighborhood of (p, O, O) in the set of equilibria of
(5) near (0, 0, 0) (see Fig. 3).

We remark that p(0,/z2) equals p(/z2) defined in 2.

Proof The equilibria of the system

1 r/(/z2)y2( 1 + Ylg(yl,/x2)) + tZlh(y,/Xl,/x2),

3)2 -h(yl,/Xl,/xE)Y2(1 + y2k(yl, Y2, tZl,

near (0, 0, 0, 0) comprise a set of the form

where

{(y,, O, #,, 2): ,a =/.t(y,,/z2)},

ou,
(0, u,2) 0[,/’ (0, #’2) -y and
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Therefore,

/2,1 -yE(A(/z2) / ylB(yl,/-/’2)),

where A(/x2) > 0 and A(tXE)+ylB(yl,tZ2) is Ck-2. For/1_-<0, let/Zl =-82. Then

(9) 8 yl(A(/x2) / ylB(yl,/z2)) 1/2.

(Taking into account the negative square root gives no additional information.) By
the implicit function theorem, we can solve (9) for Yl near Yl 0, 8 0,/2,2 0o We obtain

(10) Yl =/(8,/x2) with/(0,/x2) 0, (0,/x2) > 0.

Then r/>0 and (10) imply that the equilibrium (/3(8,/x2), 0) of (8) with/Xl -8- is a
saddle-node if 8 0, a saddle if 8 > 0, and a sink if 8 < 0.

Let

(11) x x(y, /Xl /x2)

be the change of coordinates inverse to (6). Define

(12) p(8,/x2) x((/(8,/x2), 0), -82,
Then p(8,/-/’2) satisfies the assertions of the lemma.

For future use, we note that

(13)
08

(0, 0) is a positive multiple of u.

To see this, we compute from (12)

(14)
0p

(0, 0) Dyx((O, O) O, O) - (0, O) 0

Since (0//08)(0, 0)>0 by (10), (14) is a positive multiple of u by (7).
System (8) with/-1 -82 has at the equilibrium (/(8,/z2), 0) the invariant manifold

{(Yl, Y2): Y =/(8,/x2)}, a line. For 8 =0 this line is the stable manifold of the saddle-
node (0, 0); for 8 > 0 it is the stable manifold of the saddle (/(8,/z2), 0); and for 8 < 0
it is the strong stable manifold of the sink (/(8,/x2), 0). These lines correspond to
invariant manifolds of =f(x, -8, tx) at p(8,/-/2). Let v(8,/-/,2)---
Dyx(((8,/x2), 0),-82, tz2)(0, 1). Then =f(x,-82,/z2) has at p(8,/z2) an invariant
curve tangent to v(8, tz2) and these invariant curves vary in a Ck-2 manner with (8,/z2).
For (8,/z2) (0, 0), this invariant curve contains F. Now a construction similar to that
of q(/z,/x2, t) yields a Ck-2 family

q(8,/2,2, t), (8,/x2) small,

each a solution of =f(x,-82,/x2), such that q(8, Ix2, t) --> p( 8, /x2) as t--> along the
negative v(8,/z2) direction. Again we require q(8,/x2,0) L; thus q(0, 0, t)=q(t).
Note that q(0,/z2, t) is a branch of the stable manifold of the saddle-node p(0,
of =f(x, O,/z2); and if 8 > 0, q(8, tz2, t) is a branch of the stable manifold of the
saddle p(8, tz2) of =f(x,-8,/z2) (see Fig. 3).

For any vector w=(wl, w2)2, let w+/-=(-w2, wa). Define d(/z,/x) and
d (8,/x2) by

q(/Xl,/x2, 0)= q(0)+ [d(/zl, tx2)/llf(q(O), O, 0)ll=]f(q(0), 0, 0),

q(8, ix2, o)= q(O)+[d(8, ix2)/llf(q(O), o, 0) II]f’(q(0), 0, 0).
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Then d is C k and d is Ck-2. The number dC(/t/l,/tz2) (resp. dS(6,/.2)) determines
where on L the curve qC(/Xl,/x2, t) (resp. qS(6,/x2, t)) starts. We have

Similarly,

dC(/x,,/z2) =ff-(q(O), O, 0). [qC(tx,,/z2, O)- q(O)]

=f(q(0), 0, 0) ^ [qC(tx,,/x2, 0)- q(0)].

dS(6,/x2) =f(q(0), 0, 0) ^ [qS(6,/x2, 0)- q(0)].

There is a separatrix loop of =f(x, -62, tz) through p(6,/x2) if and only if 6 -> 0 and

0.(15) d(6, /2)
def

Here d (6,/z2) is Ck-2.
We shall show that (Od/06)(O, 0) is a negative multiple of u ^ v (hence is nonzero),

and (Od/Ol2)(O, 0)= L Given these facts, the proof of Theorem 1 is completed as
follows: if 1 0, then {(6,/x2): d(6,/x2) 0} is a Ck-2 curve through (0, 0) of the form

i/Od(16) 6 e/x_ + o(/x2), e= /- (0, 0).

Squaring both sides of (16) yields

The condition 6 >= 0, applied to (16), shows that/x2 0 or g and ’/’2 have the same sign.
But g has the sign of I. (u ^ v).

We now turn to the computation of (Od/06)(O, 0) and (Od/Olx2)(O, 0). We shall
need the following variational equations for qC(-62, z2, t) and qS(6,/x2, t):

--(O, O, t)= D,f(q(t) 0,0)Oq---C(o,o,t)+Of(q(t),O,O),
Oij,2 Old,2

d Oq
dt 06

Oq
--(0, O, t)= D,f(q(t), O, O)-2-2- (0, O, t),

do

As in [2], we define

--(0, 0, t): D,f(q(t) O, O) Oq(o, O, t)+ O, 0).
0]2,2 Ob2

Oq
A:(t) =f(q(t) O, O) A(O, O, t)

0/.2

and define A(t) and AE(t analogously.
For dC(-62,/’2) and dS(6,/J’2) we have the derivative formulas

(17)

(18)

Od Od db Od
(o, o) (o, o). (o) o, (o, o) aL(o),

Od od
(0, 0) a(0), (0, 0) a(0).06 Otz2

Using the variational equations for qC and qS, we compute as in [2]:

d Of
d-- At,2(t)=divf(q(t), O, O)A,2(t)+f(q(t), O, O) ^(q(t),otz2 O, 0),
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d
(19) d- A(t)=divf(q(t), O, 0)A(t),

d Of(20) d- A,2(t)=divf(q(t), O, O)A2(t)+f(q(t), 0, 0) ^(q(t),otx2 O, 0).

Solving these linear differential equations, we obtain, for any t,

;(0) ;() exp divf(q(t), O, 0) de

(21) + exp divf(q(s), 0, 0) ds

f(q(t), O, O) of (q(t), O, O)
0

(22) -;(0) -;(t,) exp divf(q(t), 0, 0) dt

-;(0) =-;(t,) exp divf(q(t), 0, 0) dt

(23) + exp divf(q(), 0, 0) d

f(q(t), O, O) Of (q(t), O, O) dr.
0

We shall first evaluate (22) in the limit . Using the definition of ;, we write

(24) -;(0)=(0, 0, t,) f(q(,), 0, 0) exp divf(q(s), 0, 0) d

L 2.

Oq 0p
(0, 0) lira Oq (0, 0, t) O (0, 0).

oo We shall use the coordinates (6). Define

((,,y(, ., ,
where (,) is given by (10) and y(,, t) is defined by (25). Since q(,, t)
p(,) as tm, for each (, ) near (0, 0), (,, t) and hence y(,, t) are
defined for suciently large t. It follows from (7) that y(,, t) > 0 for large t. From
(8), y(,, t) satisfies a dierential equation of the form

where I (0, 0)= I. Here and G are C-.
In order to prove the lemma, we shall study the asymptotic behavior of solutions

of (26) as m by solving (26) by separation of variables. Let

(7) -’[ + G(, , )]-’ -1 +(a , ).
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Then H is ck-4o Fix Zo> 0. Let

J(z, 6, It2)= H(s, 6, /.t2) as.

Then J is Ck-4. Solving (26) by separation of variables using (27) yields

lnz+J(z, 6,/z2) -A (6,/x2) + A(6,/x2),
or

z exp J(z, 6,/z)= B(6, It2) exp (-h(6,/z) t).

Here B(6,/z2) is determined by the value of y(6,/z2, t) at some to. Hence B is
C-4 and B> 0. Since

0z
[z exp J(z, ,/z2)](0, , tt2) # 0,

by the implicit function theorem we can solve the equation

z exp J(z, ,/z2) v

for z when z and v are near 0. We obtain

z= K(v, 6,/2),

where K is Ck-4 and

(28) K(0, 6,/x2) 0.

Putting z Y2 and v B(a, tt2) exp (-A (8,/z2)t), we obtain

(29) Y2- K(B(6,/z2) exp (-A (6,/z2) t),

From (29) and (28) it follows that (ay2/06)(6,/.t2, t) and (ay2/a/z2)(6,/z2, t)
approach 0 as o0. Therefore (25) implies that as

(30’ 04-- (6,/x2 t, (0/3 (6,/z2’, 0) 0---- (6, /z2 " (0/3 (6,/z2’, 0.
/a6

q-(6,1a,2 t)=
o

06 - x(qS(6, /-62, t), -6,

where x(y, ,) is given by (11). Therefore

;}" (0, O, t)= D( (0, O, t), O, O) (0, O, t).

By (30) and (14),

lim Oq--- )o 0, o, t)= D,O, o) o, o) (@
,_oo \aa

(o, o), o

a__p (o, o)

Similarly, the second formula ofthe lemma follows from (30) and the following formula
derived from (12):

Op
(o, o)= orx((O, o), o, o) (o (o, o) o] + ox

o,, \o,,_ /
((o, o), o, o).
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We shall now use the computations we have done in proving Lemma 2 to study
the other terms of (24). By (25),

(31) ,s(,/z2, t)= Dxy(qS(8,/z2, t), _;2,/z2)4(;,/z2, t).

Let ; =/z2=0 in (31). Since 4(0, 0, t) 4(t) =f(q(t), 0, 0), we obtain

f(q(t), O, O)=[D,y(q(t), O, 0)]-’,(0, 0, t).

It follows easily from (25), (28) and (29) that

(32)
q(t) p + (exp (-At)),

q (t)= (0,-C exp (-At)+o(exp (-At))),

where C > 0. Therefore, setting

(33)
f(q(tl), O, O)= {[Dxy(p, O, 0)]-1+ ?(exp (-Atl))}

(0, -C exp (-Atl) + o(exp (-Atl))).

From (32) we also have

divf(q(t), O, 0)=-A + (exp (-At)).

Therefore

(34) exp divf(q(s), 0, 0) ds exp (Itl) exp ’ff(exp (-Is)) ds.

Then (33) and (34) give

lira f(q(tl), 0, 0) exp divf(q(s), 0, 0) ds

[Dy(p, 0, 0)]-. 0,-C exp ff(exp (-s)) ds

where the integral clearly converges.
Now (24), Lemma 2 and (35) imply that

Op
(36) -(0)= (0, 0) lira f(q(l), 0, 0) exp divf(q(s), 0, 0) ds

where the limit exists.
Notice that (7) implies that (35) is a negative multiple of v. Then (13) implies

that -(0) is a negative multiple of u v. By (15) and (17), (Od/O)(O, 0) is also a
negative multiple of u v.

We now turn to (23). We claim that

op
-;(0)=(0, 0) ,,lim f(q(t), 0, 0) exp divf(q(s), 0, 0) ds

(37) + exp divf(q(s), 0, 0) ds f(q(t), 0, 0)

of(q(t),O, 0) dt.
0

The proof is modeled on that of (36). Using Lemma 2, we first show that the first
summand of (23) approaches, as t m, the first summand of (37), where the limit
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exists. Then, since -A,2(0) is finite, the second summand of (23), the integral, must
approach a limit as tl-’>

Finally we turn to (21).
LEMMA 3.

lim
gq---

(0, O, t)=O.
t--,-oo a/x2

Proof. Again we shall use the coordinates (6). Define

4c(/x2, t) y(qC(O, tx2, t), O,/x2) (yl(/x2, t), 0).

Since q(0,/x2, t) -> p(0,/x2) as --> -oo, for each/x2 near 0, t*(/x2, t), and hence yl(/x2, t),
is defined for sufficiently negative t. From (7), Yl(/X2, t)> 0 for sufficiently negative t.
From its definition, y1(/2, t) satisfies a differential equation of the form

dz
(38) d--- /(/XE)Z2(14- zG(z,/x2)).

Here / and zG are Ck-2.
Let

(39) z-2(1 + zG(g,/-2))-’ z-2+ A(/z2)z-l+ H(z, g2).

Here A is C-3 and H is C-4. Fix Zo> 0. Let

J(z, I2) H(s, Iz2) ds.

J is C-4. Then solving (38) by separation of variables using (39) yields

-z- + A(/2) In z + J(z, I2) n(l2)t + B(2).

Here B(/z2) is determined by the value of Y(2, t) at some to. Hence B is C-4.
Rearranging yields

(40) z[1-A(lz_)z In z-zJ(z,/z2)]-= -[r/(z2)t + B(/z2)]-.
Let (z,/z2) equal the left-hand side of (40). cI)(z,/z2) is a C function of z and p,2 on
a neighborhood of (0, 0) in {(z,/z2): z -> 0}; (0,/z2) -= 0, and (d/dz)(0,/z2) 1. By
the implicit function theorem, we can solve the equation cI)(z,/z2) v for z when z
and v are near 0, v => 0 (in which case z => 0). We obtain

z v+ R(v,/z2),

where R is C 1, R(0, g2)0 and R is (v). Putting z =y and v -[r/(g2)t + B(g2)]-1,
large negative, we obtain

y -[ r/(/x2) + B(/z2)]- + R(-[r/(/z2) + B(/x2)]-’,/z2).

It follows that (gyl/9/z2)(/z2, t) 0 as -00, so

(41) ---(, )-0 as --oo.

Lemma 3 follows from (41) the way Lemma 2 follows from (30). E1
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To evaluate (21) in the limit tl -->-oo, we use the definition of A, to write (21) as

Oq fA2(0) --2 (0, O, tl) ^f(q(t), O, O) exp divf(q(s), O, O) ds

(42)
+ exp divf(q(),O, 0) ds f(q(t),O, 0)^-(q(t),O, 0) dt.

Of course

(43) f(q(t), 0, 0)-*0 as t,-.
Moreover,
(44) divf(q(t), O, 0)=-A /([,(0)t/c(0)]-1) as t-c.

By Lemma 3, (43) and (44), we have

Ilira -0q---- (0, 0, t) ^ f(q(tl), O, 0) exp divf(q(s), O, 0) ds=O.
tl 02

erefore the second summand of (42), the integral, approaches a limit as t -, so

(45) A(0)= exp divf(q(s), O, O) ds f(q(t), O, O) A Of (q(t), O, O) dt.
02

Finally, we complete the proof of Theorem 1 by calculating

od
(0, O)

Ode Od-- (0, 0) A,(0)- A,(0) (45) + (37) I.(o,

4. Proof of Theorem 2. First we show that is a C codimension one submanifold
of . Letf with saddle-node and let L be a line segment perpendicular to the
separatri loop F as in 3. For g near f in , there is a unique saddle-node near
p is a C function of g . The stable and center manifolds of p also depend

C on g [1, 9.2]. Thus their intersections with L are C functions of g. Therefore
the function d(0, ) from 2 extends to a C function d(g) defined forg near
f d(g) measures the separation ofthese points ofintersection. (We remark that d (0, )
is Ck although d(,5, ]J’2) is only ck-2.) Then d(g)= 0 if and only if g E. Since it is
easy to find a perturbation f+eh in E’ such that d/de]=od(f+eh)O, 7, is a Ck

codimension one submanifold of E’.
To prove Theorem 2, it suffices to show that f(.,/1,/2) is transverse to E at

(/1,/2)-(0,0) if and only if I#0. Since f(.,0,/2)E’ for all small
12,(Of/Ol2)(’,O,O) is tangent to ’ (see ,Fig. 4). But (Of/O,)(.,O,O)=
(Of/Oll)(’, 0, O)-(Of/ol2)( ", 0, 0)a’(0). Since (Of/Ou)(., 0, 0) is transverse to E’ by

FIG. 4
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assumption (vi) (see [7]), and (af/a/z2)(’, 0, 0) is tangent to X’, (Of/Otz,)(’, 0, 0) is
transverse to X’. Thus we need to show that (Of/Olz2)(’, 0, 0) is transverse to X if and
only if I # 0. But this follows from the formula (Od/Otx2)(O, O)= L

5. The pendulum equation. We consider the differential equation for the damped
pendulum with constant applied torque, in the dimensionless form studied in [5]:

/3 + 6 + sin $ p.

Putting y 6, we have

1
(46) 6 y, = (-y-sin + p).

We identitify b and b + 2r, so that (46) defines a vector field on a cylinder; p and/3
are parameters, which we shall assume positive. We remark that Theorem 1 applies
equally well to vector fields on the compact set {(b, y): [y[=< d}.

Let x (b, y),

f(x, , O) (f((4, Y), 1, o),f_((d, y), t, 0))= Y,- (-Y-sin 4 + 0)

If p < 1, =f(x, p, ) has two equilibria, one a saddle and one a sink; =f(x, 1,/)
has one equilibrium, at (r/2,0) independent of/3; if p> 1, :=f(x,p,) has no
equilibria. We note that

D 0 ,
0 -/

which has eigenvalues 0,-1//3. Corresponding right eigenvectors are u (1, 0) and
v (-fl, 1); a left eigenvector for the eigenvalue 0 is (1,/3).
To show that : =f(x, 1,/3) has a saddle-node at (7r/2, 0), we compute (assumption

(iii)):

(1, 1). Df r, 0 ,1, , ((1,0), (1, 0)) (1, t). 0,-2-. 0 ,1, 1

We also note (assumption (iv)):

It is shown in [3] that there is a unique positive/30 such that :? =f(x, 1,/30) has a
separatrix loop at the saddle-node (7r/2, 0). The separatrix loop, considered as a curve
in by-space with b and b +2r not yet identified, can be expressed as y y(b), ,r/2 <
4<57r/2; y(b)>0 for all $. As 4--> 7r/2, y-->0 and y/(qb-.rr/2)-->O; as $-->5r/2,
y-->0 and y/(rk-5"rr/2)--->-l/) (see Fig. 5).

Thus assumptions (i)-(vi) are verified if we put f=f, vl =p- 1, v2 =/3-flo. The
change of variables from v to/ is not necessary here, i.e., we may put ix1 Vl,/z2 v2.
For simplicity we shall continue to use the parameters p and ft.

To compute I, we first note that the saddle-node p(/3) of : =f(x, 1,/3) is identically
(,r/2, 0), so that the first summand of I is 0. Now divf(x, p,/3) =-1/fl, and

0f 1 1
f((b, y), p,/3) ^ ((b, y), p,/3) --i y(-y- sin b +/) -y).
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FIG. 5

Therefore,
1 J-oo et/tY/’ dt

{ y2T 1 I_r y2 }lim
1 et/o. + et/#o.

s,r-.. --ffoo -s s dt
From (29), as , ((t)-(5/2), y(t))= c e-’/’o(-o, 1)+o(e-/) for some posi-
tive constant c. Therefore [y(t)]= c e-/o+o(e-2‘/’o) as . Hence

lim - er/’o. [y(T)]= 0.
o flo 2

Of course,

lim
1 e_S/So [y(-S)]2

s-,+-o 2
=0,

since y(t) --> 0 as --> -oo. Therefore

1 f-oo y2
I =/3-- e’/o dt>O.

Since u ^ v > 0, Theorem 1 implies that for (p,/3) near (1,/30), =f(x, p,/3) has
a separatrix loop if and only if p 1 ’2(/3 -/3o)2 /. , with # 0, and/3 -/3o-> 0 (see
Fig. 6). This result is in agreement with statements in [5].

FIG. 6
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NONEXISTENCE FOR THE KASSOY PROBLEM*

J. BEBERNESf AND W. TROY

Abstract. We prove that the Kassoy problem

x
(1) y"-y’+eY-l=0, y(0)=a, y’(0)=0,

has no solution which has the asymptotic property

(2) y(x)

Key words, combustion, supercritical, final time asymptotic analysis, nonexistence

AMS(MOS) subject classification. 34A34

1. Introduction. The purpose of this paper is to rigorously prove that a solution
to the initial value problem

(1)

X

y"-:y’ + ey 1 O,

y(O) a, y’(O) O,

cannot have the asymptotic property

(2) y(x)--,-21nx+K as x--> c.

This problem, hereafter referred to as the Kassoy problem, has an interesting
history.

The nondimensional induction period equation for a high activation energy thermal
explosion in a bounded container fl can be written in the form

(3) Ot AO S e

where O(x, t) must satisfy the initial-boundary conditions

O(x, O)= ,(x), x f,
(4)

O(x, t)=O, xO, t>O.

The dependent variable O(x, t) can be interpreted as a perturbation temperature,
describing deviations from a prescribed initial state. The temperature variation is driven
by the heat release term 8 e, where > 0 is the Frank-Kamenetski parameter.

For fl a radially symmetric container centered at x =0 and 0(x)-=0, Bebernes
and Kassoy 1] and Lacey [8] proved that there exists a critical value 8CR> 0, which
depends on the geometry of the system such that for 8> 8CR the solution O(x, t)
becomes unbounded at some xl) as approaches a finite time re(8), and blowup
occurs. Recently, Friedman and McLeod [4] proved that this blowup occurs at a single
point Xo 0 1) as te.

* Received by the editors July 1, 1985; accepted for publication (in revised form) July 30, 1986.
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this author was supported by National Science Foundation grant MCS 8301085.
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These supercritical processes, which are characterized by the appearance of a
singularity somewhere in the spatial domain f at a finite time te, were considered
earlier by Kassoy and Poland [6], [7] and Kapila [5]. Using computational methods
for symmetric slab, cylindrical, and spherical geometries, they predicted that O(x, t)
becomes unbounded at the symmetry point x -0 at a time te. Elsewhere O(x, t)- O(x),
x 0, x fl as t- t. By applying a final-value asymptotic analysis at t, they also
studied the character ofthe singularity function O(x). In their analysis ofthis singularity
function Oe(x) in the case of a slab, they numerically predicted the existence of a
solution y(x) of the Kassoy problem.

Lacey [9] and Dold [3] have questioned the existence of a solution to the Kassoy
problem. In fact, Dold rejects the formulation given in [6] and [5] on numerical
grounds and generates a new final value theory which leads to a different description
of the singular solution. In this paper we resolve the issue by proving the following
theorem.

THEOREM. There is no solution ofproblem (1) which satisfies condition (2).
The proof of nonexistence is given in the next three sections. In 2, for a < 0 we

prove the existence of a special solution to the IVP(1) assuming the Kassoy problem
has a solution. This special solution has several precisely describable properties. In

3, we prove that our special solution cannot have one of these properties. This
contradiction leads us to the conclusion that no solution to the Kassoy problem can
exist for a > 0. In 4, we prove that the Kassoy problem has no solution for a < 0.

2. A slecial solutiaa for t > 0. We begin this section by showing some needed
properties of solutions of IVP(1). In particular, we first show that for a sufficiently
large, the solution y(x, a) of IVP(1) is strictly concave down for x_->0.

LEMMA 1. If ot >= 1, then y"(x, a) 0 for all x >- O.
Proof. A solution y(x) y(x, t) of (1) satisfies y(0) a, y’(0) 0, y"(0) < 0. From

this and (1), it follows that y"(x) 0 as long as y(x)>-O. Hence y(x) has a first zero
a 0 with y’(a) 0 and y"(a) O.

If y"(Xl)=0 for some first Xl a, then y(xl)<O and y’"(Xl) _>- 0. Let g(x)=
xy’(x)/l. Then g(0)= 1 and g’y’ on (0, xl). By integrating, we have g(x)
1 / y(x) a on (0, x). Thus g(xl) -<- y(x) 0; hence y’(x) -l/x1. From this and (1)
we conclude that

0 y"(Xl) [y’(Xl) + 1 e’()

1-_ eY(Xt).
2

Finally, a differentiation of (1) leads to y"(Xl)= (1/2-eY(X))y’(xl)< 0, a contradiction.
Hence, y"(x) < 0 for all x > 0.

COROLLARY. If a solution y(x, a) of (1), (2) exists for a>0, then 0<a<l.
LEMMA 2. Ifa solution y(x, a) of (1), (2) exists, then there exists afirst x such that

y"(x, a) < 0 on (0, Xl), y"(Xl, o) O, y’"(Xl, o) >= O, y(Xl, a) >--_ --ln 2.

Proof. The solution y(x)=y(x, a) of (1), (2) satisfies y(O)= a, y’(O)=O, and
y"(0) 1-e <0. This implies y’(x) is negative in a right neighborhood of 0, and,
because y(x) satisfies (2), y’(x)-->O as x-->. Hence there exists a first xl such that
y"(x) < 0 on (0, Xl), y’(xl) < 0, y"(xl) 0, y’"(Xl) --> 0. Since y"(Xl) (1/2- eY(X))y’(xl) >- 0
and y’(xl) < 0, we have y(xl) ->- -In 2.
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LEMMA 3. Ify(x, a) is a solution of (1) with y"(x, a) < 0 on [0, x2] and y(x2, a) <-

-ln 2. Then y"(x) < 0 for all x >- O.
Proof. At x2, y’(x2, t)< 0 and y"(X2, tX)< 0. If there is a first x3 > x2 for which

y"(x3, a)=0, then y’"(x, a)>-O. However, differentiating (1), we find that y’"(Xa)-
y’(x3)(1/2--ey(x3)) < 0, a contradiction. From this we conclude that y"< 0 for all x >_-0.

We are now in a position to define our special solution under the following
assumption.

Assumption. There exists/3 (0, 1) such that y(x, fl) is a solution of (1), (2).
In order to make use of this assumption we define the set

A {t > 0[if a > c, then y"(x, a) < 0 for all x _-> 0}.

From Lemma 1 we observe that 1, oo)_ A. Furthermore, continuity of solutions with
respect to initial conditions, together with Lemma 3, shows that A is open. Finally, it
is clear that A is bounded below by/3. Thus the value

inf A

is well defined.
Hereafter we let y(x)- y(x, ). In the next lemma we list four properties which

y(x) must satisfy. Our goal in the remainder of the paper is to show that y(x) cannot
satisfy property (iv) of Lemma 4. From this contradiction we conclude that y(x) cannot
exist, which in turn implies that the original problem (1), (2) has no solution.

LEMMA 4. There is a first > 0 such that
(i) y()=-ln (2),
(ii) y"(x) < Ofor O < x < ,
(iii) y"() y’"() 0,
(iv) y,() _-1.

Proof. It follows from (1) that y"< 0 for x > 0 as long as y => 0. As shown in the
proof of Lemma 1 there is a first value, x a, for which y(a)= 0 with y’(a)< 0 and
y"(a) < 0. Suppose that y"< 0 for all x > a. Then )7 A. It follows from continuity and
Lemma 3 that a A if )7- a > 0 is sufficiently small, contradicting the definition of )7.
Thus, there exists a first > a such that y"()=0, and y’()>=0. If y()<-ln (2),
then y"() (1/2- eY()y’() < 0, a contradiction. If y() > -In 2, then y’"() > 0.

It then follows from continuity that a A if a-)7 > 0 is sufficiently small, again
contradicting the definition of )7. Therefore, it must be the case that y()=-In (2) and
y’"() 0. Finally, from these observations and (1) we conclude that y’()=--1, and
the lemma is proved.

Further technical properties ofthe solution y(x, ) y(x) are given in the following
lemma.

LEMMA 5. The solution y(x) has initial value 37 <_- 1 -In 2. Furthermore, y’" >- 0 for
all x [0, ].

Proof. Suppose that 37> 1-In (2) and recall the function g(x)= xy’(x)/ 1. Then
g(0) 1 and g’(x) < y’(x) on (0, ), where is the of Lemma 4. An integration leads
to g() < In (2) +y() < 0. Thus y’() + 1 < 0, contradicting (iv) of Lemma 4. We
conclude that )7 _-< 1 In (2).

Next, recall that y(a)- 0. If a-> x/, then y"(a)<-O. Also, from (1) we obtain

(5) y(4= y,,, + (1 eY)y"- eY(y’)-
and it follows that y’"< 0 for all x > a, contradicting Lemma 4. Thus a (0, x/) and
y’"(a)=((aE/4)-1/2)y’(a)>O. Furthermore, Lemma 4 shows that y’()=0. We need
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to show that y’" is nonnegative on each of the intervals (0, a) and (a, ). Suppose, first
of all, that y" <0 at some point in (a, ). Thus, since y’() 0 there must be a value
x*(a,] such that y’"(x*) =0 and y(4)(x*)>-O. However, from (5) it follows that
y(4)(x*)<0, a contradiction. Therefore y’_->0 for all x(a,]. Next, suppose that
y" <0 at some point in (0, a). From (1) and (5) it follows that y’"(0) =0 and y4(0) > 0.
Thus y’" must reach a negative minimum at some value (0, a). That is, y"()<0,
y4()-0 and y5() >_- 0. A differentiation of (5) leads to

/ ey

At , since y4()= 0, we have

0 y’"+ y"(1 er) ey (y,)2.

us -eY(y’)a=y’y"(eY-1)-(/2)y’y’’. Substituting this into (6), and noting that
3/2-eY>0 for y() <fi 1-1n (2), we obtain, at x=, y5()
y’"(3/2-eY)-2y’y"eY-y’y"-(/2)y’y <0, a contradiction. We conclude that y" 0
on (0, a] which completes the proof of the lemma.

COROLLARY. On (0, ), y(x) p(x) y"(O)(x2/2) +.
Define () by p(())= -ln 2; then ()= [2(ln 2+)/(ey- 1)]/<.
3. Nonexistence for > 0. To prove our theorem for the case a > 0 it suces to

eliminate the existence of the solution satisfying Lemma 4 (recall that such a solution
must exist if the Kassoy problem (1), (2) has a solution). In paicular we show that
the solution described in Lemma 4 satisfies

(7) y’() < --where =(fi)[2(ln (2)+fi)/(eY-1)] 1/2. Since < and y"<0 on [0, ], then (7)
implies that y’()<y’()<-1/ <-1/. Hence, propey (iv) of Lemma 4 is violated
and a contradiction is reached.e next three technical lemmas are necessary to show
that (7) holds. We introduce the comparison function

(8) G(x, ) x e/ (1 e e(-/) e-/ ds + 1.

In the next lemma we show that g(x)N G(x, 2) for 0N x N. Subsequently, we
prove that G((2), 2)<0 for all e (0, 1-1n (2)]. Thus it follows that g(()) < 0 for
all e (0, 1-In (2)] and (7) is proved.
L. g(x) N G(x, ) for 0 x .
oo From Lemma 5, y’"N0 on [0,], which in turn implies that y(x)N

y"O)(x/2)+=+((1-e)/2)x. Thus e’(eee(-’/ on [0,]. Since g(x)=
xy (x)+ 1 x e/I (1 -e() e-/ ds+ 1 it follows immediately that g(x)N G(x, )
on [0, ].

LEMMA 7. limyo+ G((), ) -.
oo We obsee that

G((), ) e2/4 e-/ ds e2/4 ey e(1-2e’)s2/4 ds + 1

e2/4 ep
e-s2/4 ds + 1e/4 e-s2/4 ds ( ?ZiV/2

( e ) fore-S2=e/4 1
(2ey l)/i ds+l.
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Since limy_o o<y) e-s2/4 d$---’tr 1/2, it suffices to consider

((2ey- 1)1/2- ey) 1
H(y)= "--1 --2/4x e (2ey-1)1/2

-(ey 1)2 1 1

-1 e-2/4 ((2 ey- 1)1/2+ ey) (2 ey- 1) 1/2"

We set h()7)=-(eY= 1)2/(-1 e-2/4) and use the definition of ()7) to obtain

h(37) -4 e’2/4(ln (2)+ 37)2/3.

Since ()7) oo as 0/ it follows that limy_,o/ h(fi)=-o0. Therefore we conclude that

lim n()7)= lim G(07), 37)=
y-,0 y-,0

and the lemma is proved.
LEMMA 8. G(()7), 37) < 0 for all 35 e (0, 1 -In (2)].
Proof. An integration by parts shows that

(9) x=ex2/4 e-SV4(1-s2/2) ds forallx>0.

If there is a first tie(0, l-In (2)) for which G(;(), )= 0, then

dG( >(10) - ()5), )5)ly= 0.

Our goal is to obtain a contradiction of (10). First, from the definition of and the
assumption that G((), )3)= 0 we obtain

(11) e/4 e e(l-es/4 1 ds
ay ((’ ;1= x =

Next, substitute u s(2 ey- 1)/2 into (11) and use (9) to conclude that, 2 e2/4(eY_l) f(2ey-l,,/2/2 u -uV4
y= 2 2(2ey-1)3/ o

e du.

A straightforward calculation shows that, 2 2(ey_ 21n (2)-2)-2
(13) <0

2 22(ey- 1)

for 0< -< l-In (2). Thus, from (12), (13) and the assumption that fie(0, l-In (2)],
it follows that dG/d.((), )7)ly=<0, contradicting (10).

This completes the proof of the first part of our theorem, that (1), (2) has no
solution for a > 0.

4. Nonexistence for e < 0. We now show that the Kassoy problem has no solution
for a < 0. This completes the proof of the theorem.

LEMMA 9. For a < O, the solution y(x, ) of (1) cannot satisfy (2).
Proof. If y(x)= y(x, a) satisfies (2), then y attains a relative maximum at some

> 0. It follows from (1) and uniqueness of solutions that y() > 0 and y"() < 0. Thus
there exist X e (0, ) and X2 > such that y(Xl)= 0= y(X2) and y(x)> 0 on (x1, x2).
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Since e 1 > z for z O, we have that y(x) satisfies y"-(x/2)y’+ y < 0 on [0, Xl].
Thus, y(x) is an upper solution of

(14) z"- +z=O

and if u(x) is the solution of (14) with u(0) a, u’(0) 0, then y(x) < u(x) on (0, ,/],
where v/ is the only zero of u(x). We conclude that x2 > Xl > v.

At x2, y’(x2)<0, y"(x2) <0, y"(x2)<-O and y(4)(x2)<O. It follows from (5) that
y’"(x) < 0 for all x > x2 and hence y"(x) < 0 for all x > x. This contradicts our assump-
tion that y(x) satisfies (2).
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Abstract. Let da and dfl be nonnegative mass distributions on the real line, with all moments finite,
and with infinitely many points of increase. Let {p,} and {q,,} be the orthonormal polynomials associated
with da and dfl respectively. We characterize dc and dfl in the case when there exists a fixed rational
function R, a positive integer j and nonnegative integers s and such that, for n 0, 1, 2, 3,. ., Rp may
be expressed as a linear combination of qn-j-t, q,-j-t+l, ",q,-+s.

Key words, orthogonal polynomials, derivatives of orthogonal polynomials, generalised Jacobi weights,
exponential weights

AMS(MOS) subject classification. 42C05

1. Introduction. Let da and dfl be finite positive measures on the real line with
infinitely many points of increase and all moments finite. We shall call dc and dfl
distributions, and shall denote the corresponding sequences of orthonormal poly-
nomials by {Pn} and {qn}.

The purpose of this paper is to solve the following problem: Characterize dcz and
dfl for which there exist a rational function R S T, a positive integer j, and nonnega-
tive integers s and such that

n-j+s

(1.1) Rp Cnkqk 11 O, 1, 2, ",
k=n-j-t

where the coefficients {Cnk} are real numbers and Cnk--0 if k < 0. It turns out that, at
least in a description of da and d/3, the integer j and the denominator polynomial T
are unimportant, while S plays an important role.

In solving (1.1), our results largely resolve a problem raised by Askey (see A1-Salam
and Chihara [1, p. 69]) to characterize sequences of polynomials {Pn} satisfying (1.1)
with R S, j 1 and {pn} {q,}. An algebraic solution to Askey’s problem has recently
been provided by Maroni [13], [14], involving quasi-orthogonality and linear forms
defined on the space of all polynomials. Earlier work along this line is due to Ronveaux
[20] and Hendriksen and van Rossum [8]. By contrast, our characterization of poly-
nomials satisfying (1.1) is analytic, and provides a complete description of the distribu-
tions dc and dfl associated with {p,} and {q,}.

Relationships such as (1.1) are useful in studying analytic aspects of orthonormal
polynomials. For example, Bonan [3] recently established a relationship similar to
(1.1) with R 1, j 1 and da dfl, for the weights da(x) exp (-xm) dx, where m is
a positive even integer. He used this identity to prove part of a conjecture of Nevai
[16] concerning bounds on orthonormal polynomials. (See also [10], [18].)

Further, (1.1) is a unifying feature of the most important families of orthogonal
polynomials. It is well known that the classical orthogonal polynomials .are the only
orthogonal polynomials that satisfy (1.1) with R 1, j 1 and s =0 (Freud [5, p.
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52])--this special case has been called the problem of W. Hahn [22]. It turns out that
the generalised Jacobi weights (GJ) studied by Badkov [2], Geronimus [7], Nevai 15],
17], 19] satisfy several relationships such as (1.1), as do exponential weights on [0,
of the form exp (-P(x)), P(x) a polynomial of positive degree with positive leading
coefficient. In this context, the latter have been studied by Ronveaux [20]. For further
historical remarks and references, see Bonan and Nevai [4], Hendriksen and van
Rossum [8], and Maroni [13], [14]. We note that our main result, Theorem 1.1,
essentially contains [8, Thms. 3.1 and 3.2]. The latter two theorems in [8] largely
characterize "semiclassical orthogonal polynomial systems" in terms of a differentiation
property that is a special case of (1.1).

Given an interval /, we let ,/I denote the characteristic function of/, while
denotes a (unit) point mass at a real number x.

THEOREM 1.1. Let da and dfl be distributions, with corresponding sequences of
orthonormal polynomials {p, } and {q, }. The following are equivalent:

I. There exist a real rational function R S/ T (not identically zero), a positive
integer j and nonnegative integers s’ and t’ such that

n--j+s’

(1.2) Rp , C,kqk, n =0, 1, 2,. .,
k=n-j-t’

where the {C,k} are real numbers with C,k O, k < O.
II. There exist a real polynomial S (not identically zero) and nonnegative integers

s and such that
n--l+s

(1.31 Sp’ E c,q, n 0,1, ,...,
k=n-l-t

where the { C,k} are real numbers with C,k O, k < O.
III. There exist nonnegative integers s and t, and real polynomials S, U and V, not

identically zero, and with degrees at most s, + 1 and + 2 respectively. Further, there
exist nonnegative integers N and N’, and nonnegative numbers Ao, A1 AN (not all
zero), h, A2" AN, and [’1, [d’2 [’lbN’ with thefollowing properties" Vhas N real zeros

--X3 ) < 2 < VN X3

and S has N’ real zeros

Let Vo -, vN+ c and

(1.4)
Then

--(X3 S S2 SN, ( O0.

Ir (Vk, Vk/l), k 0, 1, 2," ", N.

H(x)
exp du dx+ hkSvk(X)1.5/ da(x) -IV(x)[ V(u) k=l

and

H(x) U(u)
du dx + , tzk(x),(1.6) dfl(x)=lS(x)l exp

V(u) k=l

where
N

(1.7) H(x) Y’. AkX, (x), x ,
k=0

(1.8) Ak > O ==> U( Vk) O,
and S and V have the same (nonzero) sign in any interval Ik in which a’ O.
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If any of the assertions of Theorem 1.1, I, II, III, hold, we may choose the
polynomial S to be the same in all of I, II and III. Further, we may relate s, s’, and
t’ by

(1.9) s s’= degree (T) and t’ degree (T) + 2j 1.

The degree of S is s, while U and V admit the representation

(1.10) U(x) pk(X)p’k(U)S(u) dfl(u),
k=O

(1.11)
t+2

V(x) ., pk(X)pk(ulS(u) dfl(u).
k=O

The following result gives more information on da and d/3, but is an immediate
consequence of Theorem 1.1 and the partial fraction decomposition of U/V.

THEOREM 1.2. Let da and dfl be distributions, with corresponding sequences of
orthonormal polynomials {Pn} and {qn}. Then assertions I, II and III of Theorem 1.1
hold if and only if dt and dfl are given by (1.4)-(1.8). Further,

(1.12) (x)=exp U(u)/V(u) du

satisfies

(1.13)

N

(x) exp (-P(x)) I-I [x- vlr
k=l

( I )exp -Z aik(X--Vi)-k- U*(u)/V*(u) du

where P(x) is a polynomial and F, [’2 [’N are positive. In addition, U* and V* are
polynomials with degree (U*)< degree (V*) and V* is a product ofpositive quadratic
factors of V so that V*(x) > O, x (-00, 00). Consider a term aik(X Vi) -k in the finite
sum , aik X Vi )-k.

If Ai-1 Ai 0, so that a’-= 0 in I_1U L, then the sign of ak is arbitrary, and k
may be any positive integer.

If A-I 0 but Ai # 0, so that a’= 0 in I_x, but a’# 0 in I, then aik >= O, while k
may be any positive integer.

If Ai_0 but A=0, so that a’0 in I_1, but a’=0 in L then ak>=O if k is
even, while ak <= 0 if k is odd.

If A_ 0 and Ai # 0, so that a’ 0 in Ii-lU I, then ak =0 if k is odd, while

ak >- 0 if k is even.
Finally, if Ao#0 and Av0 so that c’(x)S0 for large enough Ixl, then P(x)

must be a polynomial of positive even degree with positive leading coefficient. If Ao 0
but Av 0, so that a’(x)0 for large positive x, but a’(x) =0 for large negative x,
then P(x) must be a polynomial of positive degree with positive leading coefficient.

Using the partial fraction decomposition of U*/V*, we may express
exp (_x U*(u)/V*(u) du) as a product ofpowers (x2 + Bx + C) ofpositive quadratic
factors of V, and of terms of the form exp (-E arctan (Fx + g)) and exp (-Y(x)/(x2+
Bx + C)J), where J is a positive integer and Y is a polynomial of degree less than 2J.
At this stage, it is pertinent to illustrate the above theorems with some examples.
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Example 1.3: GJ. The generalized Jacobi weights GJ 15] take the form

ix vjlr, x [- 1 1 ],
(1.14) w(x)

where N _>- 2, Fj > -1, j 1, 2,. , N, and

-1 Vl< v2<" < VN 1.

Let us set

da(x) w(x) dx.

The choice of V, U and d/3 in (1.5) to (1.11) depend on S. In particular V and S must
have the same sign in (-1, 1). We consider two choices for S.

CASE 1: S 1. Since V must be nonnegative in (-1, 1) and vanish at vl, v2" v,
we set

N-1

V(x)=(l-x2) [I (x-v)2

j=2

and

F, +,,1U(x) V(x)
t x + + lP+,+l t_11-’j+2/

x-1 =2 x-vj’

so that V has degree 2N-2, and U has degree 2N-3, as each F + 1 > 0. It is clear
that (1.5) holds with the obvious choice for H, and from (1.6), we see that

where

d(x)--- Wl(X) dx

- vii xe[-1, 1],
w(x)=

(l+x)r+l(1-x)rN+’ =2U x-.

0 otherwise.

From (1.10) and (1.11), we see that we may choose t=2N-4. Thus, by (1.3), the
orthonormal polynomials {p,} and {q,} associated with w and Wl satisfy

n--1

p’(x) X c,kqk(X), n O, 1, 2,....
k=n-2N+3

In the case N 2, this is precisely the classical result that the derivative of an
orthonormal polynomial associated with a Jacobi weight w(x) is an orthogonal poly-
nomial associated with the Jacobi weight w(x)= (1-x2)w(x).

CASE 2" S(x)= 1-I (x-v). In this case we may choose V(x)= S(x) and

N

U(x) V(x) X (F/+ )/(x v),
j=l

so that U and V have degree N-1 and N, respectively. It is clearthat (1.5) is valid,
while from (1.6), we may set d/3(x)= da(x). Finally from (1.10) and (1.11), we may
choose N 2. Thus, by (1.3),

n-l+N

S(x)p’,,(x) , C,kPk(X), n O, 1, 2,....
k=n+l-N
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Example 1.4: GJ and point masses. Let
N

da(x) w(x) dx + Z
j=l

where w(x) is the generalised Jacobi weight (1.14), and A1 and As are positive, while
A2, A3"" As are nonnegative. In the case N 2, this weight has been considered by
Koornwinder [9].

Let $ 1, and letus determine what U, V and dfl should be. From (1.8), U(+I) =0,
while V must be nonnegative throughout (-1, 1). We may set

N

V(x) 1-I (x- v)-j=l

and
N

U(x) V(x) X (r + 2)/(x- v),
j=l

so that V and U have degree 2N and 2N-1, respectively. From (1.6), we see that
we must choose

where

d#(x)= w(x) dx,

x vjlr,+2, x 6 [- 1, 1 ],
w(x)

otherwise.

From (1.10) and (1.11), we may choose 2N 2. Thus

n-1

p’,,(x) Z C,,,qk(X), n O, 1, 2,....
k=n-2N+l

Example 1.5: exponential weights. Let

da(x) exp (-P(x)) dx, x R,

where P(x) is a polynomial of even positive degree m with positive leading coefficient.
In this case, we may set V 1 and U P’, so that V and U have degree 0 and m 1,
respectively. If we set S 1, then dfl(x)= da(x), and from (1.10) and (1.11), we may
choose m 2. Thus

p’,,(x) Y C,,pk(X), n O, 1, 2,....
k=n-m+l

Using the results and methods of [3], [6], [11] this may be used to establish bounds
on p,,(x). Magnus [12] recently proved Freud’s Conjecture for the above weights.

2. Proof of Theorems 1.1 and 1.2. To prove Theorem 1.1, we shall show I:> II :> III.
First however, we need to introduce notation: The orthonormal polynomial sequences
{p,} and {q,} satisfy three term recurrence relations

(2.1)

(2.2)

where

xpn an+IPn+l + anpn-1 + b,,p,,,

xq, en+qn+l + enqn-1 +fnqn,

ao=eo=0, a,>0, e,>0, n=1,2,3,...,
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while b, and f, are real, n 1, 2, 3,.... Further, if y,(da) and y,(dfl) denote the
leading coefficients of p,, n 0, 1, 2,.-., it is well known that

a,,-- y,,_,(da)/y,(da), e,= %,_,(a)/y,(a), n-- 1,2,3,....

Proof of III. The implication II=I is trivial, so we must show I=>II. By
hypothesis, we have R S/T satisfying

n--j-Fs’

(2.3) Sp?)= r Z C,kqk, n O, 1, 2,....
k=n-j-t’

We shall first show that for some real {Ck),
n--j+s"

(2.4) Sp? Y C,kqk, n O, 1, 2,
k=n-j-t"

where t"-t’= s"- s’= degree (T). It clearly suffices to show that there exist real
numbers ak with ak 0 for < 0, such that

k+
(2.5) Xqk(x) 2 aklql(X), j, k O, 1, 2,’’’.

l=k-j

But this is trivial for j-0 and k=0, 1, 2,..., while for j= 1 and k--0, 1, 2,..., it
follows from the recurrence relation. An easy induction on j establishes (2.5) for all
j, k =0, 1, 2,. .. Thus, (2.4) follows from (2.3) and (2.5).

Next, applying Leibniz’s formula for thejth derivative ofa product oftwo functions
to (2.1), we see that

xp) +jp-l) "() + "() + b,p), n O, 1 2,.an+ll.,n+ tnFn--1

so that

Spn-’)=J-l{a,+ "),,-’e,+l + a,Sp?)- + b,Sp
n--j+ +s"

Cnkqk
k=n-j-l-t"

C,k}. Here we have used (2.4) and the recurrence relation (2.2)for some real numbers { #

for Xqk. Proceeding in the same way, we obtain after altogether j-1 such steps that
(1.3) holds, where s, s’, and t’ are related by (1.9).

The proof of IIIII will be split into several steps.
LEMMA 2.1. Assume that assertion II of Theorem 1.1 holds.
(i) Then there exist real numbers {CriCk} such that Cnk 0 for k < O, and

(2.6) Sp,, E C*,kqk, n O, 1, 2,....
k=n-2-t

(ii) Define polymials U and Vofdegree at most + 1 and + 2 respectively by (1.1 O)
and (1.11). Then for every polynomial P,

(2.7) f_ P(x) V(x) da(x) I_ P(x)S(x) d(x)

and

P(x) U(x) da(x) I_ P’(x)S(x) dfl(x).
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Proof. (i) From the recurrence relation (2.1)

xp’(x)+p,(x) a,+lp’,+l(x)+ a,p’_(x)+ b,p’(x),

so that

S(x)p,(x) a,,+lS(X)p+,(x) + a,S(x)p_,(x) + b,S(x)p’,(x) xS(x)p’,(x).

Then (2.6) follows easily from (1.3) and the recurrence relation (2.2) for Xqk.

(ii) It suffices to show that (2.7) and (2.8) hold for P-p,, n-0, 1, 2,.... Now
if V is given by (1.11), so that V has degree at most / 2,

foop.(x) V(x) d(x)= p,(u)S(u) dfl(u), n <-_ + 2.

But (2.6) and orthonormality of {qk} with respect to d/3, show that

d/3(u) 0, n> t+2.

Thus (2.7) holds for P=p,, n =0, 1, 2,. .. Next, if U is given by (1.10)

U(x a(x
p’,(u)S(u) dfl(u), n <-_ + 1.

But (1.3) and orthonormality of {qk} with respect to dfl show that

dfl(u)=O, n> t+ 1.

Thus (2.8) holds for P=p,, n =0, 1, 2,.... U
Next, we estimate some modified moments.
LEMMA 2.2. Assume that assertion II of Theorem 1.1 holds. Let

(2.9) t. Ixl n 0, 1, 2,. -,
d-oo

and

(2.10) M, I Ixl" dfl(x), n O, 1, 2,....

Then

(2.11)

and

(2.12)

lim sup LlJ"/ n < m

lim sup M/"/n < m.

Proof. First note that as S=0, (2.7) and (2.8) show that U-0 and V=0. Now
from (2.8) with P(x)= x/,

(n + 1) I_oo x"V(x) doz(x),
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by (2.7). Thus

(2.13) I_x"[xU(x)-(n+l)V(x)]doz(x)=O, n=0,1,2,.-..

Next, there exist nonzero constants C1 and C2 and nonnegative integers p and q such
that

xU(x)= ClXP(1 + o(1)), Ixl o

and

V(x) Czxq(I + o(1)), Ixl-,

We distinguish between the cases where xU(x) or (n+ 1)V(x) dominates in (2.13).
CASE 1: p =< q. As usual, for any real x, we let sign (x) denote the sign of x if

x rs 0, while sign (0) 0. Now there exist C > 0 and no such that

sign(-C2xq){xU(x)-(n+l)V(x)}>-_l, Ixl->_ C, n>-no
Then for n => no and n + q even, so that sign (x") sign (xq),

Ii Ix’" da(x)<-sign (-C2) I x’{xU(x)-(n+ l)V(x)}
xl>_c

-sign (-C2) f x"{xU(x)-(n / 1) V(x)} da(x) O(nC"),
xl<=c

by (2.13). Since

Ixl" d(x)- O(
xl<-c

we obtain, for n => no and n + q even,

r. O(nC").

However for n + q odd,

(2.14) L,, <- d,(x)/ Ixl "+’ d,(x)<-_Lo/L./,
xl---1

and then (2.11) follows.
CASE 2: p > q. Let X(n)= 161C2/Cln, n 1, 2, 3,. .. Then for Ixl >--X(n), and

n large enough,

sign (C,xP){xU(x) (n + 1) V(x)} ->

as q-p -< -1. Hence if n +p is even and n is large enough, so that sign (x") =sign (xP),

I,l>-x(,,) ’xl" da(x) <- sign (C’) Ix,>=x(,,)
x"{xU(x)-(n + l) V(x)} do(x)

=-sign(C) f x"{xU(x)-(n+l)V(x)}da(x) by(2.13))
xl-<X (n)

=O(nX(n)"+P).
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Further,

and thus if n +p is even,

Ixl<=X(n) Ixl"d(x)=O(X(n)"),
L,, O(nX(n)"+p) O((C3n)"+P),

for some C3 > 0. This establishes (2.11) if we restrict n to those integers for which
n +p is even. As before, (2.14) yields (2.11) in the general case. Finally, (2.12) follows
easily from (2.7) and (2.11). F1

Finally, we need two Fourier transform identities.
LEMMA 2.3. Assume that assertion II of Theorem 1.1 holds. Then for all real u,

(2.15) I_ei’XV(x) da(x)= I_eiUXS(x) dfl(x)

and

(2.16) e’UXU(x) da(x) iu f?oo e’S(x) dg(x).

Proof. Our proof will be similar to that of the uniqueness criterion of M. Riesz
for the moment problem [5, pp. 79-80]. Let

l(U) I e’V(x) d(x)

and

(2.17) 2(u) I_ e’XS(x) d,8(x)

for all real u. We shall show that there exists r > 0 such that both (u) and p2(u) are
analytic in the strip {u C" IIm ul < r}. To this end, we first note that by Lemma 2.2,
there exists r> 0 such that the series k=0 Lk+’+2zk/k! and Yk=O Mk+,+2zk/k! converge
absolutely and uniformly in compact subsets of Izl < r. Then given real u and Izl < r,
we have formally

e’ 2 (ixl/ V(x a(xl
k=0

2 (i exV(x a(xl/.
k=0

As V has degree at most + 2, it is not dicult to see that the coecient of z in this
last series is bounded by C (L+++ L)/k, where C is a positive constant independent
of k Thus the power series converges uniformly for in compact subsets of I1 < ,
where r > 0 is independent of u. We deduce that the formal interchanges above are
analytically valid and that (u) is analytic in the strip {u :lira ul < r}. Similarly is
analytic in this strip.

If we can show that for some e > 0,

(u) :(u), u(-,),



1172 S. BONAN, D. S. LUBINSKY AND P. NEVAI

so that (2.15) is valid for u e (-e, e), then analytic continuation will show that (2.15)
is valid for all real u. Now from (2.7), we have that (2.15) is valid for real u, provided
we replace eiux by its (n / 1)th partial sum,

P,,(xu)= (iux)k/k!,
k=O

that is,

(2.18) f P.(xu) V(x) da(x) f P.(xu)S(x) d[3(x).

Next, applying Taylor’s formula to the real and imaginary parts of e ’r, y real, we see
(cf. [5, p. 79]) that

[e-P.(y)l<-_21yl"/n!, y real.

Then, using (2.18), we see that

f?oo e’’XV(x) da(x)- I_oo e’’XS(x) d(x)

foo {e’"x P,(xu)}(V(x) da(x) S(x) aft(x))

_-<21ul" f Ixl"{IV(x)l d(x)/lS(x)[ dfl(x)}/n!

-0 asn-*,

if lul is small enough, by Lemma 2.2, and as S and V are polynomials. Thus (2.15) is
valid.

The proof of (2.16) is rather similar. One shows that the left and right members
of (2.16) are analytic functions of u in a strip containing the real line. Further, one
uses (2.8) to show that

f?(R) P,(ux)U(x) da(x) iu f P,_,(ux)S(x) dfl(x)

and proceeds much as above.
Recall that we can write

do (x) o’(x) dx + daj(x) + das(x),

where a’(x) dx is the absolutely continuous part of da, while dcj is a series of point
masses, and das is the singularly continuous part of da. Similar remarks apply to d/3.

Proofof 110111. Let U and V be given by (1.10) and (1.11), and let b2 be given
by (2.17). From (2.16), we see that

(u) O(u-), lul-o,
and hence

I(u)l du o(x),

It then follows from Wiener’s Theorem (Zygmund [21, p. 261]) that

(2.19) F(u) 1-" S(x) aft(x)
d-
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is continuous in (-oo, oo). Next, integrating the left member of (2.16) by parts, and using

(2.20) foo U(x) dt(x) =0

(which follows from (2.16) with u =0), we obtain

foo iu e’{f _oo U(y) da(y)} dx iu f_oo e’XS(x) d(x)
and hence that

(2.21) I_ e’UX{L U(y) dc(y)} dx I_ e’U"S(x) dfl(x),

u 0. We can let u 0 to deduce that (2.21) holds even for u 0. To see this it suffices
to prove

(2.22) I_oolx__ooU(y) dt(y)dx<oo,
and then to apply Lebesgue’s Dominated Convergence Theorem. Now, since all
moments of da are finite, and since (2.20) holds, we see that as x o,

fxU(y) dt(y)=- U(y) dry(y)= O(x-J),

for each positive integer j. Further as x -oo,

ffoo U(Y) da(y)= O(x-j)

for each positive integer j. Thus (2.22) holds and hence (2.21) is valid for all real u.
We may now use the uniqueness of Fourier transforms and the continuity of F(u)

in (2.19) (see Zygmund [21, p. 293, Thm. 10.15]) to deduce for all real u.

(2.23) fu__oo { fx__oo U(y) da(y)) dx= ffooS(x) dfl(x).

It now follows that $(x) dfl(x) is absolutely continuous in (-oo, ). Thus dfls =- 0 and
dflj can have point masses only at zeros of S, so that with the notation of Theorem 1.1,

N’

(2.24) dfl(x) fl’(x) dx + iz,8sk (x).
k=l

Further, from (2.23)

(2.25) Ioo U(y) da(y)= S(u)fl’(u), u (-oo, ).

Next, using (2.15), in the same way as we used (2.21), we deduce that for all real u,

(2.26)
| S(x)’(x) dx,
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by absolute continuity of S d/3. We deduce that V(x) da(x) is absolutely continuous
in (-c, ). Thus das =-0 and daj can have point masses only at zeros of V, so that

N

(2.27) da(x) a’(x) dx + , AkSok (X),
k=l

with the notation of Theorem 1.1. Then (2.26) and (2.27) show that

(2.28) V(x)’(x) S(x)13’(x), x

Further, substituting (2.27) and (2.28) into (2.25), we obtain for all real u
{v,, v v},

(2.29) I U(y)a’(y) dy- , AU(v) V(u)a’(u).

We deduce that Va’ is absolutely continuous in any interval Ik (Vk, Vk+), and

-U(u)a’(u)=(V(u)a’(u))’, UIk.
Hence in Ik,

w’)’/(w’) u v,
and integrating, we obtain

a’(x)=(Ak/lV(x)l)exp g(u)/V(u) du xelg,

where A is a nonnegative constant. Together with (2.27), this establishes (1.5) and
(1.7). It is obvious that at least one A must be positive, since a(x) has infinitely many
points of increase. Now consider an interval I in which a’ is not identically zero.
Then A > 0 and a’ and V do not vanish in I. Hence the left member of (2.28) is of
one sign and nonzero in I, so that S must have the same sign as V in Ig and does
not vanish in I. Now (1.6) follows easily from (1.5), (2.24) and (2.28).

It remains to prove (1.8). Since the integral in (2.29) is continuous in N, it suffices
to show that a’(x) V(x) is continuous in g. As a’V is continuous in each Ik, it suffices
to show that

(2.30) lim a’(x) V(x) -0, k 1, 2,- .., N.

Fix k. If as x Vk, exp (- U(u)/V(u) du)O, it will be bounded below by a positive
number in either some left or right neighbourhood of Vk. Then if a’(x) is not identically
zero in that neighbourhood, it follows from (1.5) that in that neighbourhood

o’(x) >-_ C/Ix- vl’,
where is a positive integer and C > 0. This contradicts the integrability of da. Thus
either a’=0 near va (in which case (2.30) is trivial), or exp (- U(u)/V(u)du)O
as x v and then (1.5) yields (2.30). E!

Proof of III=>II. From (1.5) and (1.7) we see that in any interval I (given by
(1.4)), a’ is absoutely continuous and

(2.31) (V(x)a’(x))’=-U(x)a’(x), XIk.
Further, using the integrability of da as in the proof of II=>III, we see that (2.30) is
true. Finally, from (1.5) and (1.6), we deduce that for all real x_{v, v2,’", vv},

(2.32) V(x)a’(x) S(x)fl’(x).
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Let n be a nonnegative integer. As dfl has jumps only at zeros of S,

f _o Sp’,qk dfl(x) f

_
Sp’,qk’ dx

J-o p’,qkVa’ dx (by (2.32))

pnqkVot’dx
k=0

Pnqk Vot’ Pn (qk Vot dx
k=o Ok

-f_ P,{q’k Vt’+ qk( Vot’)’} dx (by (2.30))

(2.33)

=--I_p,{q’kV--qkU}a’dx (by (2.31))

N

p,,{q’kV--qkU} da(x)+ Akp.(Vk){q’kV--qkU}(Vk),
k=l

by (1.5). Since q’k V- qkU has degree at most k / / 1, the integral in the right member
of (2.33) will vanish if n > k + / 1, that is if k < n 1 t. In view of (1.8), and as vl,

v2," ", vN are zeros of V, the sum in (2.33) is zero. Thus, expanding Sp’ in terms of
qo, ql,"" ", q,, we obtain (1.3).

Thus the proof of Theorem 1.1 is complete. We turn to proving Theorem 1.2.

Proof of Theorem 1.2. Suppose that any of the assertions I, II or III of Theorem
1.1 hold, so that, in particular, (1.5) and (1.6) are valid. The partial fraction decomposi-
tion of U V has the form

N

(2.34) U(u)/V(u)=P’(u)- , Fk/(U--Vk)+ b,k(U--V,)-k-+ U*(u)/V*(u),
k=l

where P is a polynomial, U* and V* are as in Theorem 1.2, and in the finite sum
bik(U--l)i) -k-l, all the integers k are positive. Integrating (2.34), we obtain (1.13).

The stated restrictions on {aik} and P depending on the support of da, follow immedi-
ately from the integrability of da.
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ON SIEVED ORTHOGONAL POLYNOMIALS. V:
SIEVED POLLACZEK POLYNOMIALS*

JAIRO A. CHARRISf AND MOURAD E. H. ISMAILt

This paper is dedicated to the memory
ofJerry Fields, our teacher and our friend.

Abstract. The general Pollaczek polynomials and their sieved analogues are studied in detail. Basic
analogues of the Pollaczek polynomials are introduced. The measures that these polynomials are orthogonal
with respect to are obtained by applying Darboux’s Method and Markov’s Theorem.

1. Introduction. A distribution function q(x) is a nondecreasing function defined
on (-, ) and having infinitely many points of increase and finite moments of all
orders. A sequence of polynomials {p, (x)} is orthogonal if p, (x) has precise degree
n and there exists a distribution function (x) such that

(1.1) J_p.(X)pm(X) d(x) Anmn.

The support of d(x) is the spectrum of , and will be denoted by r(,). Let

(1.2) po(x) 1, pl(x) Aox + Bo.
A set of polynomials {p, (x)} satisfying (1.2) is orthogonal if and only if it satisfies a
three term recurrence relation

(1.3) p.+l(X)=(A.x+B.)p,,(x)-C.p._l(X), n>0,

and a positivity condition

(1.4) A,,A,,_IC.>O, n= 1,2,....

This is known as Favard’s Theorem [9], [30]. We shall normalize 4,(x) by

(1.5) j-_ d(x)= 1,

,(-o) =0, ,(x) [q(x +0)/ q(x-0)J/2.(1.6)
It is easy to obtain

(1.7) ho=l, A.=AoCI’"C,,/A,,, n=l,2,....

A central problem in the theory of orthogonal polynomials is to determine the
qualitative behavior of a distribution function from the qualitative behavior of the
coefficients in the three term recurrence relation [10], [18]-[21]. These qualitative
results are usually motivated by specific examples, or models, where both the poly-
nomials and the distribution function are known explicitly. These models are usually
hard to come by so new models that exhibit distinctly different qualitative behavior
are of some interest and importance. The Szeg6 theory of orthogonal polynomials is
modeled after the Chebyshev polynomials [10]-[12], [30]. Recently several good
candidates of models for new theories have been discovered [4], 15].
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The second order difference equation (1.3) has two linearly independent solutions
{p,(x)} and {p,*(x)}. The denominator polynomials p, (x)} satisfy the initial conditions
(1.2) while the numerator polynomials {p,*(x)} are given initially by

(1.8) po*(X) 0, p*(x)=Ao.

It can be proved that the boundedness conditions

(1.9) IB,/AI<--M and C,/(AA_I)<M, n--I,2,...,

imply the boundedness of or(4,) (Chihara [9, pp. 67, 109]). When tr(tp) is bounded,
the Stieltjes transform ofthe distribution function can be recovered from the asymptotic
behavior of p(x) and p*,(x).

THEOREM 1.1 (Markov). If tr(tp) is compact then

(1.10) lim p*,(z)/p,,(z) I_oo dO(t)
z()

.-oo z

and the limit is uniform on compact subsets of C- cr(d/).
The Perron-Stieltjes Inversion Formula is

f-oo f ’ F(t-ie)-F(t+ie) dt"(1.11) F(z)-
dO(t)

iff O(tE)-tp(h) lim
z -o+ t 2ri

In (1.11) it is assumed that cr(,) is contained in a half line. The asymptotic behavior
ofp,(z) and p*(z) may be computed by applying Darboux’s Method (Olver [23, 8.9]).

THEOREM 1.2 (Darboux’s Method). Letf(z) be analytic in [z[ < r, 0< r< oo, and
have a finite number ofsingularities on [z[ r. Assume that g(z) is also analytic in [z[ < r
andf-g is continuous in [z[= r. Iff(z)=Yo fz g(z)=Yo gz then f,=g,+o(r- ).

The function g(z) is called a comparison function. The origin of the terminology
"numerator" and "denominator" is that the continued fraction

Ao c, I_ c. I_X(z) :=1 Aoz + Bo -I A,z +B A.z + S.
is given by

X(z) lim p*.(z)/p.(z), z Z o’(4,).

Pollaczek’s investigations of a stochastic model of the French telephones led him
to a generalization of the Legendre polynomials [24]. The ultraspherical polynomials
are generated by

(1.12) C(x) 1, C(x) 2hx,

(1.13) (n+l)C,+l(X)=Ex(n+h)CX,(x)-(n+2h-1)C (x), n>0.

The case h = is the Legendre polynomials. Later, Szeg6 [29] extended Pollaczek’s
work by generalizing the ultraspherical polynomials in the way Pollaczek generalized
the Legendre polynomials. Szeg6 considered the polynomials

(1 14) (n+l) xP,+l(X; a, b)=2[x(n+A +a)+b]PX,(x; a, b)-(n+2A-1)PX,_l(X; a, b)

with

(1.15) P(x; a, b)= 1, P(x; a, b) 2x(A + a)+2b.
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Clearly PX,(x; 0,0)= C(x). Szeg6 referred to {PX,(x; a, b)} as the Pollaczek poly-
nomials. They do not belong to the Szeg6 class and the limiting distribution of their
zeros is very different from the classical polynomials (Novikoff [22]). Both Pollaczek
and Szeg6 only handled the case A > 0, a > ]bl, when is absolutely continuous and
r(O) is [-1, 1]. Askey and Ismail [4] treated the case b =0 of the polynomials in
(1.15) and (1.14). The case b 0 contains subcases when the distribution function has
infinitely many jumps. The jumps and the polynomials have been computed explicitly.
This provides a model very different from the case A > 0, a > ]bl of Pollaczek and
Szeg6. This raises the question of determining the distribution function of the general
Pollaczek polynomials. This will follow as a corollary of some of the results of this
work, see 6. The special cases b +a were treated in Bank and Ismail [7]. This is
equivalent to determining the spectral measure of the differential operator

1 dE l(l+l)+Z_,-’ dr---+ 2rE r

which is the radial part of a Schr/Sdinger wave equation with a Coulomb potential.
L. J. Rogers introduced continuous q-ultraspherical polynomials {Cn(x;

and used them to prove the celebrated Rogers-Ramanujan identities. They satisfy

(1.16) (1-q’+l)Cn+l(X; fllq)=2x(1-flq")C,(x; fllq)-(1-fl2q"-l)fn_l(x; fllq),

for n > 0 and

(1.17) Co(x;/3 q) 1, C(x; ]q)=2x(1-B)/(1-q),

where -1 < q < 1. The distribution function of these polynomials was computed in [2],
[3], [6]. These polynomials generalize the ultraspherical polynomials in a direction
different from Szeg6’s generalization. It is clear that C,(x; qXlq) C(x) as q 1.

A1-Salam, Allaway and Askey [1] observed that other interesting polynomials
arise as limiting cases ofthe continuous q-ultraspherical polynomials. They showed that

(1.18) BX,(x; k) lim C,(x; sAk+ltoISto), tO =exp (27ri/k)

exists and satisfies

(x; k) 2xB,(x; k)ln+l B,_(x" k) kXn + 1
(1.19) mBXmk(X; k) 2x(m 4- A) xBmk-(X; k)-(m+2A)Bmk-2(x; k), m>0,

(1.20) B(x; k)= l, B(x; k)=2x, k> l.

A1-Salam, Allaway and Askey named these polynomials "sieved ultraspherical poly-
nomials of the second kind." They also showed that the sieved ultraspherical poly-
nomials of the first kind

(1.21) c,(x; k) lim (tOs; tOs),C,(x; sAkItOS)/(sEAk" StO)n

satisfy

k) 2xc(x" k) C,_l(X; kXn,
(1.22) (m+2A)CXmk+(X; k) 2x(m+A)Cm(X, k) mCk_I(X, k),

(1.23) c(x; k)- 1, c(x; k)=x, k> 1

where tO is as in (1.18). In (1.21) we used the notation

(1.24) (a; q)o 1, (a; q), I (1-aq;-1).
j=l

m>0,



1180 J.A. CHARRIS AND M. E. H. ISMAIL

AI-Salam, Allaway and Askey let q tos and let s 1 formally in the orthogonality
relation of the continuous q-ultraspherical polynomials after choosing/3 as in (1.18)
and (1.21). They mentioned the orthogonality relations

(.5) c(x; )c(x; )w,(x) dx r r + h,,m,/r( + ),
--1

and

(1.26)

where

(1.27)

and

I B(x; k)B(x; k)w2(x) dx= F F A d- hn,2m,n/"(A. + 1),
-1

wl(x) (1 x2)X-/: Uk_l(X)l2x, (A)r,’/k.](.1)L"../k....
h""-(2A)r,.,/kl(A + 1) t./k

(1.28) w:z(x)=(1-x:)"+/=lU,,_(x)l’, hn2 -(A +l)tn/kj(2A +l)t"+l/k
2(1) t./k (;t +l)t.+/k

For proofs, see Askey and Shukla [5], Charris and Ismail [8] and Ismail [14].
This paper is part of a series of papers on sieved orthogonal polynomials, [8],

[ 14]-[ 16]. In this part, we thoroughly investigate a sieved analogue of the Pollaczek
polynomials. We start with an analogue ofthe continuous q-ultraspherical polynomials.
The appropriate analogue is

Fo(x) 1, F(x)=2[(1-AU)x+ VII(I-q),
(1.29)

(1-q"+l)F,,,+(x)=2[(1- UAq")x+ Vq"]F,,,(x)-(1-A2q’-)F,,,_(x),
n>0.

We shall also use F,,(x; U, V, A; q) instead of F,(x) ifwe need to exhibit the dependence
on the parameters U, V, A and q. In 3 we obtain generating functions for {F.(x)}
and {F*(x)}. We then take

(1.30) U=sk, V=tosk(1--$kb), A-to$kh+l, q=sto,

and let s 1. Set

(1.31) B(x; a, b; k)= lim F,.,(x; sk, tosk(1- sk’), toska+; StO).

Writing B(x) for B(x; a, b; k) we get

(1.32) B(x) 1, B(x) 2x,

and

./(xl x(xl-_(x, ,+ ,
(1.33)

mB(x) 2[(m+t+a)x+b] "B,,.,k_,(x)-(2A +m)BXmk_2(X), m>0.

These are the .sieved Pollaczek polynomials of the second kind. The case b 0 is in
14] when A > 0. Generating functions for the BX.’s and their numerators follow from

the generating functions for the Fn’s and F*’s. This is also done in 3. The q-binomial
theorem

(1.34)
(az; q)o= (a; q).
(z; q) ,,=o (q;

z"
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(Slater [28, p. 248]) will be used. The asymptotic behavior of B(x) and B*,’(x) are
determined and the continued fraction whose numerators are {B,*X(x)} and
denominators are {B(x)} is computed. Also, in 4 analogous results are obtained for
the sieved Pollaczek polynomials of the first kind which arise as follows. Let
{G,(x; U, V, A; q)} or simply {G,(x)} be

(1.35) G,,(x)
(q; q).Fn(x)

(A2;

The G.’s satisfy Go(x) 1, Gl(X) 2[(1 -AU)x + V]/(1 -A2) and

(1.36) (1-A2q")G.+,(x)=2[(1-AUq")x+ Vq"]G,,(x)-(1-q")G,,_l(x), n>0.

Now let

(1.37) U=ska, V= sk(1--skb), A= sk, q= sw,

and define the sieved Pollaczek polynomials of the first kind by

c(x; a, b; k) lim G.(x; S ka, sk(1 skb), S kx’, WS).

They satisfy

X(x; a, b" k)= x,(1.38) c(x; a, b; k)= 1, Cl

and

a (x; a, b; k), k4"nc+,(x; a, b; k)= 2xc(x; a, b; k)- cn_

(1.39) (m + 2)t) C,,,k+I(X;’ a, b" k)=2[x(m+a+A)+b]Ck(X’, a, b; k)

-mc (x" a, b" k)mk-1

for rn > 0. The distribution functions of both polynomials are determined in 4 and
5. It turns out that the discrete spectrum (the closure of the isolated points of discon-
tinuity of 4(x)) is very hard to determine in this generality. The orthogonality relations
are stated explicitly at the end of 5. Section 2 contains a brief survey of the Hadamard
integral, a very important technique in determining the leading term in the singular
part of a complex valued function defined as a definite integral. This technique is used
in 4 and 5. In 6, we treat the general Pollaczek polynomials. This is achieved by
letting k 1 in our results on the sieved Pollaczek polynomials of the first kind. The
measure that the q-Pollaczek polynomials {Fn(x)} are orthogonal with respect to is
also found in 6.

The asymptotic formula

F(a+ n) a-b(1.40)
F(b+n)

n asnc

and the Chu-Vandermonde sum (Rainville [26, p. 69])

(1.41) 2F1 (-n,c b 1) (c- b).
(c).

will be used in the sequel. In 5 we shall need the following lemma (Shohat and
Tamarkin [27, pp. 45-46]).
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LEMMA 1.3. Let {P,(x)} be an orthonormal polynomial set and assume that the
associated moment problem is determined. The corresponding distribution function has a
jump at x if and only if

(1.42)
o

2. The Hadamard integral. In this section we study some basic properties of the
(simple) Hadamard integral (Hadamard [13]).

We say that an open subset 1) of the complex plane is a branched neighborhood
of b if 1) contains a set of the form D-Rb, where D is an open disc such that b 6 D
and Rb is a half-line emanating at b and not bisecting D. We will usually assume that
1) is simply connected. Clearly, any open disc is a branched neighborhood of its
boundary points. If D is the unit disc, D-[0, oe) is a branched neighborhood of 0.

Let fl be a simply connected branched neighborhood of b and assume that p is
a complex number which is not a negative integer, that (t-b)p is defined in fl and
that g(t) is an analytic function having a power series development ,--0 an(b-t)
around b which holds in a neighborhood of 1)U {b}. We define the Hadamard integral

I(b-t)Pg(t)dt, zl),

by the formula

(2.1) (b- t)"g(t) dt= , a,,

,=o p+n+ l(b-z)+n+l.
It is clear that when Re (p) > -1, then

(2.2) (b t)g(t) at (b t)’g(t) at,

where the integral on the right side is over any curve in gl joining z and b.
More generally, if gl’ is a simply connected open set containing l), and g is analytic

in ’ and has a power series expansion around b which holds in a neighborhood of
U { b}, we define

(2.3) (b-t)’g(t) at= (b-t)Pg(t) at+ (b-t)Vg(t) at, a’,

where z e l). Furthermore

(2.4) (b t)g(t) dt (b t)Vg(t) at.

If fl is also a branched neighborhood of a and ’ is a neighborhood of 1 U {a}, we
define, for g(t) analytic in IY and p, tr -1,-2, ,

(-a)(b-t)g(t) de= (t-a)(b-t)Pg() dt

(.5
-61

+ (t-a)(b-t)g(t) dt,

where z is any point in
The integral (t-a)(b t)og(t) dt is an extension of the integral b (t_a)(b_

t)Og(t) dt from the proper cases Re (tr)>-l, Re (p)>-I to the case o-, p -1, -2,
-3,. .
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The definition of the Hadamard integral can be extended to a function f(t) of
the form

(2.6) f(t)= C.(b-t)+", tl.
n=0

Let g satisfy the same assumptions as in (2.3). We now define the extended Hadamard
integral by

(2.7) f(t)g(t) dt= Y C, (b-t)+ng(t) dt+ h(t)g(t) dr,
n=0

where

h(t)= C,(b-t)’+"
n=N+l

and Re (/9 + n) > -1 for n > N. Functions defined by (2.6) are said to have an algebraic
branch singularity at b. When f is given by (2.6), f is a branched neighborhood
of a, and

(2.8) g(t)= E a,,(t-a)+
n=0

with Re (o-)-1,-2, , we define

(2.9) f( t)g( t) dt f( t)g( t) dt + f( t)g( t) dt, z

It is not dicult to prove the following.
THZORZM 2.1. Let f be an analytic function in the simply connected branched

neighborhood fl of the point b, and assume that f has an algebraic branch singularity at
b. Let {g} be a sequence ofanalyticfunctions in a neighborhood ’ of U {b} converging
uniformly to zero on compact subsets of O’. en, for all a O’ we have

lim [f(t)g, (t) dt O.

COROLLARY 2.2. Let f , {g,} and ’ be as in eorem 2.1 but assume that {g,}
converges to g on compact sets. en

(2.10) i f(t)g,(t) dt= f(t)g(t) dt.

COROLLARY 2.3. Let f O, O’ be as in the theorem, and assume that

(2.11) g(t)= E a,(t-a)
n=0

holds for a 0 and all l’. en

(2.12) f(t)g(t) at: E a. f(t)(t-a) at.
0

Since uniform convergence on compact subsets is sometimes dicult to check,
the following corollary is often useful.
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COROLLARY 2.4. Let f, , fl’, {g,} and g be as in Theorem 2.1, but assume only
that {gn} is uniformly bounded on compact subsets of ’ and that {g,(t)} converges to
g( t) for each in a subset S of ’ having a limit point in 1)’. Then

(2.13) i.rn I? f(t)g.(t) dt f? f(t)g(t) dt.

We now study Hadamard integrals of functions that will arise in this work. These
integrals are related to certain analytic functions in the cut plane C-[-1, 1] that we
will now introduce.

Let x/z + 1 be the branch of the square root of z + in C-(-,-1] that makes
v/z + 1 > 0 if z > -1, and x/z- 1 be the branch of the square root of z- 1 in C- (-oo, 1]
with x/z-1 > 0 for z > 1. Both x/z + 1 and v/z 1 are single valued in the cut plane
C-(-oo, 1]. Let

(2.14) r(z)=x/z+lx/z-1, z C-(-oo, 1].

Observe that when x <-1 we have

(2.15) lim v/x + iy + 1 v/x + iy 1 iv/-fc- 1 iv/-x + -x/x2-1
yO
y>0

and

(2.16) lim x/x + iy+ l x/x + iy- l (-ix/-Z- l) (-iv/-x + l) -x/x2-1.
y->O
y<0

We now extend r, by continuity, to the cut plane C-[-1, 1]. In order to do so we define

(2.17) r(z) -x/z2-1, z<-l.

Clearly, r(z) is analytic in C-[-1, 1]. In what follows we shall simply write

(2.18) r(z) x/z2-1.
We now define the following analytic functions in C- [-1, 1]

(2.19) a(z) z + r(z) z +/z- 1,

and

az + b az + b
(2.20) A(z)=-A

r(z) x/z_ l

Here, a, b, h are real numbers and

(2.21) a>-1/2,

(2.22) a-a 0, 1,2,. ..
We note that

(2.23) a(x) x +x/x2- 1, fl(x) x-x/x2- 1 if x > 1,

(2.24) a(x) x-x/x2-1, fl(x) x +x/x2 + ifx<-l,

ax + b ax + b
+x > 1,, B(x) -A q:/x2 1’

(2.25) A(x)= -A +x/x_ l

(2.26) lim r(x + iy) +ix/1 x2, -1 <= x <- 1.
y+0+/-

(z) z-r(z)= z-x/z2-

az + b az + b
(z) -a a

r( z) x/z2 1
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The following functions are continuous on their domain of definition

(2.27) .+(x+iy)={’(x+iy), y>0, (x), Ixl>a,
i/i x), Ix[ -< 1, y 0,

y<0, ’(x), Ixl>l,
(2.28) ’_(x+iy)= _ix/i_x2 Ixll, y=O,

(2.29) c+(z) z + r+(z), fl+/-(z) z r+/-(z),

az + b az + b
(2.30) A+/-(z) =-A + (r+/-’z-----T’ +/-(z) =-A T+/-(Z)"

Observe that for -1 -< x =< 1 we have

(2.31) a_(x) =/3+(x), /3_(x) a+(x),

and

(2.32) A_(x) B+(x), B_(x) A+(x).

To simplify the notation we will write when -1 < x < 1

(2.33) a+(x) a(x), /3+(x)=/3(x); A+(x) A(x), n+(x) n(x).

The following elementary result will be very useful.
LEMMA 2.5. For each z in C, a(z) and fl(z) are the solutions of the equation

(2.34) - 2zt + 1 0

that satisfy

(2.35) a(z)+(z):2z, a(z)-fl(z):2r(z):2x/z2-1, a(z)/3(z):l.

Furthermore, I(z)l <-la(z)l, with la(z)[ I/3(z)1 if and only if -1 <- z <= 1.
Now let

(2.36) D= {z [-1, 1]: B(z) 1, 2,...}, O* ={z [-1, 1]: B(z) # O, 1,...}.

LEMMA 2.6. For z e f (respectively z f*) and all integers n O,

z,(2.37) (1- u)-S(Z)u du
(-B+ 1),+

n ,.= Z6(2.38) (1 u)-S<z)-’u du
(_B)n+l,

The next theorem gives a series expansion for a Hadamard integral.
TnzozM 2.7. For every z , define F(z) by

(2.39) F(z) -u (1 u)-sz) du.

Then

(2.40) ()F(z)
(A + 1),, flk

=o (-B+ 1).+,

and is analytic in f.
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We observe that

(2.41.) F(Z)=B_i2F,
For points in * Theorem 2.7 takes the following form.

THEORE 2.8. For each z *, let

(2.42) G(z) ---gu (1 U) -B-1 du.

Then the function G(z) is analytic in * and is given by

(.4 a( - (_+ - -+
The next theorem relates a Hadamard beta integral to an ordinary beta integral.
THEOREM 2.9. For -1 < x < 1, we have

(2.44) (1 U)-B(x)--lu -A(x)-I du
r(--a(x)r(-- (x))

0,
r(al

and

(2.45) (1--tl)-B(x)tl -A(x)-I du
F(-B(x)+I)F(-A(x))

r(2a +1)

Proof Note in the first place that -A-B 2A. We shall only give a proof of
(2.44) because (2.45) can be proved similarly. When -1 <x < 1, we have

ax + b ax + b
(2.46) A(x) -a

/1 x2’ B(x) - +
/1 x2’

so that Re (A(x)) Re (B(x)) -a. If a > 0, (2.44) and (2.45) are just the beta integral.
Now, assume -1/2< a < 0 and 0< z < 1. Clearly

(2.47) (1 u)-n-u-A- du (1 I,/)-B--lu-A-1 du + (1 U)-B lu--A-1 du.

By the definition of the Hadamard integral,

(2.48) (1 u)--lu-A-1 du z-A Y
,=o n! n-A

For the time being we let a be a complex number in the domain U given by Re (a) > -1/2,
a # 0. Then, the right side of (2.44) is an analytic function of a in this domain, and
an argument based on (2.48) shows that

f(a)= (1- u)--u-A-1 du

is analytic in U. On the other hand,

I) ’riO )-A-1g(a)= (1-u)-S-u-a- du= u-S-’(1-u du

is also analytic in U. Since, from (2.47),

r(-A)r(-s)
r(2a)
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for Re (A)>0, the above equality also holds in U and, in particular, for -1/2<A <0.
This completes the proof of the theorem.

3. Generating functions and asymltotics. We first evaluate the generating function

(3.1) F(x, t)= E F(x; U, V, ZX; q)t.
n=0

Multiply (l.29) by "+, n 1, 2,. ., and add the resulting equations to obtain the
q-difference equation

(3.2) (t2-2tx + 1)F(x, t)= [A2t-2( UAx- V)t + 1IF(x, qt).

Now, a(x), (x), as given by (2.19) are roots of

(3.3) t2-2xt + l (1 -t/a)(1 tiff).

The roots of A2t2- 2( UAx- V)t + 1 0 are

Ux- v)+Cx- v)- Cx- v)-4Cx- v)-
(.4) (x)= (x)=

Clearly

(3.5) (x)(x) -A2 A2t2-2(UAXx- V)t+ 1 (1- t/:)(1- t/).

(t/;q),(t/;q),
(3.6) F(x, t)= F(x, qnt),

(t/a;q)n(t/;q)n

whose solution, since F(x, tq) -> F(x, 0)= as n- v, is

(3.7) F(x,t)=
(t/; q)oo(t/; q)
(t/a; q)o(t/; q)o"

We now determine the generating function of {F,*(x)}, namely

F*(x, t)= E F(x)t".

In this case, F*(x; q"t)0 as n-oo, since F*o(X)=0.
Replace the Fn’s in (1.29) by F,*’s then multiply by "+, n 1, 2,... and add to

get

2(1- UA) (1- t/ )(1- t/)
(3.8) F*(x, t)= +-- F*(x, qt),

(1--t/a)(1-t/fl) (1-t/a)(1-t/)

where a,/3 are as in (3.3) and :, sr as in (3.4). Iterating (3.8) gives

(t/;q)(t/;q)
L q(3.9) F*(x, t)= 2t(1- UA)

(t/a; q),,+l(t/; qn+l
The generating function (3.9) can be written in the form

F*(x, t)= 2t(1- UA)F(x, t) Z
(q"+lt/a; q)(q"+t/fl; q)oo

.=o (q"t/; q)o(q"t/; q)oo
q""

Iteration of (3.2) gives the functional equation
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The q-binomial theorem (1.34) implies

F*(x, t)-2t(1-uA)F(x, t)
(q/a; q)j(q/fl; q),

,,d=o (q; q)(q; q)m =o

Therefore,

(3.10)
F*(x,t):2tF(x,t) E

(q2/a; q)j(q2/fl; q),
,,d=o (q; q)j(q;

(1 :q/c) (1-q/fl) 1-UA
(1-qj+l/oz) (1--qj+l/fl) (1--q’++’)"

We obtain a generating function for the B’s by taking

(3.11) U= ska, V=oosk(1--skb), A=WSk+l

and letting s 1 in (3.7). Let

q sto,

(3.12) B(x, t): , B(x)t"= lim F(x, t),
n=O

where U, V, A, q are given as in (3.11).
The q-binomial theorem (1.34) yields

(t/a; q)oo ,=o (q; q),

We write

(a/; q),_ "1 1-q;a/
(q; q), =o 1- qj+l

and examine the behavior as s- 1 of each factor in the above product Set

(3.13) rl(S) := W(xsk+k+’-- sk(1-- skb)).
It is easy to see that when A is given by (3.11)

(3.14) = n(s) +4n(s) A
A

n(s) A

A2

When s 1, rl(s)q(1)=tox and a/--w. Hence, if kXj+l, we obtain

1-qa/ 1--tOj+l
(3.15) lim

qj+l ==1
-1 1- 1-toj+

We now consider the case klj + 1. Let

(3.16) f(s):= qa/, j=O, +/-1, +/-2,...,

Then

f(s) aqAZsr awJsJ[rl(s)-x/rl(s)Z-A2], (1)=1.

f;(S) olj(.oJsJ-l[ "(S) 4T] (S)2- 2]
__

OlO)js [ TIt(S)_ n(S)’t(S) AAt]
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so that

f(1) =j + atoJ [ q ,(1)
*l(1)l’(1) A(1)A’(1) ].,/n (1)__ A(1):

Since r/(1) wx, A(1) w and A’(1)= to(kA + 1), we have

f](1) =j+ ato
r/’(1)(-fl) + (kA + 1)to

/x2-1
rosin’(1)- (kA + 1)ato]

=J- x/x2-1
It is easy to see that /’(1) to[(kA + ka + 1)x + bk] and

ax+b
klj+ 1.(3.17) f](1) kA +j+l

1’
If g(s) to+ls+1, j =0, +/-1, +/-2,. .,

g(s) (j + 1)toJ+lsj, gj(1) (j + 1)toj+l

When k lj + 1, this yields

lim 1-qJa/=f](1)--A(x)+ m j+ 1 km,
s-l 1-qj/ gj(1) m

where A(x) is given by (2.20). Similarly

1 qfl/ -B(x) + m
(3.18) lims_l 1 q+l m J + 1 km,

with B(x) given by (2.20). Hence, using the q-binomial theorem, we get

lim (t/" q)o/(t/a" q)o=lim
(Ot/; q)mk+l()

mk+l- - 0_--<< (q; q)/
m=>0

m=o m! =o

,,--o m! 1- t/a

so that

lim (t/; q)oo/(t/a; q)oo=(1--t/a)-(1--tk/ak)A.
s->l

Similarly

lim (t/; q)oo/(t/fl; q)oo (1 t/fl)-l(1 tk/flk)B;

hence for x C and Itl < I (x)l we have

(3.19) Bx (x, t) 1 2xt + t2)-’( 1 tk/Ot k)A(1 tk/flk) B.
We now proceed to similarly evaluate the generating function

(3.20) B*X(x, t)= Y B*a(x)t =lim F*(x, t),
s’-*ln----0
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with U, V, A, q as given by (3.11) and F;(x, t) is as in (3.10). Clearly

1-q’+’/a 1-q-r-la/ 1-q-’-loz/
lim lim q/a lim
s-, 1-q - 1-q s-l 1-q

=1or
f-r-l(1)
g,-l(1)’ accordingly as kVr or k[ r.

Here, f, gj are as before. Hence

(3.21)
1--qr+l/ot A+ r/k

lim or 1 if k r or kgr.
-, 1-q r/k

Similarly

(3.22)
1-q+/fl B+r/k

lim =orl ilk IrorkXr.
-,1 1-q r/k

On the other hand,

lim (1 q/a )/(1 ql+kr/t lim (1 q-la/)/ (1 q-l-ko/)
sl sl

and (3.16) imply

(3.23)
1 -q/a fs(1) A

lim +k/-, 1--q a f’-k(1) A+r

and similarly

(3.24)
1- q/fl B

lim--, 1 ql+kr/fl B + r"

Clearly

1-q/a 1
lim m+j+l =0 or
-,1 1-q m+j+l

if kXm+j+ l or klm+j+ l,

1-UA 1-to
lim ifj=ks+l, 0<l<k,
sl 1 /aq+ 1 to

and

1-UA 1-to
lim ifm=kr+l, 0<l<k,

1 /flq"+ 1 to

imply that the summands in (3.10) vanish except in three cases:
(I) klj and kl m,

(II) k IJ and k IJ / rn / 1,
(III) k lm and k [j + m + 1.

Since in case (I) (1- UA)/(1-qm+-+)- 1 as s 1 we get

(3.25)
F*

lim E(x) + E2(x) + E3(x),
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where k, j belong to case (I), (II), (III), respectively, in El, E2, 3- Using (3.21), (3.22),
(3.23) and (3.24), we obtain

El(x) 2t(1 tk/a k)-A(1 tk/flk)-B,

(A)j (B+ l)m(_)kJ ()
km 1

(3.26) EE(X)=--2tkak-IB "ij,,,, m. j+ m+ 1’

E3(X)=_2tkk_lA (A+I)j (B),,,()J()’’, 1

j,m j! m! j+m+l"

Therefore

2t
B* (x, t)

1 2xt + 2 + 2Ba (x, t)

{ Io(--)-A(tk1- 1--)-B-1(__B)ak_ U U
du

1- 1--+(_A)flk_ u u

Integration by parts gives

2
B*(x,t)=+2B(x,t)

t--or

+ Ak(fl a) 1
u

which, after the change of variables u ,tk, becomes

2
(3.27) B*a (x, t) +2Ba (x, t)

t--o

{ (_)kIol ( )-A-l(fl+A(fl-a) 1- Uk 1-- u- du

This is an analytic function of x, for all x in the cut plane C-I-l, 1] and
We now study the asymptotic behavior of {B,(x)} and {B*a(x)} for large n. We

use Darboux’s Method, Theorem 1.2. Let xC-[-1, 1] be fixed. The generating
function Ba(x, t), as given by (3.19), is an analytic function of t, for Itl and
has an algebraic branch singularity of order -B(x)+ 1 at fl(x). The leading term in a
comparison function is

()a-l_ limt_,a (1 BX(x’t)_ tiff)a_ ( 1--)-(1- (_)k)A limt_, (1--(t/fl)k)n(1 tiff)

=kB ( 1-)--1( 1--k)A(-ndt’l)n=O/’/’ ()n.
Using (1.40) we obtain

(3.28) B(x). k
a

1-
F(-B+I)
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This formula gives the asymptotic behavior of the B,(x)’s for x C-[-1, 1]. For
-l=<x=< 1 then I (x)l-lt (x)l, and a(x),B(x) are both branched singularities of
Bx (x, t). There is an additional difficulty. If Re (A)< 0 and x , where

(3.29) =cos (), O<-_j<-k,

then (fl/a)k= 1 (and also fl/a= 1 if j=0, k), so that (1--(fl/oz)k)A is meaningless
(also (l-ilia)-1 is meaningless if j=0, k). This makes it difficult to establish the
asymptotic behavior of the Bx, (x) at x . For the sake of completeness, we state the
asymptotic behavior of B(x) for x , although we will not make any use of it. In
6 we will study the asymptotic behavior at the points .

Assume x , j 0, 1, 2,. , k. Clearly

(3.30)
r(-B+l)

+ kA [3
1-

Ol -A

fl-a F(_A+I)n as n- c.

Recalling that a(x) fl(x) and A(x) B(x) when -1 <= x <- 1, we have that

(3.31) BX,(x).--.2 Re {k
This can be put in the form

(3.32)

(2k)-Xna

F(-B/ 1)l(a--)/2ill(ak--k)/2ilA

x exp (x) arg ia- - cos e.(x)
2i

where -r < arg z <- r,

and

e,(x)=n(arga)-(x)[ln()+ln[2sin (k(arg a))l]- A arg(ia-ksin (k arg a))

-arg (F(-B + 1))- arg (ia -1 sin (arg a)).

If x cos O, (j 1)/kr < O <jzr/k, j 1, 2,. ., k, we can write (3.32) in the form

(2k)-Xn cos e,(O)

where

and

(cos O) a cot O + b csc O,

e,(O)=(n+kA+l)O+-(A(1-2j)-l)-p(cosO) In +ln 12sin kOI
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We now determine the asymptotic behavior of B*,’(x) for x[-1, 1]. Note that

B(x) B+(x)= -A + idp(x)= -A +i
ax+b

-l__<x__< 1,

implies Re (B(x))=-A <-1/2 for -1-<x=< 1. Let 6> 0 be such that Re (B(z))< 1 for
z (x- 6, x + 6) x (0, 6), and call this last set K. For z K, Re (B) > 0,

(3.34) 1 --u 1 -- u --< C(1 u)-R(m, 1 -< u < 1,

where C depends only on z. Since Re (B)< 1, the function (l-u)-<n) is integrable
in [0, 1]. The Lebesgue Dominated Convergence Theorem implies

f0t( k )-A-l( tk )-B I0[( k )-A-1(3.35) t-,tz)lim 1 - 1 -u du 1 -u (1 u) B du.

The relationship (3.35) trivially holds if Re(B)_-<0. Hence, the leading term in a
comparison function for B*x (z, t) is

( ()
k

I0| ( fl_) -A-1(3.36) 2/X(z,t) fl+A(fl-a) 1-u (1-u)-Bdu zK

where/ (z, t) is the dominant term in a comparison function for Bx (z, t). Thus

(3.37) B*"()-2B() fl+A(fl-) 1-u-- (1-u)-du,

as n oo and the associated continued fraction is

(3.38) X(z)=2 fl-bA(-ot)fl2k 1--u (1-u)-ndu, zeK.

The right-hand side of (3.38) is analytic on K. The left-hand side of (3.38) fails to be
analytic only on the suppo of d, ff being the normalized distribution function for
{B(x)}. From the propeies of the Hadamard Integral of 2

1-u (1-u)-du

is an analytic continuation of Io (1- (/)u)-a-(1- u)- du to the set a of (2.36).
us, we proved that e- (4) and

(3.39) ()=2 +A(-)

In the next section, we study the behavior ofX() on the set D {z: B() 1, 2,. .}
in order to determine the conditions under which it is pa of ().

We now establish a generating function for the polynomials of the first kind
{c(x; a, b; k)}. For brevity, we will write c(x) for c(x; a, b; k). Recall

(3.40) c(x) lira G(x; U, ; q)

where

(3.41) U=s, V=sk(1--skb), A=Skx, q=sto.
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Now (3.3), (3.4) and (3.7) give

1- UAq"
(3.42) G(x, t):-

,=o 1-UA
F,(x)=h(s,t)

(qt/s; q)oo(qt/; q)oo
(t/a; q)(t/fl; q)

where

(3.43) g(s, t):= 1-AU+(A- U)At2+2Vt, h(s, t):= g(s, t)/(1-AU).

As s--> 1, h(s, t)--> 1+ [2bt-(A-a)t2j/(A +a). Furthermore,

(1-qJa/) A+ m
(3.44) lim or 1 if j km or kXj.

s-,1 1 q m

A calculation similar to what we used to prove (3.9) yields

(3.45) CX(x, t)=
[A +a+2bt-(A-a)t2]

1 2xt + tE)(x + a
(1- tkflk)A(1-- tka k)a,

where Ca (x, t) is the limit of G(x, t) as s--> 1. In fact

(3.46) Cx(x, t) b.c,(x)t",

where b, is the limit of (1- UAq")(A2; q),/[(1-AU)(q; q),]. Thus

(3.47) b, _(A +a+ 1)[n/kJ(2A)f,/k]
[n/kJ!(A+a)r,/kl

where [xJ and Ix denote, respectively, the largest integer <x and the smallest integer

From (3.45) and Darboux’s Method we readily obtain

(3.48) b,c(x)._kn B (l_flEk)A
A+a F(_B+ 1)

n na3,

holding in the complex plane outside the interval [-1, 1].
We wish to determine the asymptotic behavior of c*,a(x) in order to find the

continued fraction whose denominators are {c,(x)}. The first step is to derive a
generating function for {c.*(x)}. Let

(3.49) f(s, t):= 1 +A2t2+2(V-xUA)t,

1- UAq"
(3.50) G*(x, t):= F*,(x)t".

,=o 1-UA

Formulas (3.9), (3.42), (3.43), (3.49) and (3.50) lead to

2t F*(x, t)
(3.51) G*(x, t)=+ G(x,t)

f(s,t) F(x,t)"

Letting s--> 1 in (3.51) and taking (3.41) into account we obtain

(3.52) .. b,c.,(x)t,=
2t CX F*(x, t)

=o 1 2xt + 2 t- (x, t) lim
-1 F(x, t)’

and Cx (x, t) and b, are given by (3.45) and (3.47), respectively. The following lemma
generalizes results of [1] and [14].
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(3.53)

LEMMA 3.1. With F(x, t) given by (3.7) and F*(x, t) by (3.9), we have

F*(x, t) a k k f klim 2(A +a) -fl (1--uflk)-A-(1--Uak)-B-1 du.
-, F(x, t) -Proof. Using

F*(x, t)= 2tF(x, t)

we easily see that

.. (q/c; q)j(q/fl; q)m 1-UA

m,j=O (q; q)(q; q)m 1-q’++"

Furthermore,

lim
1 q/a (-.1 l_q

=1 or

lim
1 qm/fl 1 or

s-l 1--q

A
r

+ .r.) if kXj (.or j kr),

Br+r) accordingly as kXm or m kr.

1-UA A+a
lim ,,+j+ is 0 if kXj + m + 1 and is if j + m + 1 kr.
-, 1-q r

Using the above limiting relationships we see that

F*(x, t)
lim=2k(A + a)-, F(x, t)

y (A+ 1)L/kI(B+ 1)Lm/kJ t+m+l m-
,m=O Lj/kJ!Lm/kJ!(m+j+l)

a

klj+m+l

Let j kjl + l, m kml + k 1, where 0 _-< < k, j _-> 0, ml -> 0. Then

F*(x, t) (A+ 1),(B + 1),,,,
lim 2(A +a)
s->l F(x, t) j,,.,,=oj!m,l(j,+m,+l)k

k-1

[Ol(ml-jl+l)k Z [21.
I=0

Therefore

F*(x, t) a k

lim 2(A +a) -fl (1--uflk)-A-l(1--uotk)--1 du.Jo-., F(x, t) t

This proves the lemma.
This shows that a generating function of the numerator polynomials is

Z b.c*."(x)t"=
2t

t-2(A +a)
ak--[3k 2b A-a

2xt + 1 a [3
1 + 2

,,=o A +a A +a
(3.54)

(1 tkflk)A(1 tkc k)a t

(1--uflk)-A-’(1--uak)--’ du.2- 2xt + 1 Jo
Integration by part gives

/3 )-(1 uk)-A-I(1 US k)-S-1 du --(1 )-A-1(1 tka ----[32k A+ 1 f (1 uflk)-A-2(1 uak)- du.
B do
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An argument similar to the one used to prove (3.38) gives

1 ua du (1 uflk)-A-2(1 uak)- du.lim (1 u[3k)-A-2( k -t->/3 dO

The above calculations, (3.54) and Darboux’s Method establish

bnc,nX(X)...2(A+a)(flk--otk)flk{ A+lf
-q

-A-2( k)-B}(fl a " 1 + ak do
(1 gift k) 1 Ua du

as n- m, when x e C- a, b]. This proves that the continued fraction is

(3.55) X*(Z)=-2h+a(afl--) 1{ (A+kl) f }a -’"/3 1- 1 +
a ao

(1- uflk)-A-2(1-- uotk)-B du

x C-[a, b], which can also be written

( ilk) l { flkI? ( flk)-A-2(3.56) X*(Z)=-2 (A+a)
1---- I+(A+I)--- 1-u--

AThis is the form of the continued fraction for the polynomials c,(x) that we will use
henceforth. It is an analytic function of z in the subset II* of C-[-1, 1] where
B(z) # 0, 1, 2,..., i.e., its only possible singularities outside [-1, 1] are on the set
D* ={z: B(z) =0, 1,2,." "}.

4. The continued fractions X(z) and X*(z). The continued fractions X(z) and X*(z)
are analytic function of z in the cut plane C-[-1, 1], except possibly on the sets D
and D* where B(z) is, respectively, a positive and a nonnegative integer. We now
identify these sets and the type of singularities X(Z) and X*(Z) have on such sets.

Let 1) be, as in (2.36), the set of points in C-I-l, 1] where B(z) 1, 2,..., and
fl* be the subset of l’l where B(z) O. The function X(z) is analytic in and

I? __g2k)-A-1 -B n()(1 (l-u) du=(1--2k)-A- (A+ 1) fig 1

=1 n flk ak n + l B

Ag(1 fl2k)-A Z
=, k_ak n-B

for z e f/. Therefore

(4.1) X(Z)=2{fl+(Ot_fl)(l_fl2k)_A(A)n( k )" n }
=1 3 k’L’k’ /I--B

This series representation of X(Z) will be used to determine the type of the singularities
of X(z) in D. For z fl* we have

(A + 1 1 ufl2k) 1 u)- du

(1 32k)-A-2 E k k
n=l n! -a n-

which leads to the series representation

2(A+a)
1---x*(z)

(,-/3)B

1- 1- k k
n=l nl fl -a n
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We now analyze the singularities of X(z) and X*(z). Markov’s Theorem gives

(4.3) X z f+ db t--) dt, X* z I+ dq
z-t z-t’

where b(t), if(t) are, respectively, the normalized distribution functions of {B(x)}
Aand {c,(x)}. From Markov’s Theorem it also follows that the set of singularities of

X(z) (respectively, X*(z)) coincides with the support r(b) of db (respectively, o-()
of dff). Hence, the singularities of both X(z) and X*(z) are real numbers. The sin-
gularities of X(z) are located on [-1, 1] and on the set D-
{z C-I-l, 1]" B(z)= 1, 2,...}, and those of X*(z), on [-1, 1] and on the set D*=
{zC-[-1, 1]: B(z)=0, 1,2,...}. It follows that both D and D* are subsets of R.
In fact D_D*_(-o,-1)U(1,+c). Furthermore r(b)_DU[-1,1] and o’(p)
D* U[-1, 1 ] hold. To determine if D o-(b), or if D*

_
r(), we have to determine

the sets of D and D* and the nature of the singularities X(z), and X*(z) have on these
sets. We will do this in this part of the paper, leaving for 5 the study of the singularities
of X(z) and X*(z) in [-1, 1].

Recall that B(x) is defined in (2.20) and (2.25). To determine D and D* we solve
the equations B(x) n. In doing so, we will first consider the case n + h > 0; i.e., we
will assume n _-> 1 in the general case h >-1/2 (this determines D) and also allow n =0
if h > 0. The solutions of B(x) n satisfy

(4.4) (a2-(n+A)2)x2+2abx+b2+(n+A)2=O, X# +1.

Let

-ab + n + A )v/. -ab n + A)V
(4.5) A,,=(n+A)E+bE-a2, x.= aE_(n+A)2 y.= aE_(n+A)2

The solutions of the quadratic equation in (4.4) are x- x., x- y.. Those solutions
contain the solutions of B(x) n.

In order to obtain a sufficient condition for x., y. to belong to D*, observe that

(4.6) ax,,+b=(n+A)
ax/, b(n + A
a2_(n +A)2 ay,, + b -(n + A

ax/, + b(n + A
a2_(n +A)2

av/,- b(n + A aV-,+ b(n + A
(4.7) x/x2,,- 1 + x/y2,,- 1 +/-

a2_(n+A)2 a2_(n+A)2

The fact that the numbers in (4.7) are positive numbers when x,, y, D* will be
important in our considerations. Now, if B(x,,)=n and x,<-l, then ax,,+b=
(n + A)x/x2, 1 and (4.6) yields

[ax/,-b(n+A)]
(4.8) x/x2,, -1’= [a2_(X +n)2]
Similarly, when B(x,,)= n but x, > 1, then

(4.9) x/x2 1
[-ax/,+ b(n + h )]
La- (n +,)

We prove in the same manner that if B(y,,)= n then

(4.10)
ay,, + b ax/-, + b(n + h
=n+A, x/y2,- 1
/y2,- 1 a2-(n+h)2

(4.11)
ay,, + b av/-, + b( n + A
--n+X, 4y,- 1
4y2,,-1 a2-(n+X)2

if y, < 1,

if y,, > 1.
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Now we give a condition guaranteeing that x, <-1 and Yn > 1. An obvious necessary
condition is that An => 0.

LEMMA 4.1. Assume n + A > O, a < n + A. Then xn < -1 for all b a and Yn > 1 for
all b -a.

Proof. The above conditions make (n + A)2 a2 > 0. In fact a + n + A > 0 follows
from the positivity condition and n + A a > 0 by assumption. Thus An > 0 for all b R.
Consider xn, Yn as functions of the parameter b. Both xn(b) and yn(b) are continuous
functions of b for all b R and xn(b)=- 1 if and only if b a, xn(b)= 1 if and only
if b=-a. Since xn(a)= 1 and xn(b) cannot take values in (-1, 1), it follows that
xn (b) < 1 for all b , b a. From Yn (-a) 1 we conclude that Yn (b) > 1 for all
b , b -a. This proves the lemma.

Remark 4.2. The assumptions of the lemma are automatically satisfied if a < 0.
The next theorem characterizes the solutions of B(x)= n among {xn, Yn}.
THEOREM 4.3. Assume n + A > O, a < n + A. Then, xn D* if and only if b a and

aV-, b(n + A < O,

and, under these conditions xn < -1. Furthermore, Yn D* if and only if b -a, and

ax/- + b(n + A < O,

in which case Yn > 1.

Proof If n + A > 0, a < n + A we have, by Lemma 4.1, xn --< -1 with xn -1 if and
only if b a. Similarly yn -> 1, with Yn 1 if and only if b -a. Hence, if xn D* we
must have b a and, since

av/ b(n + A
a2 )2x/x2,-1

aZ_(n+X)z -(n+x <0,

we must have ax/-,-b(n + A)< 0. In the same manner we see that if Yn D* then
b -a and

av/- + b(n + Ax/y2,- 1 a2_(b+A)2

then ax/-+b(n+A)<O. Conversely, if b#a we have xn<-l; and if
b(n + A) < 0, x/x2, 1 is given by (4.7). Then we immediately obtain that B(xn) n, and
thus xn D*. In the same way we prove that if b #-a then Yn > 1, and if ax//
b(n + A < 0 then x/y2, 1 is given by (4.11). Thus B(yn) n and Yn D*. This completes
the proof.

Remark 4.4. Even under the conditions of Theorem 4.3, x =-1 (respectively,
y- 1) is not in D* if a- b (respectively, if b--a). They are not even solutions of
B(x) n. However, xn(-a) and yn(a) are in D*.

Now let

(4.12) Xn(b) a-, b(n + A ), Yn(b) ax/-, + b(n + A ).

Theorem 4.3 points out the importance of knowing the signs of Xn(b) and Yn (b). The
sign of Xn(b) and Yn(b) can often be determined from their asymptotic behavior as
b +oo, which is, in general, easier than struggling with the inequalities. This is so
because Xn(b) 0 if and only if b a, while Yn(b) 0 if and only if b a. We can
say a little more. In fact, in any interval I in which An > 0, we have

ab ab
X’,(b)=--n+A, Y’,(b)=+(n+A),
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so X’,(b)# 0, Y’,(b)# 0 for all b /. It follows that Xn and Yn are strictly monotonic
in L For example, if ! (a, +) and An => 0 for all b /, we can deduce that the sign
of Xn(b) will be that of a-n- A for all b /. In fact

Xn(b).b(a-b-A) as b--> +o

and Xn(b) does not change sign in (a, +). Similarly we conclude that the sign of
Yn (b) in (-, -a), agrees with the sign of a n A (provided that An => 0 in (-o, -a)).

We now establish two corollaries to Theorem 4.3.
COROLLARY 4.5. Assume 0 <--_ a < n + A. If b > a, then xn < -1 and is in D* but Yn

is not a solution ofB(x)= n.

Proof. Clearly ax/- b(n + A b(a n )t as b + and does not change sign
in (a, +). Thus ax/,- b(n + A) < 0. On the other hand, ax/,+ b(n + A) > 0. By
Theorem 4.3, xn D* and Yn is not a solution of B(x)= n.

COROLLARY 4.6. Let n + A > O, a < O, b >-_ O. Then
(i) if b <= a, xn < 1 and belongs to D* but Yn is not a solution ofB(x) n;
(ii) if a <-b, both xn and yn are in D*, xn <-1 and Yn > 1.

Proof. (i) If-b<a, we have a<n+A, ax/-,-b(n+A)<O, av/+b(n+A)>O.
By Theorem 4.3, xn D* and Yn does not satisfy B(x)= n. If a =-b we still have
ax/, b(n + A) 2a(n + A < 0, and xn D*. On the other hand, Yn 1 D*.

(ii) In this case a < n + A, ax/,- b(n + A < 0, av/,+ b(n + A < 0. By Theorem
4.3, xn, Yn D*. This completes the proof.

THEOREM 4.7. Assume 0 < n + )t < a. Then, for all b > a, xn < -1 and is in D* but

Yn is not a solution of B(x)= n.

Proof. In this case b2>a2, hence An>0 for b[a,). Since xn(a)=-l, the
continuity of xn (b) in the interval a, c) forces xn (b) < 1 for all b (a, ). Since
a2 (n + A )2 > 0, xn (b) will be in D* if and only if Xn (b) > 0. But this is the case, as

Xn(b)-b(a-(n+A))>O, b-->o.

Now, yn(a)=-(a2+(n+A)2)/(a2-(n+A)2)<-l, and the continuity of yn(b) in
the interval [a, ) implies yn(b) < -1 for all b > a. If yn(b) were a solution of B(x) n
we would have

Yn(b) Yn(b)/y(b)-l=
a2-(n+A)2 (n+A)2-a2’

so that Yn (b) < 0. But obviously Yn (b) > 0 under the assumptions. Hence, Yn (b) is not
a solution of B(x)= n. This proves the theorem.

The results contained in Theorems 4.3 and 4.7 and their corollaries provide the
information needed to characterize the set D. To determine D* we need to consider
the additional case n 0, A < 0. So, assume A < 0 n, and consider Xo, Yo as function
of the parameter b (for fixed a). Therefore

-ab + Avo ab + A x/-oo
(4.13 Xo( b

a2 A 2 Yo( b
a2 A 2

Observe that x/ -A, and now xo(b) 1 if and only if b -a, yo(b) -1 if and only
if b- a. Again, xo(b) and yo(b) cannot take values in the interval (-1, 1).

Let

(4.14) Xo b a,o bA Yo b ao+ bA
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If Xo, Yo are solutions of B(x)--0 then,

Xo(b Yo(b4x- 1 +/-
a2 A 2, .,/y] 1 +/-

a2 A 2.

Therefore,

(4.15) x/Xoz’ 1- Xo(b) Xo(b)
a2_,2 Xo<-l, x/xoE-l=-a2_A--------, xo>l,

while

Yo(b Yo(b
(4.16) 4yo]- 1 a2 )t--------, Yo < -1, ,/yo- i a2 _,------, yo> 1.

We now have that Xo(b) =0 if and only if b=-a, Yo(b)- 0 if and only if b= a. As
before, it is easy to check that X(b), Y(b) never vanish, so that Xo(b), Yo(b) are
strictly monotonic in any interval I where Ao > 0; therefore, Xo(b) never changes sign
in such an interval if -a I and the same is true of Yo(b) if a I. The signs of Xo(b),
Yo(b) can then be obtained, as before, from their asymptotic behavior.

Remark 4.8. Observe that the behavior of Xo(b), Yo(b) when A > 0 is included
in the case n + A > 0.

LEMMA 4.9. If a > A, A < O, then Xo> 1 for b -a and Yo < -1 when b a.

Proof. The proof is similar to that of Lemma 4.1. Observe that A E--a2--
(A +a)(A-a)>0 (since a+A <0 if A <0), so that Ao>0 for all bR. Considering
again Xo as a function of b we see that Xo(-a) 1, and therefore xo(b) > 1 if b -a.
The same type of argument proves the assertions concerning Yo.

THEOREM 4.10. Ifa > A, A < O, then Xo D* ifand only ifb # -a and ax/-o- bA > O.
In this case Xo > 1. Furthermore Yo D* if and only if b a and av/oo + bA > O, in which
case Yo < 1.

Proof. The proof is essentially the same as that of Theorem 4.3.
Remark 4.11. Observe that Xo(-a), yo(a) are not solutions of B(x)-0. However,

both xo(a) and yo(-a) are in D*.
COROLLARY 4.12. Assume a > b > O, A < O. Then Xo and Yo are solutions ofB(x) 0

in D*. Furthermore, Xo> 1 and Yo <-1.
Proof. We have a> A and obviously ax/-o-bA >0. Theorem 4.10 shows that

Xo D* and Xo> 1. If b 0, we trivially have ax/o+ bA > 0. Therefore, we also have
avo/ bA > 0 if b > 0. Thus, Yo <-1 and is in D*.

THEOREM 4.13. Assume a < A < O. Then
(i) if-b<a, Xo> 1 and is in D* but Yo does not make B(x)=O;
(ii) if a <- b, b > O, neither Xo nor Yo is a solution ofB(x) O.
Proof. (i) In this case Ao >-- bE- a2> 0 and b > -a. Moreover xo(b) > 1 for b > -a,

because Xo 1 when b -a. Since afo- bA b(a A when b - +c, we-have ax/o-
bA <0. Thus x/x- 1 =[bA -ax/oo]/[aE-A 2] and xo(b) is in fact a solution of B(x) =0.
On the other hand, ax/o+ bA < 0 and yo(b) -[ab + AVo]/[a2 A 2] contradict each
other, as it is impossible to have (a2- A2)x/y 1 ax/oo+ bA. Therefore, Yo is not a
solution of B(x) 0.

(ii) The conclusion is obviously true if Ao < 0. So, assume Ao> 0. We have b < -a
and from ax/-o- b’A b’(a A < 0, as b’- +, we conclude that ax/o- bA > 0. Also,
Xo--1 when b--a, so that xo(b)> 1. This leads to the contradiction x/xEo-1--
(bA av/oo)/(a2 )t 2) < 0. Hence, Xo is not a solution of B(x) 0. Since avo+ bA < 0
and yo(b)> 1 are contradictory, the proof is complete.
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The proof of the following theorem requires only a slight modification of the
proof of Theorem 4.13.

THEOREM 4.14. Assume A < a < O. Then
(i) if -b<a, Xo> 1 and is in D* but Yo is not a solution of B(x)=O;
(ii) if a b, b O, neither Xo nor Yo is a solution ofB(x) O.
We shall now study the structure of D and the types of singularities of X(z) on

this set. We recall that D and D* are subsets of R-[-1, 1] defined by

(4.17) D=(zC-[-1, 1]: B(z)= 1,2,...), D*=DU(z: B(z) 0}.

THEOREM 4.15. If a >--Ibl the set D is empty.
Proof When x -1, B(xi equals n if[ (n / A )x/x2-1 ax / b. When n _-> 1, A -1/2

in order for the above inequality to hold ax / b must be positive. But ax / b b a 0
when x -1 and we conclude that D has no elements less than -1. Similarly, when
x 1, ax / b is positive and B(x) n if[ (n / A)x/x2-1 -(ax / b), which cannot hold
since a _-> Ibl.

We now consider the cases a_-< Ibl. Figure 4.1 shows a subdivision of the (A, a)
plane into five regions by the line A =-1/2, the half line a + A + 1 0, A -1/2 and the
A-axis a =0. The first two lines do not belong to any region while the last one is
assumed to be part of Region I for A -1/2. Notice that A -0 is not a division line.
The positivity conditions A / a / 1 > 0, A -1/2 restrict us to Regions I and II of the
(A, a) plane. We now characterize the set D when A and a belong to either region.
Consider first the case b _>- 0.

FIG. 4.1

THEOREM 4.16. Let a <--b, b >-O. Then, the set D is given, in each one of the two

possible regions, as follows.
Region I (i) a < b. Then D- {x,: n => 1}.

(ii) a b. Then D .
Region II (i) -b <- a < b. Then D {x,: n >- 1}.

(ii) a<-b. Then D={x,: n_-> l} U {y,: n-> l}.
In the two regions x,, y, are given by (4.5) and we have x, < -1 and y, > I for all n >- 1.

Proof. I. Part (i) follows from Corollary 4.5 and Theorem 4.7. Part (ii) has been
treated in Theorem 4.15.

II. Part (i) follows immediately from part (i) of Corollary 4.6. Part (ii) follows
at once from Corollary 4.6 (ii).
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Remark 4.17. The case b 0 was studied in Ismail [14]. It corresponds to the
symmetric sieved Pollaczek polynomials of the second kind. Notice that in this case
we are restricted to Region II with the constraint a <-b. By Theorem 4.16, D is
{x: x x or y, n > 0}.

We now come to the case b < 0, a-<-b. Note that

(4.18) BX,(x; a, b; k)= (-1)"B,(-x; a,-b; k)

follows from the three term recurrence relation. Thus we have the following.
THEOREM 4.18 If a <--_-b, b < O, the set D is given, in each one of the Regions I,

II in the following manner.
Region I (i) a <-b. Then, D {y,: n _-> 1}.

(ii) a -b. Then, D .
Region II (i) b <-_ a < -b. Then, D {y,: n -> 1}.

(ii) a<b. Then, D={x,: n>_-l}U{y: n>_-l}.
Here, x,, y, are also given by (4.7) and x, < -1, y, > 1 for all n >-_ 1.

Now we study the nature of singularities of X(z) on the set D. Recall that

2
n

Let x,, e D with x,, <-1 and B(x,) n. A simple calculation gives

lira (z-x)x(z) =2(-1)"+(-)"(1-fl) B(x,)
z-,x. B’(x,,)

We used B(x,,)=n,-A-B =2A, a=l and B’(x,,) lim_,. (B-n)/(z-x,,). Hence,
if B’(x,,)rs O, x,, will be a simple pole of X(z). We now have

d [ +
ax+b ] _a.,/xZ,,-1-(n+A)x,,B’(x") =xx -A x/x--1 J x=,. x2,, -1

Using (4.5) one can derive

v/-,[a2- (n + h)2]
(4.19) B’ x, [--x/,---’b - - i
In the same way when y, > 1 and B(y,)= n, we obtain

x/,[a2- (n + h)2]
(4.20) B’(y,) -[ax/,+ b(n + h)]2"

Therefore B’(x) rs 0 in all cases.
Remark 4.19. Note that the denominator of (4.19) vanishes when a b. This does

not affect our results, because in this case D in Region I, while D___ (1, +o) in
Region II. The denominator of (4.20) is zero when b =-a, but in this case D is either
empty or contained in (-,-1).

We now record the residues of X(z) on D. Recall that (-1)"(A), (-A-n+ 1),,
2-a B 2A and a -/3 -2x/x2, 1 when x, < 1, a -/3 2x/y L i when y, > 1. The

use of (4.8), (4.19) and (4.20) lead to

(4.21) Res(x(z) Xn)-’4fl 2kn
(2A+l), fl2k)ExraxnZb_(.l’l_.-I-.__)]

(n--l)!-7--(1-vzx. L a2-(n+A)2
_l

x,<-l,



SIEVED ORTHOGONAL POLYNOMIALS. V 1203

(4.22) Res(x(z)y,,)=4flk"
(2A+l),, Zk)zx[av+b(n+A)](n_ 1) !x/-, tl- a2_(n+h)2 y,,> 1.

The last two equations could be written somewhat more explicitly by noticing that

(4.23) fl(x,,) a(x,,)=-, x,, <-1,
a-h-n a+h+n

,f-.+ b ,/, b
a(y,,) , y,, > 1.(4.24) fl(Y")= a-n-A’ a+A+n

In view of Markov’s Theorem we have the following.
THEOREM 4.20. The function X(z) has a simple pole at every point of D and

Dc__ r().
Remark 4.21. Note that since

limx,,=-I and limy,,=l,

-1, 1 are the only possible limit points of D in C (or in ).
In 6 we shall characterize the singularities of X(z) in [-1, 1].
We next determine the structure of D* as a function of a, b, A. First we treat the

case b => 0.
THEOREM 4.22. Let a > b, b >= O. Then
(i) ifh>O, D*=;
(ii) if A < O, D* {Xo, Yo}. Here Xo> 1, Yo < 1.

Proof The proof of (i) is similar to the proof of Theorem 4.15 and will be omitted.
Part (ii) follows from Corollary 4.12.

Remark 4.23. The case b =0 is also in Ismail [14]. If a b> 0 we still have
Xo D*, but Yo =-1 D*. The identity

(4.25) X(x; a, b; k) 1)"cX,(-x; a, b; k)C

can be easily proved from the three term recurrence relation. Thus (4.25) and Theorem
4.22 give the following.

THEOREM 4.24. If a > -b, b < O, then D* when A > 0 and D* {Xo, Yo} when
A < O. Here, Xo > 1 and Yo <-1.

We now consider the case a<-_lbl In doing so it is convenient to divide the
(A, a)-plane into the ten regions shown in Fig. 4.2. The divisions are determined by
the lines A 1/2 and A 0; the half lines A + a 0, A > - and A + a + 1 0, A > -, as
well as by the A-axis, a 0, for A <- and A > 0. The division between Regions III*
and IV* is determined by the line segment A -a 0, -< A < 0. The positivity condi-
tions

A+a+l>0, A(A+a)>0, A>-,

restrict cases of orthogonality to Regions I*-IV*. We assume that the A-axis belong
to Region I for A > 0. None of the other division lines is part of any region. Note that
A 0 is now a dividing line.

THEOREM 4.25. The set D* can be described as follows when a <-b, b >= O.
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FG. 4.2

Region I* (i)
(ii)

Region II* (i)
(ii)

Region III* (i)
(ii)
(iii)
(iv)

Region IV* (i)
(ii)
(iii)

a < b. Then, D*={x,,: n=>0}.
a b. Then, D* .
-b <-_ a < b. Then, D* {x,,: n >- 0}.
a<-b. Then, D* ={x,,: n->0}U{y,,: n=>0}.
-b<a. Then, D* ={x,,: n=>0}, Xo> 1.
-b a O. Then, D* {x,,: n >- 1 }.
a < -b. Then, D* {x,,: n >_- 1} U {y,: n >= 1}.
a b > 0 (=0). Then, D* {Xo} (=), Xo> 1.
-b < a. Then, D* {x,,: n => 0}, Xo> 1.
b -a. Then, D* {x,,: n -> 1}.
a < -b. Then, D* {x,,: n _>- 1} LI {y,: n >= 1}.

In all regions, x, < 1 and y, > 1 for n >= 1. Also, Xo < 1, Yo > 1 if A > O.
Proof. Regions I*, II*. The proof in these cases is as the proof of I, II in Theorem

4.16, because Theorems 4.3, 4.7 and their corollaries hold for n 0 when A > 0.
III* (i) follows immediately from Theorem 4.16 for n => 1, and from Theorem

4.14, (i), for n =0.
(ii) follows from Theorem 4.16 for n-> 1 and from Theorem 4.14, (ii), for

n--0o
(iii) follows from Theorem 4.16 for n _-> 1 and from Theorem 4.14, (ii), for

n-0o
(iv) If b=O, it is impossible to have -A =n, n>=O, since 0>2A>-l. If

b > 0, use Theorem 4.16 and Remark 4.23.
IV* (i) follows from Theorem 4.16 for n-> 1 and from Theorem 4.13, (i), for

n=O.
(ii) follows from Theorem 4.16 for n >-1 and from Theorem 4.13, (ii), for

n=O.
(iii) follows from Theorem 4.16 for n _-> 1 and from Theorem 4.13, (ii), for

n-0o
The proof of the theorem is now complete.
Now consider the case b < 0. In view of (4.25) we easily obtain the following.
THEOREM 4.26. If a <= -b, b < O, the composition of D* in different regions of the

a, b, A parameter space is as follows.
Region I* (i) a < b. Then, D* {y,: n >= 0}.

(ii) a -b. Then, D* .
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Region II* (i)
(ii)

Region III* (i)
(ii)
(iii)
(iv)

Region IV* (i)
(ii)
(iii)

b <= a < -b. Then, D* {y,: n >= 0}.
a<b. Then, D*={x,,: n->0}U{y,,: n>-0}.
b < a < -b. Then, D* {y,: n =>0}, Yo > 1.
a b. Then, D* {y,: n >- 1 }.
a < b. Then, D* {x,,: n => 1} U {y,,: n ->_ 1}.
a -b > 0 (=0). Then, D*{yo} (D* ).
b < a. Then, D* {y,,: n >- 0}, Yo < -1.
a b. Then, D* {y,,: n >- 1}.
a < b. Then, D* {x,: n _-> 1} U {y,: n -> 1}.

In all regions we always have x, < -1 and y, > I for n >-_ 1. Furthermore, Xo < -1, Yo > 1,
ifh>o.

Remark 4.27. Note that -1, 1 are the only possible limit points of D* in C (or
in R).

Now we study the nature of the singularities of X*(z) in D*. If x D* and
B(x) n > 1, we have, from (4.2),

(4.26) lim (z-x)x*(z)=-2
a +afl2k,,(l_fl2)2a (2A),, n

a fl n! B’(x)"

Here we used B n, -A- B 2A and aft 1. If B(x) 0 then

(4.27) lim (z-x)x*(z)=-2
(a + a)(1 _f12k)2, n’(X)"

Now, a calculation similar to that used to obtain (4.19) and (4.20) shows that

(4.28) B’(xo) +
x/o(a2- A 2)2

(ax/o- bA)"
The sign is according to whether A > 0 or A < 0 (i.e., according to whether Xo <- 1 or

Xo > 1). Furthermore

(4.29) B’(yo) : x/o(a2- A u)-(ax/o- bA)2

with the same determination of the sign. Hence, all the singularities of X*(z) in D*
are simple poles.

Recall that a(x,)- fl(x,) -2x/x,- 1, a(yn)- fl(y,)= 2/y- 1 for n _-> 1, and also
for n 0 if A > 0. If A < 0 then a(Xo)-fl(Xo) 2/x- 1, a(yo)- fl(Yo) -2x/y2o 1. This
information coupled with (4.19), (4.20), (4.27), (4.28) and (4.29) establish

(4.30)

(4.31)

for n > 1, and also, according to A X O,

(4.32) Res (X(Z),Xo)=+ (a+h)x/o (l--fl2k)[ ax/-bA]a2_h2

(4.33) Res (X(),Yo) (1- a2_A-
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The quantities a and/3 are given by (4.23) and (4.24) when n > 1 or n 1 and A > 0.
Furthermore

 o-b(4.34) fl(Xo)
a A

c(Xo)
a + A

A < 0,

Vo-b /o+ b
(4.35) fl(Yo) a(yo) A < O.

a-A a+A

In view of Markov’s Theorem we have shown the following.
THEOREM 4.28. The function X*(z) has a simple pole at each point of D* and

D* c__ tr(x).
Note, again, that the only possible limit points of D* in N are -1, 1.

5. Orthogoaality relations. We saw in 4 that

D___ tr(b) [-1, 1] U D, D* tr(4,) c__ [-1, 1] U D*.

The purpose of the present section is to compute the orthogonality relation for our
polynomials. This will follow from analyzing the singularities of X(z) and X*(z) in
[- 1, 1 ]. Observe that both tr(b) and r(4,) are compact subset of

We start by determining the measure
Remark 5.1. Observe that when A > 0, (3.38) implies the more symmetric form

X(Z) -2 Ak-’ (1 [/]k)-A-l(1 uolk)-B dld
dO

(5.1)
+ Bak-1 (1 glk)-A(1 uak)-B-1 du

dO

In fact,

Aft k (1 uk)-a-l(1 Uak)-B du -1 Ba k (1 uflk)-A( 1 Ua k)-n-, du
dO dO

for z in a neighborhood of [-1, 1 ], where Re (B(z)) > 0 and, hence for all z, by analytic
continuation.

Now, the restriction of the function (x)/a(x) /(x)/o+(x), to [-1, 1] is con-
tinuous. Let

(5.2) cos (rj/k), j 1, 2, , k 1.

Clearly the points xe[-1,1], x#, for any j, make }fl(x)/a(x)l=l and
Im {fl(x)/a(x)}k O, thus Re {/3 (x)/ a (x)}k < 1 and

a(x)] > 0, 0 --< u --<_ 1.

Hence, there are % 8 > 0 such that

1-Re u ->_% 0 -<u=<1+
g

for all z in a compact set K,=[x-,x+B]x[O, 8]. It follows that if 0<e,< and
e. --> 0 as n --> , then

,,_.o a(t + ie,)
1 u

t(t)J
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holds uniformly for all s [x- 8, x + 8] and all u [0, 1 + 8]. As in 2, we let

F(z)= l-u[ ;-j (l-u)-B(z) du,

From the above argument

(5.3) F+(t):=imF(t+ie.)= 1-ULa--j
the limit being uniform for Ix- , x + ].

-A(t)-l(1 U)-B(t) du,

Recall that fl_(x)= a(x), o_(x)= (x), B_(x) A(x) and A_(x)= B(x). It is now
easy to get, uniformly on [x- 15, x + 15]

(5.4) F_(t):= .-.lim F(t-ie.)= 1-u
/3(t)J

(l-u)-A du.

This shows that both F+(x) and F_(x) are continuous functions of x, -1 =<x-< 1, x .
Now

(5.5) X+/-(t): lim X(t+ ie)=2{fl +A(fl-a)fl2kF+/-(t)}
e-O+

uniformly in [x- 8, x + ]. This shows that the limit

(5.6) ,(t) lim (X(t- ie)-X(t + ie))
e-0+

is uniform in [x 5, x + 5 ]. This and (5.5) prove that (x)

2(xl=(- + (-ul--(-u-"du
(5.7)

+BaJ (1--" ttflk)-A(1-- uotk)-B-l dtl}
0

is a continuous function of x, for-1 <x < 1, x , j 1, 2,..., k-1. The uniform
convergence in (5.6) and the Perron-Stieltjes Inversion Formula imply

dp(x) dp(x’) =’ ;( t) dr, x’ e [x- 5, x + tS],

so that the measure d4, is absolutely continuous in each one ofthe subintervals (, -1),
and is given on such an interval by

1
(5.8) d ’(x) dx=-i;(x) dx.

Now, the right-hand side of (5.7) is an analytic function of A for Re (A) > -1/2. If A -> 0,
we can use integration by parts because the first integral is a proper integral. Thus

f-q 1 Bakf
--q

(1 uflk)-A-l(1 Ua k)-a du (1 uflk)-A(1 Ua k)-B-1 du.

Therefore

2(x -.(- ( ut-( u-- au, ->o,

which is equivalent to

(5.9) ;(x)=-2(cr-fl)B 1- 1- (1--/))-B-I/)-A dr.
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The integral on the right-hand side is, in fact, proper. Therefore

(5.10) ,(x) 2(a-/3) 1 ---/ 1-
r(2a + 1)

since A+ B =-2A. Since the right-hand side is also an analytic function of a for
Re (a) > -, the identity (5.10) holds for all a > -. From (5.8) and (5.10) we obtain

fl ( flk)-A ( R)--B F(-B+ 1)F(-A+ 1)
(5.11 6’(x} =i 1-7 1-

r(2a +1}

holding for x # . Clearly (5.11) determines d as an absolutely continuous measure
in each one of the inteals (, _), j 1, 2,. , k.

Now write x=cos O, (j-1)/k < 0 <j/k, j= 1, 2,..., k, and recall that a(x),
fl(x) are complex conjugate and so are A(x), B(x). Since a(cos 0) e i, fl(cos 0) e-i

A -a i(x) and B -a + i(x), where (cos 0) a cot 0 + b csc 0. We thus obtain

1- 1- 2" sin kOI exp {(cos O)(2k-2j + ]},

where we used the identities

(5.12) arg (ic -k sinkO)=rj-kO-, arg(-iak sinkO)=kO-jzr+’2
For (j 1) rr < kO <jrr, j 1, 2, , k, (5.11) is

2a+lsin0..
b’(cos 0)= 2 iz79-- lsn (k0)l’*lr(a + 1 + i(cos 0))12

(5.13)
exp {2(cos O)[kO-jr+ r/2]}.

Note that if A->0, ’ is continuous in (-1, 1), and d is absolutely continuous in
(-1, 1). Clearly ’ vanishes at : if A > 0.

We now apply Lemma 1.3 to show that the points -1, 1, , 0 <j < k do not support
discrete masses. In the present case the coefficients A and C, of (1.2) and (1.3) are

(5.14)
2 ifkXn+l, I1 ifkXn+l,

A= 2(a+a+m)
ifn+l=km,

C,= 2a+m ifn+l=mk.
rn m

Therefore, from (1.1) and (1.6),

(5.15)
/(2A + 1)p,

(2A + 1),,
m if n + 1 km,

p=[(n+l)/k] if kVn + 1.

This and (1.40) show that F(2h+l)Amk’-" m2x as m+oo. Now we determine the
asymptotic behavior of the polynomials {B,(x)} at x +1, , 0<j < k. Clearly A(),
B() are well defined. At a a() and fl =/3 (), B (x, t) has an algebraic branch
singularity of order -A- B / 1 2A / 1. The dominant term in a comparison function
is

(5.16) /x(6 t)= k-2xa(1 t/fl)-2X-l+ k-2 /3(1 t/ix) -2x-1.
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Darboux’s Method readily gives

B()--, k-2x
(ao+l-fl"+l)(2A + 1),,

(, -/3)n!

Using(1.40)andU,(ej)=(a"+l-fl"+l)/(a -/3)=+1, we obtain [F(2A + 1)Bmk()j 2

m4x, which implies

(5.17) [Bk()]2"-
hmk F(2A + 1)"

Therefore the series ,__o B()]2/A, is divergent, and de has no masses at the points
,j= 1,2,..., k-1.

Now we consider the points x + 1. In this case A and B are undefined, and we
have to evaluate Bx(+I, t) by a limiting process. In view of (2.25) and (3.31) the
generating function (3.19) can be expressed in the form

(1- tkot k)-X (1- tkflk) -x f 1-tkflk]B (z, t)
1 ta )(1 tfl

exp i(z) log1tkct "AS z +1, a(z), fl(z)- +1, and we apply L’H6pital’s rule to determine the limit under
the exponential. Now (2.19) yields

a’(z) 2a(z)/ [a(z) fl(z)J, fl’(z) -2fl(z)/[a(z) fl (z)],

and an elementary calculation establishes the representation

(5.18) B"(1, t)= (1--tk)-2" exp 2(a+b)kl_tk
or, equivalently,

(5.19) Bx(1, t)=(1--tk] 2

\l--tl
L(2X+l)(-2k(a + b),

where

L(2a+l)(x, t):= E L(n2X+l)(x) tn
n=O

is a generating function for the Laguerre polynomials of order 2A + 1. Similarly

(5.20) B(-1 t) (l+tk] 2

L(2X+l)(-2k(a-b), +tk), k=odd or even.
\l+t]

This and Darboux’s Method establish

(5.21) (+ 1)k,,B,.,(+ 1) 2 (2+,)k Lm (-2k(a + b)).

Now, if a -b, then Bm(1) k2LX+l)(0) k2F(m +2A +2)/[mlF(2A +2)] (Lebedev
[17, p. 85]) and [B,,,(1)]2/Ak,,--. m2X+2/(2A + 1). This argument shows that the series
=o[B,,,(1)]2/Ak,, diverges and we conclude that d has no mass at 1 if a+b=0.
If a + b > 0, then Fej6r’s Formula for the Laguerre polynomials (Szeg6 [29, p. 198]) gives

m+l/a[-2k(a + b)]--3/4cOs 2/-2km(a + b)- A + r
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so that

e-2k(a+b)(-2k(a + b))-2x-3/2F(2, + 1)

Since the mth terms of the series =o[Bm(1)]2/Akm does not tend to zero as mc,
the series is divergent and 1 does not support any mass of db. In case a + b < 0, there
is a positive constant C such that

B,,(1) C__----(2k(a + b))-x-3/4m’x+l/2 e2"/2km(a+b).

This is Perron’s Formula for the Laguerre polynomials (Szeg6 [30, p. 199]). As before

[nm(1)]2 ce-2k("+b)(2k(a+ b))-2x-3/2
F(2A + 1)x/ e4/2km(a+b),

and the series ,o B(1)]/A, also diverges.
A similar argument based on (5.21) shows that -1 suppos no masses of d.

Thus we have proved the following.
THEOREM 5.2. e measure d is absolutely continuous in the interval [-1, 1] and

has masses only at the points of the discrete set D where B is a positive integer. In the
interval [-1, 1], d ’ dx, where ’ is given by

’(COS 0) 22x+
(sin O)2h+I[uk_I(COs o)llr(x + 1 + i(cos 0))1
r(2x + 1)

(5.22)
exp [2(k0-j+ /2)(cos 0)]

and (I)(cos 0) a cot 0+ b csc O, (j- 1)r/k < 0 <jzr/k. Furthermore, the support of dqb
is the set

(5.23) cr(b) DU[-1, 1],

and -1, 1 are the only possible limit points ofD in R. With the weight function

zrF(2;t + 1)
(5.24) w(x) 22a+ th’(x),

we have the orthogonality relation

(5.25) f+ B(x)B(x)w(x) dx+ JeB.()fl()= ,t’/’r(2, + 1)
/ CeD 22x+

where

zrr(2x + 1)
5.26 Je 22x .1

Res (X z), )

and Res (X(z), ) is as in (4.21) or (4.22).
Finally, the set D is empty if and only if a >-[b[, and is an infinite countable set if

a <lbl. Every point of [-1, 1] is a continuous singularity ofx(z).
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We now wish to determine ’ and show that the measure d has no discrete
masses in [-1, 1]. The argument is similar to what we used to analyze X(z). When
A 0, (3.55) and integration by parts give

(5.27) X*(z) 2(2 + a) -/3 (1 Ujtk)-A-l(1 uok)-B-1 du.

Let G(z) := (1 uflEk)-A-2(1 U)-B du. Therefore

G+(x) := lira G(x + iv) (1 Ufl2k)-a-2(1 U)-B du,

G_(x) := lim G(x- iy) (1 U2k) 1 U du,
y-+0+

the limits being uniform in any closed subinterval of (, -1), 0<j < k. This implies,
as before, that the limits

X*+(x) lim X*(x + ie), X*(x) lim X*(x- ie)
e-O+ e-+O+

hold uniformly on compact subintervals of ( -1). The function

*(x) X*(x)-X*+(x) lim (X*(x- ie)-X*(X + ie))

satisfies

(5.28) 2*(x)=2(A +a) ----fl (luuflk)-A-l(1--uolk)-B-1 du,

from which we conclude that )*(x) is continuous in each one of the inteals (, -1).
Fuahermore, in (, _), d is absolutely continuous with 2idx=*(x)dx. is
shows that

i’(x)=(h + a) (1-u)--(-u)--

that is

ri’(x) A+a( k)-A
This establishes the explicit formula

-B

1 v)-n- l]
-A-1 dr.

(5.29) rriq,’(x)
A + a (1--fl2k)-A(1- ot2k)-B r(-A)r(-n)
a -/3 F(EA)

holding for x . Set x cos 0, (j 1)rr < kO <jzr. The observations c(cos 0) ei,
/3(cos 0) e-i and A -A ida(x), B -A + i(x), where (x) is as in (3.32), lead
to

(5.30)
ff’(cos 0)= 22x-1()t + a)

(sin 0)24-1

r(2a)
u_(cos 0)1"

Ir(a + iO(cos 0))12 exp (2q(cos O)(kO-jrr+ rr/2).

Again, q,’(x) is continuous in (-1, 1) if h >0, and vanishes at x ,j 1,2,. ., k- 1.
We now examine the possibility ofd having discrete masses at the points x + 1,. We recall from formulas (3.19) and (3.45) that

(5.31) C(x,t)=(l+ 2b )t-a )t--t2 BX(x, t).
)t+a a+a
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If x we have, from (2.19) and (2.20)

lim (1 +2bt_t2A-a )= (fl-a)B
-, A+a A+a a(A +a)’

Hence, from (5.16)

2b
lim 1+
t--,, A + a

From (3.47), we have

(5.32) bmk

(A+B)(n/k)2

F(2A + 1)(A + a)

(n/k)-r(2a)(a + a)

(a +a-l-1)m(2X)m
m (A -F a)m

COS (jn’a’/ k)

COS (jn’n’/ k).

A-ate) (c-fl)A
A+a (A +a)fl

m2A

(a + a)r(2a)"
This shows that

(5.33)

as can also be checked from the recurrence relation.

j=l,2,.- .,k-l,ACmk(j)"2(--1)

if n mk,

On the other hand Ao 1,

I22 if kA’n’
A.= (A+a+m)

2A+m

so that

a(m!)
(5.34) a,.+,

(2a)m+,’
Clearly (5.34) gives

(5.35)

1 if kXn,
m

2A+m
if n mk,

0 < < k; hmk
a(m!)

(a + a + m)(2a).,+"

1mk AF(2A )m -2a,
which when combined with (5.33) and the fact 2A >-1 will prove the divergence of
the series ,,__o [c,,()]-/I,,. Hence ), O<j < k is not a discrete mass point.

Now we consider the cases x + 1. Note that the function

h(t):= 1 A-at2+ 2b t2
at+b

t=l- +2t
A+a A+a A+a

vanishes at t= 1 when a+b=0 and at t=-i if a-b=O. The functions Ca(+l, t)
behave differently according to whether a=+b or lallb[. The reason is that
lim,_,+/-l h(t)=2(a+b)/(A+a). Using the asymptotic properties of Laguerre poly-
nomials, one can show that x + 1 are not discrete mass points of de, if lal Ibl. The
proof is similar to the way we handled the same points in relation to the-measure de.
The same conclusion holds for x 1 if a b and for x =-1 if a =-b. Now, assume
a=-b. Clearly

(5.36) Ca(1 t)
h(t) 1-tk

L(2a)(0, k)
1-t 1-t

implies (l + a)b,kCk(1) 2kALa)(0). This, (5.32) and (5.33) ensure the divergence of
the series .=o ca, (1)]/A,. The case a b and x -1 can be handled in a similar way.
This shows that neither x 1 nor x -1 support discrete masses for dx. We summarize
these results in the next theorem.
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THEOREM 5.3. The measure dd/ is absolutely continuous in [-1, 1] and its only
masses are located on the discrete set D* where B(z) 0, 1, 2,. . On [- 1, 1 ], d$ $’ dx,
where $’(x) is given by (5.29) or (5.30). The support of the measure dd/ is

(5.37) tr(,) [-1, 1] UD*,

and the set D* is empty if and only if a lbl and A >0, and a countable subset of
R-I-l, 1], having at most 1 or -1 as limit points, in any case. With the weightfunction

F(2A
(5.38) W*(x) r 2-2X+l$’(x)

A+a

we obtain the orthogonality relation

(5.39) CAn(X)Cm(X) W*(x) dx + X JCAn()Cm() nmn,
D*

where A, is given by (5.34), and

F(2A) 2_2x+1 Re s(x*(z), ),(5.40) Je=Tr A +a

and Res (X(Z), ) is as in (4.30), (4.31), (4.32) and (4.33).

6. The Pollaczek polynomials and their q-analogues. The recurrence relation (1.14)
and the initial conditions (1.15) define the general Pollaczek polynomials {P(x, a, b)},
or {P(x)} for short. The case A =1/2 was studied in Pollaczek [24]. Szeg/5 [29] studied
the general nonsingular case a-_>lbl, A >0, and showed that the polynomials are
orthogonal with respect to an absolutely continuous measure. He also found the
measure. Special instances of the singular case have been studied by Bank and Ismail
[7]. They covered the cases a +b. In this section, we first study the general case, and
especially the singular cases among a < Ibl. It turns out that this is essentially the case
k 1 of the sieved Pollaczek polynomials of the first kind previously studied. We also
compute the continued fraction whose denominators are the q-Pollaczek polynomials
{F,(x)}, then determine the corresponding distribution function when it is continuous.
The results of 2 may be used to completely analyze the singular cases, if needed, but
we will spare the reader the details. The q-pollaczek polynomials arose recently in
A1-Salam and Chihara’s solution of a characterization problem of Andrews and Askey.

We denote by P*’(x; a, b), or simply by P*’(x), the Pollaczek numerator poly-
nomials, and by Xo(Z) the continued fraction

(6.1) Xo(Z) lim P*.X(x)/PX.(x).

The numerator polynomials satisfy (.14) and the initial conditions

(6.2) P*oX(X) =0, P*X(x) 2(A + a).

The positivity conditions are

(6.3) (a+A + n- 1)(a+A + n)(2A + n- 1)> 0, n=1,2,...,

which evidently reduce to

(6.4) A>0 and A +a>0 or -1/2<A <0 and 0<A +a+l <1.
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We will use the generating functions

(6.5) P(x, t)= E PX,(x) t", P*(x, t)= P*,X(x)t".
n=0 n=0

They are solutions of the initial value problems

0P
(6.6) (t2-2xt+l)--2[(a+X)x-Xt+b]P=O, P(x, 0) 1,

(6.7)
OP*(t2-2xt+ 1)---2[(a+A)x-At+b]P*=2(A +a), P*(x, O) O.

From the partial fraction decomposition

B(x)
(6.8)

2[(a + A )x- At + b] A(x) -t2-2xt+l -t-a(x) t-fl(x)

where a(x), fl(x) are given by (2.19) and A(x), B(x) by (2.20), we readily obtain

(6.9)

and

P(x, t)=(1--t/a)A(1--t/fl)B

P*(x,t)=2(A+a)(1-t/a)A(1-t/fl) (1--U/a)-A-’(1--U/fl)--’ du

[ A+IA+a 2(A+a)fl
1+(6.10) =2

B(a-t) B cr
(1--U/a)-A-(1--U/)- du

(1- t/or)A(1 t/).
For fixed x C- [-1, 1 and as n o, Darboux’s Method gives

(6.11) P(x) 1 fl2)Afl-"n-a-’/F(--B)
and

A+a
P*X(x) 2

F(-B+ 1)
-"+’n-n+’(1-la)A

1+ (1--ula)-A-2(1--ulfl)-ndu

en A > 0, (6.12) takes the more symmetric form

--B-1
(.3 e"(xl(+a(-/ r(- (-u/l--(-u/l--’ u.

Therefore

(6.14) Xo(X) -2
(A + a)fl[l +a+ l

a 1 ufl -A-2( 1 ua - du]
or equivalently

(6.15) Xo(X) -2(A+a)fl[l+(A+l) fl I? ](1 U2)-A-2(1 U)- du
B a

and, when A > 0,
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(6.16)

(6.17)

Xo(X)=2(A +a)fl (1-ufl2)--l(1-u)-a du,

Xo(X) 2(A +a) (1--Ufl)-A-I(1--UOt)-B-1 du.

As in the case of the continued fraction X*(x) we can show that Xo(Z) is analytic
on f* of (2.36). The series representation

(6.18)
A+a (A+I) fla-B fl 1-(1-/3

n
Xo(X) =-2

=1 n! /3 n

follows from (6.15) and proves that the singularities of Xo(Z) belong to D* of (4.17)
and are simple poles. Furthermore,

(6.19)

(6.20)

A+a
Res (Xo, X) -2B,(x.) fl(x if B(x)=0,

(2)
Res (Xo, x) -2(A + a )/32"+1(1 -/32)2-1

n! B’(x)

if B(x)= n _-> 1. Using (4.19), (4.20), we get

(6.21) Res (xo, x,) (A + a)fl2"(1- fl2)2 (2A )"[ax/’" b(n + x )]
n x/[a2 n + h 2]

and

(6.22) Res (Xo, Y,)= (A + a)fl2"(1 -fl2)2 (2A), ax/--, + b(n + A )]
n v/-,[a2 n + A 2]

which hold for n + A > 0. Here, x., y, are given by (4.5). Furthermore, from (4.28) and
(4.29), we obtain

(6.23)

and

(6.24)

ax/o- bA ]2
Res (Xo, Xo) -2(A + a)fl(Xo) Vo(a2_ y2)2

when A <0, n=0, in which case Xo> 1 (and/3>0) and yo<-I (with/3 <0). Notice
that A + a < 0 in the last two formulas. Again, the last four formulas could be made
more explicit by using (4.23), (4.24), (4.34) and (4.35). We have the following theorem,
which is nothing but a restatement of Theorems 4.22 and 4.24 for the Pollaczek
polynomials.

THEOREM 6.i. If a > ]b] then D* when A > O. If A < 0 then D* {Xo, Yo}, and
Xo> 1, yo<-l.

With the subdivision of the (it, a) plane shown in Fig. 4.2, Theorem 4.25 in the
case of Pollaczek polynomials becomes

THEOREM 6.2. When b >-_ 0 and a <-b, the set D* is as follows:
Region I* (i) a < b. Then D* {x,: n => 0}.

(ii) a b. Then D* .

[aVoo+ bit 2

Res (Xo, Yo) 2(it a)fl(yo) Vo(a2 it2)2
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Region II* (i)
(ii)

Region III* (i)
(ii)
(iii)
(iv)

Region IV* (i)
(ii)
(iii)

-b <- a < b. Then D* {x.: n >- 0}.
a<-b. Then D*={x.: n>-O}U{y.: n_->0}.
-b<a<b. Then D*-{x.: n->O}, xo>l.
a -b O. Then D* {x.: n >-- 1}.
a <-b. Then D*= {x.: n > 1} {y.: n > 1}.
a b > 0 (=0). Then D* {Xo} (=).
-b<a. Then D*={x,: n_>-0}, xo>l.
b -a. Then D* {x,: n >- 1}.
a < -b. Then D* {x,: n -> 1}U {y,: n >- 1}.

In all the regions x < 1 and y, > 1 for n >= 1. Also, Xo < 1 and Yo> 1 if h > O.
The symmetry relation

(6.25) (-1)"PX.(x; a, b)= P.(-x; a,-b)

follows from (1.14) and (1.15). It shows that the case a _-<-b, b_-<0, can be obtained
from Theorem 6.2 interchanging x, and y,, n >-O.

A special case of the results derived in 5 is the following theorem:
TIqEOREM 6.3. The measure d the polynomials {P(x)} are orthogonal with respect

to is absolutely continuous in [-1, lJ and its only masses belong to D*. Furthermore,
d/’ is continuous in (-1, 1) and

(6.26)
’(OS 0) 22x-1(A "1- a)

(sin 0)2-1 F(A + i(a cot 0 + b csc 0))2

rr r(2x)

exp [(a cot 0+ b csc 0)(20- rr)J.

The support of the measure dq, is

(6.27) (r(q) [-1, lJ UD*
and the set D* is empty if and only if a >-Ibl and h > O, a finite set with one point if
a b > 0 or a -b, b < 0 and two points if a > Ibl, for A < 0; and a countable infinite
subset of (-oo, 1) U (1, oo) having 1 or 1 as limit points in the other cases. With the
weight function

F(2a) 2-2a+(6.28) w(x) "n" q’(x)
A+a

the orthogonality relation is

(6.29)

where

P.(x)P(x)w(x) dx + Y. JeP()P() hntmn
IeD*

2rr(n + 21 r(2h 2_24+1 Re S(Xo, :)(6.30) h"-22"(n+h +a)n!’ Je=Tr A +a

and Res (Xo, s) is given by (6.21), (6.22), (6.23) and (6.24).
We now turn to the q- Pollaczek polynomials {F, (x)}. The generating functions

(3.7) and (3.9) and Darboux’s Method establish

(6.31) F.(x).-. fl-"(fl/s; q)o(fl/; q)/ [(q; q)(fl2; q)j,

(6.32) F,.(x)..2flI_. (1- UA) (131,1 )1-fl2
zdp,

qfl
;q,q zeC-[-1,1J,
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where 2t#1 is the basic hypergeometric function

2bl (a, b )(a;q)n(b;q)nc
;q,z ,=o(c;q),(iqi- z’’

The corresponding continued fraction is

(6.33) X(x)
2/3(q; q)(q/3:; q)(1-AU) (t/, /’, )(/3 / :," q)oo(fl/ ’," q) 21 q{fl2 q, q

It is easy to see that F(x) is single-valued whenever it is defined outside [-1, 1].
This shows that the continuous spectrum is [-1, 1 and the discrete spectrum coincides
with the closure of the solutions of

(6.34) /3 :q" or /3 srq ", n 0, 1,.--.

One can also show that [-1, 1 does not intersect the discrete spectrum. The absolutely
continuous component of the spectral measure can be obtained from (6.33) via the
Perron-Stieltjes Inversion Formula but it is easier to use the following theorem of
Nevai [20, pp. 141-143].

THEOREM 6.4. Ifo {[Bn/A,I + Ix/C./(anan-1) --1/21} converges, then the continuous
spectrum is [-1, 1 and the distribution function d/ satisfies

(6.35) limsup {’(x)/1 x2p](x)/A,,} 2
a.e. on[-1,1].

’71"

Let d, W’dx on [-1, 11. We now go back to (3.7) and derive

(a/;q)(a/;q)
(6.36) F,(cos 0)--- c" +conjugate,

(a/fl; q)(q; q)

since a 1//3 ei. The recursion (1.29), and (1.6) imply

(6.37) A,, (1-UA)(A2; q),/(q; q),,.

Theorem 6.4 enables us to evaluate ’(x). It is given by

C
(6.38) ’(cos 0)

sin 0
(e2i q

(e’/:; q)oo(e’/; q)

with

0< 0<Tr,

(6.39)
1

C =-(1- UA)(A2; q)o(q; q)oo.

Finally, one can show that the discrete spectrum is empty when

(6.40) q, U,A [0, 1) and 1- U2+2V>0.
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CORRIGENDA:
THE SUMMABILITY SIGNIFICANCE OF ROOTS OF BESSEL

FUNCTIONS*

E. C. OBIf

On page 1490, the third line in the last displayed equation should read"

"ffm(’) =4" I-I (’+ s)["lsl,

On page 1492, the fourth line should read:

Thus the first Silverman-Toeplitz condition holds for (, m) with A 1. Next, since

*This Journal, 17 (1986), pp. 1489-1494.
f Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
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A NOTE ON WILSON POLYNOMIALS*

WILLARD MILLER, JR.’

Abstract. Local symmetry (recurrence relation) techniques are a powerful tool for the efficient derivation
of properties associated with families of hypergeometric and basic hypergeometric functions. Here these
ideas are applied to the Wilson polynomials, a generalization of the classical orthogonal polynomials, to
obtain the orthogonality relations and an elementary evaluation of the norm.

Key words. Wilson polynomials, orthogonal polynomials, q-series, basic hypergeometric functions

AMS(MOS) subject classifications. 33A65, 33A75, 39A10

1. Introduction. In 1] Wilson introduced a family of hypergeometric orthogonal
polynomials that included as special or limiting cases the classical polynomials and
the 6-j symbols of angular momentum. In the Memoir [2] Askey and Wilson introduced
a still more general class of basic hypergeometric orthogonal polynomials, the most
extensive generalization of classical orthogonal polynomials known. The orthogonality
proofs in these papers, while not unmotivated, are quite technical and rely on Mellin-
Barnes contour integrals and several hypergeometric summation formulas that are
unfamiliar to most mathematicians. The Askey-Wilson and Wilson polynomials are
important and useful; they deserve to be more widely known. Furthermore, the
appropriate algebraic and group theoretic setting for these general families is as yet
unclear. The elementary algebraic treatment of Wilson polynomials presented here is
oifered in the hope that it will help to increase the "audience" for the polynomials as
well as to shed some light on their structure.

In [3] the author, with Agarwal and Kalnins, introduced symmetry techniques for
the study of families of basic hypergeometric functions, in analogy with the local Lie
theory techniques for ordinary hypergeometric functions. The fundamental objects in
this study are the recurrence relations obeyed by the families, expressed in terms of
difference or q-difference equations. Generating functions and identities for each family
are characterized in terms of the recurrence relations. These ideas were applied in [4]
to obtain a strikingly simple derivation of the orthogonality relations for the Askey-
Wilson q-polyomials. The treatment of the Wilson (ordinary hypergeometric) poly-
nomials presented here is very similar to that in [4]. However several minor complica-
tions arise, due to the fact that whereas the first order q-difference equation f(qz) f(z)
has only the solution f(z) constant, the first order difference equation f(z + 1) f(z)
is satisfied by any periodic function f with period 1. Thus the treatment presented here
is not entirely algebraic: a few simple facts about Fourier series and the gamma function
are required.

2. The results. The (unnormalized) Wilson polynomials are:

(2.1) a’b’c’a’(z:Z)=4F3(-n’n+a+b+c+d-l’a+z’a-z )a+b, a+c, a+d
1

where n =0, 1, 2,... and a, b, c, d > 0. The hypergeometric function 4F3 is given by
the series

( al’a2’a3’a4" t)= (al)m(a2)m(a3)m(a4)m tm
4F3 hi, b2, b3 rn=0 (bl)m(b2)m(b3)m m!

* Received by the editors September 22, 1986; accepted for publication December 15, 1986. This work
was supported in part by the National Science Foundation under grant DMS-86-00372.

t School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.

1221



1222 WILLARD MILLER, JR.

where

(a),={1 if m=0,
a(a+l)... (a+m-1) ifm 1, 2, .

The functions (2.1) are polynomials of order n in Z2o (In 1] the parameters a, b, c, d
are also permitted to become complex, an important extension; but we shall not
consider that case here.)

Two fundamental recurrence relations for the Wilson polynomials are:

(2.2a) ,l.(a,b,c,d)(i)(a,b,c,d)_ n(n + a + b+ c+ d- 1) m(a+l/2,b+l/2,c+l/2,d+l/2)
"X"n--I(a+b)(a+c)(a+d)

(2.2b) ] (a’b’c’d)lff (a’b’c’d). =-(a + b- 1 )()(a-1/2,b-1/2,c+1/2,d+l/2)n

where

(2.3)

,r(a,b,,d) 1(E1/2_ E1/2),
2z

)= a+z- b+z- El/2+ a-z- b-z- E1/2

2z

and E’f(z)=f(z+ a). Here (2.2a) follows from

r(a + Z)k(a Z)k -k(a +1/2+ Z)k-l(a +1/2-- Z)k-1

and (2.2b) follows from

tx(a + Z)k(a Z)k -(a + b k- 1)(a -1/2+ Z)k(a --1/2-- Z)k.

The first relation was discussed by Askey and Wilson [2]; I have not found (2.2b) in
the literature.

Relation (2.2b) suggests the existence of an operator /z* mapping
((a-1/E,b-1/E,c+l/2,d+l/2) to ((a,b,c,d) We find that

(2.4)

l,(c+ l/2"d+l/2"a-1/2’b-1/2)fJ (na-1/2"b-1/2’c+ l/2"d+ l/2) -(n+c+ d)(n+ a+ b- 1)
(a+b-1)

a,b,c,d

which follows from

P’(c+112"d+112"a-112’b-l12)(a 1/2+ Z)k (a -- Z)k

-(k + c+ d)(a + Z)k(a Z)k + k(a + c+ k- 1)(a + d + k- 1)(a + Z)k_,(a Z),-1

We try to introduce a pre-Hilbert space structure such that /z*=
"lt’(c+l/2,d+l/2,a-1/2,b-1/2) is the adjoint operator to/x =/.(a’b’c’d). Let W,.b.c,d(Z) be analytic
as a function of the complex variable z in a neighborhood of the imaginary axis z iy,
-c < y <, real analytic in the variables a, b, c, d, of exponential decrease as lYl
and such that W,.b.c.a(iY)>--O. Define an inner product:

gl(z2)g2(z2)w,,b.c.d(Z) dz(gl, g2),.b..d
2,rri
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where the contour is a deformation ofthe imaginary axis and gl, g2 are real polynomials
in z2. Let Sa,b,c,d be the space of such polynomials with this inner product. We have

[d," Sa,b,c,d ") Sa_l/2,b_l/E,c+l/E,d+l/2,

IX *" Sa_l/2,b_l/2,c+l/2,d+l/2 "- Sa,b,c,d

and seek a weight function Wa,b,c,a such that

(2.5) (f, Ixg),,-1/2,b-1/2,c+,/2,d+1/2 (ix *f g)a,b,,d

for all polynomialsf Sa-1/2,b-1/2,+l/2,d+l/2 and g Sa,b,,a. A straightforward computa-
tion yields the necessary and sufficient condition

w:,,<,(z + 1) (z+l)(a+z)(b+z)(c+z)(d+z)
Wa,,c,(Z) z(a-z-1)(b-z-i)(c-z-1)(d-z-1)

with general solution

wo,,,(z)
F(a + z)F(a z)F(b + z)F(b z)F(c + z)F(c z)

r(2z)r(-2z)

F(d + z)F(d z)h(a, b, c, d, z)

,b,,d(Z)h(a, b, c, d, z)

where h satisfies the periodicity properties

h(a-1/2, b-1/2, c+1/2, d +1/2, z+1/2)= h(a-1/2, b-1/2, c+, d +1/2, z-1/2)

=h(a,b,c,d,z).

Here F(z) is the gamma function [5, Chap. XII]. From Stirling’s series for the gamma
function, a,b,c,d(Z)---(Z)2(a+b+c+d)-30(e-2rlyl) as lyl-o, where z=x+iy. Thus we
must require that h(z)= o(e’Iyl) as I),1--,oo in order that h be a suitable weight
function. Furthermore, the qntegration by parts" formula (2.5) will not be valid unless
h() is analytic in an open set containing the strip -1/2-<x_-<1/2. Since h()= h(+ 1) it
follows that h can be analytically continued to an entire periodic function of :

1 Io’h(z) E Cm(y) e2rimx, c,,,(y)
27ri

h(z) e-2rinx dx.

Using the Cauchy-Riemann conditions for analytic functions we find that c,,(y)=
a,,,e-2my where a,, is independent of z. Since h(iy)=o(e2Iyl) we have that
la,. e-2mYl o(e2Iyl) as lyl - oo, so a,, 0 for m # 0. Thus h is independent of z and,
without loss of generality, we can set h 1"

F(a + z)F(a z)F(b + z)F(b z)F(c + z)F(c z)F(d + z)F(d z)
(2.6) Wa,b,c,d(Z)= r(2z)r(-2z)

Since (2.5) holds, IX*IX is formally selfadjoint:

(2.7) (tx*Ixgl, gz),b,c,d (gl, Ix*ixgz)a,b,c,d-

From recurrence relations (2.2b) and (2.4) it follows that the Wilson polynomials are
eigenfunctions of IX*IX"
(2.8) Ix*ix(D(a’b’c’d)--ln(D(a’b’c’d). A.=(a+b+n-1)(c+d+n).
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Note that A. Am iff n m. Since the eigenfunctions corresponding to distinct eigen-
values are orthogonal, we have

a,b,c,d )’(do (’,b,c,d) (I) 0 if n # m.a,b,c,d

The operator /z*/z and the weight function are symmetric with respect to the
interchange a ob. Thus the polynomials {(.b’a’c’d)(z2)} are also orthogonal in Sa.b,,d
and are eigenfunctions of/x*/z. This means that there exists a constant K. such that

(.b,a,c,")( Z2 K,,(p (fl,b,,")( z2).

Equating coefficients of z: on both sides of this expression to obtain K., we find that

4F3(-n,n+b+a+c+d-l,b+z, b-z )b+a, b+c, b+d
1

(2.9)
(a+c).(a+d).
(b+c)n(b+d)n 4F3 n,n+a+b+C+da+b, a+c, a+dl’a+z’a z; 1

This is a transformation formula due to Bailey [6, p. 56] and, as Wilson pointed out
1 ], it essentially contains the symmetries of the 6-j symbols. It follows from this result

that the renormalized polynomials

(a + b),,(a + c).(a + d)n(2’b’’a)(z2)

are symmetric in all four parameters a, b, c, d.
Settingf(z2) g(z2) 1 in (2.5) and using (2.2b) and (2.1), we obtain the following

relationship between the norms on Sa-1/2,b-1/2,c+l/2,d+l/2 and S,b,,d"

c+d
(2.10) 11111:a-1/2,b-1/2,c+l/2,a+l/2 Ill =

a + b 1 a,b,c,d.

The symmetry of the weight function in a, b, c, d yields 5 more such relations.
Now consider the recurrence (2.2a)"

7"(a’b’c’d)" Sa,b,c,d -> Sa+l/2,b+l/2,c+l/2,d+l/2.

We seek the adjoint -* to -= ,b,,d):

(2.11) (f, 7"g)a+l/2,b+l/2,c+1/2,d+l/2--(7"*f g),,b,,a

for all f S,,+1/2,...,d+1/2, g S,...,d. A simple computation using (2.11) yields

7" T
*(a+l/2,b+l/2,c+l/2,d+l/2)

(2.12)
1

-2z[(a+z)(b+z)(c+z)(d+z)E1/2 (a z)(b z)(c z)(d z)E-

From (2.11) and the orthogonality relations it follows that

(2.13) T*((a+l/2,b+l/2,c+l/2,d+l/2) Hn(a’b’c’d)
n--1

Comparing coefficients of z2" on both sides of this expression we find that

H. (a + b)(a + c)(a + d).

Thus r*- is selfadjoint on S,,,b,,d and the eigenvalue equation is"

(2.14) T* T( a’b’c’d =n(nTaTb+c+d-1)(’’b’c’d)
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We also have the Rodrigues formula

(I)(:"b’c’d) Jn"l"*(a+l/E’’’’’d+l/2) T:g(a+l’’’’’d+l) T*(a+n/2"’"’d+n/2)(1),
(2.15)

J,, (a + b),,(a + c),,(a + d),,.
t(a+ 1/2,-. -,d + 1/2) (a,..-,d)Substituting f n-1 g , in (2.11), we obtain the recurrence

(2.16) II?,,>ll 2 n(n+a+b+c+d-1) iim(,,+l/E,...,d+l/2 2
,,...,d (a + b)2(a + )2(a + d)2’’’"-1

which enables us to compute the norm of any Wilson polynomial once the norm

11111 =,...,d is determined for all a,. ., d > 0. We now turn to this last task.
From the orthogonality relation (],...,d) (O,...,d)),. ..,d =0 and the explicit

expression (2.1) for Wilson polynomials we find that

(2.17) iilll=
(a+b+c+d)

a+,,b,=,d.a,...,d (a + b)(a + c)(a + d) 111112
Here we have used the evident relation

(g,, 1),..., 1 =,+ m,b,c,d, g Z2) a + z a z

From (2.10) and (2.17) and the obvious invariance of Illlla,...,d with respect to a
permutation of a, b, c, d we find:

(2 18) Illll _r(a+b)r(a+c)r(a+d)r(b+c)F(b+d)F(c+d)
a,b,c,d F(a + b+ c+ d)

M(a, b, c, d)

where M satisfies the periodicity properties

M(a, b, c, d)= M(a+1/2, b+1/2, c+1/2, d+1/2)= M(a+ 1, b, c, d)

and is invariant under any permutation of a,..., d. Now replace a by a + k, k a
positive integer, in (2.18) and write this expression in the following form:

1 Ioo(r(a+k+iy)r(a+k-iy)r(a+k+b+c/d))2r F(a + k + b)F(a + k + c)F(a + k + d)

r(b+ iy)r(c+ iy)r(d + iy)
(2.19) dy

r(2iy)

From Stirling’s series

as k -> +oo, so

and

(2.20)

r(b+ c)r(b + d)r(c+ d)M(a, b, c, d).

r(z+k)=x/(k)z+-’/2 e-k(1 + O())
r(a+ k+ iy)r(a+ k- iy)r(a+ k+ b+ c+ d)

lim 1
k-+o F(a + k + b)F(a + k + c)F(a + k + d)

1 I__ r(b+ iy)r(c+ iy)r(d + iy) -2r r(2iy)
dy= r(b+ c)r(b + d)r(c + d)M(a, b, c, d).

(The passage to the limit under the integral sign is easily justified since IF( a + iy)II --< F(a
for a > 0.) It is evident from (2.20) that M is independent of a. By symmetry, M is
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constant. To evaluate the constant we set b 0, c d 1/2 in (2.20). Using the multiplica-
tion and reflection theorems for the gamma function, we reduce (2.20) to

or M 2. Thus

(2.21)

2
cosh (ry)

=M

a,b,c,d
r(a+ iy)r(b+ iy)r(c+ iy)r(d + iy)

r(2iy)

2

2r(a + b)r(a + c)r(a + d)r(b + c)r(b + d)r(c + d)
r(a+b+c+d)

Note that this integral, and special cases of it, were originally derived by contour
integration, evaluation of the residues at the poles of the integrand in the right half
plane and use ofknown summation theorems to sum the resulting infinite series. Wilson
[1] used Bailey’s Theorem [6, p. 27]

sF4( 2a, a+l,a+b,a+c, a+d )a, a-b+ 1, a-c+1, a-d+ 1’
1

r(a-b+l)F(a-c+ 1)r(a-d+l)r(-a-b-c-d+ 1)
F(2a + 1)r(-b c+ 1)F(-b d + 1)F(-c- d + 1)

to compute (2.21). Since we have independently obtained the value of this integral we
can consider the usual contour integral technique as a derivation of Bailey’s 5F4
summation.

For the Racah polynomials (discrete orthogonality), [1], the recurrence relation
methods of this paper yield a purely algebraic derivation ofthe orthogonality, including
as a byproduct the terminating version of Bailey’s Theorem: a / b--N.

Note added in proof. Recurrence techniques similar to those used in this paper
have been employed by Nikiforov, Suslov and Uvarov [7] and Nikiforov and Suslov
[8], but these authors have apparently not applied them to the computation of contour
integrals and summation formulas.

Acknowledgments. The author thanks Dick Askey, Mourad Ismail and Dennis
Stanton for several helpful conversations.
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THE BEHAVIOR AT UNIT ARGUMENT OF THE
HYPERGEOMETRIC FUNCTION 3F2:t:

WOLFGANG BOHRING’

Abstract. The behavior at z of the generalized hypergeometric function 3F2(a, b, c’, e,f’, z) is investi-
gated. First the analytic continuation near z is obtained for the general case when s e +f- a b c is
not equal to an integer. The corresponding continuation formulas for the special cases when s is equal to
an integer are then derived by appropriate limiting processes. Whenf c or e c, the formulas immediately
reduce to the well-known continuation formulas of the Gaussian hypergeometric function.

Key words, special functions, hypergeometric series, hypergeometric functions, continuation formulas,
hypergeometric differential equations

AMS(MOS) subject classifications. 33A30, 34A20, 34A30, 30B40

1. Introduction. The behavior near z 1 of the Gaussian hypergeometric function
or series

(1.1) 2Fl(a, b; e; z)=
(a),,(b),,

=o (e),,n!
z"

is given by a well-known continuation formula which may be written

r(a)r(b) r(a)r(b)r(s)
2Fl(a, b; e; z)= 2Fl(a, b; 1- s; 1- z)

r(e) r’(a+s)r(b+s)
(1.2) +F(-s)(1-z)2F(a+s,b+s; l+s; l-z)

(larg (1 z) < r),

(1.3) s=e-a-b.

As it stands, (1.2) is valid if s is not equal to an integer, otherwise it is the starting
point from which the relevant formulas may be derived by a limiting process. It is the
aim of the present work to obtain a corresponding formula for the generalized hyper-
geometric function 3FE(a, b, c; e, f; z), including the formulas for the exceptional cases
when

(1.4) s e +f- a b c

is equal to an integer.
Like the EFt, the 3F2 is also a particular solution of a certain linear differential

equation, now of the third order, with three regular singular points at z -0, 1, o. The
characteristic exponents 0, 1, s and the local power series solutions of this differential
equation relative to the point z 1 are known from the detailed investigation by
Netrlund [8]. The analytic structure near z 1 of the general solution is therefore
known and, if s is not equal to an integer, is given by

(1.5) A + B(1 z)+ O({1 z}2)+ C(1 z)S{1 + O(1 z)}.

It is more difficult to obtain the connecting constants A, B, C for the function 3F2(a,
b, c; e, f; z). While the value of C (and of K in (1.6) below) can be inferred from

* Received by the editors October 21,1985; accepted for publication (in revised form) September 17,1986.

" Physikalisches Institut, Universifiit Heidelberg, D-6900 Heidelberg, West Germany.
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[8], A and B are not known in general. This matter has recently received attention in
the special case when s 0. Then, as z-+ 1 in the sector larg (1- z) < r, we have

(1.6)

where

r(a)r(b)r(c) (a,b,cr(e)r(f) 3F2 e,f z)
L+M(1-z)+O({1-z}2)+K In (1-z){l+O(1-z)}

(1.7)

and, if Re (c) > 0,

(1.8) L=2q(1)-O(a)-b(b)+ Y (e-c).(f-c),.
.,=1 m(a).,(b).,

Here q,(x) denotes the logarithmic derivative F’(x)/F(x) of the gamma function. The
expression (1.8) for L, contained without proof in Ramanujan’s note books [9], has
recently been proved by Evans and Stanton [3], but, as they state themselves, "because
of the inductive nature" of their proofs, their paper "unfortunately sheds little light
on how Ramanujan might have made this remarkable discovery." A new proof along
different lines is therefore of interest. Also, the third connecting constant M is not
known. Its value will be given in (4.9) below.

In the present paper we first consider the general case when s is not equal to an
integer and determine the connecting constants A, B, C of (1.5) for the function
3F2(a, b, c; e,f; z). The results for the exceptional case when s is equal to zero or,
more generally, equal to any integer are then obtained by a limiting process.

A lemma is provided in 2. The main theorem for the general case is derived in
{} 3. The results for the exceptional cases are supplied in {} 4.

2. A lemma. In order to avoid inconvenient and unnecessary restrictions of
the denominator parameters, we follow Olver [6] and consider
{F(e)F(f)}-laFE(a, b, c; e,f; z) rather than aFt_ itself, but without explicitly introducing
a new symbol for this quantity. As a function of z, it has a finite value at z 1 if
Re(e+f-a-b-c)>O. Following Wimp [11], [12] we may consider this value as a
function of the five parameters. This suggests the following.

DEFINITION 1. For those points of the parameter space which satisfy Re (e +f-
a b c) > 0 let the symbol 3F2(a, b, c; e, f) be defined by

1
3F2(2.1)

F(e)F(f) e,f F(e)F(f) 3F2 e,f

and let it then be defined for the other points by analytic continuation.
Using this definition we supply for later application the following.
LEMMA 1. With s e +f a b c there holds

(2.2)
r(e)r(f) 3F= e,f =r(c)r(a+s)r(b+s)

Proof. If Re (s) > 0 and Re (c) > 0 we have from [2] or [5]

1 (a,b, cl) r(s) (e-c,f-c,s)(2.3)
F(e)F(f) 3F2 e,f

1 =r(c)r(a+s)r(b+s),F a+s,b+s
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Here the conditions on s and c are needed to ensure the convergence of the hyper-
geometric series of unit argument on the left- and right-hand side, respectively. By
means of Definition 1 and analytic continuation with respect to the parameters we get
rid of these restrictions, which completes the proof.

3. Derivation of the main theorem. The generalized hypergeometric function
3F2(a, b, c; e,f; z) is a particular solution of the third order linear differential equation

(3.1) {D(zD+ e- 1)(zD+f 1)- (zD+ a)(zD+ b)(zD+ c)}w(z) =0

where D ddz. Relative to the regular singular point z 1 of the differential equation,
the Frobenius ansatz

(3.2) w(z)= 2 g,(r)(1-z) r+",
n-----0

written with powers of 1-z rather than z-1 for later convenience, yields for the
coefficients g, the recurrence relation

(r+ n)(r+ n- 1)(r+ n+ a+ b+ c-e-f)g,(r)

(3.3)
(r+ n- 1){(r+n-2)(2r+2n- 1-e-f+2a+2b+2c)

-ef+ab+bc+ca+a+b+c+ 1}g._l(r)

-(r+ n-2+ a)(r+ n-2+ b)(r+ n-2+ c)g,__(r),

valid for n=0,1,2,...,provided that we have defined g_2(r)=g_l(r)=O while
go(0) 0. The equation for n 0 then leads to the indicial equation which determines
the characteristic exponents

(3.4) r {0, 1, s}, s as in (1.4).

We now assume in this section that s is not equal to an integer, so that the exponent
r s yields a solution of the differential equation. Of the two exponents which are
integers the larger one always gives a solution, but for the smaller one we have to
check if (3.3) is consistent for all the n. Since the difference of the exponents is 1, the
equation for n 1 is crucial. With (1.4) we have from (3.3)

(3.5)
(r+ 1)r(r+ 1-s)gl(r) r{(r- 1)(2r+ 1-e-f+2a+2b+2c)

ef+ ab+ bc+ ca + a + b+ c+ 1}go(r).

For r 0 not only the left-hand side vanishes but the right-hand side happens to vanish
also, and so (3.5) is consistent irrespective of the value of gl(0). Therefore gl(0),
besides go(0), may be assigned arbitrarily. The exponent r=0 in this way yields a
solution containing two constants of integration, where changing gl(0) is equivalent
to adding a constant multiple of the solution with the exponent r 1 mentioned above.
Thus we have shown that

(3.6)
r(a)r(b)r(c)

r(e)r(f) 3F2 e,f
z =og"(0)(1-z)"+(1-z),=og"(s)(1-z)"
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where the connecting constants go(0), gl(0), go(s) still have to be determined while
the other coefficients g,(r) are then given by the recurrence relation

gn(r)
(r-s+ n)(r+ n)(r+ n- 1)

(3.7) ((r+n- 1){(r+n-2)(2r-s+2n- l+a+b+c)

-ef+ ab+ bc+ ca + a + b+ c+ 1}g,,_l(r)

-(r+ n-2+ a)(r+ n-2 + b)(r+ n-2+ c)g,,_2(r)),

to be used for r 0 with n 2, 3, 4, , or for r s with n 1, 2, 3, , and g_l(S) 0.
The connecting constant go(s), which multiplies the (at z 1 singular contribution,

can most conveniently be determined by Darboux’s method [6] as follows. The left-hand
side of (3.6), when written in the form Y uz, has coefficients

(3.8) u,
F(a+ n)r(b + n)F(c + n)
F(e+ n)F(f+ n)F(l+ n)

with the asymptotic behavior

as n- o, which follows by means of the formula

r(y +n nX-Y 1 + O

The leading singular term on the right-hand side of (3.6) is go(s)(1- z) s, which, when
expanded in powers of z by means of the formula

(3.11) (1 z) y. (-s).S_._ Ztl
,=o n!

and written in the form v,z", has coefficients

go(s) F(-s+ n)
(3.12) v. r(-s) r(l+n)

with the asymptotic behavior

(3.13) v. r(_s---5. 1 + 0

as n o. Thus un and v, have, in view of the definition of s according to (1.4), the
same n-dependence of the leading asymptotic term, as expected, and comparison of
the constant factors in (3.9) and (3.13) yields

(3.14) go(s)=r(-s).

This result has been obtained in a different way by Nerlund [8]. More recently such
connection problems have been treated by Naundorf [7] and by Sch5fke and Schmidt
[10].
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The connecting constants go(0) and gl(0), which appear in the (at z- 1) regular
term, will now be determined. If Re (s)> 0, the singular contribution vanishes and
(3.6) evaluated at z- 1 yields

(3.15) go(0) =r(a)F(b)F(C)3Fu 1
r(e)r(f) e,f

In a similar way, if Re (s) > 1, the derivative with respect to z of (3.6) gives

(3.16) g,(0)
r(a+ 1)r(b + 1)F(c + 1)

r(e + 1)r(f+ 1)
3F2[a+ 1, b+ 1, c+ 1

e+l,f+l

By analytic continuation with respect to the parameters, Definition 1 and Lemma 1,
we then finally obtain

(3.17) go(0)
r(a)r(b)r(s) (e-c,f-c, sF(a+s)F(b+s) 3F2 a+s,b+s /’

(3.18) g,(O)
r(a+ 1)r(b + )r(s- a)

r(a+s)r(b+s)
e-c,f-c,s-1)3F2 a+s, b+s

All the other coefficients g,(r) appearing in (3.6) are now uniquely defined by the
recurrence relation (3.7). On the computer they may efficiently be evaluated in this
way, but for analytical work, in particular the investigation of the so far excluded
exceptional cases when s is equal to an integer, an explicit representation of all the
g, (r) is desirable.

When r=0 we may consider the nth derivative with respect to z of (3.6) and
proceed essentially in the same way as above with gl(0). As a generalization of (3.17),
(3.18) we then immediately obtain

(3.19) g"(O)=(-1)’r(a+n)r(b+n)r(s-n)r(a+s)r(b+s)n,. F(e-c’f-c’s-n)a+s, b+s
When r- s we suspect that the g, (s) can be represented in a similar form. From

(3.7) and (3.14) we have, after rearrangement of the terms,

(3.20) gl(S) -r(-s 1){s2+ (a + b)s- ef+ ab+ c(a + b+ s)}.

By the definition of s the factor of c is equal to e /f-c. Making use of this fact we
lose the symmetry with respect to the numerator parameters and obtain

(3.21)
gl(S) -r(-s 1){(a + s)( b + s) -(e c)(f c)}

1)(a + s)(b + s) 3F2( e c, f- c, 1

a+s,b+s

To proceed further, it is convenient to get rid of some factors and to consider y,(r)
defined by

(3.22) n !g,(r) (-1)"r(s -2r- n)y,(r)

rather than g, (r) itself. In view of r {0, s}, the recurrence relation for y, (r) then reads

y.(r) ={(r+n-2)(2n- l+2r-s+a+b+c)

(3.23) -ef+ ab+ bc+ ca + a + b+ c+ 1}y._l(r)

+(s- r- n + 1)(a + r+ n 2)(b + r+ n 2)(c + r+ n 2)y._2(r),
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and we are interested in its special solution which, according to (3.14), (3.17), (3.18),
(3.21), has the starting values

(3.24) yo(r)
F(a + r)F(b + r) ( e c, f c, s r)F(a + s)F(b + s) 3F2 a + s, b + s

(3.25) yl(r)
F(a+ r+l)F(b+ r+l)

F(a+s)r(b+s)
e-c,f-c,s-r-1)3122 a+s, b+s

The factor of y,-l(r) in (3.23) may be rewritten, using the definition of s, as

(3.26)
(n-2)(2n-l+4r-s+a+b+c)-(e+r)(f+r)+(a+ r)(b+r)

+(b+ r)(c+ r)+(c+ r)(a+ r)+ a+ b+c+3r+ l.

We then may see that the recurrence relation for y,(r) can be obtained from that for
y,(0) by the simultaneous substitutions

(3.27) a-a+r, b-b+r, cc+r, ee+r, f-f+r,

and as a consequence,

(3.28) s s- r.

The same is true for the starting values (3.24), (3.25). Since we already know from
(3.19) that

(3.29) yn(0)
r(a+n)r(b+n)
F(a+s)F(b+s)

e-c,f-c, s-n)a+s, b+s

it follows by the substitutions (3.27)-(3.28) that

(3.30) y,(r) r(a+r+n)r(b+r+n).r-)I’(b + s) 3F(e-c,f-c,s-r-n)a+s, b+s

By means of (3.22) we obtain the required explicit representation for g,(r) which is
valid for both r 0 and r s and so we have proved the following.

THEOREM 1. If S e+f-a-b-c is not equal to an integer, then the analytic
continuation ofthe 3122-series near z 1 in the sector larg (1 z)l < r is given by theformula

(3.31)
r(a)r(b)r(c) (a, b, c

r(e)r(f) 3F e,f
g.(O)(1-z)"+(1-z) Z g.(s)(1-z)"

=0 =0

where the series on the right-hand side converge inside the circle [z-11= 1 and the
coefficients g.(r), with re {0, s}, are

(3.32) g.(r)=(_l).F(a+r+n)r(b+r+n)r(s-2r-n) (e-c,f-c,s-r-n)F(a+s)F(b+s)n 3F2 a+s,b+s

We may observe that when f= c or e c then the 3F2 on the right-hand side of
(3.32) becomes equal to 1 and the Theorem 1 reduces to the continuation formula for
the 2F1.

The recurrence (3.7) for the quantities (3.32) can also be deduced from the work
of Lewanowicz [4] and is, essentially, a special case of the recursion relation for the
Wilson polynomials.
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4. The exceptional cases. When s is an integer, the hypergeometric series is called
s-balanced. In such a case the continuation formula may be derived from Theorem 1
by an approximate limiting process. For this purpose it is convenient to make the
simultaneous substitutions a -> a e, b --> b e, c -> c e, e -> e e, f->f- e, and as a
consequence, s-> s + e and then to consider the resulting equations for integral s,
separately for s-> 0 or s <_-0, respectively. Since the series representation of the 3F2 in
(3.32) is needed, a restriction ofthe parameter c now comes in to ensure the convergence.
By performing the limit e -> 0, which is a somewhat lengthy but standard [5] procedure,
we may derive the following results.

COROLLARY 1. If S--e +f-a- b-c is equal to an integer >= O, then the analytic
continuation ofthe 3F2-series near z 1 in the sector larg (1 z)[ < 7r is given by theformula

(4.1)

r(a)r(b)r() (a, b, c[ )r(e)r(/) 3 e,f

Y k,,(1-z)"+(1-z)’ 2 {p.+q. ln(1-z)}(1-)"
=0 =0

where the series on the right-hand side converges inside the circle z- 1[---1 and the

coefficients are

(4.2) k-(-1)’r(a+n)r(b+n)(t-n-1)!r(a+t)r(b+t)n. F:(e-c’f-c’t-n)a+t,b+t
(a+ t).(b+ t).((_l)t (e-C)m(f-c),.(-n)

(t--iin! m=O (a+ t)m(b+ t)mm!

(4.3) {(l+n-m)+(l+ t+n)-(a+ t+n)-(b+ t+n)}

)+(-1)+’n! E (e-C)m(f-c).(m-n-1)!
m=,,+l (a+t),.(b+t)mm!

ifRe(c)>-t-n,

(4.4) q,, _(_1), (a + t),,(b + t),,3F2(e-c,f-c -n

(t+n)!n! a+t,b+t

COROLLARY 2. Ifs e +f a b c is equal to an integer =<0, then the analytic
continuation ofthe 3F2-series near z 1 in the sector ]arg (1 z)l < 7r is given by theformula

(4.5)

r(a)r(b)r(c) (a, b, cl )r(e)r(f) 3F e,f
z

t--1

=(l-z)-’ Z h,,(1-z)"+ Z {u.+v. ln(1-z)}(1-z)"
n=0 n=0

where the series on the right-hand side converges inside the circle ]z-1] 1 and the
coefficients are

(4.6) h" (-1)"
(a- t)"(b- t)"(t- 3F)_(e-c’f-c’ -na-t,b-t 1),
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(a-t)t+,,(b-t),+,,
u.

n t(t+
t+,, (e-c),,(f-c),,,(-t-n)m(-1)t ’m=0 (a-t),,,(b-t)mmV.

(4.7) {(1 + t+ n- m)+ if(1 + n)- ,(a + n)- (b + n)}

+ (-1)"(+ n)! 2
(e-C)m(f-C)m(m-t-n-1)!

,=+,,+1 (a-t),(b-t)mm!

ifRe(c)>-n,

(4.8) v,,=-(-1)’(a-t)t+"(b-t)t+" ( e-c’f-c’-t-n )+ n !n
3F_ 1

a-t,b-t

When 0, the empty sums in (4.1) or (4.5) have to be interpreted as 0.
If f= c or e =c, the formulas in Corollaries 1 and 2 immediately reduce to the

corresponding formulas for the Gaussian hypergeometric function, which appear, apart
from some minor differences of presentation, as (15.3.10)-(15.3.12) in 1], for instance.

Taking the leading terms of (4.1) or (4.5) with 0 we may obtain (1.6) with the
constants K and L as expected and the third connecting constant

M {ab (e c)(f- c)}{2 + 2,(1) ,(a + 1) ,(b + 1)}
(4.9)

(e-c),(f-c)m
(Re (c) > -1).+(e-c)(f-c)-ab

(m-1)m(a)r,,(b)2
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FABER EXPANSIONS OF RATIONAL AND ENTIRE FUNCTIONS*
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Abstract. The Faber polynomials for a bounded, simply connected domain D can, under certain
circumstances, be used to give series expansions of functions analytic on D [5] and to give good polynomial
approximations to such functions [3]. We provide explicit, easily computable formulae for the coefficients
of the Faber polynomials and formulae for the Faber coefficients of certain types of rational and analytic
functions. Finally, since the study of the properties of an analytic function may require us to look at its
derivative, we also provide formulae for the Faber expansions of the derivatives of Faber polynomials.

Key words. Faber polynomials, Faber expansion, rational function, entire function
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1. Introduction. Let

bl +b2(1) g(sc) so+ bo + +...

be analytic and univalent in A {:: I1 > 1}. Then E C\g(A) is a continuum ofcapacity
1. The Faber polynomials {F,(w)},=o associated with g (or ) are defined by the
generating function relation [4, p. 57]

(2) log
g()-

2 -1 F(w)-".
n=l

We define Fo(w) 1. As well as providing a valuable tooi in studying propeies of
univalent functions, the Faber polynomials also provide a means for expressing func-
tions analytic on E or Int E. In fact, if f(z) is such a function then under suitable
conditions,

(3) f(z) E a,,F,,(z) (z Int E)
n=0

where

(4)

In (4), r is a positive number, usually close to 1, and of course f(g()) must be defined
on I:l r; this gets back to the "suitable conditions" alluded to above and will be
made more precise in later sections. In spite of (4), very little seems to have been done
concerning methods for actually obtaining Faber expansions. In this paper we address
this and other problems concerning Faber polynomials.

In 2 we find explicit formulae for the coefficients of the Faber polynomials.
Various expressions for the Faber coefficients have been obtained by Todorov [7].

* Received by the editors January 20, 1986; accepted for publication September 17, 1986.
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However we consider the coefficients for the expansion about bo,

F,(w) Ck"(W bo)".
n=0

Such an expression seems natural in view of the recursion relation [4, p. 57]

n--1

(5) F+(w)=(w-bo)F.(w)- E b._F(w)-(n+l)b..
k=l

The resulting expressions for the Ckn), being independent of bo, seem somewhat simpler
than Todorov’s expressions.

In 3 we find explicit formulae for the Faber expansions of the polynomials
(w-bo) k (k =0, 1,...) and use these to obtain Faber expansions of entire and some
analytic functions. As examples, we present some expansions of certain entire functions
in terms of Chebyshev polynomials.

In 4 we find explicit formulae for the Faber expansions of derivatives of the
Faber polynomials. Such expressions may prove useful for working with Faber
expansions of functions, and also lead to explicit formulae for the Faber expansions
of rational functions.

In the remainder of the paper we will encounter many summations which, in
certain cases, may be summing over empty sets. Such sums are taken to be 0.

2. Coefficients of Faber polynomials.
THEOREM 1. For n O, 1, 2,...,

n-2

(6) F,,(w)=(w-bo)"+ c"(w-bo)
k=O

where, for 1 <-_ k <- n -2,

(7)
n (m+k-1) bq_,...b,._cn)-- E(-1)m k-1

and

n-2

(8) C(o")= jb_,(., (-1)m+’b,_, b.,_l)- nb,_l.
j=2

In (7), the sum is over all ordered m-tuples (rl,"" ", r,,) (m 1, 2,...) of integers >-2
with rl+ rz+"" + r,, n- k. In (8), the inner sum is over all ordered m-tuples (rl,
r2, rm) (m 1, 2,’.’,) of integers >-2 with rl + r2+" "+ r,, n-j. In (6), (7) and
(8) all empty sums will be taken to be O. For convenience, we will let c," 1 .and c")_l O.

Remark. Todorov [7] found expressions for the coefficients of the Faber poly-
nomials when expanded in powers of w (rather than w-bo). The formulae in [7]
involve homogeneous isobaric polynomials [6] and seem to be more complicated than
those presented in Theorem 1. However, we have sacrificed, for this simplicity, the
convenience of having the polynomials in powers of w.

For the proof of Theorem 1 it is convenient to first find an expression for the
reciprocal of a power series. Such expressions have been found previously [2], but we
need an alternate form that does not appear to be in a convenient place in the literature.



FABER EXPANSIONS 1237

LEMMA 2. Let p(z)= aO+alZ+Ct2z2+ be a formal power series with to # O.
Then the formal power series for lip(z) is flo+ fllz +2z+ where flo a and

(-1)
(9) ilk=2 m+l ffr, ffr2"’’ffrm (k= 1,2,...).

fro

esum in (9) is over all m-tuples rl , r ofpositive integers with rl + r2 +" + r
k.

Proof That flo ag is clear. Assume (9) correct for indices j N k 1 (k 1). Since

we have 2o- 0. Thus

1 k-1

(10)
ao j=o

The inner sum is over all m-tuples (r,. , r) of positive integers with r + r+. +
r =j. The inner sum, combined with the first sum, then gives a sum over all ordered
m-tuples (m 2) (r, , r) with r + r +. + r k (The double sum in (10) simply
counts all such m-tuples with k-1 in the last position, then those with k-2 in the
last position, etc.). The -/o term takes care of the l-tuple" (k) appearing in (9).
Bringing the factor-1/o inside the expression (10) thus gives (9) and completes the
proof by induction.

Before using (9) to prove Theorem 1, we first rearrange (9) to group like powers
of . We observe that if l’s appear in the m-tuple (r, r,..., r), then after the
l’s are deleted, the remaining (m-/)-tuple (r,..., r_) has coordinates-2 and
summing to k-I. Now staing from (r,..., r_) we may inse l’s in this (m-
/)-tuple and fill it out to an m-tuple in () ways.

Thus

(11)
(-1)k akl

where the inner sum is over all m-tuples (r,. , r,,) of integers ->2 with r + r2 +. -k-
r,, k and empty sums are taken to be 0. We then note that (11) holds for all k -> 0.

Proofof Theorem 1. Differentiating (2) with respect to w and then multiplying by
we get

E
1

so_,,"F’,+l(W)(12)
g()-w ,=on+l

We apply Lemma 2 to p(z)= [g(1/ z) w]z, noting that p(z)= k=O akzk with

(13) ao=l, al=bo-w and ak=flk_l (k->2).

Replacing z by 1/: we find that

(14) = Z fl,-"
g()- w ,=o
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where we may take the fin’s as given by (11). Equating coefficients in (12) and (14),
then using (11) and (13) we have, for n _-> 1,

1
F’(w) n_l

(15)
=(w-bo)n-l+ . (-1)mbr,_lb,.2_l b,. --1 (w-bo)

l=O

where the inner sum in (15) is over the same values as the one in (11) for fln-. When
we integrate both sides of (15) and multiply by n we have that

n--3( )m(m+l ) )_Fn(W) (W bo) +n E(-1 brl-1 br_l
(w bo) l+l

+Fn(bo)
l=O 1+1

(16)

=(w-bo)n+ (-1)" b,_.., b -1 (w-bo)+Fn(bo).
1=1 l--1

The inner sum in (16) is over all m-tuples (rl, , rm) of integers _->2 with rl + rE /" /

rm n- I. Thus we have, as defined in the statement of Theorem 1,
n--2

Fn(w) (w- bo) + Ckn)(w bo) k + Fn(bo).
k=l

We need only prove that Con)= Fn(bo) is as claimed.
If we differentiate (5) and let w bo we have

n--1

Fn(bo)- F’+l(bo)+ bn-kF’k(bo).
k=l

Substituting (15), with w- bo, into this last expression and noting F-= 1, we have

Fn(bo) (n + 1) (-1)’brl_l brm-1
(17)

n--1

+ kbn_k (-1)mbr_l’" brm-l+bn-

where sum ( (resp. ()) is over all m-tuples (rl," ", r,) of integers =>2 with rl /

"+ rm n (resp. k-1). We rearrange the first sum in (17) to group together all of
those m-tuples whose last entry is n- k (0_-< k_-< n- 2). Noting that when k 2, is
0 we find that

Fn(bo)=(n+ 1) bn__ 2 (-1)m+b,- b._l
k=2

(18) -2 (k+l)b__ 2(-1)’/b,_...b._ -nbn-1
k=2

2 (n-k)bn__ 2(-1)’n+b,-’"b.- -nbn_
k=2

where the inner sums in (18) are over m-tuples (rl,.-., rm) of integers ->2 with
r +. + rm k. With a change of variable in the first sum (k -* n k) this is equivalent
to (a). r

To conclude this section, we admit that using expressions (7) and (8) to compute
a large number of coefficients can be tedious. In this event we should point out that
(5) gives rise to an easily proven recursion relation.
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LEMMA 3. With the same notation as Theorem 1, and taking c," 1 (n 0, 1, 2, .)
and c(,,’)_ -0 (n 1, 2,...) we have that

n-1

C(kn+l)-- C(kn21- b,_,Ckt)
l=k

(n>-O,l<-_k<-n-1)

and

n-1

C{o"+l)= y b,_,Co-(n+l)b, (n=>l).
1=1

3. Expansions of analytic functions. In this section we will derive an explicit
formula for the Faber expansion of functions that are entire, or at least analytic on
an appropriate disk containing E or Int (E). It is known [5, p. 42] that if f(z) is
analytic on E or if OE is analytic and f(z) is analytic on Int E, then (3) and (4) hold.
In the first case, the r in (4) will be > 1 while in the second case, will be <1. In either
case the series (3) converges uniformly on compact subsets of Int (E). Throughout
this section we will assume f(z) and/or E are as discussed above, though more general
circumstances under which (3) and (4) hold are known [3].

THEOREM 4. Let k >-0 be an integer. Then

k-1

(19) (w-bo)k= Fk(W)+ , 3,k)FI(W)
/=0

where

(20) TIk)= Z Y b, b_ (0 _-< _-< k 1)
s=[(k+l+l)/2]

and the inner sum in (20) is over all (k- s)-tuples (rl, , rk-s) ofpositive integers with

rl+’" "+rk-s=s--l. We take 3,{kk)= 1 (k=O, 1,’" "). In (20), is the greatest integer

function.
Proof. It is clear that the coefficient of Fk is 1. Since (w-bo)k is entire, we may

use (4) to obtain

yk)-- l__- (g(l+lb)kd (0_<_/<__k-l)
2 rri 1=

(21) =coefficient of 1 in (g(:)-bo)k

= br, br2" b

where the sum in (21) is over all ordered k-tuples (rl, rE,’’’, rk) with rj {-1} [_J Z+

(1 <-j <-k), rl + r2+’" "/ rk---l and where b_l- 1. If we rearrange (21) to first sum
over those rj’s that may be -1, we find that to achieve the sum -l, at least [(k+ l/ 1)/2]
of the ’s must be -1. Since l_-< k-1 in (21) and the sum is over k-tuples, we see at
most k-1 of the )’s may be -1. Thus

Tk}= Y. Y b,, bk
s=[(k++l)/2] S

where the inner sum is as described in the statement of the theorem. [:]

We may note that in (20) the sum is empty when k-1. Thus /kl----0 (k 1,
2,’’ "). As was the case for the coefficients Ck"} of Theorem l, we can also generate
the yk’s through a recursion relation.
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(22)

and

LEMMA 5. We have ykk) 1 (k O, 1,’’ ") and ykk)_l 0 (k 1, 2,’’ "). For k >= 1,

k

yk+l)= yk + y. yJkbj_! (1 _--< l_--< k- 1)
j=l+l

(23)

(24)

k

’)t(ok+l)--" E (j -" 1)Tkb.
j=O

Proof. By (5) and (19) we have, for k-> 1,

k+l

2 "Yk+I)FI(w) (W- bo)k+l= (w- bo)(W- bo) k
/=0

k

X Yk)(w-bo)F(w)
j=O

o yJk) F+(w)+ bj_,Fl(W)+(j+ 1)bj
j= 1=1

j=l I=1 j=/+l j=0

(25) Fk+l "It- k-)l + 2 k)bj-I El(w)
/=1 j=l+l

k

+ ., (j+ 1)y)k)bFo(w).
j=O

Equating coefficients of Ft(w) in (24) and (25) we get (22) and (23). [3

With Theorem 4 we easily obtain the Faber expansions of entire functions.
THEOREM 6. Suppose that either
(i) OE is analytic and f(z) is analytic on some disk A(bo, r) Int E,

or
(ii) f(z) is analytic on some disk A(bo, r) E. Then if

then

f(z) 2 aj(z- bo) j (Iz- bol < r),
j=O

(26) f(z)= E atFt(w)
/=0

where, for >- O,

(27) a,= X akyk)

k=l

and the yk)’s are defined in Theorem 4. In case (i) series (26) converges uniformly on
compact subsets of Int E while in case (ii) series (26) converges uniformly on E.
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Proof Let S.(z) j=o aj(z- bo) By Theorem 4,

s.()= a E(z)+ rV,(z)
=0 =0

a+ E ae? E(z).
/---o j=l+l

In case (i), {S.(z)} converges to f(z) uniformly on compact subsets of Int E. In case
(ii), {S,(z)}] converges to f(z) uniformly on some disk A(bo, r’) where A(bo, r)=
A(bo, r’) E. In either case, the al’S are given by (3) and (4) for appropriate p.

f(g())
d1 1+1

lim + ayj)

j=/+l

Z av?.
j=l

The uniform convergence of the Faber series follows from [5, p. 42]. [3

As an example, we consider the case in which g(z)= z+ bo+ei/z (0 real) and
f(z) e z. In this case g maps A onto the complement of the segment

( bo + 2ei/2 cos ( -)" O <= <= 27r}
For this choice of g, the Faber polynomials are translations of the familiar Chebyshev
polynomials. In fact, we have that

1
F. w ..---Z {[( w bo) + x/( w bo)2 4e ,o], + [( w bo) -4(’w bo)2 4e ,o ]. }.

We may apply Theorem 1 to write F,(w) in more conventional form. Since bl e
and bk 0 (k >= 2), (7) shows that for 1 -< k =< n 2

0

C(kn) n
(-1)("

(n k odd),

-k)/2( (n+k-lk- 2)/2)e((,,_k)/2)o (n-k even),

while (8) gives

Co-={2(_1)"/= ei,,o/2
(n odd),
(n even).
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Thus

F,(w)=(w-bo)"+ (-1)"/2ne’"/E("/-l)(-1)k(1/2n+k-1k=l k 2k-1
e-’kO(W--bo)Ek

+2(-1)"/2 e ’"/2 (n even)

and

F,(w) (w- bo)" + (-1)("+1)/2n e"+/2’

"=)2 (--1)k ((n--1)/2+ k--1) e-,kO(W_bo)2k-12k-i 2k-2
(n odd).

If we apply Theorem 4 to this particular g(z), we find that

k-1

(w-bo)k= Fk(W)+ 3,kFI(W)
/=0

where

(28) ,yk) k i((k-l)/2)o

(l+ k)/2
e

(l + k odd),

(1 + k even).

Thus we find that

k/2-1( k ) k/2-1)O(w--b)k--Fk(W)+
/=0 k/2+l

ei( F21(w) (k even)

and

(W--bo)k= Fk(W)+
k-3)/2 ( k ) ,(k-l/2-loX (k+1)/2+l

e F21+l(W) (k odd),
1=0

giving expansions for (w-bo)k in terms of Chebyshev polynomials. Finally, taking

f(z) e eb (z- bo),
j=O

Theorem 6 says, for g(z) z + bo+ e/z,

eZ= 20llfl(Z)
/=0

where

Oll eb 2 .. /k)
k=!
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and the ’}/k)’s are, in this case, given by (28). Hence, if is even,

oo eb 1 2k e(_/_o
k=l/2 (2k)! k/l/2

(29)

If is odd

eb eiJ

=o j l(j +/)!
eb-"/2ji(2iei/2).

( )al eb 1 2k- 1 i(k-((l+l)/2))O

k=(l+1)/E(2k--1)! k+(l-1)/2
e

(30) eb
e’J

j=oj!(j+l)!
eb-("o/)j(2iei/).

In (29) and (30) J(t) is Bessel’s function of order of the first kind [1, p. 175]. Thus,
in terms of the Chebyshev polynomials {F, (w)} generated by z + bo+ ei/z, we find that

eZ= eb e-il/2Jl(2iei/2)Fl(Z).
1=0

4. Rational functions and derivatives of Faber polynomials. Let R(z) be a rational
function. We may write

R(z)=P(z)+ ’. a’k)kj=l k=l (Z- pj

where P(z) is a polynomial (P(z)--0 is possible) and /91, tO2,"" ", Pn are the finite
poles of R. We will assume that R has at least one finite pole and that for 1-<_j-<_ n,
R has a pole of order m at p. If none of the poles of R lies in E, then R is analytic
on E and (3) and (4) hold with f(z) R(z). Thus we may ask for the Faber expansion
of R with respect to E.

Since the Faber expansion of a polynomial can be obtained using Theorems 4
and 6, it suffices to consider the Faber expansion for

1
(31) f(z)=(Z_p)k (k= 1,2," , p C\E).

For future reference, we observe that if t9 is sufficiently large, then the techniques of
3 can be used to obtain the expansion for (31). In fact, the following result is an

easy application of Theorem 6.
THEOREM 7. Let pC\E with E _A(bo, lp-bol). Then for zE

1 , fllFt(z)(32)
(z p)k

where

(33)
(bo-p)k

r=, r (p-bo)

and the "}r)’s are defined by (20).
Since (32) and (33) are valid whenever E A(bo, IP-bol) and since E c__ A(bo, 2)

[4, p. 19] it follows that (33) must converge whenever Io-bo]> 2. This leads to the
following estimate on the growth of the yr’s.

COROLLARY 8. For the coefficients yr) defined in (20) we have

(34) lim sup lyr)ll/’<= 2.
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This estimate is best possible in that the constant 2 in (34) cannot be replaced by a smaller
number.

Proof. Applying the root test to (33), we see that for those p for which the series
converges

l _>lim sup [(k+ r_ l) lyr)l ]1/2r-oo r ]p-bo]2

1

P bol
lim sup 13, r)] 1/r

Thus Ip-bollimsup_,lWl/ for each p for which (33) converges. Since (33)
converges for lp- bol 2, the desired inequality follows.

Taking g(z)--z+ bo/ e/z, the resulting ?’s given in (28) show the estimate is
best possible.

If p CE but E A(bo, p- bo), then Theorem 7 does not apply. Nonetheless,
we can still find the Faber expansion for (31) if we assume g-l(p)=Zo A is known.

We will need the following lemma.
LEMA 9. Let n, k be positive integers with k n. en

(35) Fk(w) k F_k(W)+ k E n’kFl(w)
/=0

where

(0_-< <-n- k- 2) and the c’s and 7’s are defined in (7), (8) and (20).
Proof By Theorem 1

n-2

F.(w) (w- bo)" + c"(w bo)
r=O

where the c")’s are given in (7) and (8). Thus

F(k)(w) k! (w- bo)-k + E
t=O

C,+k
k

(w-bo)’

Where we apply Theorem 4 the last expression becomes

F.k(w) k! F._k(W)+ E 7"-k)F,(w)
/=0

+ ,(n)
,+k F,(w)+ 3,’)Fl(W)

,=o k I=0

Using Y’I c1 0 and interchanging the order of summation, we have

{(k) n-k-2[ (l+k)l(k)(w)-’- k! Fn-k(W)+ E ’YI n-k)’-]- Cl+k
1=o k

t=l

This completes the proof of the lemma.
THEOREM 10. Let Zo e A and set p g(zo). Then for k 1, 2,...,

1__ E lFl(W)(37)
(z p)k
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where

(38) fll (--1)kk
n=l+k nZo

and the ln’k)’s are defined by (36).
Proof. Let Aro C\{g(:): I1->-IzolI (ro-IZol), Then the series

log (g(zo)- w)_Zo,,=1 In F’(w)z-"
is an analytic function of w Aro and the series on the right converges uniformly (as
a function of w) on compact subsets of Aro. Thus if we differentiate with respect to
w, we find

1 y _1 F’(w)z(39)
g(zo)-W n=l n

uniformly on compact subsets of Aro. Letting g(zo)=/9 and differentiating (39) k-1
times with respect to w, we find

(40)
(w-p)k

(--1)k d(k-1) ( 1 )(-1). dw-’--- g(z)- w

(-11k

(-- k n
1F)(w)z""

For N -> k, let

S(w)
(--1)k 1 17(k)(w) z-7

WThen the sequence {SN( )}N--k converges to 1/(w-p)k uniformly on compact subsets
of Aro. The same is true if we rewrite SN(w) after substituting expression (35), with

(n,k) (.,k)
T] n-k () and 7 n-k-1 0"

k nz 1=0

(--1)kk
/:o n:l+k nz Fl(W).

If r> 1 is chosen so that Izol> r, then 1/(w-p)k is analytic on C\{g(:): I1 r}. Thus
(4) holds, that is, f(w)=1k =E,o [3,F(w) with

1 I f(g())
d]l

2 "/’/’---’-- El:
71+1

lim
1 f SN(g())

v- 27ri El
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N

lim (--1)kk
n=l+k

=(-1)kk E
I+k l’lZg

5. Remarks and examples.
Remark. Unfortunately, the formula for 1 in Theorem 10 is rather complicated.

However this seems unavoidable, even if we disregard the fact that working with
coefficients of (g(:)-w)-k must lead to complications. In fact, we first note that the
formula

(41) fll (-1)kk
n=l+k rlz

(--1)kk .,
,=/k n(g-(p))

must be valid for all [Zo[ > 1 or p C\E. On the other hand, Theorem 7 shows that if
[p bo[ > 2, then

(42)
1 (k+r-1) 71(r)_

(bo p)k =1 r p bo)

Since the Faber expansion coefficients for a function are unique, we have

1 k 4- r- 1 Tl(r) kk }n,k)
(bo p)k (-1) ’. -1

r=, r (p-- bo) ,,=,+,, n(g (p))"

for [p-bol> 2. Thus (41) is an analytic continuation of (42) to C\E. The fact that OE
may be rather complicated means that this analytic continuation may be rather compli-
cated also.

In spite of the complexity of the r/"’)’s we can, however, say that since (38) must
converge for all [Zol > 1,

(43) lim sup [Tln’k)[ 1In 1.

Remark. Other methods for finding the Tn’k)’s and the l’S are possible, but also
lead to complicated expressions. For example, we may first find the series expansion
for 1/(g(zo)-w) using Lemma 2, and then the coefficients for (1/(g(zo)-W))k as in
the proof of Theorem 4. We chose the method presented in the proof of Lemma 9 and
Theorem 10 because it gave access to and used expressions for the derivatives of the
Faber polynomials. Such expressions can be valuable in working with Faber expansions.

Example. As an example of the use of formulas (35) and (36), again consider
g(:) :+ bo+ ei/ In 3 we saw that for this choice of g we have that

e"= eb E e-il/2Jl(2iei/2)Fl(Z).
/=0

Equating e" to its own derivative and substituting (35) with k 1 gives the following"

(44) E e-U/2jt(2ie’/:’)Ft(z)
/=0

E e-"/2Jt(2ie’/2) lF_(z)+ E
I=1 j=o
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(45)
=0 l=j+l

e-io/2_ 1)Jl(2iei/2) I w)

where !j+l,1) (j+2,1)=j+ 1 and ,tj =0. Equating coefficients of F(w) in (44) and (45)
we see that

(46) J,,(2ie ’/2) e’"/2 , e-’l/2rl)l)Jl(2ie’/2).
/=n+l

The r/,/’l)’s are somewhat complicated even in this simple case. Nonetheless (46)
exhibits an interesting relation between Bessel functions of different orders.
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Abstract. We study the set of rational solutions of an (N+ 1)-point Nevanlinna-Pick problem, that
has degree bounded by N. Based on the invariance of the topological degree of a certain mapping under
deformation, we establish that when the (N+ 1)-point Nevanlinna-Pick problem is solvable, then for any
dissipation polynomial of degree N or less, there corresponds an interpolating function with dimension at

most N. Our results provide a novel topological proof for the sufficiency of Pick’s criterion for the solvability
of the Nevanlinna-Pick problem, and also give a solution to an extended interpolation problem.

Key words. Nevanlinna-Pick interpolation, bounded degree solution, topological degree theory
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1. Introduction. The Nevanlinna-Pick interpolation theory has a long history in
mathematics. Its origin can be traced back to the beginning of the century in the work
of Pick [20] and Nevanlinna [19] and it has reached a high degree of achievement in
the recent work of Adamjan, Arov and Krein [1], Sarason [21], Sz.-Nagy and Foias
[25] and Ball and Helton [3].

In engineering, it was in a circuit theoretical context where interpolation theory
found the first applications (see Belevitch [4] and Wohlers [28]). In recent years,
renewal of interest in the Nevanlinna-Pick interpolation problem has been motivated
by a multitude of applications to system theoretic problems. These have been in the
area of robust control, circuit theory, approximation theory, filtering, and stochastic
processes (see Zames and Francis [30], Khargonekar and Tannenbaum [15], Helton
[11], Genin and Kung [7], Dewilde, Vieira and Kailath [6] and Delsarte, Genin and
Kamp [5]).

This paper addresses certain questions that carry a significant interest from an
engineering standpoint.

It is known that whenever an (N+ 1)-point Nevanlinna-Pick problem is solvable,
there exist rational solutions of degree at most N. Generically, the solution is nonunique.
In this paper we present a study of the solutions of the (N+ 1)-point Nevanlinna-Pick
problem that are at most of degree N. We show in Theorem 5.3 that for any dissipation
polynomial (for a definition, see 4) of degree at most N there exists a corresponding
solution of degree at most N. This provides a description of the set of degree N
solutions. We must point out that the degree of the interpolating function is related
to the dimension of a controller in a feedback system, to the dimension of a modeling
filter of a stochastic process, or to the McMillan degree of a certain transfer function
in a circuit theoretic context. We show the above by exploiting the invariance of the
topological degree of a certain mapping under deformation.

This approach also provides an independent topological proof of the sufficiency
of Pick’s criterion for the solvability of the Nevanlinna-Pick problem.

Our results are applied to tackle the solvability of an extended interpolation
problem (see 5) where, in addition to the N+ 1 interpolating conditions of the

* Received by the editors September 23, 1985; accepted for publication (in revised form) August 6,
1986. This research was supported in part by the National Science Foundation under grant ECS-8451519,
and in part by grants from Honeywell, 3M, and the MEIS Center at the University of Minnesota, Minneapolis,
Minnesota 55455.

t Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011.

1248



A TOPOLOGICAL APPROACH TO NP-INTERPOLATION 1249

standard problem, we require that the real part ofthe function satisfy extra N interpolat-
ing conditions on the boundary of the "stability" region. These N interpolating
conditions are interpreted as attenuation zeros of an associated transmittance function.

This work follows the lines of an investigation on the Carath6odory problem [8],
and a preliminary version was reported in [9].

A variety of different terminologies has appeared in connection with the Nevano
linna-Pick problem. For instance, the reflectance of a passive system is known also as
a bounded real function or as a Schur function, etc. We have chosen to use a rather
mathematical terminology as it appears in the classical references (e.g. Akhiezer [2]),
although occasionally we indicate the "translation" of the various terms in the circuit
theoretic or stochastic terminology.

2. Notation and terminology.
C {complex numbers}.
R {real numbers}.
D--open unit disc
={zC" [zl< 1}.

X, X, OX indicate the closure, the interior and the boundary of a set X,
respectively.
H(D) {functions holomorphic in D}
C =class C (for Carath6odory)
={f(z)H(D)" Re {f(z)}->0 for all z in D}.

S class S (for Schur)
{f(z) H(D)" If(z)] _<- 1 for all z in D}.

z*= complex conjugate of z C.
If a(z)=ao+alz+’’ .+a,z"+...H(D), then
a(z).=a*(z-’)

a*o + a*lz-1 +" + a*,z-" +. is analytic in C D.
L-: the space of squarely integrable functions on aD.
H: the space of L2-functions that have analytic continuation in D.

3. Nevanlinna-Pick interpolation. Consider two sets of N+ 1 points in C,

z={z’zDforr=0,1,...,N} and w={w’wC forr=0,1,...,N}.

For simplicity we will always assume that the points z are all distinct. The Nevanlinna-
Pick problem can be stated as follows.

PROaLEM NP (z, w). Construct, if possible, a function f(z) C that satisfies the
interpolation conditions

(3.1) f(z)=w forr=0,1,...,N.

In particular,

(NP1) find necessary and sufficient conditions on the data (z, w) for the existence
of a solution f(z), and

(NP2) give a complete description of the set C(z, w) of all C-functions satisfying
(3.1).

The solvability criterion was derived by Pick and a constructive algorithm was
provided by Nevanlinnamwe now outline these. For a more detailed exposition see
Walsh [27].
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Pick criterion. There exists a function f(z) C that satisfies (3.1) if and only if
the Pick matrix

is nonnegative definite.

[w+ w*]P(z, w)::
1 z,zf ,,=o

A similar interpolation problem can be stated in terms of functions of class S
instead of C. Both formulations are equivalent. However, the Nevanlinna recursive
scheme is simpler to describe in terms of S-functions. Define

Z Z
sr(z):-l_zz. for--0,1,...,N.

Nevanlinna recursive scheme. A function f(z) C satisfies the interpolation condi-
tions (3.1) if and only if

(3.2a) Re Wo -> 0

and

(3.2b) s(z) :: sro(z) -1
f(z)- Wo
f(z) + Wo*

belongs to the class S and satisfies the interpolation conditions

(3.3) s(z) v, := ’o(Z)- f(z)- Wo
f(z)+W*o

for 1,2,..-, N.

Furthermore, a function s(z) S such that

Sl(Z)= vt, forr=/,/+l,...,N

exists if and only if either

s(z) Vl, belongs to S,(3.4a) < 1 and s+(z) (z)-
1-Vl&(Z)

or

(3.4b) [vt, t[ 1 and s(z) v, v,+i v,u.

In case (3.4a) holds, st+(z) satisfies

st+(z) vt+a, := ’(z)- vt,(z)-v,
for l+ 1 N.

1- VlVl,(z,,)

(For a proof see Walsh [27].)
Notice that at each step of this procedure the number of interpolation conditions

is reduced. Thus, it leads to a recursive solution of NP (z, w). This is summarized below.
PROPOSITION 3.5. The NP problem is solvable if and only if Re Wo> 0 and either

(3.5a) Iv,l< 1 for t 1,..., N

or

(3.5b) Iv, < 1 for t 1,..., m- 1 and 1, v,,,,,, v,,v.
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In the later case the solution is unique, whereas in the former case the general solution
is obtained using

(3.6a)

and

f(z) j Im Wo+ Re Wo
l q- O(Z)SI(Z)
1-o(z)sl(z)

(3.6b) s(z) V,l + l(Z)Sl+l(Z)
for l= n, n- 1,..., 1

1 + v*t,il(Z)Sl+,(z)

from Vl.l, 1,..., n and an arbitrary S+l(Z) S.
We are interested in the "indeterminate" case when there is more than one solution.

A necessary and sufficient condition for the problem to be indeterminate is (3.5a). This
condition is equivalent to the positive definiteness ofthe associated Pick matrix. Hence,
from now on, we will assume that P is positive definite.

In the indeterminate case, one particular solution of the NP problem is obtained
by setting sn/l(z)= 0 in (3.6). We state some related facts in the following proposition.

PROPOSITION 3.7. Let the Pick matrix P be positive definite and let fo(z) denote the
solution of the NP problem that is obtained by setting Sn/I(Z)O. Then, (a) fo(z) is a
rationalfunction, and (b) iffo(z)= 7ro(z)/Xo(Z) with 7to(Z) andxo(Z) coprimepolynomials
in z, then max {deg 7to(Z), deg Xo(Z)} <- n and Xo(Z) 0 for all z Dc.

ProofofProposition 3.7. From (3.6) it is easy to see that fo(z) is a rational function
of degree less than or equal to n. (The degree of a rational function ro(z)/Xo(Z) is
defined to be the maximum of{deg 7to(Z), deg Xo(Z)} where 7to(Z), Xo(Z) are polynomials
in z.) Also using (3.6), one can derive that

n--1

7ro(Z)Xo(Z). + Xo(z)Tro(z). k I-I (z zK)(z-1- z*)
K=0

for some scalar k > 0. Now, since levi< 1 for all K, Xo(Z) (and for that matter 7to(Z)
also) cannot have a root on OD, otherwise, Xo*(Z) would have a root at the same point.
This cannot happen because the right-hand side of the above has no root on OD.
Finally, that Xo(Z) has no root outside D is a consequence of the fact that fo(z) is a
C-function (Proposition 3.5). Q.E.D.

4. Rational C-functions. A well-known characterization of rational C-functions
is given below (see Siljak [24]).

PROPOSITION 4.1. Let r(z), X(z) be coprime polynomials in z. The rationalfunction
r(z)/x(z) belongs to C if and only if
(4.1a) zr(z)+x(z)O for all zD

and

(4.1b) d(z, z-l): r(z)x(z).+X(z)Tr(z).>-_O for all zOD.

A polynomial d(z, z-1) C[z, z-1] that satisfies (4.1b) will be called a dissipation
polynomial (following Kalman [12]). The degree of the highest power of z will be
called the degree ofd(z, z-). (A necessary condition for d(z, z-) to be a dissipation
polynomial is that d(z, z-). d(z, z-). Hence deg d(z, z-1) is also equal to the highest
power of z-.)

Allowing the polynomials zr(z), X(z) to have common factors, condition (4.1a)
can be somewhat relaxed. The following modification of (4.1) will be utilized in the
sequel.
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PROPOSITION 4.2. Let zr(z), X(z) be polynomials in z (not necessarily coprime). If
(4.2a) 7r(z)+x(z) 0 for all z D (and not necessarily in Dc)

and

(4.2b) d(z, z-i) _-> 0 for all z OD,

then 7r(z)/x(z is a C-function.
Proof From

I(z)/x(z)l--I(z)-x(z)l=-2d(z, Z--1)__--0 for zOD,

it follows that any root of r(z)+x(z) on dD is also a root of 7r(z)-x(z) and hence,
of both 7r(z) and X(Z). After extracting all common roots of r(z) and X(Z) that lie
on D, we are left with a pair of polynomials (-(z), ,(z)) that satisfy (4.1a), (4.1b)
and also 7r(z)/x(z)= (z)/(z). Therefore, r(z)/x(z) is in C. Q.E.D.

5. Interpolation with rational C-functions of degree N: Main results.
PROaEM 5.1: I(Z, W, ). Let (z, w) be a set of N+ 1 interpolating conditions,

and let : {sc: : OD, 1, 2, , N}. Find necessary and sufficient conditions for
the existence of a rational function f(z) 7r(z)/x(z) C that satisfies the interpolation
conditions

(5.1a) f(z) w for =0, 1,-.., N,

and also

(5.1b) 7r(:)X(:).+X(:)Tr(:).=0 for 1,..., N.

Note that in case 7r(z), X(Z) have no common factor, conditions (5.1b) can be
written as

(5.1c) Ref(:)=0 forr=l,...,N

(which represent L/Swner-type interpolation conditions). In a circuit theoretic context
the points sc cOD correspond to attenuation zeros for the corresponding Schur-
bounded real transmittance function s(z). That is, if s(z)= 1/z[f(z)-f(O)]/ [f(z)+
f(0)*], then (5.1c) implies that [s(sC)[=l and hence the attenuation
log Is()[ =0 for 1, 2,-.., N.

Although we have two sets of interpolation conditions it turns out that the
solvability depends again on the positive definiteness of the Pick matrix.

THEOREM 5.2. Problem I(z, w, ) is solvable ifand only if the Pick matrix associated
with (z, w) is positive definite. Moreover, in this case, there always exists a solution of
degree less than or equal to N.

Theorem 5.2 is a direct corollary of the following more general one.
MAIN THEOREM 5.3. Let z, w) be a set ofN+ 1 interpolating conditions such that

the associated lh’ck matrix is positive definite, and also let d(z, z-1) be an arbitrary
dissipation polynomial of degree at most N. Then, there exists a pair of polynomials
(r(z), X(Z)) such that

(5.3a) f(z)= C and satisfies f(z)= wfor =0, 1,. ., N,
x(z)

(5.3b) 7r(z)x(z).+X(z)Tr(z).=kd(z,z-) forsome k>0,

(5.3c) degf(z) -< N.
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The proof of the above makes use of Topological Degree Theory (see 6) and
thus provides a novel approach to establish the sufficiency of Pick’s criterion for the
solvability of the NP problem which follows.

COROLLARY. If the Pick matrix P(z, w) is positive definite, then the NP (z, w)
problem is solvable.

Proof This is a direct consequence of Theorem 5.3. Q.E.D.
Naturally, one would like to know whether NP (z, w) (or I(z, w, )) has a solution

of degree strictly less than N and for that matter, to determine the minimal degree
(see Youla and Saito [29] and Kalman [13]). Unfortunately, this question seems to
be tractable only by methods of decision theory. In fact, the problem of finding the
minimal degree of a rational solution f(z) when NP (z, w) is solvable, is a decidable
one. The reason for that is that both the set of interpolation conditions and the
conditions that guarantee that f(z) belongs to C (see Proposition 4.1 and also Siljak
[24]) can be phrased in terms of the solvability of a finite set of equations that depend
polynomially on the coefficients off(z). For the existence of a solution the theory of
Tarski [26] and Seidenberg [23] can be used. However, using the tools developed for
the proof of Theorem 5.2 we obtain the following.

PROPOSITION 5.4. The set ofN+ 1-pairs (z, w) for which NP (z, w) is solvable but
has no solution of degree strictly less than N, is open and nonempty for all N.

Below we demonstrate the implications of our results to a particular case.
Example 5.5. Consider the problem NP (z, w) where z {0, 1/2} and w {1, 2). The

associated Pick matrix

P=
3 1 3

is positive definite. Consequently, the NP (z, w) is solvable. The general solution is
given by

1 + zs(z)
f(z)

1 -zs(z)

where s(z) is an S-function that satisfies

and a general expression for it is given by (3.6b).
Let us restrict our attention to f(z) of degree 1 or less. A rational function f(z)

that meets the interpolation data (, w) is given by

l+z
(5.6) f(z) where 2(1 + ).

l+z
In order for f(z) to belong to C it is necessary and sucient that

This follows easily from Proposition 4.1.
Let us now consider solutions of I(z, w, ) for various points exp {jO} e OD. It

can easily be verified that for all + 1 there exists a degree 1 function f(z)e C as
above, such that

(5.8) Ref()=0.
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For instance, if : 1, then the required f(z) is

l+z
f(z) 1-1/2z

(For all other choices of s, f(z) has complex coefficients.) It is straightforward to verify
(5.6)-(5.8). However, for : +1, the function f(z) sought in Theorem 5.1 is

1
f(z)

1-z

This satisfies (5.6), (5.7) and also (5.1b). Butf(z) has a pole at s +1 and, in this case,

lim Ref(z) 1/2 # 0.
z-:

In the general case, similar situations occur with probability zero. In other words, with
generic data (z, w, :), the solutions to I(z, w, ) have no poles on 0D and in this case
(5.1c) is equivalent to (5.1b).

6. Proof of the main results. First we recall certain tools ofthe geometric-functional
theoretic approach of Sarason [21] to the interpolation problem.

Let B(z) denote the finite Blaschke product (all-pass function) with simple zeros
at zK, K 0, 1,. ., N; i.e.,

N z-z, Iz,l
B(z) y .

=o 1- zz z
(where Iz[/zK is replaced by 1 when z 0). Let K denote the subspace of H

K := H6)B(z)H.
The orthogonal projection in L with range K is denoted by ]g, whereas (,) denotes
the inner product in L.

K is an (N+ 1)-dimensional vector space and a commonly used basis for K is

B= g(z)=l_z,,K=O, 1,’’’,N

Note that for all q() in H, {q(), g(z)} q(z).
Any element q(z) in K can be represented as the ratio

q(z) _X(Z)
r(z)

where X(z) is a polynomial of degree N and

N

gKz).r(z):= H (1- *

Let C (z, w) be the set of solutions of NP (z, w). The Pick matrix is assumed to be
positive definite. Consequently, by Proposition 3.7, there exists a solution f(z) in
C(z, w) that also belongs to H(D). Define the linear operator

T K K :q(z)-* [f(z)q(z)],.

It turns out that T depends only on the interpolation data (z, w) and not on the
particular solution f(z) in C(z, w). Moreover, as it will become clear below, T can be
defined directly on the basis of (z, w) (and does not require the solvability of NP (z, w)).
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LEMMA 6.1. Let p(z) [f(z)q(z)]r, where q(z) K, and f(z) C(z, w) fI H(Dc)
as above. Then p(z) is independent of the particularf(z), it depends only on (z, w) and
it satisfies

p(z.)
q(.ZK)--WK, K=0,1,’’" ,N.

N bKgK(z) and p(z) N
=o ag (z). ThenProof. Let q(z) ,=o

p(z) (p(z), gK(z))= ([f(z)q(z)]K, g(z))

=wq(z,).

This is a set of N+ 1 equations in the N+ 1 coefficients of p(z)"

G

Woao woq(zo) ]
a, w,q.(zl) /

!
a WNq(ZN)J

W1

bo
bl

bin
where G is the Gram matrix

G=[(gk(z),g(z))jN[1] N

’-- 1 z*
Since the g (z), K -0, 1,..., N are linearly independent, G is nonsingular. (This can
also be shown directly by computing the determinant of G. G is related in a simple
way to the so-called Hilbert matrix and a formula for the. determinant of a Hilbert
matrix can be found in Knuth 16, p. 36].) Thus, T is the linear transformation specified
by p(z)= Tq(z) where

ao Wo

(6.1a) a,. G_

aN

Wl

bo

G
b,

Q.E.D.

PROPOSITION 6.2 (Sarason [21]). The lh’ck matrix P is the real part of T.
N bg, (z). Then,Proof Let q(z) =o

(6.1b)
2 Re ([f(z)q(z)]r., q(z)> ([f(z)q(z)]r, q(z)>+(q(z), [f(z)q(z)]>

N Wr + Wl-- bl b,,.
.=o 1-z,,z7

Q.E.D.

Let f(z) C(z, w) fq H(D) as before. Define the following linear map:

" K --> K" q(z)-> u(z) [(1 +f(z))q(z)]l,:.

Since f(z) C, then 1 +f(z) has an inverse in H(D) and is invertible. Define

:= -" K K’u(z)-> q(z)= [(1 +f(z))-lq(z)]r.
Note that 0 (and also) depends only on (z, w) and not on our choice off(z) C(z, w).
This can be readily established as in Lemma 6.1 and, in point of fact, if u(z)= ,uKg,,,
then 0[u(z)] q(z) Ebq where

bo 1/(1 + Wo)

(6.2a)
b, G-’ I/(I + w,)

G

b 1/(1+ wN)

Uo
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We also note that if p(z)= T[q(z)] then u(z)=p(z)+q(z). Using these facts we
proceed to the proof of Theorem 5.3.

Proof of Theorem 5.3. Given u(z) K we can readily obtain a pair (p(z), q(z))
K x K, by q(z)= g[u(z)] and p(z)= T[q(z)] using (6.1a) and (6.2a), such that

p(z)
is a rational function of degree at most n,

q(z)

(6.2b)
p(z,)
q(zi Wi (Lemma 6.1),

p(z)+q(z)=u(z).

Let q(z)= X(z)/r(z) and p(z)= r(z)/r(z) where r(z), X(z) are polynomials of degree
n and r(z) is as earlier. Consider the function

e(z) := p(z)q(z). + q(z)p(z).

(z)x(z), + x(z)(z),
r(z)(z),

d(z, z-1)p(z) with z OD

where p(z)=(r(z), r(z).)-1 (e(z) can be considered as an Ll-function).
In order for p(z)/q(z) qr(z)/x(z) to be a C-function it is sufficient (by Proposi-

tion 4.2) that

(6.3a) u(z) 0 for all z D

and

(6.3b) d(z, z-l)=>0 for all zOD.

We will establish the theorem by studying the correspondence

u(z)- d(z, z-1),

and showing that the image of {u(z): u(z) K, such that (6.3a) holds} contains the set
of all polynomials d(z, z-1) of degree at most n that satisfy (6.3b) (and are properly
normalized). We now proceed to consider a normalization of u(z) and d(z, z-) so
that their correspondence becomes a continuous map between smooth manifolds.

Both. e(z) and p(z) can be easily seen to be in L2. Let ek (resp., Pk) with r Z
denote the Fourier coefficients of e(z) (resp., p(z)). The polynomial d(z, z-i) is of
degree N (in both z and z-) and it holds that

N

eo Y d,,p-K.
N

N b,,g (z) thenOn the other hand, using Proposition 6.2, we have that if q(z)==o

eo =(b*o’’’ b*)P
b’

Since P is positive definite, eo 0 (unless q(z) 0).
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We now define the sets:

Y := d(z, Z-1) E dKz such that E dKp_ 1
-N k=-N

Y+ :-- {d(Z, Z-1) E Y such that d(z, Z-1) 0 for all z OD},

X := {u(z) K such that u(O)= 1},

X+ := {u(z) X such that u(z) 0 for all z DC},

W:= {rational functions rr(z)/x(z) of dimension at most N that satisfy
7r(z,)/X(zK) wK for K O, 1,..-, N}.

Also we consider the following mappings:

O" K-{0} Y: q(z)- d(z, z-1) 1
d(z, z-1)

eo
where eo, d(z, z-a) and p(z) are computed from q(z) as before, and

to := Ooblx X Y" u(z) d(z, z-1).
Both mappings are completely specified by the interpolation data, and since 0 e x(X),
it is easy to see that to is a continuous map. Now, X and Y are (smooth) linear
manifolds of real dimension 2N, and X1 and Y1 are compact subsets of X and Y
respectively. On the other hand the mapping

X- W: u(z)--
p(z) "n’(z)
q(z) X(z)

where q(z)=b(u(z)) and p(z)= T(q(z)), is clearly surjective. Hence, in order to
establish the theorem we only need to show that

,o(x_) =_ Y/.

To show this we will exploit the dependence of to on the interpolation data w.
Consider z being fixed and define the set of w that render P(z, w) positive definite:

B:= {w E CN+I such that P(z, w) is positive definite}.

We want to establish that B is a pathwise connected set. This follows immediately
from the continuous dependence of w on the parameter v,, K 1, 2,. ., N and the
fact that the positive definiteness of P is equivalent to the conditions

Rewo>0 and [vK[<l for=l,2,...,N.

Now, provided the Pick matrix is positive definite (nonsingular would suffice), to

is a continuous map. Also, to depends continuously on the parameters w. We shall
indicate this by writing tow.

Since B is pathwise connected, we can construct a (continuous) homotopy H
from tow,, to tow; by following a continuous path from an initial wi, := {w 1,
O, 1,..., N} to any other point w in B, i.e.,

H:X x [0, 1]- Y,

such that H(u(z), O)=tow,.(u(z)) and H(u(z), 1)=tow(u(z)).
We now proceed as follows: we first show that

H(X_, t)
_

Y+,
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for 0, and then that the same property holds for all [0, 1]; i.e., it remains invariant
under the homotopy.

We first note that fo(z) =- 1 C(z, w,n). Then, the map H(., 0) tow,.(" assumes
a simple form where

q(z)=1/2u(z) p(z).

If q(z)=x(z)/r(z) as before,

2X(z)
tOw,." X--> Y" r(z--- kx(z)x(z).,

where k is a positive scalar making kx(z)x(z), an element of Y. By the Riesz-Fejer
Theorem ([10, p. 21]) any element of Y/ assumes a unique representation

(z, z-1)= kx(z)x(z).,
with X(z) a polynomial in z, devoid of zeros in D.

From the above it readily follows that

tOw,. (X_) Y+.
Moreover, the correspondence

(6.4) tOw,.lx" X- Y is bijective.

Now let d(X/, tO, ) denote the topological degree of the map tO at relative to
the set X/. The topological degree is a "measure" of the number of preimages in X/
of the point d under the mapping tO. In particular (6.4) implies that

(6.5) d(X/, H(., 0), )= 1 for all a yo+,
where yO+ indicates the interior of Y/. For a comprehensive exposition of various
aspects of degree theory see Lloyd [17] and Milnor [18].

We now show that

(6.6) d(X/, H(., t), a)= 1 for all t yO+ and [0, 1].

This follows from a very powerful theorem on the invariance of the degree under
homotopy (Lloyd [17, p. 23]) after we prove that the image of the boundary of X/
never intersects the interior of Y/"

(6.7) H(OX+, t) I") yO+ for all [0, 1]

(see also Lloyd [17, p. 32], Milnor [18] and Schwartz [22] for the case of continuous
deformations of maps between smooth manifolds).

We now prove (6.7). Assume that the above intersection was not empty and let
(Z, Z-1) H(u(z), t) yo+, where u(z) OX+, and 6 [0, 1]. Hence, u(a)
p(a)+q(a)=O for some value z=aOD. Also

(z, z-1) k[p(z)q(z), + q(z)p(z),]

[Ip(z)+ q(z)l=- Ip(z) q(z)l=] --> 0,

for all z OD, while k is a positive scalar. Hence,

d(a,a-)=O,
and (z, z-) is not in the interior of Y/. This is a contradiction.
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Consequently, (6.7) is valid. Then, (6.6) follows from (6.5) and (6.7). Finally,
(6.6) implies that

Y+
_
H(X+, l tow(X+),

which in turn, due to the compactness of X_ and the continuity of tOw(. ), implies that

Y+
_
,(x_).

This establishes the theorem. Q.E.D.
Proof of Theorem 5.2. From the Pick criterion it follows that P(z, w) being

nonnegative definite is a necessary condition for I(z, w, ) to be solvable. To show the
sufficiency part, let

N

d(z, z-’) II (z- )(z-’- *)

and apply Theorem 5.3. Q.E.D.
Proof of Proposition 5.4. Consider the interpolation data (z, w) where

wo=l+a, aC and w=l forK=l,2,...,N.

The Pick matrix depends continuously on the parameters w and, consequently, it also
depends continuously on the parameter a. For a 0 the Pick matrix is positive definite.
Hence, for a 0 but is sufficiently small, the Pick matrix is still positive definite and
NP (z, w) admits a solution. However, there is no rational function of degree strictly
less than N that interpolates (z, w) unless a 0. To see this, assume that such a function
f(z) exists, and let f(z)= 7r(z)/x(z), where 7r(z), X(z) are polynomials of degree less
than N. Then,

(z)-x(z)
f(z)- 1 =0

x(z)

for N different values of z. Therefore, 7r(z)-x(z), being of degree at most N-1, is
identically zero. Hence, f(z)= 1, which is a contradiction. This establishes the propo-
sition. Q.E.D.

7. Concluding remarks. Theorems 5.2 and 5.3 provide existence-type results to an
inherently nonlinear problem. However, the homotopy used in the derivation can be
used to provide an algorithmic way to find the sought solutions. For a study ofhomotopy
methods as they relate to deriving numerical algorithms see the work of Kellogg, Li
and Yorke [14].

In this paper we have presented a description of the set of interpolating functions
of degree N to the (N+ 1)-point NP problem. However, it is not known at the moment
whether the correspondence in Theorem 5.3 represents in fact a parametrization of
this set; i.e., whether the correspondence between interpolating functions of degree N
and dissipation polynomials as in Theorem 5.3 is in fact bijective.

Finally, a simple criterion to determine whether there exists an f(z) in C(z, w)
of degree strictly less than N is still lacking. Such a criterion seems necessary for a
thorough understanding of minimal degree solutions to NP (z, w) as considered in
Youla and Saito [29] and Kalman [13].
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Abstract. This paper proves optimal results for the invariant manifold theorems near a fixed point for
a mapping (or a differential equation) by using the deformation, or Lie transform, method from singularity
theory. The method was inspired by the difficulties encountered by the implicit function theorem technique
in the case of the center manifold. The idea here is simply to deform the given system into its linearization
and to track this deformation using the flow of a time-dependent vector field. Corresponding to the difficulties
with the center manifold encountered by other techniques, we run into a "derivative loss" in this case as
well, which is overcome by utilizing estimates on the differentiated equation. A survey of the other methods
used in the literature is also presented.
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1. Introduction. The theory of invariant manifolds is one of the fundamental
ingredients in the study of dynamical systems. In this theory one looks for submanifolds
of the phase space which are invariant under the flow, i.e., trajectories which start on
such a manifold at some time, stay on it.

This problem is not only of interest from a qualitative point of view, but can lead
to quantitative results. In fact, by restriction to an invariant manifold, an original
system is reduced to a lower-dimensional one which might be relatively simple. In
particular, this is the case when the phase space of the original system is infinite-
dimensional and one considers finite-dimensional invariant submanifolds. An impor-
tant example for applications is the center manifold which contains all bounded
solutions near a fixed point [3], [15], [16].

The well-known invariant manifold theorems refer to the flow generated by a
nonlinear vector field or diffeomorphism defined in a neighborhood of a fixed point
[8], 10], 11], 14]. They give sufficient conditions for the existence of an invariant
submanifold which contains this fixed point. For example, each component of the
spectral decomposition of the phase space corresponding to a linear operator is an
invariant subspace for the flow generated by this linear operator. In the general
nonlinear theory one begins with such an invariant subspace of the linearized system
and shows its persistence as an invariant submanifold for the full system (at least
locally) and then one determines the smoothness of the resulting nonlinear manifold
([6]; cf. also [9]).

To construct such invariant manifolds, two different approaches have been used
in the literature so far. First, the invariance property of the manifold has been used
to derive an equation for a representing map 10], 11], 14]. The manifold is sought
as a graph and an iteration scheme is used on the graphs. For diffeomorphisms, this
"graph transform method" developed in [11] yields optimal results and even holds
for "Lipeomorphisms" (also [18] and [20]). Second, asymptotic properties of the flow
on the manifold have been used to derive an equation for the corresponding trajectories
[2], [5], [7], [8], [12]. All these trajectories together span the desired manifold and
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invariance is a consequence. Alternatively, this second approach may be phrased as a
fixed point problem for a map representing the manifold by considering the initial
values of the trajectories parameterized over the invariant subspace of the linearized
system [4], [19]. In both cases in the second approach, the resulting equation may be
solved iteratively. For stable and unstable invariant manifolds the equation for the
trajectories also has been solved using the classical implicit function theorem [12].
This yields optimal smoothness for Ck vector fields and diiteomorphisms, and even
in the analytic case.

Unfortunately, it is not obvious how to apply the classical implicit function theorem
for general invariant manifolds, e.g., for center manifolds. In general, the operator
underlying the equation for the trajectories is not continuously diiterentiable in a space
of functions which have the right asymptotic behavior (exponential growth). This
difficulty always occurs for the equation of a representing map in a space of maps
with a certain smoothness. Sacker [17] uses a smoothing technique to overcome this
difficulty, but he still loses one order of smoothness for the solution. For unsuccessful
attempts to apply the implicit function theorem in the case of center manifolds, see
[4] and [13].

In the present paper we solve the equation for a representing map using a different
approach, namely the "Lie transform" method of integrating a differential equation
which is based on a deformation principle. This method has been used for the Darboux
theorem, the Frobenius theorem and the Poincar6 lemma [1] and is a common tool
in singularity theory. The idea is to consider a one-parameter family of systems
connecting the given system with its linearization. Differentiation with respect to the
parameter yields a linear equation for a vector field which eventually has to be integrated
in order to get the desired map. An initial condition is known from the invariant
manifold of the linearized system.

We consider only diiteomorphisms here, although a similar approach for vector
fields is possible. Our approach applies for general invariant manifolds; although we
shall concentrate on the harder case of center manifolds, we indicate how results about
other invariant manifolds can be obtained. Our smoothness results are optimal. We
note at the outset that the diiteomorphisms which we are going to consider have to
be of class C3Lip at least. This is the price we pay for our more sophisticated method.

The plan of the paper is as follows. In 2 we state our main results. Theorem 2.1
is an existence and uniqueness result for a global center stable or center unstable
invariant manifold of a C3Lip map in a Banach space. Corollary 2.2 contains the
corresponding smoothness result for Ck (k >-_ 4) and CkLip (k -> 3) maps. In Remark 2.3
we list certain modifications and generalizations of these results. Finally, 3 and 4
contain the proofs of Theorem 2.1 and Corollary 2.2.

2. Formulation of the problem and results. Let X and Y be Banach spaces. The
product space is denoted by X x Y and equipped with the sup-norm. The Banach
space of k-linear continuous maps from X to Y equipped with the usual norm induced
by the norms of X and Y is denoted by k(x, Y), and we let k(x, X) k(x).

Also we introduce the Banach space ck( V, Y) of k-times continuously differenti-
able maps f from an open subset V X into Y, equipped with the norm

Ilfll- sup IIDT(x)ll
xV
Oik

where Df denotes the ith derivative of f. Similar to the above, we set ck(x, X)-
ck(x). The linear subspace of those elements of ck( V, Y) for which the kth derivative
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is Lipschitz continuous in V is denoted by CkLip( V Y). Furthermore, we introduce the
notation CkL(V, Y) for the closed subset of elements of ck(v, Y) which satisfy a
Lipschitz condition in V with a particular Lipschitz constant L.

Open balls in Banach spaces are denoted by Br(" ), where r is the radius and the
point stands for the center of the ball. The closure of a set V is written as cl (V).

Let us consider a map

T:Xx Y->Xx Y, (X, y) --> (bl(X y), 2(x, y))

given by

l(X y) Ax +f(x, y), _(x,y)=By+g(x,y),

where A (X), B (Y), and f and g are (nonlinear) perturbations. We consider
the following hypotheses, for 6 R+ and k an integer:

(tl)k IIn-’ll IIAII < 1 for 0=<j <- k.

(t2) Ilnll IIa-ll<l for 0=<j<=k.

(N1) f6 C3Lip(X x U, X), and g 6 Cip(X x U, Y) where U is some neighborhood of
0in Y;
Ilfll, < and Ilgll < -(N2) f(0, 0) 0, g(0, 0) 0.

(N3) Dxg(O, O) O.

Note that (0, 0) is a fixed point of T when (N2) holds.
We shall prove the following theorem about a so-called center stable or center

unstable manifold.
THEOREM 2.1. Let the assumption (L1)4 or (L2)4, and (N1) hold, where 6 > 0 is

sufficiently small. Then there is a map he Cip(X Y) with Ilhll-o() as 3-->0, such
that the manifold

.M {(x, y) e X x YIY h(x)}

is invariant under the iteration of the map T, i.e., (x, y) M implies T(x, y) M; the map
h is unique in CL(X, Y), where L= 0(1/3) as 3-->0.

If in addition (N2) (resp. (N2) and (N3)) hold, then h(0)=0 (resp. h(0)=0 and
D,h(O) =0).

COROLLARY 2.2. Assume thatfand g are of class CkLi resp. Ck) for some k >= 4.
Furthermore, let (L1)k or (L2)k, and (N1) hold. Then h is of class CkLT,p (resp. Ck)
provided that 6 is sufficiently small. (In general 6 depends on k for given A and B.)

In the following remark we state some generalizations and modifications of the
above results, which are obvious from the proofs in the next sections.

Remarks 2.3. (i) If B decomposes into two parts B1 and B2 such that B1 satisfies
(L1)k and B2 satisfies (L2)k for some k-> 4, then the above assertions remain true. In
this case M is called a center manifold.

(ii) If IIn-*ll < 1 and Ilall < 1 (resp. Ilnll < 1 and IIa-’ll < 1), then M is called the
stable (resp. unstable) invariant manifold. In this case M is a Coo manifold if f and
g are of class C. (Here 6 does not depend on k.) Moreover, in this case M is even
analytic for analytic mapsf and g. For the stable manifold this follows by using spaces
of complex analytic functions instead of C1Lip functions in the existence proof. The
unstable manifold case is reduced to the stable one just by considering the map T-1

instead of T, provided that it exists.
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(iii) If the assumptions are only fulfilled when x is restricted to some neighborhood
of 0 in X, then one can use a cut-off function X" X - R to extend f and g to the domain
X x U. This is a C function with the property X(x)- 1 for Ilxll _-< 1/2 and X(x)= 0 for

Ilxll _>-1. Such a function always exists if X is finite-dimensional. The extensions are
given byf(x, y) =f(x(tzx)x, y) and (x, y) g(x(tzx)x, y) with an appropriate constant
/z > 0. Applying our results for f and then yields a local invariant manifold for the
original map T by restricting h to the ball Ilxll </x-l/2.

This cut-off procedure destroys uniqueness and analyticity for the local case. On
the other hand, we do not need the cut-off procedure for the local theory when IIAII < 1
(or IIA-1II < 1). In that case we can directly work with spaces of maps which are defined
only in some ball around x- 0. This yields local results for general spaces X and, in
particular, analyticity. Hence, local stable (unstable) invariant manifolds are analytic
if f and g are analytic. Furthermore, under the additional hypothesis that f and g
together with all partial derivatives of g with respect to x up through order l- 1 vanish
at (0, 0), the local results still hold when IIAII < 1 (or IIA-111 < 1) and the inequalities
in (L1)k ((L2)k) only hold for l<-j<-k for some l>_-1. In this case one has to work
with functions h and H Dxh which have the properties h(x) -<_ Clllxll t, IlOh(x)ll <-

czllxll ’-1, IIn(x)ll--< cllxll ’- and IIDn(x)ll <-- C411xll -= in some ball around x 0 with
certain constants C. It finally follows that IIDh(x)ll<-_ Cllxll- for O<=j<=l-1. Note
that strong, stable (or unstable) invariant manifolds, where 1, and also certain weak
stable (or unstable) invariant manifolds are included in this local theory.

(iv) To obtain a smoothness result for M with respect to a parameter A A, where
A is some Banach space, we can consider A as a component of x by adding the trivial
component A -A to the original map T (cf., [15]).

(v) Theorem 2.1 and Corollary 2.2 remain true if, in the definition of T, the terms
Ax and By are replaced by any maps A(x)" X-X and B(x)y" X x Y Y which are
as smooth as f and g and satisfy the following assumptions:

(l)k liB(x)-l[ }}DA(x)[I < 1 for 0-<_j <_- k,

(2) IIn(x)ll IlDa-(x)[I < 1 for0-<j=< k.

For example, this generalization is relevant when one deals with a suspension of a
nonautonomous system in the extended phase space which is the product of the
(discrete) time axis and the original phase space.

(vi) Finally, we remark that it suffices to require [[Oxf[[ < 8 instead of IlDfll <
to prove the above results.

3. Proof of Theorem 2.1. We begin with the existence part. First we outline the
basic ideas of our proof in a more or less formal way. Afterwards we shall justify each
step by means of a series of lemmas.

We consider the following one-parameter family of maps:

Te’Xx Y-Xx Y, (x, y)- (bl(e, x, y), bE(e, x, y))

given by

(3.1) bl(e, x, y) Ax + ef(x, y), bE(e, x, y)= By + eg(x, y),

for e a real number. Obviously Te defines a homotopy between the linear map

To" (x, y)-(Ax, By) and T1 T.

For each T we are looking for an invariant manifold Me of the form y he(x),
where the map he" X Y depends smoothly on e. The invariance property leads to
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the equation

(3.2) he(l(e, X, he(x))) b2(e, x, he(x)).

Moreover, we require

(3.3) ho(x) 0 for x, X,

since y 0 is an invariant manifold of To. Thus, we aim to solve the system of equations
(3.2) and (3.3) for he(x).

The main idea now is to derive a first order differential equation for the function
e he and to integrate this in the interval 0_-< e _<-1 with (3.3) as an initial condition.
Actually, we shall consider a differential system for the function e-(he, He), where

(3.4) He(x) D,he(x) (X, Y).

Thus we get a linear equation for the corresponding vector field which can be solved
explicitly. Subsequently the arguments of bl, 2 and all their derivatives are
(e,., he(" )), if not indicated otherwise. A dot above a symbol for a map denotes the
partial derivative with respect to e.

First we differentiate equation (3.2) with respect to e, which yields

(3.5) /e (bl)- /e ffl,

where

(e, he, He) Dylb2-He(l)Dyl

is a map from X to (Y) and

71--- 71(E, he, He)= t2-He(tl)tl

is a map from X to Y. An equation for He is obtained by differentiating (3.2) with
respect to x. Thus we obtain

(3.6)

where

He f ),S Dyf2He Dx t)2

s--,.c(8, he, He)-- DxdPl + DydplH

is a map from X to Ze(X, Y). Since this equation is still nonlinear, we again differentiate
it with respect to e. Setting

(3.7) Ge(x) D,,He(x) 2(X, Y),

we thus get

(3.8)

where

Ge ((]),)(6’, Uytl/e) + He(l)(D2xylf’le + Dyy6(He,

h,),
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2= ;2(e, h, H, G)

are maps from X to (X, Y). A linear equation for G is obtained by differentiating
(3.6) with respect to x and using (3.4) again

(3.9)

where

3 3(e, h H) 2 2 2Dxxb2 + 2Dxyb2( , H, + Dyyb2(H, H

H(4,,)(D] 4,, + 2DZr4,, (’, H +Dy4,(H, H))

is a map from X to Lt’(X, Y).
Now we proceed as follows. For each fixed real e and for each fixed pair of maps

h" X --> Y and H" X --> (X, Y), we solve (3.9) for G. The solution is written in the
form

(3.10) G= C(e, h, H)

where qd(e, h, H) is a map from X to )-(X, Y). Inserting this expression into (3.8),
we obtain

(3.11) IAI(bl)M-JIAI + r(e, h, H, (e, h, H))l E(e, h, H, ((e, h, H)).

This relation together with (3.5) is linear equation for (/,/2/,), which we write as

(3.12) /) )(e, h H)

where the right-hand side is a map from X to Y x(X, Y). This is the desired
differential equation.

By the derivation of this equation, every two times continuously differentiable
function h(x)which satisfies (3.2), together with its partial derivative H(x) Dh(x),
is a solution. To show that vice versa a solution (h(x), H(x)) of (3.12) such that (3.3)
and

(3.13) Ho(x) =0 for x e X

are satisfied yields a solution of (3.2), we show that H is actually the partial derivative
of h with respect to x, i.e., (3.4) is satisfied. Inserting (3.4) into (3.5) and integrating
with respect to e, we then get relation (3.2). Here we use the fact that by (3.3), h(x)
solves (3.2) for e- 0.

To prove (3.4), we differentiate (3.5) and (3.8) with respect to x, which gives

(3.14)j
]Jj(I)Q(E, h, pj)- /J 4(e, p, qj),

tj(bl)(M(e, h, p), M) J(:l.i + ( ..5( e, p.i , ql(j)),

for j 1, where

1(1)=2, pl=D)ch, ql=DxH, q2=G,,
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2 24(t, Pj, qj’)= Dx2+ Dy2Pj+ OyxflP2( le, )+ Oyy2(Pj,
-q($)(M(e, h, p), (+

2 2-H(6)(Dx +Dp+D6(h," )+ Oy6(, p))
is a map from X to (X, Y) and

2 25(e, p, q, ql()) D$2+ Dxy62( p +H + Dy$2( ",
2

2 2

(4l(L+,4(., p +
2+ ,,4(g,p+D,q-a(((, h, pl, d,

+O,l

-q(4((, h, p, +,(.,+,
g()( +Dxx$l DxyI(’, Pj + H)+ Dxxyl(" ",

2+ Drr61(" h, p + H)+D(p, H)+Dq
2 2

2+ Dyy$l(pj,

is a map from X to (X, Y). Fuhermore, taking relation (3.8) as it stands and
dierentiating (3.9) with respect to e, we obtain the relations (3.14), where

1(2) 1 and P2 HE.
Note, that here we need the assumption that f and g are of class C3.

We shall show that the subspace given by Pl P2 and ql q2 is invariant under
the flow defined by the system of equations (3.14)1 and (3.14)2 in (Pl, ql, P2, q2)-space.
Thus, the identities (3.4) and (3.7) follow, when they are satisfied for e =0. But this
will be a consequence of the initial conditions (3.3) and (3.13).

To summarize, so far we have argued that the problem (3.2) is formally equivalent
to an initial-value problem for the differential equation (3.12). Now we are going to
justify this argument step by step and to solve the initial-value problem.

We introduce the following notation:

I [-o, eo],

(r, L, M) ((h, H) C(X, Y) CI(x, (X, Y))I Ilhlll =< r, IIH[[o=< r, [IHII =< L)
where eo is an arbitrary real number greater than one, and r, L, and M are positive
constants which are specified later.

LEMMA 3.1. Assume that the conditions of Theorem 2.1 are satisfied and let
(hE, H)= (h, H) be any element of @(r, L, M) where cl (Br(O))c U. Then, for any e in
I, the equation (3.5) has a unique solution hE= 1 l(e, h,H) with the following
properties:

X(i) 1 Ctc,( Y)
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where the constant K1 can be chosen independently ofL and M. Furthermore ’1 lid --< rl
and ’1 II1 r2, where

r,-< K(llg lid + r2 <= K3(JJf H, + Ilglll),

with some positive constants K2 and K3; K2 does not depend on L and M. Moreover,
1(0) =0 (1(0)-0 and Dxl(0)=0), provided that (N2) and h(0)=0 ((N2), (N3),
h(O) O, Dh(O) O, and H(O) O) hold.

(ii) The map e, h, H) 1( e, h, H) I x r, L, M) - C (X, Y) is continuous and
satisfies a Lipschitz condition with respect to (h, H) with constant K4.

Proof. The unique solution of (3.5) is given by

(3.15) )j=0 i=

if (L1)4 holds, and by

(3.16) 1-- 1-I /(t/7 i) 71(t/7j-l)
j=0 i=1

if (L2)4 holds. Here we use the estimates IIM(e, h, Dh)-AIIo=O(8) and II-BIIo
O(8) as a--> 0. It follows that for sufficiently small a > 0 the map

(x)’YY (wherexX) (bl(e,’,h(’))’XX)

can be inverted and the estimate lls0-’-B-1llo-- o() h(’))-l-A-’llo
O(8)) holds. Hence,

-lllollD,(,., h(. ))llg < 1 (11 IlollDOl(S,., h(. ))-1 [1{ < 1)

for all 0<_-j<_-4. A straightforward computation shows that the series in (3.15) ((3.16))
converges in CI(x, Y) and represents a solution of (3.5) for/. Uniqueness is easily
seen by an a priori CO estimate.

The remaining properties of 1 which are stated in the lemma, are easily seen by
inspection of the formulas in (3.15) and (3.16). We simply note that I1111o =<
R(llgllo+ rlkfllo) and IlDx:l[IO=< (llfll, + Ilgll,) holds with some constants g2 and
/3, where K2 does not depend on L and M. Moreover, (0)= 0 (resp. ffl(0)= 0 and
Dxl(0) =0) provided that (N2) and h(0)=0 (resp. (N2), (N3), h(0)=0, Dh(0) =0,
and H(0) 0) holds. We also remark that Lipschitz constants can be estimated by the
sup-norm of derivatives. Since the Lipschitz constant of Dxl is close to

2 2 2 r2 2 2 r2 2Df +2Dxxgllo+211 Ilor+ll Iio /11 IIor Iio +Dxf Dyyf IlorDxyg Dyyg
where is sufficiently small, K can be chosen independently of L and M.

To prove continuity of the map in (ii), one uses the fact that each member of the
series in (3.15) (resp. (3.16)) has this property and that the convergence is uniform
with respect to (e, h, H) I x (r, L, M). [3

LEMMA 3.2. Suppose that the assumptions ofLemma 3.1 are valid. Then (3.9) has
a unique solution G - (e, h, H) with the following properties:

(i) c clrs(X, 2(X, Y)),

I111o -< g6, and I1 11, -< K7, where Ks, K6 and g7 are certain constants’, g6 does not

depend on L and M. Furthermore, (0, O, O)= O.
(ii) The map (e, h, H)--> g(e, h, H) I x (r, L, M)-> CI(x, 2(X, Y)) is con-

tinuous and satisfies a Lipschitz condition with respect to (h, H) with constant K8.
Moreover, with C(X, 2(X, Y)) as range, it is continuously differentiable.
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Proofi As in the previous proof, the unique solution of (3.9) is given by

0 H -’(@il) 73() H ’(@ i1), H ,(@i(3 17) q3=--j: i=0 i=j--1 i=j--1

if (L1)4 holds, and by

(3.a = 2 (4 (4--) -(), d-(4
j=0 i= i=j+l i=j+l

if (L2)4 holds. Again, all propeies of which are stated easily follow from these
formulae. Note that 3(0, 0, 0)= 0. To see that Ka does not depend on L and M we
note that

I111o I1(11OgIIo+ 2110xgllo, + O,g IIo
Drf llor+ Dref Ilor3).

LZMM, 3.3. Suppose that the assumptions of the above lemmas hold. en (3.11),
with 1 from Lemma 3.1 and from Lemma 3.2, has a unique solution H,
(, h, H) which has the following properties"

(i) 2C9(X (X,Y)), IIlloar, I111,=< g,o

where r3 gll(llfll, + Ilgll) and Kg, K,o, K1, are certain positive constants; g9 can be
chosen independently of M and Klo independently of L and M. Moreover, (0)=0
provided that (N2), (N3), h(0) =0, and H(0) =0 hold.

(ii) e map (e, h, H)2(e, h, H)" I x @(r, L, M) CI(x, (X, Y)) is con-
tinuous and satisfies a Lipschitz condition with respect to h, H) with some constant KI.

Proo Set

a6 a6(, h, n)= a(, h, n, )- (e, h, n, ),.
Then the equation which is considered in Lemma 3.3 has a unique solution given by

(3.19) = N ( (4) ()

if (L1)4 holds, and by

(3.0 = (4-(-- d-(4
j= i=1 i=j+l

if (L2)4 holds. To prove its stated propeies, we note that

611o a ,,(ll/lll + Ilgll,)

holds with some constant Kll. Fuhermore,

IIDallo Dgllo+ llDygllor+ IID,gllor

+llD.f Iio’+11 IIo’D.f +11 Iio+ODrrf (

the Lipschitz constant of Dx6 with respect to x is smaller than

r ,D.x.gllo+3rll IioD.rg +3 Iio+D.,g IioDryyg

+ r(3r+llK,)ll D,gllo+(3+llK,)ll Dx,fD.rg IIo+ rll Iio

+311 4Dxxfllo+3 +Dxrrf o Drrrf
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and

+ r2(4L+(L+ K6)il(e h, H)llo/lelK,)ll =Dyyfllo

+ r(5L+2(L+ K6)ll(e, h, U)llo/lelK,)ll 2Uxfllo
+(t+(t+ g6)ll(e, h, n)llo)ll =Dfllo + O(, ),

[IOllo Il(ll =< Ofllo/2llOefllor/ - =Dyyfllor )+ 0(6)

IIOllo I1(11 = = =< Orgllo/ Ilor/ IlorOrf / IIor) / - 0.Dyyf 0(6) asDyyg

Therefore, Klo can be chosen independently of L and M, and K9 independently of
M. Moreover, 6(0) =0, provided that (N2), (N3), h(0) =0 and H(0) =0 holds. But
this implies 2(0)=0. The rest of the proof is similar to the previous proofs.

By Lemma 3.1 and Lemma 3.3, the right-hand side of the differential equation
(3.12) is given by

( l(e, h, H))(e, h, H)=
2(e, h, H)

It is uniquely determined by the stated properties. Next we are going to solve this
equation with initial values h 0 and H 0 at e 0. To this end we select r, L and
M such that

(I1) cl (Br(O)) c U, L_-> eomax (K1, Klo)

We also assume that the conditions

and M _-> eoK9(L).

r
(12) r,=<- (i= 1,2,3)

E0

are valid. This is achieved by requiring to be sufficiently small since r- O() as
8- 0. Note that r has been chosen independently of 8. On the other hand we point
out that cl (Bor,(0)) c U has to be true, but not necessarily cl (B(0)) c U. Hence, under
ceain circumstances one can shrink U to make suciently small and work with
functions h such that h(x) U for all x e X.

LEMMA 3.4. Let the assumptions of eorem 2.1 be true. Furthermore, suppose that
the constants r, L, M and are chosen such that the conditions (I 1) and (I2) arefulfilled.
en the differential equation (3.12) has a unique solution e (h (x), H(x)) in the
interval I, which has the following properties"

(i) eh C1(I, C(X, Y)), eH C1(I, CI(x, (X, Y))), where (h, H)
(r, L, M) holdsforall e in I, and ho(x) 0, Ho(x)=Oforallxe X. Moreover, h(0) 0
(h,(0) 0, Dh(0) 0 and H(O)=O)forall e in I, provided that (N2) ((N2) and (N3))
holds.

(ii) Dh H, DxH G (e, h, H).
Proo The proof of pa (i) follows the lines of the proof of the usual Picard-

Lindel6ftheorem for ordinary differential equations. We look for a continuous solution
e (h, H) of the integral equation

h (, h, H) d (e e I).(3.21)
H

This problem is equivalent to solving the initial-value problem (3.12), (3.3), and (3.13).
In paicular, a continuous solution of (3.21) is continuously differentiable. According
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to the previous lemmas, the right-hand side of (3.21) defines a contraction map of
the metric space

S= {e--(h, H) C(I, CI(x, Y))

x C(I, C(X,(X, Y)))l(h,H)(r,L,M)forall
into itself, where the metric is given by the norm defined by

sup
eel

with

max (K2, K12).

Obviously, with this metric S is complete. Therefore -has a unique fixed point in $,
which is the desired solution. Moreover, the set

So {e-->(h, H) Slh(0)-0 for all e I}

or S1 {e--(h, H) Slh (0) 0, Dxh(0)--0 and H(0) =0) for all e I is closed
and invariant under the map if, provided that (N2) (resp. (N2) and (N3)) holds.
Hence, the unique fixed point of ff in S lies in So(S1). Thus, part (i) is proved.

To prove (ii), let (h, H) be given by the solution of (3.21) constructed above
and define G to be (e, h, H) for e in L Note that pl(e)= D,,h, ql(e)= D,H,
p2(e) H and q2(e) G defines a solution of the system of equations in (3.14)1 and
(3.14)2. These relations are fulfilled in the space (C(I,C(X,(X, Y)))x
cO(i, cO(x, .2(X y))))2. Furthermore, by (3.3), (3.13) and d(0, 0, 0)=0,

(3.22) pl(0) p2(0) 0, ql(0) q2(0) 0

holds for this solution. Therefore it remains to show that this implies Pl(e) P2(E) and
ql(e) q2(e) for all e I.

Using the formulas (3.19) (resp. (3.20)) and (3.17) (resp. (3.18)), we can rewrite
the relations in (3.14)j (j 1,2) in the form

(3.23)j /J(e) t3(e, p(e), q(e)), q(e) ta(e, pj(e), q(e), ql(e))

where the maps e-- 3(e, p(e), q(e)):I--> C(X, (X, Y)) and e --> 4(e, pj(e),
q(e), q(e)) are continuous, and

pl(e), ql(e))- ’3(e, pE(e), q=())llo_-< glace(e),

pl(e), ql(e), q2(e))- ta(e, p2(e), q2(e), ql(e))llo --< K130(E),
holds for all e in I with some positive constant K13 and

c(e)--sup (llpl(e)-p=(e)llo, IIq(e)- q=(e)llo).

Integrating the equations in (3.23)j from 0 to e, subtracting the integral relations
which are obtained for j 1 and j 2 and using (3.22), we get the following estimate

Ot E gl3ot (tr) dtr e e I).

Gronwall’s lemma yields a(e)=0 for all e in/, i.e., p(e)=p2(e) and ql(e)=q(e).
Taking the map h which has been constructed in Lemma 3.4 and setting e 1,

the existence part of Theorem 2.1 follows according to the discussion previous to the
above lemmas.
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The proof also yields uniqueness, but only within the class of families of maps
he (where e I) which have the properties stated in Lemma 3.4. To prove the uniqueness
assertion of Theorem 2.1 we therefore have to give a different argument. Here we can
even weaken our assumptions considerably.

LEMMA 3.5. Suppose the maps f C(X x U, X) and g C(X x U, Y) satisfy a
Lipschitz condition with respect to y with constant t5 > O. Furthermore, assume that

liB-111 < 1 (resp. lIB < 1)) holds. Then for each e in I, (3.2) has at most one solution
he h C(X, Y) (resp. such that the map x-- bl(e, x, h(x)) X - X is surjective), where

L < (11 B-’ -- 1 te)/(te) (resp. L < (1 -IIBII- ,)/()).

Proof. Assume that h and/ are two such solutions of equation (3.2). Then,

h -/= B-l(h(Ol) -/(1) + ](tl ]’(tl(8 ", ](" ))) -[- eg(’, ft(" ))- eg(., h(. )))

(resp. h(bl) -/(thl) B(h -/) +/(thl(e,.,/(. ))) -/(bl) + eg(., h(. )) eg(., (. ))),

in which we use our standing convention that bl bl(e, ", h(. )). Thus by the assump-
tions

118-’11(1 + eL+ e)ilh-/llo< IIh-/llo

(resp. IIh 11o < (llnll + eL+ )11 h 11o < IIh 11o)

follows, which implies h- h.
Remark 3.6. The initial-value problem (3.12), (3.3) and (3.13) also has a unique

solution in a ball around the origin in the space C(X, Y)x C(X, (X, Y)) with
appropriate constants L and M, even under the weaker assumptions that f and g are
of class Cip and that (L1)3 or (L2)3 holds. However, it is not obvious how to show
Dxh- He, to make sure that the solution actually yields a solution of (3.2).

On the other hand, one can still use the deformation principle to prove existence
of a Cip invariant manifold under the weaker assumptions mentioned above. This
requires the solution of the nonlinear equation (3.6) for He in some space
CI(x, (X, Y)) as a Lipschitz continuous function of e in I and he C(X, Y).
Here the identity Dxh He follows from the fact that Dxh as well as He are solutions
of the first equation in (3.14)j for pj, if we set qj- DxH. In general, one does not have
an explicit representation for the solution of (3.6); one can, however, use the contraction
mapping principle to solve it. Thus, this method is a combination of the usual fixed
point method to construct invariant manifolds [15] and the pure deformation method
which we have proposed in the present paper.

4. Proof of Corollary 2.2. Corollary 2.2 is a consequence of Theorem 2.1 together
with the following lemma; a bootstrapping argument accomplishes our purpose.

LEMMA 4.1. (a) Assume that f ck(x X U, X) and g ck(x X U, Y) holds for
some k >-3. Furthermore, let (L1)k or (L2)k, Ilfll, < , and Ilgll < hold. Suppose that
forfixed e, h h ck-(X, Y) is a solution of (3.2). Then h ck(x, Y) if$ is sufficiently
small, generally depending on k and h II1 for fixed A and B.

(b) Iff and g are of class CkLip for some k >-2 and (L1)k+l or (L2)k+, IIfll < ,
and Ilgll, < holds, then any Ck solution of (3.2) is contained in CkLip(X, Y)forsufficiently
small > O.
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Proof. Since h is at least of class C2 and a solution of (3.3), by uniqueness of the
solution of (3.9) we have DEx,,h f(e, h, D,h) with given either by (3.17) or by
(3.18). Hence, it remains to show that h eCk-l(x, Y) implies (e,h,D,h)e
ck-E(x, E(x, Y)) in case (a), and h ck(x, Y) implies f(e, h, D,h)
CkLr,pE(X, LE(x, Y))in case (b).

Iff and g are of class Ck and h ck-I(x, Y) for some k_->2, then the (k-2)nd
derivative of each term in the series (3.17) (resp. (3.18)) exists and is continuous. It
is easily proved by induction with respect to k that these derivatives are of the form
(j=0, 1, 2,..-)

(4.1)

or

(4.2)

where

Ea =k-2 i=

(o o )[I DM(b,),, I-I
i=j--1 i=j--1

D9$(b )9, Dr3(b )9(j+,)
i=

J(e, h, D.h), 3= 3(e, h, Dxh), =.(e, h, Dxh),

and 9i is an a-tuple of products with factors of the form

DC(b’), (0-< n <_- i- 1)

(resp. D-l(th-"), (1 <- n_-< i)).

These sums have less than 1/2k!(j+ 1) k-2 terms, each of which is a "product" of less
than (k+l)j+2 (resp. (k+l)(j+l)) factors, with at least j-k+3 (resp. j-k+2)
factors -1 (resp. ), at most kj(resp, k(j+ 1)) factors (resp. -’). Besides these
factors there are at most k- 2 factors which are derivatives of such factors, or of 3
of order less than or equal to k- 2. Of course, 3 is itself a factor if no derivative of
it is contained in the product.

Now assume that

(4.3)k II-lllollllo<q<l (resp. IIlloll-l[Io<q<l) (O<-i<-k)

holds, where q is some real number which does not depend on i. Then

K,4(j+ 1)k-Eqj-k+3 (j> k-3) (resp. Kx4(j+I)k-Eqj-k+E(j> k-2))

is an upper bound for the CO norm of the sum in (4.1) (resp. (4.2)), where the constant

K14 depends on k. Consequently, the series of these sums over j converges uniformly
with respect to x and represents the (k-2)nd derivative of f(e, h, Dxh). But, by (L1)k
(resp. (L2)k), (4.3)k is satisfied for some number q, provided that 6 is sufficiently small.
Thus, part (a) of Lemma 4.1 follows.

Under the assumptions of part (b) the sum in (4.1) (resp. (4.2)) is contained in
COLip(X, k(x, Y)) for each j. Furthermore, if (4.3)k+1 holds, by the above information
about this sum, its Lipschitz constant L can be estimated from above by

K15(j+ 1)k-’qj-k+2 (j> k-2) (resp. K15(j+ 1)k-’qJ-k+l(j> k-l))
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with some constant K15 that depends on k. But by (L1)k/l (resp. (L2)k+l) the condition
(4.3)k+ is satisfied for sufficiently small 3>0. It follows that Dk-2C(e,h,D,h)
Cip(X, k(x, Y)), since j=o Lj < oo. Thus, part (b) of Lemma 4.1 holds. D

Remark 4.2. In case of center manifolds, the Ciip result, even for k 0 and k 1,
is the usual result which is obtained by a fixed point argument ([15], [18]). For k =0
one assumes that (L1)I or (L2) holds and that IIfll0, IIgll0, and the Lipschitz constants
for f and g are sufficiently small. For k >_- 1 the assumptions are analogous to those of
Theorem 2.1. For k 2, see also Remark 3.6.

The C2Lip center-manifold theorem together with Lemma 4.1(a) now yields the
center manifold theorem in Ck spaces for any k_-> 3.

Moreover, observe that for fixed he in C(X, Y), (3.6) can be solved for He in
the space CI(x, (X, Y)), provided that f and g are of class C2, IIfll and IIglll are
sufficiently small, and (L1)2 or (L2)2 holds (cf., Remark 3.6). Thus it follows that the
c ilip center manifold is actually contained in the class C2 in this case; but this is the
C2 center manifold theorem.

Acknowledgments. We thank Ethan Akin, Marty Golubitsky, Jack Hale, Morris
Hirsch, Pat McSwiggen and Charles Pugh for their comments.
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GLOBAL APPROXIMATION OF PERTURBED HAMILTONIAN
DIFFERENTIAL EQUATIONS WITH

SEVERAL TURNING POINTS*

HARRY GINGOLD" AND PO-FANG HSIEHt

Abstract. Given a perturbed Hamiltonian system (E) ieV’=[Ho(x)+eHl(X, e)]V, where Ho(x) is a

Hermitian matrix analytic on an interval L Any two eigenvalues of Ho(x) are allowed to coalesce finitely
many times in the interval I (however, no two of them are identical on I). Assume that H(x, e) C(I x gc)
with $c (0, c]. Let U(x) be the unitary matrix such that D(x)= U-(x)Ho(x)U(x) is diagonal. Assume
that the entries of U-H U-iU- U’ are bounded on I x S absolutely integrable over L Then, (E) is
shown to have a fundamental matrix of the form V U(x) Y(In + P(X, e)) where Y is the exponential of
a diagonal matrix, In is the n-dimensional unit matrix and P(x, e)0 as e0+. This result is applied to
prove an adiabatic approximation theorem in quantum mechanics and provide a criterion measuring the
phenomenon of degeneracy by the orders of coalescing of eigenvalues. Two examples are given.

Key words, global approximation, singularly perturbed Hamiltonian system, several turning points,
adiabatic approximation theorem

AMS(MOS) subject classifications. Primary 34E20; secondary 34E15, 81C12

1. Introduction. When dealing with a system of differential equations depending
in a singular way on a parameter, it is not usually possible to obtain one global
asymptotic expression to approximate the solution. This is so for a linear system even
though the global existence of its solution is theoretically guaranteed. For example, if
we are dealing with a singularly perturbed system ey’= A(x)y on an interval [a, b]
where all eigenvalues of A(x) are distinct, but for some eigenvalues of A(x), the real
part of some of their differences change sign on [a, b J, the asymptotic solutions are
obtained only for subintervals. In order to investigate the solution on an entire interval
[a, b], one needs so-called connection formulas (e.g. see W. Wasow [22], [26]).

However, there are certain singular differential systems for which it is possible to
obtain global asymptotic formulas on an entire interval. This is so even if the coefficient
matrix possesses eigenvalues which coalesce finitely many times on that interval. Such
points are commonly called turning points of the differential equations.

The presence of symmetry properties in a physical system is of interest to a
physicist. Given a Hamiltonian system in quantum mechanics, some of its symmetry
properties are manifested in certain degeneracies of its energy levels. When the
Hamiltonian is time-dependent, the appearance of symmetries can show up as coales-
cence of certain energy eigenvalues. In other words, this is equivalent to the presence
of turning, or transition, points of the system. This is our motivation to study a
Hamiltonian system with one or several turning points of any (finite) order. As a matter
of fact, we will study systems which are slightly more general than a Hamiltonian system.

Consider the following n-dimensional matrix differential system"

d
(1.1) ieV’=[no(x)+eHl(X, e)]V, ’- dx

where Ho(x) is a Hermitian matrix, analytic and no two eigenvalues are identical on
I=[a, b], and Hi(x, e) is in the class of CI(I x q) with S =(0, el. Here a may be

* Received by the editors May 28, 1985; accepted for publication (in revised form) October 1, 1986.
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of this author was supported in part by a Faculty Research Fellowship from Western Michigan University.
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1276 H. GINGOLD AND P.-F. HSIEH- and b may be +. By a theorem of linear algebra due to F. Rellich [17] there
exists a unitary matrix U(x), analytic on I such that

Dl(x) u-l(x)Ho(x) U(x)
(1.2)

=diag {Xl(X), X2(x),... An(X))

where {Aj(x)lj 1, 2,..., n} are the eigenvalues of Ho(x), which are known to be
real and analytic on I. Let

(1.3) Y= u-l(x) V.

Then, the n by n matrix Y satisfies a differential equation

(1.4) ieY’=[Dl(X)+ eRl(X, e)]Y

with

(1.5) Rl(X, E)-- u-l(x)Hl(X, F)U(x)-iu-l(x)U’(x).

Let

(1.6) D(x, e)= Dl(X)+ e diag Rl(X, e), R(x, e)= R(x, e)-diag R(x, e).

Also, let
oRo(x, e) diag R1 =diag {r, r, rn},

(1.7)
g(x, e) ()k), j, k= 1, 2,’’’, n.

Then rj-=0 and (1.4) becomes

(1.8) ieY’=[D(x, e)+ eR(x, e)]Y.

Assume that

(1.9) A(x)--Ak(X)O forxI (jk;j,k=l,2,...,n),

(1.10) IIH (x, )ll<-k, xI,eSc (j,k=l,2,...,n)

where k is a constant independent of (x, e) and is a suitable norm of a matrix,
and that

(1.11)

(1.12)

 ll H1 (x, e)ll dx is uniformly bounded for e So,

ll H(x, e)ll dx is uniformly bounded for e S.

We shall prove the following.
THEOREM 1. Under the assumptions (1.9)-(1.12), the fundamental matrix of (1.8)

can be expressed as

(1.13) Y Z(x, t, e)(In + P(x, e)), In: n x n identity matrix

where Z(x, ct, e) is a fundamental matrix of

(1.14) ieZ’= D(x, e)Z, Z(a, a, e)= In,
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withtI, andP(x, e) isannbynmatrixintheclassCl(IxSe), (0< ’_-< c), liP(x, e)ll
O( e d ), with d > O, uniformly on I as e --> 0+, satisfying P( a, e) O.

Ifthe transformation (1.13) is taken to be Y (In + P)Z, then the resulting equation
for P is longer and requires more complicated computation to find its solutions.

The points XoI where As(Xo) Ak(Xo) for certain j, k (j k;j, k=l,2,... ,n)
are called the turning points of (1.8).

An immediate result of Theorem 1 is that the system (1.1) has a fundamental
solution

(1.15) V(x, e)= U(x) exp -it -1 D(t, e) dt (I + P(x, e)),

which is uniformly valid on L As the interval I contains one or more turning points
of the differential equation, i.e., points where some of {As(x)} coalesce, (1.15) may be
considered a central connection formula valid at all turning points of L (It is called
"two point connection formula" by H. Turrittin [20] when there are only two sin-
gularities present.) As pointed out by H. Turrittin [20] and J. A. M. McHugh 14], the
lateral connection formulas (or sectorial connection formulas in [20]) follow from
central connection formulas; thus it is important to have (1.15).

Furthermore, when a =- and/or b +oo, (1.15) not only gives the asymptotic
approximation of the solutions of (1.1) for e-0+, it also provides the asymptotic
approximation of the solutions in terms of x as x tends to a -oo and/or b +. In
this case p(-c, e) or P(c, e) may be chosen to be zero. This is why it is called the
doubly asymptotic formulas for the solutions of (1.1) (cf. W. Wasow [26]).

Similar to [8], a differential system of the form (1.8) which is taken into (1.14)
by (1.13) with a matrix P(x, e) satisfying the properties described in Theorem 1 may
be called a globally almost diagonal system. An entirely different method is used in [8]
to prove results similar to Theorem 1 for a system without the factor in the left-hand
side of the equation.

Theorem 1 will be used in 9 to prove an adiabatic approximation theorem in
quantum mechanics for an n-dimensional slowly varying time-dependent Hamiltonian
system with degenerate energy levels. This theorem was first proved by M. Born and
V. Fock [2] and also studied later in the general setting by T. Kato [10] (also see R. L.
Liboff [13] and A. Messiah [15]), even though the case of degenerate energy levels
caused by crossing of eigenvalues is not rigorously studied in the general setting.
However, a rigorous comprehensive asymptotic decomposition for the solutions of the
Hamiltonian system in the presence of multidegenerate energy levels is yet to be derived
(cf. W. Wasow [24], [25]). A special degeneracy of a special two-dimensional system
was studied by K. O. Friedrich [3], [4]. Recently, H. Gingold [6], [7] provided a
comprehensive asymptotic decomposition method for a two-dimensional system with
general degeneracy. We will illustrate in this paper that his method can be generalized
to an n-dimensional system.

Using the principle of superposition (e.g. see R. L. Liboff [13]) a criterion
equivalent to the adiabatic approximation theorem will be established, which enables
us to measure quantitatively the qualitative phenomenon of degeneracy (or symmetry)
by the order of degeneracy of eigenvalues in a slowly varying time-dependent Hamil-
tonian system.

In 10, two examples of Theorem 1 will be given, one for bounded and the other
for unbounded/.

The method of taking the system (1.8) into (1.14) is an essential tool in the study
of singularly perturbed differential equations. For instance, W. Wasow [23] used it to
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calculate an adiabatic invariant of a second order equation with a simple turning point
and A. Leung and K. Meyer 11] used it to study that for Hamiltonian systems with
distinct and purely imaginary eigenvalues.

If Ho/ ell1 in (1.1) is an infinite (or a general Hamiltonian) matrix, we cannot
expect Theorem 1 to hold. However, if the "orders" of all turning points of this infinite
system are bounded, then an analogue of Theorem 1 is expected to hold under fairly
general conditions.

The requirement that Ho is analytic can be relaxed considerably if we apply the
methods in H. Gingold [5].

2. Preliminary reduction. From equations (1.8), (1.13) and (1.14), we have

(2.1) iP’= z-l(x, a, e)RZ(x, a, e)(In + P), P(a, e)=0, a I.

Equation (2.1) can be written equivalently as

Put

(2.2)

(2.3)

and

P(x, e)= -i z-l(/, a, e)R(t, e)Z(t, a, e)(I,, + P(t, e)) dt.

LP Z-1RZPdt,

(2.4) Po= LI,,.

Then, (2.2) is expressible as

(2.5) P= Po+ LP,

or,

(2.6) P Po+ LPo+ L2p-- LI,, + L2I,, + L2p.

From (1.14), since D(x, e) is diagonal,

(2.7) Z(x, a, e)=exp -ie- D(t,.e) dt

Thus,

(2.8)

L2P Z-I(s, a, e)R(s, e)Z(s, a, e)

z-l(/, a, e)R(t, e)Z(t, a, e)P(t, e) at ds,

or, by changing the order of integration,

(2.9)

LP Z-I(s, a, e)R(s, e)Z(s, a, e) ds

z-l(t, 0, e)R(t, e)Z(t, a, e)P(t, e) dt.

Put

(2.10) D(x, e)=diag {dl(X e), d2(x e),..., dn(x, e)}.
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Then, by (1.6) and (1.7),

(2.11) 4(x, as(x)+  ry(x,
Put

(2.12)

j= 1,2,. , n.

LEp=(Ajk) and P=(pjk), j,k=l,2,’",n.

By (1.7), (2.7) and (2.10), we have

(2.13)
ifj# k,

(z-l(s, a, e)R(s, e)Z(s, a, e))k

r(s, e) exp ie -1 [dj( n, e)-d(n, e)] dn

0 ifj k.

Then,

Ajk-- l)h($ e) exp ie -1 (di(l, e)--dh(’r], e)) dn ds
!=1 h=l

(2.14)
rh(, e) exp ie- (dh(r, e)-d(n, e)) dn p(t, e) de.

In order to prove Theorem 1, we have to establish that

(2.15) IIILPIII _<-- L( e)lllPIII
for a suitable norm III III of a matrix, where L(e) is a quantity which depends only on
e and tends to 0 as e 0+. We will introduce an alternate stationary phase method
for several turning points, in several steps, in 3-7.

The method used in the proof of Theorem 1 is different from those employed by
W. A. Harris, Jr. and D. A. Lutz [9], N. Levinson [12], Y. Sibuya [18] and W. Wasow
[22], [26]. The integral operator L given by (2.3) depends on the fundamental matrix
Z(x, s, e) of (1.14), given by (2.7), but (2.6) is linear in P. Thus, it is possible to find
P(x, e) uniformly valid on L even though it contains one or more turning points of
(1.8). Therefore, the tedious construction of the connection formulas can be avoided.

3. Alternative to stationa phase method. Consider

(3.1) J(a, b, ) r(s, e) exp ie -1 p(, e) d ds, a N b

where r(x, e) is in C(I x ), and p(x, e) is real analytic on I x . Assume that the
following conditions are satisfied:

(i) p(x, 0) vanishes at some points of I, but is not identically zero on I;
(ii) There exists a positive constant g such that

(3.2) IP’(x,)lg forxeI, eeS;

(iii) There exist two positive constants m and m such that

(3.3) Ir(x,e)lNml forxeI, eeS,

(3.4) Ir(s,)ldsm, Ir’(s,)ldsm for e e S.

The zeros of p(x, 0) are called the turning points" of the integral J(a, b, ).
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First note that, by integration by parts, (3.1) is expressible as

j(a, b, a)= [_ier(s, e)
l

(3.5)
p(s, e)

exp ie -1 p(rl, e)

Ia’r’(s’e)p(s’e)-r(s’e)p’(s’e)exp{ie-lI+ ie
[p(s, 6)]2

p(/, e) d*l ds.

We shall use (3.5) to estimate the integral J(a, b, a) as e->0+ in several steps, each
proved as a lemma.

LEMMA 1. For t, fl, a, b ], J a, b, or) satisfies

(3.6) J(a,b,o)=J(a,t,a)+J(t,b, fl)exp ie- p(n,e)dn.

Consequently, IJ(a, b, o)1 is independent of o and

(3.7) IJ(a, b, )l-<lJ(a, t, c)l+lJ(t, b,)l foralla,, re[a, b].

LMMA 2. Suppose that a is finite, p(x, e) is independent of e and expressible as

(3.8) p(x, e)p(x)=(x-a)"o(x),

where ’a is a positive integer, .(x) is real analytic on I and satisfying

(3.9) 0 < g2 --< I (x)l for x e I,

with g2 a positive constant. Assume that the conditions (3.3) and (3.4) hold. Then, there
exist three positive constants Ka, la and Ca satisfying 0 < ’ala < 1, 0 < Ca <---- C such that

(3.10) [J(a + e lo, t, a) _--<

for a+ela<--_t, a<-b, eSca.
LEMMA 2A. Suppose that a =-c, p(x, e) is independent of e and expressible as

(3.11) p(x, e)=-p(x)= x-a(x)
where ’a is a positive integer, (x) is real analytic on I and satisfying (3.9). Assume that
(3.3) and (3.4) hold. Furthermore, assume that r(x, e) is expressible as

(3.12) r(x, e)-x-E(x, e)

for x (-o, -q), e Sc, where q is a suitable positive constant, and

(3.13) I?(x,e)l<-m3

for s (-c,-q) and e Sc with m a positive constant. Then, there exist three positive
constants Ka, da, and Ca with 0 < da < 1, 0 < ca <-- c such that

(3.14) IJ(-, t, a)[ _--< Kaed

for-o< t, c-<_b, e So.
LEMMA 3. Suppose that b is finite, p(x, e) is independent of e and expressible as

(3.15) p(x, e)=-p(x)=(x-b)(x)

where Ub is a positive integer, (s) is real analytic on I and satisfies (3.9). Under the
conditions (3.3) and (3.4), there exist three positive constants Kb, lb and Cb satisfying
0 < Ublb < 1 and 0 < Cb <---- C such that

(3.16) ]J(t, b E lb,

for a<--_t, a<--b-el% e6S.
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LEMMA 3A. Suppose that b +, p(x, e) is independent of e and expressible as

(3.17) p(x, e) =- p(x) x-b(x)
where Ub is a positive integer, (s) is real analytic on I and satisfying (3.9). Assume that
(3.3) and (3.4) hold. Furthermore, assume that r(x, e) is expressible as in (3.12) and
satisfies (3.13) for x (q, +oo), e Sc where q is a suitable positive constant. Then, there
exist three positive constants Kb, db, and Cb with 0 < db < 1, 0 < Cb <---- C such that

(3.18) IJ(t, /oo, )l<_ Kea
for a <_-- t,

LEMMA 4. Suppose that a and b are both finite, p(x, e) is independent of e and
expressible in the form
(3.19) p(x, e)=- p(x) (x- a)a(x b)(x)
where ua and ’b are positive integers. Under the conditions (3.3), (3.4) and (3.9), there
existfivepositive constants Kab, la, lb, dab and Cab, with 0 < Vala < 1, 0 < ’blb < 1, 0 < dab < 1
and 0 < Cab <- C, such that

(3.20) IJ(a + e l, b e, a)l <- gabedo

for a<-<-b, eSc.
LEMMA 5. Suppose that p(x, e) is independent of e and expressible in the form

(3.21) p(x, e)=-p(x)= [ fi (x-aj)],(x)
j=l

where a <- 31 < ce2 <" < Olm-- < Ol b (equality may hold only when a -0% b oo),
and ,j(j 1,2,..., m) are positive constants. Under the assumptions (3.3), (3.4) and
(3.9), there exist positive constants K1, dl and Cl (0 < dl < 1, 0 < Cl <- c) such that

(3.22) IJ(a, b, ot)l<=K1 ca’ fora<=ce<=b, e6S.
Lemma 1 follows easily from (3.1). As a matter of fact,

J(a, t, )+J(t, b, ) exp ie- p(n, e) dn

r(s, e)exp ie- p(n, e) dr ds

+ r(s, e) exp ie -1 P(n, e) an + p(rt, e) dn ds

+ r(s, e) exp ie -1 p(n, e) dn ds =J(a, b, a).

Remarks. (1) The points b in Lemmas 2, 2A and 5 may be +oo and a in Lemma
3, 3A and 5 may be -o.

(2) If la is chosen to be la =(1 + Ua) -1, then

(3.23) 1-- Uala (l + ua)-- la.

Then (3.10) agrees with the estimate obtained by the traditional stationary phase
method (e.g. see F. W. J. Olver [16, p. 101]). The estimate for (3.16) can be treated
similarly. Thus, our method contains the traditional stationary phase method as a
special case, but does not need to utilize the integration in the complex plane.
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(3) If p(x, 0) is in the form of (3.21), x =as (j 1, 2,..., m) are called "turning
points" of J(a, b, a) of order vs, respectively. If p(x, 0) is in the form of (3.17), the
order of the turning point x +o is

(3.24) u u 2.

Similarly, if p(x, 0) is in the form of (3.11), the order of the turning point x =- is

(3.25) v- Va--2.
(4) For the system (1.8), if x Xo is a turning point arised in more than one entries

of Ask (cf. (2.14)), the highest order is taken to be the order of the system at this turning
point.

(5) To avoid cumbersome notation, the subscript h for Vh, lh, Kh and dh, in this
paper, is to denote either a point on [a, b] or an index of the points on [a, b]. As it
is clear from the text, we utilize both notation without warning.

(6) N. Bleistein [1] and F. Ursell [21] studied the asymptotic expansions of
J(a, b, a) in fractional powers when several zeros of p(x, e) are nearly coincident at
x 0. Their methods differ from ours as they employ transformations of variables and
special functions. Their method is more in the spirit of the method of steepest descent,
while ours is a straightforward alternative to the stationary phase method.

4. Proof of Lemmas 2 and 3. Let us prove Lemma 2 and consider first the case
when b is finite. By (3.3), (3.8) and (3.9), we have

I..r(t, .e) r(a+el% e) 2ml _,al(4.1)
p(t)

+ I.)
<-_e

p(a+e g2

for a+ela<=t<=b.
In order to estimate the second term of (3.5), note that, since/3(x) is analytic on

I, there exists a positive constant g3 such that

(4.2) I/3’(x)l =< g3 for x I.

By (3.4), (3.8) and (3.9), we have

(4.3) Iaat_tl r’(s,)
p(s)

ds<=e
gz

(i) If va > 1, by (3.3) and (3.8), we have

r(s,e)p’(s)
[p(s)]

,,. p’(s)
ds<=ma

+e’a (S a)a+l(s)
at-

(S a)%[/(s)]2

g2 +e’a (S-- a)V +l +g2 +el (S- a)

(4.4) < ml Va (t-a)

1
+g2 (v- 1)E(%-1)/

1 )}la --1)( a va-1

12 1 +g__2 1=<rn
g2 eual g (la--1) e(ua-l)l

ml { g3

e Ualag2 l’a -- g2( la 1)
e

--K1 e-vala for e e S.
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where Kl=(ml/g2){Va +(g3/(g2(Va--1)))Ca} with ca to be specified.
(ii) if va= 1, then p’(s)=(s)+(s-a)ff(s) and

r(s,e)p’(s)
[p(s)]

1 if(s)+
(s- a)2/(s) (s- a)/(s)2

(4.5)

<-- ml
g2 .t-la (s- a)2 g +’a (s- a)

+--(llog (t- a)l + Ilog e I)
t-a g

<
m

t " ta
2g3 la } _l,,ata, +llog e -< K2e
g2

if 0<e <min {1, (b-a) 1/ta, (b-a)-l/ta}, where

K2= m-21{ 1 +293/.
eg23

Here we use the fact that 0 > x log x > -e-1 for 0 < x < 1 and positive constant/.
Thus, in either case, if

(4.6) ca =min {c, 1, (b-a) 1/la, (b-a)-l/la},

there exists a positive constant Ka such that (3.10) is satisfied for e Sc.
If b=o, and t-o, (4.1) and (4.3) hold also. Instead of using (4.4) or (4.5),

observe that

(4.7)

r(s,e)p’(s)
[p(s)]

ds

a+ela

m vata
g2

for e e Sco since p(c)= oo in this case. In this case ca min {c, 1}.
Similarly, Lemma 3 is proved for both finite a and a
Remark. The condition (4.2) is used, instead of (3.2), when p(x) is in the form

of (3.8). The same is true for the situations given in Lemmas 2A-5.

5. Proof of Lemmas 2A and 3A. Let us prove Lemma 2A and consider first the
case that b is finite. Let

if b=>0,
(5.1) %= b-1 if b<0,

and la be a positive constant satisfying 0 < vala < 1. Note that IJ(a, b, a)l is independent
of a. Then, by (3.7), we have

(5.2) b, a)l-<_ [J(-, e-! a)l + J( E--l, 1, 1,a, /S /3)1 + IJ(/ b, /)1,

for-o< a, fl, y_-<b.
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By (3.5), (3.3) and (3.4), as p(s) is analytic, nonzero for T’I--<S -< b, there is a
nonnegative constant K1 such that

(5.3) [j(yS1, b, T)I<=Kle for-oo< T<-_b, eSc.
In order to estimate [J(-oo,-e-, c)l and IJ(-e -o, y2,/3)], put

(5.4) s=z-.
Then, by (3.1), (5.4), (3.11), (3.12) and (3.13), we have

j z
IJ(-,-e-t,a)l= r ,e

(5.5)
<= m3ela

for e Sco, where -e la < a- < 0 and

(5.6)

exp ie -1 p

ca =min (1, c, q-1/la, (__b)-l/la}.

Also, from (3.5), we have

(5.7)
I/(-- -/a, T"1,/3)1 <= e r e

zVa/(1/Z) ‘a

(dr/dz)(1/z, e)p(1/z)-r(1/z, e)(dp/dz)(1/z)
+e

[p(llz)]

By (3.3), (3.11 and (5.6)

(5.8)
r(/S’, e)
7aj(T

r(--’, 2ml v,,
g2

dz.

for e So. By (3.4), (3.11) and (5.6), we have

(dr/dz)(1/z, 8) m2(5.9)
zVa(1/Z)

dz<=

for e Sco. Also, similar to (4.4) and (4.5), there exists a positive constant K4 such that

ela

dz K4E
r(1/z, e)(dp/dz)(1/z)

(5.10) < rata
7o [P(1/z)]

for e So.
Thus, by (5.3), (5.5), (5.7), (5.8), (5.9) and (5.10), we have (3.14) for a suitable

positive constant Ka, and

(5.11) da min { la, 1- Vala }.

If b +, then, by (3.7), we can apply

(5.12) [J(-oo,

for suitable finite constants ,/, a,/3 and T( =</). The estimate of the first is shown
above, that of the last term can be obtained in a similar fashion, and that of the middle
term can be obtained by Lemma 2, or repeatedly using Lemma 2, similar to the proof
of Lemma 4, if necessary. Thus, Lemma 2A is proved.

In a similar way, Lemma 3A is proved.
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6. Proof of Lemma 4. For p(x) in the form of (3.19), let 0 < uala < 1, 0 < Vblb < 1 and

(6.1) Cab=min(c, 1 (b-a) 1/t’ (b-a) 1/’ (b-a) -1/la (b-a) -1/1"}4 4 4 4

Here, a and b are both finite. Then, by Lemma 2 and Lemma 3, there are two positive
constants Kla and Klb such that

(6.2)

a+b )J a+ei% ot
2

a+b
b_el,,fl )J

2

< K1 E val

< Klbe 1- Vbl

for a, fl c [a, b], e c S. Let

(6.3) dab min {1- uala, 1- Vblb }.

Then, by Lemma 2, there exists a suitable positive constant Kab such that

(6.4) IJ(a + e a, b e 1’, a)l =< Kabe d"

for a [a, b], e Scob. Thus Lemma 4 is proved.

7. Proof of Lemma 5. For p(x) in the form of (3.21) first choose m constants 11,
12,’’ ", l, satisfying

(7.1) 0< vj/ < 1, j=l,2,...,m.

Let

(7.2)

and

Ea-- min a a 1/la

I 1

iii --2b’ )eb
min

am 1/im

2
ifa<al,

if a,. < b.

(7.3)
/21 --min c, 1, ea, eb, %+-4

1/lj

4

j= 1,2,. ., m-l}.
Also, let

(7.4) 6j=e/, j=l,2,...,m,

and

(7.5)
if a a,

6b
0

if a < al, t
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Consider

(7.6)
I1 [al- 6a, a] U [a, c + 6,] [a 8j, aj + 8s]

j=2

U [-,]U[, +]
and

(7.7) I2= [a, b]- Int (I1)

By Lemma 1, IJ(a, b, a) is decomposed into

(7.8) IJ(a, b, a)l_-< Jl+J2
where J1 is the sum of absolute values of the integrals over each subinterval of 11 and
J2 is the sum of those over each subinterval of I2.

To estimate each term in J, using (3.1) and (3.3), we can find a suitable positive
constant K such that

(7.9) J= Ir(s, e)l ds<-2ml , e<--Rlea
I j=l

for e S, where

(7.10) rain {l, 12, , l,,}.

In order to estimate J, as/3(x) satisfies (3.9), let

o= inf 1-I Ix-l5 g,
ajNXNOl j=2

(7.11) , inf 1] Ix 1 g,
tmxNb j=l

^=( inf [I;Ix-a,l’)g (j=l,2,. ., m-l)

where
(j 0, 1, 2,..., m) is a positive constant. Note that J is the sum

=1

where , ,. ., e[a, b]. By (7.5)

[0 if a ,
J(a, -,,)=tj(a,_,) ifa<,

(7.13)

{ 0 if b,
J(+,b,)=,j(+,b,) if<b.

By Lemma 3, using o for g in (3.9), we have

(7.14)

where
for g in (3.9), we have

(7.15)

where K is zero if b, and positive if < b.
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Also, by Lemma 4, using ffj for g2 in (3.9), we have

(7.16) [J(a.i + ., a.+- t+, fl)[ <_-/je dJ, j 1, 2, , m 1,

for/3 [a, b], e So,, where K is a suitable positive constant, and

(7.17) min (1 u/, 1 v//+), j=l,2,...,m-1.

Let

(7.18) dl min (d, 1- rill, 1- v2/2, 1- Vmlm).
Then, by (7.8), (7.9), (7.12), (7.14), (7.15) and (7.16), there is a positive constant K
such that (3.22) is satisfied. Thus, Lemma 5 is proved.

Remark. The value of d may be actually larger if r(x, O) vanishes at the same
point where p(x, O) vanishes, namely at the turning points of J(a, b, a).

8. Completion of proof of Theorem 1. Note first that, by the analyticity of Ho, H,
U and the conditions of (1.10)-(1.12), all the conditions of Lemmas 2-5 are satisfied.
For a I, let

A(x, ):= a(x, ) d(x, ) q,,(x) + (x, )(8.1)
and

(8.2)

where

Jk(a, b, ) := rjk(S, e) exp ie -1 Ajk(’rl, e) dn ds,

(s, e) exp ie- q(n) dn ds,

j,k=l,2,...,n, jk,

6k(X, e)= t)k(X, e) exp t,(s, e) ds

By (1.11) and (1.12), 6k(X, e) satisfies the conditions (3.3) and (3.4). We shall show
first that there exists a function Gk(e) such that

(8.3) IJ(a, t, a)] _--< Gjk(e) for I

where

(8.4) Gig(e) tends to 0 as e0+.
(i) If all the turning points of k(a, b, a) are finite in order and in number, then

k(X) is expressible as

(8.5) (x) ,:[ (x-a?))?](x)
where m and v?*) are positive integers, a?) I(i= 1, 2,..., m), and (x) is real
analytic on I satisfying

(8.6) 0 < gk

for x I with a positive constant gk. Then, by Lemma 5, there exists k(e) such that
(8.3) and (8.4) are true. It is notewohy that in this case, a may be - and b may
be +.

(ii) If a =-, b is finite and a =- is a turning point of k(a, b, a), then there
exists a positive integer vk) and a positive constant Pl, (--Pl b), such that qk(X) is
expressible as

Vjk) 0(8.7) q(x) x qtx)
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for x (-o,-Pl), where tk(X) is real analytic and satisfies

(8.8) 0< gjk <1 ^oq(x)l
for x (-oo,-Pl) with g)k a positive constant. Since U(x) is a real analytic unitary
matrix on/, and rk(X, e) is an entry of Rl(X, e) given by (1.15), it satisfies (3.12) and
(3.13) for x (-oo,-pz) with certain positive constant p2 satisfying -pz<= b. Let

(8.9) p max {Pl,/92}.
Then, by Lemma 2A, J.k(-c,-p, a) satisfies (3.14). Combine this with the method of
step (i) and by (3.7) we have (8.3).

Similarly, if b +oo, a is finite and b +oo is a turning point of Jk(a, b, a), by
Lemma 3A, we have (8.3).

If a =-, b + and both are turning points of Jk(--oO, +oO, a), apply above
discussion to Jjk( -Oo, --p, ol), Jjk(--P, P, a), Jjk(P, +00, t) and by (3.7), we have (8.3).

Thus, (8.3) is true for all situations.
Now, let liP(x, e)]l be a suitable norm of P and

(8.10) [liP[[[ sup liP(x, e)JJ.
xI

Then, by (2.14), (1.10), (1.11) and (8.3),

[njkl <-- Gjh (E) ?’hi(t, e) exp ie- Ahl(q, e) dr dt
/=1 h=l

(8.11)

l,h=l

where m are suitable positive constants. Let

(8.12) L(e) max Gjh e Ghl
l<-J<=n l,h=l

Then, we have

(8.13)
where L(e) tends to 0 as e 0+.

Similarly, if we let

(8.14)

then, we have

(8.15) [llPolll- IIItI. [11--< E(e)
with (e) tending to 0 as e --> 0+.

Furthermore, if we choose c3 such that

(8.16) O<L(e)<l
for e Sc3, then (2.6) defines a contraction mapping and

(8.17)
[11 PIll -<- 111Polll / III L=I.III / III L2Pill

-< & + t( )111 I. III + t( )IIIPIII.
Therefore,

(8.18) IIIPIlI
(e + L(e )[ll/ Ill

1-L(e)
for x /, e Se, where min {Cl, C2, C3}. Thus, Theorem 1 is proved.
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9. Adiabatic approximation theorem. In this section, we shall investigate an
adiabatic approximation theorem for an n-dimensional Hamiltonian system with
multidegenerate energy levels. This theorem was first proved by M. Born and V. Fock
[2] in 1928, and later studied in a general setting by T. Kato [10]. Although some cases
of crossing’ of energy levels were discussed, as pointed out by Wasow [24], [25], the
rigorous proof of a general situation as in Theorem 1 was not previously given.

This adiabatic approximation theorem will be shown to be true by observing the
asymptotic behavior of the probabilities that eigenstates of the system stay in their
original states. A comprehensive study ofthe size of such probabilities for a multidegen-
erate system has not been done before. This asymptotic analysis also will allow the
computing of adiabatic invariants in the presence of several turning points. Although
this paper studies the Hamiltonian system of a general degeneracy, the case of most
general degeneracy, such as the degeneracy oftwo identical eigenvalues or of an infinite
system, is not yet included here.

Given a slowly varying Hamiltonian operator H(et) which depends on x et for
small but nonvanishing parameter e, where [0, ], e [0, c]; namely x [0, o].
Given a state of the system v(t, e), an n-column vector, governed by Schr/bdinger
equation

dv
(9.1) i-. H(et)v,

at

or equivalently

d
(9.2) iev’=n(x)v, dx"

LEMMA 6. Assume that H(x) is analytic on [0, ] and its eigenvalues coalesce
finitely many times on [0, ]. Then, the fundamental matrix of (9.2) is

(9.3) V(x, e)= U(x) exp -ie- D(s, e) ds (I,, + P(x, e))

where U(x) is a unitary matrix, D(x, e) is a diagonal matrix such that

(9.4) D(x, 0)=diag {A(x), A(x),..., 1,(x)}

with {hj(x)lj 1,2,..., n} eigenvalues of H(x), and liP(x, )11-o(), (d > 0), uni-
formly on [0, ] as e -> 0+ with P(O, e) O.

Before proceeding to prove this lemma, we first compare some terminologies in
mathematics and physics. An eigenvalue of H is referred as an energy level of the
operator H, while the eigenvector of H is referred as its eigenstate. A solution v(t, e)
of the time-dependent system (9.1) is referred as a state of the system. The evolution
of a state v(t, e) is the observation of how is the dependence of v on t.

To show this lemma, let U(x) be the unitary matrix such that

(9.5)

Put

DI(X u-l(x)H(x)U(x)=diag {/l(X),..., ,n(X)}.

(9.6) y=U-’(x)v.

Then, (9.2) becomes

(9.7) iey’ [Dl(X) + eRl(x)]y
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where

(9.8) Rl(X) -iU-l(x) U’(x).

Let

(9.9) D(x, e)= D(x)/ e diag gl(x).

Then, by Theorem 1, Lemma 6 follows immediately.
Now, let

(9.10) U(x) (Ul(X), UE(X),..., u,(x)),

(9.11) V(x, e)= (v(x, e), VE(X, e), v,(x, e)).

Then, by (9.5), uj(x) is an eigenstate corresponding to Aj(x), (j 1,2,..., n). Let
D(x, e) given by (9.9) be

(9.12) D(x, e)=diag {A(x) + e)(x)},
let a in Theorem 1 be 0, and

(9.13) A(x, e)=exp -ie- [A(s)+er(s)] ds

Also, let ej denote the jth unit vector of the standard basis of R". Then, by the notation
for P(x, e) given by (2.12), we have

vj(x, e)= U(x) exp -ie -1 D(s, e) ds (I + P(x, e))ej

(9.14)

=U(x)

[PII
(x, e)u(x)+ U(x)l.P. ]

\t p.l

X(x, )(x)+ X(x, )p(x, ),(x).
k=l

Let q be the probability of the state v(x, e) to be in the eigenstate u(x). Note
that (x, e) 0(1), (j 1, 2,. ., n); then, bythe superposition principle (e.g. see R. L.
Liboff [13, Chap. 5]),

P
, ’:(9.15) qU)= IXl=ll +pl/llXlll + ul + Ix.P,l}, sum over h j,
h=l

(9.16) q(’)=11p,l-/(11,1ll +p,,l+ ’ Ix.P,l} (k j).
h=l

Since liP(x, e)ll o(ea), (d > 0), uniformly on [0, ] as e -->0+, we have the following.
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LEMMA 7. The probabilities q)J) and q(k) (j, k 1, 2, 3,’’’, n; k j) satisfy

(9.17) q))- 1 O(eEd), q(k)= O(eEd),

uniformly on [0, o] as e 0+.
By (9.14), we have

(9.18) v(0, e) U(O)e uj(O), j 1, 2,..., n;

namely, v(0, e) is an eigenstate corresponding to the eigenvalue A(0). Thus, we have
the following adiabatic approximation theorem.

THEOREM 2. Suppose that the eigenvalues of H(et), a slowly varying selfadjoint
Hamiltonian operator, coalesce finitely many times for x et, [0, c] and e (0, c]
with c a small positive constant. Assume that H(x) is analyticfor x [0, c]. If the system
started to evolve at t-0 such that v(O, e) is an eigenvector (an eigenstate) of H(O)
corresponding to the eigenvalue (energy level) A(0), then vj(x, e), the evolution of that
state is approximately the eigenvector of H(et) for t[0, o], corresponding to the
eigenvalue A(et), while e -0+ (j= 1,2,. , n).

As pointed out in Remark 2 in 3, if we use the estimate that could be provided
by the traditional stationary phase method, then, by the proof of Theorem 1, we have,
for each difference of eigenvalues A(x)-Ak(X), (j k),

lh Uh + 1)-1, Uh order of finite turning point x Xh,
(9.20)

(uoo+3)-1 if x oo is a turning point with order
loo

(+oo if x oo is not a turning point.

Then, d in (9.17) is given by

(9.21) d min {dk l <-Z k <- n, j k}.

From (9.17) we can see that qJ is closer to 1 and q(k;) (k #j) are closer to 0 if d is
larger, i.e., Uh and/or uo are smaller. Thus, we can measure the qualitative phenomenon
ofdegeneracy (or symmetry) quantitatively by the order ofthe degeneracy ofeigenvalues
(energy levels) in a slowly varying time dependent Hamiltonian system.

Therefore, it is tempting to speculate that the following criterion is valid in quantum
mechanical systems.

CRITERION. In a slowly varying time-dependent Hamiltonian system (9.1), ifa state

of the system starts to evolve from an eigenstate, the less the order of degeneracy
(symmetry), the closer is in an asymptotic sense as e 0+) the state to its initial eigenstate.

10. Examples. To illustrate Theorem 1, consider the following two examples.
Example 1. Given the following three-dimensional system:

ItXq+2 0 0 t l0 r12 ri3} 1(10.1) ieY’= 0 xq(2x 1) 0 d- e rE1 0 3 Y
0 0 3xq(2x-3) r31 r32

for x [0, 5], where q is a positive integer, rk k(X, e) (j, k 1, 2, 3; j k) satisfy
(1.10)-(1.12) for x [0, 5], e S. Denote

(10.2) Al(x) xq+2, A2(x)- xq(2x 1), Aa(X)- 3xq(2x-3),

(9.19) dj min {1, loo}

where
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and

(10.3)

Then,

(10.4)

Dl(X) =diag {Al(X), AE(X), Aa(X)}.

A,(x)-A2(x)=xq(x-1):, AI(X)-A3(x)-xq(x-3)2,
A(x) A3(x) -4xq(x 2).

Thus, x 0, x 1, x 2 and x 3 are turning points of orders q, 2, 1 and 2, respectively.
By Theorem 1, (10.1) has a fundamental solution

(10.5) Y(x,e)=exp{-ie-lfDl(s)ds)(I3+P(x,e))
with

(10.6) IIP(x,)IIKe,
uniformly on [0, 5] for e St. Here K, d and are suitable positive constants. As each
obtained by the traditional stationary phase method, for AI(X)-A2(X), 1o 1/(1 + q),
11=; for hi(x)- ha(X),/o 1/(1 + q), 13=; and for h2(x)- ha(X),/o 1/(1 + q), l_=.
Then, by (7.10) and (7.18) d =min (1/(1 + q), ], 1/2).

Example 2. Given

(10.7) ieY’= 2x/(x2+l) 0

0 -2x/(x2+l)
d-e r21 0 r23 Y

\r31 r32 0

for x e (-, ) where rjk(X, e) (L k= 1, 2, 3; j # k) satisfy (1.10)-(1.12) for x 6 (-, ),
e e So. In this case,

(10.8) Al(x)-A2(x)
(x- 1)2

x2+l AI(X)_A3(x
(x+ 1)2 4x

x2 + 1
A2(x) A3(X) X2._ 1

Thus, x- 0, +/- 1 are turning points of order 1 and 2, respectively, while x- +/-oo are
turning points of order -2 for Al(X)-AE(X) and Al(x)-Aa(X), and of order -1 for
A2(x)-Aa(X). Then, by Theorem 1 and the estimates obtained in Lemmas 2-5, (10.7)
has a fundamental solution (10.5) satisfying (10.6) uniformly on [-oo, oo] for e e St,
with suitable positive constants K, d and . Then, by (7.10) and (7.18), d--.

Acknowledgment. The authors wish to express their sincere gratitude to the referee
for valuable suggestions to improve this work.
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TIME DEPENDENT NONLINEAR OSCILLATIONS WITH MANY
PERIODIC SOLUTIONS*
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Abstract. We investigate the local structure of nonlinear operators defining time dependent nonlinear
oscillations. We explicitly describe the local structure of such operators using as models stable mappings
between finite-dimensional spaces. This structure theorem allows us to prove the existence of many periodic
solutions for such nonlinear oscillations. We determine the maximum number of such periodic solutions
occurring near equilibrium. As one consequence we deduce that there exist oscillations with polynomial
nonlinear terms of degree 2n for which there exist (n + 1)2 periodic solutions.

Key words, nonlinear oscillations, periodic solutions, infinitesimal stability, Lyapunov-Schmidt reduc-
tion, local algebras, nonlinear Fredholm mappings
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Introduction. The goal of this paper is to derive results concerning the number of
small amplitude periodic solutions of the equation

x"+ m2A2x + P(x, x’, t) q(t)

for q(t) near O. We assume that P and q are periodic in of period A’=27r/A and
that P(O, O, t)=0, so that x(t)=-O is an equilibrium solution to (.) when q--0. Our
method is to explicitly determine the local structure near 0 of the operator

F(x(t)) x"+ m2A2x + P(x, x’, t)

where F" C], C, and ck, denotes the Ck-periodic functions of period A’= 27r/A
defined on R. In this formulation, solutions of F(x(t))=q(t) correspond to small
amplitude periodic solutions to (.).

First of all, the results state that for a generic choice of P (in a sense to be made
precise) the operator F is infinitesimally stable, and any such infinitesimally stable
operator is locally equivalent as a mapping to fox id, for fo an infinitesimally stable
mapping between finite dimensional spaces (id denotes the identity mapping on a
Banach space). Moreover, for any infinitesimally stable fo’Rk, 0k, 0 with
dim ker dfo(O) 2, there is an operator F of the form (**) locally equivalent to f0 x id.
This infinitesimal stability has several main consequences"

(1) Since dim ker (dF(O)) 2, the maximum number of small amplitude periodic
solutions to (*) which do occur for some small q(t) is given by the dimension of a
certain local algebra associated to F (this follows from the above decomposition
together with results in [DG] giving explicitly the maximum number of solutions to
f(x) =y near 0 for f:",0p, 0 an infinitesimally stable germ).

(2) The maximum number of small periodic solutions remains constant under
small perturbations P (and the periodic solutions themselves persist under small
perturbations of P and q).

* Received by the editors October 1, 1985; accepted for publication October 29, 1986. This work was
supported in part by a grant from the National Science Foundation.

f Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514.
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(3) This maximum number can be determined from a finite part of the Taylor
expansion of P.

For the special case of P polynomial in x and x’ (with coefficients depending on
t), these results imply that there exists such a P of degree 2n and an appropriate (open
set of) q(t) for which (,) has (n/ 1)2 periodic solutions.

These results can be contrasted with the results previously obtained for the case
where P does not depend on and q 0. Then (,) can be converted to a first-order
system and the number of periodic solutions of (,) for P and its perturbations was
studied in the context of (degenerate) Hopf bifurcation by Takens [T] and Golubitsky
and Langford [GL]. Here periodic solutions are created by perturbation of some basic
P. As such the case is treated as a bifurcation problem. In contrast, infinitesimal stability
implies that the local structure of the operator does not change under small perturba-
tions. This corresponds to the difference between using the Lyapunov-Schmidt reduc-
tion to study the bifurcations of F-l(0) under perturbation by a finite number of
external parameters, and using it to determine that all possible deformations of the
operator itself already occur along the "internal directions" of the eigenfunctions.

For the polynomial case of deg 2n, the number of periodic solutions we obtain
exceeds by a factor of n + 1 the number obtained by Takens and others, e.g. [CH],
[S1] and [LMP]. However, even the number of periodic solutions we give is not
generally the best possible for P of degree n. For n 2 or 3 the methods of this paper
allow us to construct P of degree n with n2 periodic solutions for (,). Very likely this
holds for all n, although technical details have prevented the verification of the more
general results. Beyond the examples of degree 2 and 3 which we explicitly give in

8, we have not been able to explicitly give P of degree 2n-2 with n2-periodic
solutions. However, we are able to give very explicitly the form of a polynomial P of
degree n and a q(t) such that (,) has 2n-periodic solutions.

It seems likely that the methods used here are applicable to some other nonlinear
problems. The main feature ofnonlinear oscillations which is used is that the eigenfunc-
tions of the linearized operator form an algebra whose complexification is the algebra
of finite Laurent series. Thus, similar results should hold for other nonlinear operators
whose linearization is selfadjoint with eigenfunctions forming an algebra possessing
appropriate analogous properties.

1. Infinitesimally stable germs and operators. Since the questions which we shall
consider are local, we shall consider two mappings to be equivalent at a point x0 if
they agree in a neighborhood of x0. Such an equivalence class is referred to as a germ
of a mapping. Furthermore, by translation we may assume Xo 0 and f(0)= 0; then
f’E, 0-> F, 0 will be used to denote the germ of f at 0. Here, E and F may denote
finite- or infinite-dimensional spaces, depending on the circumstances.

For a smooth germ f" Rn, 0-> RP, 0, let r" Tp --)P denote the projection of the
tangent bundle. Then, a germ of a smooth vector field along f is a smooth germ ’" n,0-> Tp such that r ’=f. Then,f is infinitesimally stable (as defined by Mather [M2])
if given ’, there are smooth germs of vector fields on R and / on P so that

’= (f)+ B of (here :(f) denotes the directional derivative off with respect to
Next, suppose that E and F are Frechet spaces with E El0)G, F-FI@ G with
dima El, F1, <oo. Suppose f’E, 0--> F, 0 is a smooth germ of the form f(x, u)-
(f(x, u), u) with x El, u G. If there is a finite-dimensional subspace G1 c G such
that the germ fl (f] E1@ G1)" E1@ G1, 0-> F1@ G1, 0 is infinitesimally stable, then
we shall say that f is infinitesimally stable. Here and in what follows, "smooth" will
mean ’"smooth in the Gateaux differentiable sense." More generally, a smooth germ
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g’E, O F, 0 will be said to be infinitesimally stable if it is locally equivalent to an
infinitesimally stablef above byf g q for g, and q germs oflocal diffeomorphisms
of E and F.

Ambrosetti and Prodi [AP] and Berger, Church and Timourian [BC], [BCT] have
determined the structure of certain nonlinear operators using infinite-dimensional
versions offolds and cusps. Quite generally, the local structure ofsmooth infinitesimally
stable germs can be given using a slight modification of Mather’s theorem "Infinitesimal
stability implies stability." This is given in [D1].

THEOREM 1.1. With the above notation, iff: E, 0--> F, 0 is infinitesimally stable,
then f is locally equivalent to fl x ida2 (where G2 is a closed complement to G1 in G).

A corollary follows.
COROLLARY 1.2. Suppose E, F and H are Banach spaces, f:E, 0--> F, 0 is

infinitesimally stable, and h" E) H, 0 F H, 0 has theform h (x, u) (h (x, u), u) with
h(x, 0) =f(x) for x E, u H. Then, h is locally equivalent to fx idH.

To use these results, we recall several fundamental properties of infinitesimally
stable germs due to Mather. If we apply the finite-dimensional analogue of the
Lyapunov-Schmidt procedure to a germ f’Rn, 0Rp, 0, then we may choose local
coordinates (xl ., xs, u ., Uq) for n and (Yl ", Yt, ul ", Uq) for P so that

f has the form f(x, u) (f(x, u), u), with f(x, O) (=fo(x)) having rank 0 at 0. In the
terminology of singularity theory, such an f is called an unfolding offo and the ui are
the unfolding parameters. With f in this form it now becomes a formal calculation to
verify infinitesimal stability.

Let s denote the ring of smooth germs g’S,0; it has a maximal ideal ms
consisting of germs vanishing at 0. In (’s)(t)= s0)s’" "09 (t copies), which we
can view as an s-module, we consider the submodule L generated by
Ofo/Oxl,"" ,Ofo/OXs, and the submodule (I(fo))(t (t-copies of I(fo)=ideal in s

kgenerated by the coordinate functions of fo, {Yi fo, 1 _-<i_-< t}). By we mean the
ideal of s generated by monomials of degree -k. Then, the quotient s/k is a
finite-dimensional vector space with basis given by the monomials of degree <k. Last,
letting v (Vl, , Vq), Of/Ov [o=o is a germ on Rs, and hence via its coordinate functions
can be viewed as an element of (s)(t, in fact, of (s)(t. Then Proposition 1.8 of [M4]
can be applied.

THEOREM 1.3 (Verification criterion), f is infinitesimally stable iff Of/Ovl [=o, ,
of/OVq 1=o span the quotient space

N(fo) (s)<*>/(L+ l(fo)(0 +
As this space is finite-dimensional, this becomes a very computable criterion using

part of the Taylor series of f.
An important invariant of a germ is its local algebra. Forf", 0--> P, 0, we define

the local algebra Q(f)= ,/I(f), where, just as earlier, I(f) is the ideal generated
by the coordinate functions of f. If f is an unfolding of fo as above, then I(f)=
I(fo)+Cnq" ’, hence Q(f)-- Q(fo). Furthermore, for infinitesimally stable germs
there is the very fundamental classification theorem of Mather [M4, Thm. A].

THEOREM 1.4 (Classification by local algebras). If f,g:n,O->P,O are
infinitesimally stable germs with isomorphic local algebras thenfandg are locally equivalent
at O.

Furthermore, given an algebra Q satisfying certain conditions it is possible to
construct an infinitesimally stable germ f, with Q(f)--Q. For example, consider

2Q-gs/I with Iceas generated by fol,’" ",for and suppose for simplicity that
dimR Q < oo. Then, we use the fo as coordinate functions to define fo:s, 0->t, 0.



NONLINEAR OSCILLATIONS 1297

Then, N(fo) is a subspace of a quotient of (Q)(’)- (Q(fo)) (’). Hence, there are
1," ", Pq (s)(t) which project to a basis for N(fo). Then,f" Rs+q, 0Rt+q, 0 defined
by

(1.5) fo( )f(xl," ",x, v,," ", Vq)= x) + vii, Vl," ", Vq
i=1

is infinitesimally stable by Theorem 1.1 and has a local algebra Q(f)-:> Q(fo) - Q.
This leads to the third property.
THEOREM 1.6 (Normal form for infinitesimally stable germs). Given an algebra

Q satisfying certain conditions (which include the case dima Q <) (see [M4, Thm. B]),
then there is an infinitesimally stable germfoftheform (1.5) with local algebra Q(f -:> Q.

These three results allow one to begin with an infinitesimally stable germ g,
compute its local algebra Q(g), construct a normal form f with local algebra
Q(f) -:> Q(g). Then, by the classification theorem, f and g are locally equivalent, so
the specifically given germ f can be used instead to study the local structure of g.

One consequence of these results is the following"
If f’R", 0->p, 0 is infinitesimally stable and n<-p then by Mather [M4]

Ndima Q(f)< c. Let N be the smallest integer so that n, Q(f)= O.
COROLLARY 1.7. In the above situation ifh ", 0->p, 0 with h (hi," , hp) and
V/l, <-j p, then fl f+ h is locally equivalent to f.hj 1 <

Proof. By the classification theorem it is sufficient to show that f+ h is
infinitesimally stable and Q(f+ h)-- Q(f). We may assume that we have chosen
coordinates for R" and P so that f has the form f(x, u) (f(x, u), u) with df(O) O.
We must further change coordinates to put fl =f+ h in this form; however, this will

N+Ionly change the coordinate functions of f by terms in mn Thus, fl has the form
N+I(fl(x, u), u) (f(x, u) + g(x, u), u) with g (gl," ", g,) and gi m, Then, by the

conditions on g,
N+II(f) I(fl) +m. or I(f) I(fl) +m." I(f).

By Nakayama’s Lemma, I(f)= I(fl).
Second, with vi denoting x or u,

No(f+ g) Of mode,.

Thus, in the verification criterion

N(f(x, 0))= N(fl(x, 0))

and

u=O u=0

in N(f(x, 0)).

Thus, fl is infinitesimally stable and since I(fl)= I(f), Q(f)
One consequence of the infinitesimal stability of a germ f: ", 0 P, 0 with n <_- p

occurs when we wish to count solutions x near 0 to the equation f(x)=y for y near
0. We define the real multiplicity of f:

def

m(f) max {k: for all sufficiently small open neighborhoods V of 0 in P and
U of 0 in R", there is a y V so that card (f-l(y)fq U)= k}.

For infinitesimally stable germs, m(f) has several important properties summarized
in the following theorem (see [DG] or [D2]).
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THEOREM 1.8. For infinitesimally stable f
(1) m(f) only depends on Q(f), i.e., it will be the same for different infinitesi-

mally stablef between different dimensional spaces as long as they have isomorphic local
algebras.

(2) In the case that dimR ker (df(O))<-2 or Q(f) satisfies other conditions in [DG]
then

def

re(f)- 8(f) dimR Q(f).

(3) Even iff is not infinitesimally stable at 0 but (f) < oo, then m(f) <- i (f) (see
[GG]).

We conclude this section by deducing from Theorem 1.1 and Corollary 1.2
consequences for germs of smooth Fredholm mappings f:E, 0 F, 0 between Banach
spaces E and F. By the Lyapunov-Schmidt procedure, we may assume f has the form
f(x, u)=(f(x, u), u) for u G, x E1 and E _v EI O)G, F _v FIO)G. Then, fo(x)
f(x, 0)" El, 0- F1, 0 is a smooth mapping between finite-dimensional spaces and so
has a well-defined local algebra Q(fo).

LEMMA 1.9. If Q(fo) is isomorphic to an algebra of an infinitesimally stable germ,
then the algebra obtained by carrying out the Lyapunov-Schmidt procedure in a different
way is still isomorphic to Q(fo).

Thus, the algebra is an invariant of f and so, for such an f, we may denote
the algebra by Q(f) and call it the local algebra of the smooth germ of a Fredholm
mapping f.

Note. In the case that f is Fredholm of index <-0, then the condition on Q(fo) is
equivalent to dima Q(fo)< oo by another result of Mather [M4].

Proof. There is a germ g’EO)Rk, O-->F)Rk, 0 defined by g(x,u,v)=
k(f(x, u)+ Y,--1 v,0,, u, v), where fl(x, v)= (fo(x)+ ,-1 v,o,, v) is a normal form for an

infinitesimally stable germ with algebra Q(fo). Then, by Theorem 1.1, g is locally
equivalent to fl x id by g (fl x ida) with , germs of diffeomorphisms
satisfying [F103 id, ]E1n id.

If a Lyapunov-Schmidt procedure were applied using different local coordinates
then in place of E1 and F1 we would obtain finite-dimensional submanifolds E and
F such that ToE E1 and ToF O) G F. Then, f" E, 0--) F, 0 would be obtained
as the restriction of g to E. Hence, if E’I’ and F’ denote the images of E and F via
-1 and -1, then f is locally equivalent to f’’E’, 0- F’, 0 with fg the restriction
offl x id to E ’. By the properties of and , ifPl and P2 denote the linear projections
E) E10)g and Fq)Rn- F10)R then Pl[ ToE’ is an isomorphism with image

tit 12vtttransverse to and similarly for P21ToF’. Let E1 pl(Eg), 1 p(F’) and f’-
fl x id[ E"I Then, fl p (fl x ida) is constant on the fibers of Pl so fg’ is locally
equivalent to fg. Finally, as E" and "--1 are transverse to Rn at 0, it follows that fl can
be represented as an unfolding off’. Hence, Q(fg’) _v Q(f) Q(fo). As f’ is locally
equivalent to f6, Q(fg’)- Q(f6) and the result follows.

We can then summarize the consequences for germs ofsmooth nonlinear Fredholm
maps.

THEOREM 1.10. Let f: E, O F, 0 be an infinitesimally stable germ ofa mapping of
Banach spaces. Then

(1) f is locally equivalent to an infinitesimally stable germ g" E, 0- F, 0 iff
Q(f) Q(g) and their Fredholm indices are equal.

N(2) Let denote the maximal ideal of Q(f) and suppose n Q(f)=0. If h’E,
0- F, 0 is a smooth germ such that IIhll o(llxll"/ ), thenf+ h is locally equivalent to f.
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(3) If df(O) has index <-0 (as a Fredholm mapping) then m(f) only depends on

Q(f) (i.e. it is the same for any other infinitesimally stable germ f’: E’, 0--> F’, 0 even
with a different index <-0 as long as Q(f’)--:-> Q(f)).

(4) As in (3), and moreover if dima ker df(O) <= 2 or Q(f satisfies other conditions
in [DG], then m(f) (f) d___ef dima (Q(f)).

(5) Even iff is not infinitesimally stable, but Q(f) is isomorphic to the local algebra
of an infinitesimally stable germ and the Fredholm index off<-O, then m(f)<-(f).

2. Statements of main theorems. We use the notation and terminology of the
preceding section to state the main results. We consider solutions to

(2.1) x"+ m-, 2x + P(x, x’, t) q(t)

with P continuous in (x, x’, t), smooth in (x, x’) but without linear terms and periodic
of period 2r/A in t. Associated to (2.1) we have the operator

(2.2) f(x) x"+ m)t Zx + P(x, x’, t)

as an operator f: 2 o (recall that kC(2r/A)--> C(2r/A C(2r/A denotes the space of 2r/A-
periodic ck-functions on R).

Many of the results about solutions of (2.1) for q(t) near 0 follow from results
about the operator f.

The first result is a weak form of genericity.
THEOREM 1. Given N >-2 with m and A fixed, there is an integer r such that we

may consider the space of the first r Fourier coefficients of the coefficient functions aij( t)
of terms xix’ of P with /j <-_ N for operators of the form (2.2). Then, for any such
operator f, there is an open dense set of the space of such Fourier coefficients such that
the operator is infinitesimally stable at O. Thus, as mappings these operators are locally
equivalent near 0 to mappings oftheformfo x id wherefo Rk, 0--> k, 0 is an infinitesimally
stable germ (and id denotes the identity mapping on some Banach space).

There is also a partial converse.
THEOREM 2. Given any infinitesimally stable germ fo:k, 0->k, 0 with

dima ker (df(O)) 2, then there is an operatorfof theform (2.2) such that as a mapping

f is locally equivalent (near O) to fox id.
Thus, the entire theory of 22 stable map germs (i.e. mapping germs f with

dim ker df(O)- 2) is needed to describe the possible structure for operators of the
form (2.2).

Let f be such an infinitesimally stable operator of the form (2.2) and let Q denote
its local algebra with maximal ideal n so that !. Q_ 0 and dima Q- t(Q). Then we
may draw the following conclusions.

o such that there are (Q) isolated periodicTHEOREM3. (1) Thereareq(t)e C(2/)
solutions to (2.1) ofperiod (2r/A). For q(t) in a sufficiently small neighborhood of O,
this is the maximum number of solutions close to zero which can occur.

(2) These periodic solutions persist under deformations in the following sense:
Let P(x, x’, t, 9) and Q(t, v) be continuous functions, smooth in (x, x’, v) (respec-

tively 9) for Ba(O) c E, a Banach space, and periodic ofperiod (2r/A) in t, so that
P(x, x’, t, O) P(x, x’, t) and Q t, O) q (t) (as in 1 ). Then there are t (Q) families of
periodic solutions x(i)(t, v) to the equation

(2.3) x"+ m2A2x+ P(x, x’, t, 9)= Q(t, 9)

defined for v < e for some e with 0 < e < a.
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(3) IfH(x, x’, t) is continuous, smooth in (x, x’) and periodic in ofperiod (2r/A),
so that

IH(x, x’, t)l O([l(x X’)[I)/+1
where. Q 0 by hypothesis, then there still exists qH(t) SO that

(2.4) x"+ mUA 2x + P(x, x’, t) + H(x, x’, t) ql-I( t)

has (Q) periodic solutions ofperiod (2r/A ).
As a corollary of this, we have the existence of polynomial P for which (2.1) has

a specific number of periodic solutions.
THEOREM 4. There is a polynomial P of total degree 2n- 2 in x and x’ and a q( t)

such that (2.1) has n2 periodic solutions.
A specific example of a polynomial P with a given number of periodic solutions

is given by the following.
Let

n+l

(2.5) P(x, x’, t) sin (At)(x2 + X’2) - pj(t)xj

j=3

where

pj(t) aj cos ((j- 1)At) + b sin ((j- 1)At) + c cos (jAt).

Then, as a corollary of Theorem 3, we have the following.
THEOREM 5. For almost all cl, and then for specific al and b, fobtained using (2.5)

is infinitesimally stable with local algebra R[[x, y]]/(x2+ y2, xn+l). There is q(t) which
has only nonzero Fourier coefficients of degree <=2n so that with the above P, (2.1) has
2n + 2 (isolated) periodic solutions ofperiod (2r/A).

3. Outline of the method and some derivative computations. We begin by outlining
the method we use and describing the role that subsequent sections play in carrying
out the outline. The first step is to apply the Lyapunov-Schmidt procedure to the
operator (2.2). For simplicity, we refer to the case m ,X 1 so that f" C2- C. The
form of Lyapunov-Schmidt we use is slightly different from its standard form. For our
operatorf, df(O) is Fredholm of index 0with K ker df(O) spanned by {cos (t), sin (t)},
which also spans a subspace complementary to image (df(O)). Let W (respectively
W’) denote the L2-orthogonal complement to K in C (respectively C). Then:
df(O)" W- W’. We define " C22C by (x, u)= x +f(x, u) for (x, u) K 03 W.
By the inverse function theorem, -l is defined in a neighborhood U of 0; and
F=fo-1" U C= has the form F(x, u)= ((x, u), u) for (x, u) K0)W’. Then,
we shall refer to this procedure of obtaining F from f as the Lyapunov-Schmidt
procedure.

Our goal is to apply the verification criterion (1.3) to F to deduce that, under
certain circumstances, F is infinitesimally stable. The results needed to apply the
criterion will be developed in the remainder of this section and in 4 and 5. The
verification criterion requires us to compute certain derivatives of F at 0, and establish
certain surjectivity properties. By the rule for derivatives of compositions, to do this
we must be able to compute the derivatives of f at 0. The remainder of this section
will be concerned with computations of such derivatives. Lemmas 3.10 and 3.15 provide
the key surjectivity results (while Corollaries 3.12, 3.13 and Lemma 3.14 are mainly
used for examples).
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Second, the verification criterion is to be applied to the restriction of F to a
finite-dimensional subspace V, spanned by {cos (rt), sin (rt)}7=o. We wish to know
that terms involving eigenfunctions cos (st) and sin (st) for s sufficiently large (say
_->M) will not affect the derivative computations after restriction. This is achieved by
the noninterference Lemma 4.1 and its Corollary 4.9. They allow us, for example, to
restrict our original f to a mapping from VM to itself and apply Lyapunov-Schmidt
to the finite-dimensional mapping. This allows us to use standard techniques for
working with finite-dimensional mappings and to inductively establish the verification
procedure by successively adding terms without altering the preceding surjectivity
conditions.

Last, in 5 we prove that adding a "model operator" to any operator f produces
one satisfying the verification criterion. This gives a "universal model" for establishing
infinitesimal stability (Theorem 5.4 and Corollary 5.9).

Once these results are in place, the proofs of the theorems follow very simply by
the arguments in 6. Sections 7 and 8 contain specific examples already referred to.
We now proceed to the derivative computations.

We begin by simplifying notation and assuming A 1. Then, we consider deriva-
tives of nonlinear operators from C22 to C2 which are sums of terms of the form

(3.1) (al cos kt + a2 sin kt) xi(x’).
Although we will be working with real mappings and derivatives, computations are
easier to see conceptually using complex notation. Furthermore, in certain steps we
will wish to show that certain real forms span a vector space of multilinear forms. It
will be easier to show that the forms span the corresponding complex space of
multilinear forms.

We use local coordinates (xl, x2) for the subspace spanned by cos (t) and sin (t).
We let to cos (t)+ sin (t) with complex conjugate 03. Also, we let z Xl + ix2 so that
xl cos t+x2sin t=(1/2)(to+z03). Similarly, for x=al+ia2, alcos kt+a2sin kt=
(1/2)(gto k + x03k). Since d/dt(to)= ito and d/dt(03)= -i03,

Given a polynomial in to and 03, Q(to, 03), we introduce the function which gives the
constant term of Q,

Cst (Q(to, 03))= Q(0, 0).

Then, we can compute the L2-component of Q(to, 03) for cos (kt) or sin (kt) by taking
L2-inner products with (1/Tr) cos (kt) or (1/Tr) sin (kt). This can alternately be com-
puted as

(3.2) Cst((tok+03k) O(to, 03)) or Cst((--i)(tok--03k) Q(to, 03)).

More generally, ifwe let (Uk, Vk) denote coordinates for the subspace (cos (kt), sin (kt)),
and let Wk Uk + irk, then from (3.2),

(3.3) Wk 2" Cst (tok. Q(to, 03)).

Now consider f" C22 C2 defined by

(3.4) f(x) (al cos (rt)+ a2 sin (rt)) xJ(x’) k.
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A standard computation yields

1
dmf(O)(ll, Ira)
m!

O,1

m <j + k,
(3.5)

m!(al cos (rt)+ a2 sin (rt)) ll)’’" lj)l’j+l"" l’k
(summed over cr Sin) if m j + k.

We will consider several special cases of (3.5).
Case 1. If we evaluate (3.5) for/i (1/2)(w+ zt,3) for all we obtain

(3.6) Wl=CSt (to. (c/to" /a’) (1/2)". ik(w/Z)J(w--z)k).
Case 2. Ifj= m, k=0, ll lm_=(1/2)(W+Z) and l,,=(1/2)(fltoS+fl S)

with/3 bl + ib2, then for (3.5)

(3.7) wq Cst (toq (c/to" + a’) (fl-to + fl) (1/2)m (to + z)"-l).
Case 3. Last, if k=l, l /=(1/2)(w+za3) (and m=j+l) and /+1

(1/2)(flw +fla3), then for (3.5)

(3.8) Wl =Cst (co. (c/w" + aa3’) )

where

(3.9)

Let (3.6), with a replaced by ’k~’), be denoted by ). Also, let Sm(x x2) denote
the vector space of real homogeneous polynomials of degree m in (x, x2). Let
S’(x, x2) denote the corresponding complex vector space. The ) are elements of
S’(x, x2) x Sm(x, x2) with m =j + k.

LEMMA 3.10. {)f,): j+ k= m, O<- r<- m} span Sm(Xl, X2) X Sm(x1,x2).
Proof We first observe that S’(xl,x2) can be identified with S"(xa,x2)x

S’(x,x2) by g+ih--(g,h). Via this identification, {zJk’j+k=m} is a basis
over C (since x=(1/2)(z+), x2=(i/2)(z-) we may expand x"xz*--
(1/2)"+(-i)(z+ )"(z-) to represent xx2 as a linear combination of zk). Thus
viewing the elements J) as elements of S(x, x2), it is sufficient to represent each
zk as a complex linear combination of such elements. Consider

w, Cst (co. (c/w’ + ao3r) (zo3)(co))
(3.11)

Cst ((c/w r+’ + aar-1)wk-) z.
If k _->j and r 1 + k-j, then wa azJk. If a represents an arbitrary complex number,
we obtain the complex subspace spanned by zg. If instead j > k, we use r’=j-k-1
and obtain c/’z. Again if a’ is an arbitrary complex number then we obtain the
subspace spanned by z.

Now, using in (3.11)

eto (1/2)(eto + zth i( i/ 2)( eto zth ),

za3 (1/2)(w + za3)+ i((i/2)(to za3))
and expanding we obtain zk as a complex linear combination of {/)}.

We obtain the following as corollaries of the method.
COROLLARY 3.12. In (3.6) with r=m-1, j-m, k=0, Wl=(1/2)mc/Z modulo

terms of the form (z. ). h.
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COROLLARY 3.13. Forf(x)=sin (t)(X2+X’2), with li=(1/2)(3w+z) i= 1,2, the
Wl component of (1/2!)dEf(O)(ll,/2) equals iz3. If 12=(1/2)(ffatoa+wath3), it equals

(1/4)(-i)(w3) (v3x2 UaXl, uax2 + vax).

For Case 2 we have the following lemma.
LEMMA 3.14. (1) en q 1 and r+ s > m expression (3.7) equals

m- 1
am_l_az + flzm_aa_

a a 1

if r s 1 m 1 2a and 0 a m; otherwise it equals O.
(2) en r> s > q > m -1, it equals

() "(m--1)m-l-azaa
if r- s- q m 1-2a and ON a N m 1; otherwise it is 0 (note by convention ()
(5 =0.

Proo
(+(+ .++*-+-++--.

In the first case, only the last two terms can have exponent Nm- 1 in absolute value.
In the second case, only the last term is possible. Thus, if r-s-q m- 1- 2a, then
(2) is as stated and we have the extra term if q 1.
LMM 3.15. Nxpression (3.8), with r >j + 1, s 0, is equal to

ifs= r+j+ 1-2aand ONaNj;

and equals 0 if s(O) is not of the above form.
Proo We first compute in (3.8)"

= j+

Thus,

(3.17) (+)" * + 1

where a computation yields

(s +j()+* ++Be*- ’-
+(-j()+ e+-+B e--).

From (3.17), the formula for yields, for (3.8) with s r+j+ 1-2a, the expression- (s -j) e. -’-"" + (s +j).
a
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(where ()- 0 if c < 0). This gives the desired formula upon rearrangement. If s is not
of this form, then (3.17) is without constant terms and so (3.8) is zero.

4. A aoaiaterfereace lemma. We consider an operator f obtained by adding to
x"/x a finite number of terms of the form (a sin kt/b cos kt). xi(x’) with i/j> 1
(and say /j -< n). Let

Vm vector space spanned by {cos (kt), sin (kt), 0 - k - m).

Then, we shall show that given m > 0, there is an M > 0 so that the n-jet of the germ
obtained by applying the Lyapunov-Schmidt procedure to f and restricting to V, does
not depend on the Fourier coefficients of order M of the image of the original f. In
essence, the higher eigenfunctions do not interfere with the nonlinear behavior of the
Lyapunov-Schmidt form off on Vm.

More specifically, let "C C be defined by d(x, u) x +f(x, u) for x K
ker(df(0)) and u belonging to the L2-0rthogonal complement in C=. Then,
f -1. cO= C20= gives the Lyapunov-Schmidt reduction. We let Wm denote the
L2-0rthogonal complement to Vm in C=, and P, denote the projection onto Vm along
Wm. Define f2 P4 of[ v (with M to be determined). Also, let ’:VM VM be
defined by ’= Pu 1V so that ’(x, u’) x /f2(x, u’). Then, f2 t9’-I VM - VM is
the Lyapunov-Schmidt reduction for f2. Finally, we let fl =f2 ’-11Vm Vm Vm (here
m < M). Note fl(V,)

_
V,, by Lyapunov-Schmidt. Then, the n-jets of fl and f -1

are related by the following lemma.
LEMMA 4.1. Given m > O, there is an integer M > m such that for 1 <=j <-_ n

(i) dS(f dP-’)(O)l Vm X Vm dJfl(O),

(ii) ds(p, of -1)(0) Vmx... x V, x W 0.

Proof. First we prove (i). Let

K =max {k: cos (kt) or sin (kt) appears as a coefficient of a term off}.

We inductively define a sequence of integers by ml m, and ms> (n+ 1)ms+ K for
1 <j <_-n + 1 and let M m,/. We claim this M will suffice for (i).

Let Qs denote the projection onto W,,j along Vmj and let Pm be denoted just by

P. Then, we first observe

(4.2) Qs+, df(O) V,, ... Vm, 0.

This follows from (3.5) since to have a component of cos (st) or sin (st) for dsf(O),
we must have s -<j. m + K < ms+ with j <_- n.

Next, temporarily let P[ denote the projection onto (cos (t), sin (t)) along its L2

orthogonal complement in C22. Then, P +f so

P + df(O),ds(O)
dif(O),

Thus,

Qj+I d’(O)I V,,, .’. V,,, { (Qj+I P) + (Qs+’ df(O)l Vm,),
Qj+, dJf(o)lvm ... j-l,

j>l

or

duO(O)] V ... Vm--0,
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Thus,

(4.3)

and

dJdp(O)lV,,j x... x V,,,j P+I dJdp(O)]V, x... x V,,,
dJdp’(O)I V, x... x V,,, j>= 1

(4.4)

Let L denote the l-multilinear operator.

d(I:’(O)( V.,j x-" x V.,) c

L
def

(d(I:,(O)) -Io d’(1)(O).

By an expression in L of depth r we mean a term of the form L if r- 1, while for
r > 1 we mean an expression (i.e. a composition) LS(LJl, ., Us) where each U, is an
expression of depth r- 1. We claim that if (L) is an expression in L of depth r then

Image ((L)] V,,, x... x Vm) c V,,r.

This follows by induction using (4.4) and the fact that d(0) preserves the Vm.
Furthermore, by another induction argument, if we replace L by

L"= (d,:I:,’(O))-’ d’I)’(O)

then

(4.5)

Now,

(L) V,,, x... x V,,, (L’).

dfl(O) d’(fo ,’-’)(0)I V.,, x... x

p, d’(f (1)t--l)(o)[ Vm, X... X Vm,.
We finally claim that

(4.6) d(f ’-1)(0) Vm, X’’" X Vm, dl(f -1)(0) Vm X’’’ X V,,,.
Then by the Lyapunov-Schmidt procedure, QE(f -1) Qg_; hence we may compose
the left-hand side of (4.6) with P1 and equality remains; the first result will follow.
For this final claim we proceed in two steps. First, by the product rule d(f -1)(0)
is a sum of terms of the form

drf(O)(d’,dp-l(o), dtr-l(0))
with coefficients only depending upon r, ll,"" ", lr (see e.g. [F] or [R]).

Thus, if

(4.7) dl(-l)(0) Vm X’’" X Vm- d(’-l)(0) V,, x... x Vml
and both have images in Vm,, then by the product rule and (4.2) we have equality in (4.6).

Lastly, to establish (4.7) we again apply the product rule to

o-l=id or (I) o(I)l=idv.,.+,
to obtain that d/(I)-l(0) is a sum of terms with well-determined coefficients which are
expressions in L, as defined above. A similar statement applies to d’-l(0) and L’.
Thus by (4.5), (4.7) is valid.
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For (ii), we let the M from (i) be denoted by m’ and reapply (i) for m’ in place
This implies ’- (n. m’ + K) >+K and M’= mn+l. msof m, obtaining ms > (n / 1)mj_l

m_1. By the product rule, to prove (ii), it is sufficient to prove that the terms

P1 drf(O)(dt,(dp-1)(O),..., d’(-’)(0))I V,x... x V,x W,,

are identically zero (recall P1 de__f Pro,). Since

dt(-l)(0)( Vm, X’’" X Vm,) c Vm, c Vm, <- n,

it is sufficient to show that

(4.8) d’(-l)(0)( V,,, x... x V,n, x WM,) c Wn
since then

drf(O)( Vm, x x Vm, x Wm c Wm
by the above inequality for m. However, as we already mentioned, d(-l)(0) is a
sum of terms each of which is an expression in L of depth <-n. At each stage, the
image will be one lower Wm); hence, each term will be in Wm. Thus, so will (4.8).

As a corollary of the method of proof we have the following additional result.
COROLLARY 4.9. Given f, M, and m as in Lemma 4.1, let

g(x, x’, t) E bij( t)xix ’j

summed for i+j k (with fixed k <- n) with bij(t) W4. Let gl be obtained from f+ g
by applying Lyapunov-Schmidt; then

(i) dJ(fo-)(O)lV,x...x Vm=dg(O) lVm x...x Vm, l<=j<----k,

(ii) p; dkg(O) d-l(o) Vm ... Vm WM dkgl(O) Vm "" Vm WM.
Remark. In fact, a slightly more careful analysis allows us to conclude (i) for

1 =<j _-< 2k 2.

5. A universal model. Consider a family of operators of the form

f(x, 9) x"+ h 2x + P(x, x’, ,, t)

with z,e E, and IIPll- o(llxll=+ IIx’ll ,) (with P continuous, smooth in (x, x’, u), and
periodic in of period 2zr/h). We may simultaneously apply Lyapunov-Schmidt and
obtain a family which we may further restrict to some V,,.

F" U Vm E, F(x, u, u) (F(x, u, ), u, ,)

for U an open neighborhood of 0 in Vm X E with x (sin (t), cos (t)), and u belonging
to the orthogonal complement of (sin (t), cos (t)) in Vm. Looking at the nth order
Taylor expansion of F with respect to x, we have in local coordinates x=
(Xl, X2)(Xat= XIX for t (a, 02)

F(x,u,,,)= Y v.x", Y vx +H with [[H[[ O([[xll"+’+[[x "+1

and v, v functions of (u, u). If we let

{v,, v,," 1 <ll_-< n}

denote coordinates for a space T, this defines a mapping v" U’- T sending (u, t,)--
(v,(u, u), v(u, ,)): l_-<]et[_-<n. Here U’= Ux U2 is a neighborhood of 0 in
(sin (t), cos (t))z0)E. We let T denote the subspace of T defined by the vanishing of
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{v,, v. Iotl 1}. Given an operator fo(x)= x"+ A2x + P(x, x, t) we consider a family
of operators of the form

(5.1)

where G(x, ,) G q- G2 with

(5.2) G

and

(5.3)

f(x, ,) fo(x) + G(x, u)

lk-i+j
2=i+j--n

(k) sin (kt))x’x ’j
aij cos (kt)+bij

n+l

G2- (ci sin (rit)+ di cos (rit)d- c[ sin (r[t)+ d cos (rt))xi-lx’.
i=2

(k)(k) b and /72 denotesLet u= (ul, /2), where vl denotes the set of all coefficients {aij ij

the set of all coefficients { ci, d, c, d }. Let E denote the subspace with local coordinates
v and E EI E2.

THEOREM 5.4. There are integers r, rl such that for any fo"
(i) For any u2 E2, v I( U2 fq E) U2 fq E1 -’> T1 is a submersion at O.
(ii) For any E and almost all u2 E2 V lUl" U - T is a submersion at O.
Proof. We repeatedly apply Lemma 4.1 2n-1 times beginning with mo n+ 1

and at the jth step increasing K- m+l to obtain too, m,..., m2,_. We choose ri
and ri so that Ir r] > 4(i + 1) and mo < ml < rl, r < m2 < m3 < r2, r < m4"

For (i) we first observe that the only derivative of f in which them2n_ ( rn+1, rn+l.
aj(k) or jh(k) appear is the +jth derivative. Thus, for dtf(0) P’ dt(f -1), we obtain

(k) and h(k)from the formula for the derivative of compositions that the coefficients a ij --ij

do not appear in dl(o) if < +j. If +j, then they only appear in the term

p’o dfo d-l(=P’ dfwhen restricted to (sin (t), cos (t)))

(recall P’ denotes projection onto (sin (t), cos (t))). We remark that they also appear
in dfo dt(-l); however composing with P’ annihilates this term.

Hence, evaluating (3.6) we obtain, with t,tjk’’(l) jk’(I) + Wjk’O, that the +jth-order terms
of involving a and b(0k) equal ), in the notation of Lemma 3.10. Thus, by
Lemma 3.10 and the preceding discussion, the derivatives

OF OF
"i+j-s,(k) =0’ (k)Oa ij , Ob ij =o

span SS(x, x2)x SS(x, x2) modulo higher order terms. The union of such derivatives
for 2 -< s -< n, span T1 so (i) holds.

For (ii), we let a; d; + icj, a; d; + icj, and ws us + ivs, where s rj +j + 1 2a,
0_-< a _-<j, or a corresponding formula for s’ with r replaced by r, 2_-<j _-< n. We also
let Uo denote U1 V’, where V’ is the subspace spanned by the eigenfunctions
cos (s"t), sin (s"t) for s" s or s’ satisfying the preceding conditions. Then we shall
show that (ii) holds even for the subset Uo. It is sufficient to show that

Ov Ov
(5.5)

OUs" (sin t, ,) Ors" (sin ,. t)

span T for almost all choices of coefficients {aj, a}, where we undertand that in (5.5)
s" runs through all allowable values. By the way that the rj and r were chosen, the
ws and ws, are all distinct as j and a range over the allowable values just given. We
first show that the lowest-order terms of the derivatives involving us and vs (or
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span T. We apply Lemma 3.15, with a replaced by aj and a and/3 replaced by ws
or ws,. It is sufficient to show that (3.16) with aft respectively real and purely imaginary,
and for both s and s’, spans a 4-dimensional real subspace to obtain both J-aZa and
zJ+l-a$-1 in both coordinates. By subtracting versions of (3.16) for a/ff real and s
(respectively s’) we obtain a real multiple of

or equivalently,

a ka-1]

Subtracting a multiple of (5.6) from (3.16), we obtain a multiple of

(5.7) /[-{-(:)+ (a 1))’-z + {-(a 1) + (a 2)}z-l-a-I]"
Then, adding and subtracting multiples of (5.6) and (5.7) yields multiples of

which are always linearly independent if a 1 (or they give just i() if a 0). For
purely imaginary we obtain real multiples instead. This gives the claim. These

elements will, in general, generate the four-dimensional subspace for a Zariski open
subset of %, , which we have just seen is nonempty.

Now we proceed to show inductively that the elements of (5.5) corresponding to, rj, 2 Nj N k 1 and allowable a, span T modulo the space T defined by the vanishing
of {v., v.. N k} This is true for T modulo T by the preceding discussion since the
elements of (5.5) for r and r map to a basis for T modulo T; and-so adding fixed
linear terms to them will not change this for a generic choice of coecients c, d, c,
d. If now the result is true for k < l, then the terms of (5.5) corresponding to r+ and
r+ are of the form + ’+ ," where have zero coecients v,, v, for
only has nonzero coecients for [[ 1, and 7 . By the earlier discussion the

span -1/. By induction, we may subtract off constant multiples of the terms
given by the induction hypothesis to obtain 0. Then, in terms of a basis for _/
the have the matrix representation

(5.8) B + Cl+lA1 + d+lA2 + c+IA3 + d+lA4
where B and A are fixed with generic sums of the A being nonsingular; thus a
determinant argument implies (5.8) is nonsingular for almost all choices of C+l, etc.
This completes the induction step. After n steps, we obtain the conclusion for (ii).

As a corollary, we have the following.
COROLLARY 5.9. Let P 0 with the preceding notation. If W is a neighborhood of

0 in E, then there exists a neighborhood V of 0 in T1 such that for every h V, there
exists (1, ) W so that v(0, ) h and v U1 is a submersion at O.

Proofi We prove the result by induction on n. It is vacuously true if n 1. Suppose
it is true for n- 1. We let v(-, E"-1, E"-1 denote the corresponding objects for

where E’ denotes the subspace corresponding ton-1. Then, E=E IE,
{ (k b(k. d+, d,+l} if 2. Given Wc EIE2 wea o +j= n} if i= l or{c,+l,C+l,
may find c E so that W1 x W2 c We may fuher assume W x W7 according
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to the above decompositions for Ei. We also decompose v W, 9--(91, 92) with

Observe that v(W’) is a neighborhood of 0 in T,_ (this follows from the proof
of (i) in Theorem 5.4). We choose a neighborhood V1 of 0 in T-I so that if h, h2 V1,
then h h2 v(W’). Then by continuity there exists a neighborhood Z of 0 in E such
that the following composition maps into V

pr
Z ,T T-I

(here pr is projection onto the nth derivative, which is well defined since we have fixed
coordinates x).

Now, if Z Z x Z2 and Z Z’ x Z7 as above, then by the inductive assumption
applied to Z x Z, there is a V’ satisfying the result. Here V’c T/T_I. We let
V V’ x V1 (using the splitting of T1 T/T_I T_ given by the fixed coordinates).

We claim V satisfies the result. Given h h h,_ + h via the splitting. By
induction, there exist U_l Z xZ so that v"-(0, Un_l) hn-1 and v"- U"- is
a submersion at 0. Then, v(0, U,_l) hn-1 + Wn where w V1. Thus, h, w v( W’);

w’ 1 0)).hence, h, w, V(Ul), for some 1 Let , (u_, (el,
Then, by the proof of (i) in Theorem 5.4,

(0, )= (0, ,-1)+ (0, ’)

hn-1 + Wn + hn-1- Wn h.

Also, by Corollary 4.9,

)(0)1o o d’(x, u, -,)(0)1o om ,d"F(x, u, u, v_
and

diP(x, u, v(,1))(O)= dJP(x, u, 9n_l)(O), 1 <=j <= n- 1.

Thus, v Un-l is still a submersion at O.
" and CorollaryFinally, let vn (9n_l, (Vl, rE)). By the conditions on rn+l and

4.9, v(0, v)= v(0, v1)) h. Also, by Corollary 4.9,

dn+lP(x, u, 9n)(O)[V,.oX...V,.oXW,.2,,_,-- dn+lP(x, O, 9)(O)[v,.oX...xW,,,2,,_,,
dP(x, u, 9n)(O)lv,,,2,,_2=dJP(x, U, 9(hi))(0) V.2._2 l <=j<=n.

Thus, by the proof of (ii) of Theorem 5.4, for almost all 9, v[ U" is a submersion
at 0. Picking such a 9 Z completes the proof.

6. Proofs of Theorems 1-4. For Theorem 1, it is sufficient to prove local openness
and density near any specific operator fo. Given N there is an r > ri given in Theorem
5.4. First we prove density. Consider f-fo+ G as in that theorem.

We claim that we may choose 9 sufficiently small so that (ii) of Theorem 5.4 holds
and N+I. Q(f) 0. Then, condition (ii) implies that f is infinitesimally stable by the
verification criterion.

To establish the claim, we first apply (ii) of Theorem 5.4 with 91 0 to obtain that
v lU is a submersion at 0. Now we let our original fo be replaced by f(x, 92) and still
denote it by fo. For this new fo we apply Theorem 5.4(i) to conclude that v U2 (’ E
is a submersion at 0. Thus, all k-jets sufficiently close to v(0) are in the image of v.
Furthermore, for small enough 91, v U1 remains a submersion at 0. Then, by the
classification of algebras in [M6], there are arbitrarily small deformations offo so that

N+II(F(x,O, 91)) Dx for N->2. Thus, we may pick a sufficiently small 91 to achieve
this. For 9 (9, 92) we have our result. D
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kThis proof works for m 1. However, for m > 1, we can consider ck2/mA C C2.n./A
The argument just given works for ck2/ma. Then, we may consider the operator for

kC2/ as an extension of the operator for ck/,,x, since all coefficient functions
constructed using Theorem 5.4 would be periodic of period 27r/mh. Then, the proof
of Theorem 5.4 still follows in exactly the same way since ultimately the proof reduces
to considering the restriction to Vmlc C/mx, and the same arguments apply.

For openness, we consider f=fo+ H, where

n Y a(k)ij cos (kt)+ ..ijh(k) sin (kt))x’x’.
2<=i+j<--N
Okr

We apply Lyapunov-Schmidt to

oF" C/x x T- C2/ x T, (x( t), 9)- (f(x, ), ,)

where denotes the Fourier coefficients {a, bkij J j,k.

This gives F" U- C/x x T where U is a neighborhood of 0 in C/x x T. We
restrict F’ to U fq (V,,1 x T). The coefficients of xuvv in the expression for F’ are
smooth functions in the Fourier coefficients. Then, the n-jet of F’ will define an
infinitesimally stable germ if it belongs to the open subset St of the set of all stable
n-jets (see [MS]). Thus, the set of Fourier coefficients for which the n-jet of F’ defines
an infinitesimally stable germ will be the inverse image of this set and hence (locally)
open in a neighborhood of 0 in T. The union of such sets for all n is again open.

For Theorem 2, we use the universal model. To obtain a given infinitesimally
stable germ fo up to equivalence, it is sufficient to construct one with a local algebra
isomorphic to Q(fo). As fo is infinitesimally stable, it is finitely ’f-determined (see
[M4]) hence dimR Q(fo)< c [M4]. Thus, if Q(fo) has maximal ideal on, there is an
with n!. Q(fo) 0. It then follows using Nakayama’s lemma, that for a germ fl to have
Q(fl) - Q(fo) it is sufficient that their /-jets lie in the same ’f-orbit (see [M4]).
However, any fff-orbit contains 0 in its closure. Thus, we may apply Corollary 5.9 to
obtain v yielding an /-jet in the ’f-orbit for which v lU1 is a submersion at 0. The
operator so constructed has local algebra isomorphic to Q(fo) by the preceding
discussion; and furthermore, since v U1 is a submersion, the F obtained after
Lyapunov-Schmidt satisfies the verification criterion (since I((x, 0, 9))c /x). Thus,
F is infinitesimally stable.

Theorem 3 is an immediate consequence of Corollary 1.2 and Theorem 1.10 applied
to infinitesimally stable operators of the form (2.2).

Last, Theorem 4 follows because for N =2n-2 it is possible to construct an
infinitesimally stable operator f with local algebra - [[x, y]]/(x, yn), which has
dim n2. Then, Theorem 3 gives the desired result.

7. Proof of Theorem 5. Again as in earlier proofs we assume A 1 to slightly
simplify notation. If f denotes the operator (2.2) with (m- 1, A 1) P as in (2.5), we
wish to examine the restriction P2, fllV:, with PEn denoting projection onto
along its L:-orthogonal complement in C2, andfl denotingf after Lyapunov-Schmidt
is applied. By the noninterference lemma, there is an m > 2n so that if g denotes
P_ flV:, where f is obtained by applying Lyapunov-Schmidt to Pm fl Vm, then
g and P2n fllVEn have the same n + lth order Taylor expansions. Thus, it is sufficient
to replace f by f’= Pmofl Vm.

Thus, we are considering a smooth mapping between finite dimensional subspaces.
We use the following notation. We let ,w denote the algebra of real-valued smooth
germs on Vm at 0 (here recall x (Xl, x) and w u / iv as in 3). Also, COx denotes
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the algebra of germs only depending on (xl, x2), and qgw denotes the algebra of germs
only depending on {(uj, vj): 2-<j _-< m} U { u0}. These algebras have maximal ideals of
germs vanishing at 0, denoted by nx, nx, and nw. Then, Theorem 5 will follow from
two lemmas.

LEMMA 7.1. The mapping f’ is given in local coordinates by

f’(x, u, v)= x2+x22+h, PI(Xl)+X2P2(x)+ Z (c,u#i+civ#i)+Ho, q
i=2

(7.2)

where

q (qo, q3," ", q2m)

(i) h (1/4)(-u3x, + v3x2) + hi(x, u, v),

Ho (1/4)(u3x2 + V3Xl) + H),

(ii) both hi and H have terms of degree >-3 and hi consists of terms at least
quadratic in x,

(iii) H 6 (x2+ x)" cx,., + (2+,"+) %,w,

(iv) P(x) Ax’;+ + A,x
i=3

n-1

P2(x,) Bx’; + Z
i=2

(v) q22 =- dju2
mod x, cx,w

q22- =- d2v2

d l -j2, j # O and do=l,

(vi) all monomials off’ which have coefficients involving a, b or cj have total degree
in (x, u, v) at least equal to j; and A, B, Ai, Bi, C2i, C’2i are fixed nonzero
multiples of an+i, bn+, ai, bi, ci,

(vii) Finally, ifin(tp) denotes the lowest degree nonzero terms in the Taylor expansion
of oi, then {(O, Xl),(O, x2)}U{in(tPEi), in(tp’2i)}’=l span the quotient space

n+lx/((x+x). %+x
From this lemma we can deduce the next one.
LEMMA 7.3. Forf’ oftheform in the preceding lemma, the corresponding g obtained

after applying Lyapunov-Schmidt is infinitesimally stable at 0 and has local algebra

Q(g) [[x, y]]/(X2 + y2, x.+l).

Remark. Of course f’ itself is infinitesimally stable with the same local algebra;
however, it is much easier to show this for g (after fuher changing coordinates).

Theorem 5 follows from the lemmas, except for the special condition that q(t)
can be chosen to have only nonzero Fourier coecients of degree N2n. In fact, q(t)
may be chosen in V2,. This is because Lyapunov-Schmidt is applied tof by composing
with - so the target space is not changed. Then, the restriction of g to V2, is proven
to be infinitesimally stable, so by Theorem 1.8, there are q(t) V2, arbitrarily close to
zero so that g-l(q) contains 2n+2 points near 0. Thus, so must

ProofofLemma 7.1. The proof of Lemma 7.1 follows from the derivative computa-
tions of 3. The form of the coordinate for sin (t) follows from Corollary 3.13.
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For the second term, we can first use Corollary 3.12 to obtain terms of the form
Wl =(1/2),"6. zm, where a =a,"+ ib,". This gives, for the coefficient of cos (t),

(1 Re (z,")-bm Im (zm)).

NOW, we can modify this by adding terms of the form h. (Xl2.4. x22) h. z3. For example,

Re (z,")-- Re (z,"+3z,"-l)2Xlz,"-I mod (x+xEE)Cgx.

Continuing in this fashion gives

Re (z,") Re (2,"-lx’-lz)
Similarly, mod (Xl2 + x22)

Im (z,") Im (2ixEz,"-1) 2x2 Re (z,"-) -= 2,"-lx2x’-1.
This gives the terms P1 + x2P2. The linear term of Ho also comes from Corollary 3.13.
We obtain the terms Ciuioi .4- C’ivo’ by applying Lemma 3.14 with r= m so that the
nonzero terms for the coefficient of cos (t) in the expression for f will be given in the
lemma by s 2a, 0_<-a-< m. Thus, there will be no terms in cos (t) coefficient of f of
the form u2,"x,x with jl /j2 ( m. For the degree m-terms in x, we obtain by the same
corollary, for s 2m, t’m-1 with a c," and fl u," + iv,,.

This gives for the cos (t) term

By the same reasoning as above, Re (,"-1) and Im (,"-1) are congruent (modulo
(x2 + x2) c,) to 2,"-2 ,"--1 2m-2xx2 and -2x2 These will be exactly the lowest order
terms in which u2," and v2," can appear linearly; thus they are in (o,"), in (q’m). Hence,
(vii) follows. The conditions on the coefficients A, B, etc. follow from the above
discussion. Furthermore since ai, b, c only appear in the ith derivative, they will still
only appear in derivatives of order >-i after we apply Lyapunov-Schmidt. Hence, (vi)
follows. Finally, the conditions on the functions q just state that the first derivative
off is x"+x.

ProofofLernrna 7.3. The Lyapunov-Schmidt procedure corresponds to changing
coordinates via

(Xl, X2, lg), U,""", Utm, D, Dim)’-(Xl, X2, qo(x, u, v),’’’, qz,"(x, u, v)).

Then

(7.4) --1 /))) with q’. 2’/qi_l(X, U, I)) di vi+qi(x, u,(u,, v,) (dV, ’u, ,,,.
We claim that g can be written in the form

(7.5)
( 2. )2 1)g(x, u’, v’)= Xl+X22+h’,PI+x2P2+ Z C u,. t,o,+C2)v,’+Hl,, u v

i=2

withu’=(u,...,U’m), v’=(v,’’’,v’,")

obtained from the change of coordinates. Here,

h’=(1/ES)(U’aXl-VXE)+h, Hl=(1/ES)(-uaxE-vaxl)+H
with H, h ,.w,3 and the terms of h still at least quadratic in x. Also, C1)= dC,

dlC (recall dr 1 rE).
Again monomials x’u’av with coefficients involving a, bi, or c still have total

degree _->i. Moreover, we may write

H H’ + r4,,, with H""1 X "4" X2 (x, .4- ’g
2
w, .4- #,+2) (x,
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Also, the monomials x"u’v’’ in H’ with coefficients involving ai, bi, or c have total
degree > i.

To show that this claim is correct, we note that the simplest way to carry out the
change of coordinates for the first two coordinate functions is to repeatedly use (7.4)
to replace each u or v that appears in the lowest degree terms. If initially a monomial
x"uav has total degree =j, then after substitution and expansion, each term which
still contains some uj or vj has total degree >j, while there will be a term of the form
c. x"u’av"L Furthermore, for any term with coefficient involving a, bi or c in q’(x, u, v),
the term has total degree => i; hence, after substitution and expansion, it will contribute
to terms of total degree _->j- 1 + i. As j _-> 2, we may continue inductively.

Next, any term in (x2 + x) CCx, will still belong to (x2 + x) COx,w, after substitu-
2 coxn/2cCx, On the other hand, a monomial in wtion. A similar remark holds for x

yields after substitution, a term in w,2. cCx, plus monomials of total degree at least
one greater. Thus, g has the form (7.5) as claimed.

We further change coordinates

(7.6)

so that

v’), x x_+’_(x’, u’x=x+(x’,u,

2
Xl +X+ hi(x it,/)’)--xi2+x2.

We can show this in two steps by first applying the parametrized Morse lemma to write

(7.7) x21 + x2 + h(x, u’, v’) x2 + x’22 + h2(x, x, u’, v’)

with h2 quadratic in x and x with coefficients in COw,. Since elements of 1 +w, are
invertible and have square roots, we can make a second local change of coordinates
which is linear with coefficients in w, by diagonalizing x2+x+ h_ viewed as a
function of x, x. This gives a new (x, x) with the desired properties.

From the first change of coordinates, we can insure that terms in involving a,
b or c have total degree ->j-1 (this is not altered by the second change). This can
be seen either from the explicit form for constructing change of coordinates in the
Morse lemma, or by using a result of Mather [M3] for (k-equivalence. This latter
method concerns change of coordinates with k-1-jet id. Let h(k denote the terms
of h of degree _-<k (with k_->3). Then, Mather’s result states that x+x22+ h(k+l) is
equivalent to x+x+h(k) by a local change of coordinates with k-1 jet =id if, for
0_<- to --< 1 with p(k)= h(k+l)_ h(k),

k (k)(7.8) p(kx" A(Xl+x+ h +(to+ t)p(k)

(where A(f) is the ideal in ,w,, generated by oft/OX1, oft/OX2). However, by Nakay-
k+l %,,w’, Thus, the inclusionama’s lemma, the right-hand side of (7.8) equals ,

holds. Composing coordinate changes for decreasing k, 3 _-< k <-n + 1 gives the result
about .

When we change coordinates using (7.6) we obtain

g(x’, u’, v’)= (x2+x2+ h2, Pl(X)-t- xP2(x)
(7.9) \

2n
(-. (1) ,) + C!2)+ 2 (-- u%(x vo(x’))+ H, u’,

j=2 /

where now

h2=(1/2S)(u;trl-v;tr2), H;=(1/2s)(-u3x2-vx) forH2 H+H2+,,2.
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,+2x %’ w’ and H’ consists of terms involvingn e x + x’ % + ,,,w +,
as, b and c and of total degree >j. Here cri denotes xi as a function of (x’, u’, v’).

For the claim concerning H, note that P1 + x2 P2 has terms of degree ->3; hence
after substitution using (7.6), terms involving a, b or ci will increase degree by at
least two. A similar remark applies to 2i or since deg in(2)=deg in()= i.

,+2 cox, w, after substitution;+2"Last, an element of (2,+
while an element of (x2 + x). c,w, differs from an element of (x2+ x&2) cCx,,w, by an
element of h(x, u’, v’). cx,,w,, which is at least quadratic in x. Again the degree of
terms involving a, bi, or c will increase by at least 1.

Thus, we can inductively choose a and b so that the terms of degree of

PI +xP+ H_ not involving (u’, v’) belong to (x2+x&) x,,w,. Furthermore we may
write the remaining terms of H2 as

2n+2 2n

Y /(u’, v’)" qs mod n,.w,"+2 where/ aisu + bov
j=l i=2

and {s,J 1,..., 2n +2} denotes {in(q2,), in(’2,)}’=lt_J {(0, x), (0, x)} and the
coefficient functions of (0, x) and (0, x) are (1/2) times -v and -u respectively.
Moreover, the preceding discussion implies that/ does not involve c unless deg (Os) >
deg (in(2))=deg (in(’2)). Thus, for generic a, b,, and c the coefficients A’ ofx"+1

and B’ of x2. are not zero. We also claim that for generic ci the elements

(1)in (tP2i (2)in(qi)(7.10) C2, )+
j=l "=1 i=1

x’l +(Xlspan On 2 n+l
tm’ +x) COx,). This follows by replacing D, by Dk and pro-

ceeding by induction on k_-< n using the fact that {in(q2), in(qi)}k=l span Dk. In the
) and g--(2)inductive step, we use that C2 2i are fixed multiples of c so that we must know

that a matrix of the form

at + bii bi:
b21 bt + b22]

with a, b # 0 is nonsingular for generic t, which it clearly is.
Then, for such generic values for a, b,, c and specific values of as, bs, j < n,

g(x’, O) (x+x, A’xl"+1 + B’xxi" + (xl + x2) R (x’), 0)

and has local algebra

[[X1, X]]/(XI2+X2, t. 1.+1 t_, .inAx +B X2X )[[x,y]]/(x2+y2, x"+)

(by the classification in [M4] provided A’ 0).
Last, if we write g(x’, u’, v’)= ((x’, u’, v’), u’, v’), then

’,v’= OVi u’,v’=O i=l

are exactly (7.9), while

u’,v’=0
(1/2)5(trl(X ’, 0), --x2) and (1/2)5(-trE(X ’, 0), -xl).

By the verification criterion Theorem 1.3, g is infinitesimally stable.



NONLINEAR OSCILLATIONS 1315

8. Examples of degree n with n2-periodic solutions. We earlier referred to examples
for n 2 and 3 of polynomial P of degree n for which there were q(t) arbitrarily close
to 0 for which (2.1) has n2-periodic solutions. Here we briefly describe the examples.

n 2. Let

P(x, t) (a + b cos (t)+ c sin (t))x2.

Then, a computation similar to those made in 4 and 5 shows that if a 0,
(b, c) (0, 0), the operatorf in (2.2) (with m A 1) is infinitesimally stable with local
algebra Q(f)- R[[x, y]]/(xE+y2, xy). Thus, there are q(t) arbitrarily close to 0 for
which (2.1) has 3(Q(f)) 4 periodic solutions (more generally see [D1, 3]). Moreover
we may find such a q(t) which has Fourier coefficients equal to zero except for sin (rt),
cos (rt), 0<-_ r<- 2.

n=3. Let

P(x, x’, t) (a COS (4t) + a2 cos (2t))x + (bl(t)x + b2(t)x)" x’

where for i= 1, 2

bi(t) ci cos (rit)+ di sin (rit)+ c cos (rt)+ d sin (rt).

’di d’ and sufficiently general ri and r thereWe claim that for generic ai, ci, c,
are q(t) arbitrarily close to 0 for which (2.1) (with rn A 1) has 9 periodic solutions
close to 0. This time the operator f so obtained may not be infinitesimally stable, so
we have to modify our arguments slightly.

First, note that the second term of P is Ga of (5.3) with n 3. However, now we
have a much smaller version of G1 in the first term. This is because the quadratic terms
in G2 can affect at most the cubic terms in Xl and x2 (using our earlier notation) for
the germ g obtained from f by Lyapunov-Schmidt. The first term will contribute to
the cubic terms of g. By a calculation using (3.5), we obtain from the first term of P,
the following cubic terms in the (cos (t), sin (t)) coordinates for g,

(8.1) a4(ax31--3XlX, ax3--3xx2)
where a4a a4+ a2 (assuming a4 0). By the classification of Mather [M4], pairs of
generic cubics in two variables contain one modulus parameter. A computation shows
that a is the modulus parameter for a 0. Such pairs of generic cubics form a Zariski
open subset of the space of pairs of cubics. Hence, for sufficiently small values of the
constants c, d, etc., it follows that a (and hence a2, for a4 fixed) is still a modulus
when we include the contribution to the cubic terms from G2. Then, by the verification
criterion, the operator

f"C R- C2 x, f(x(t), a) (f(x(t)), a2)

is infinitesimally stable at (0, a2) for ci, d, etc. sufficiently small, a4 0, and a2 --a4.
Thus, it is so for generic values of c, d, etc., by the same argument given in 6.Thus,
for generic c, d,. ., a2, f has real multiplicity at (0, a2) equal to dimension .of the
local algebra of f at (0, a), which is 9. Thus, there is (q(t), a) arbitrarily close to
(0, a) for which there are 9 solutions tof(x(t), a) (q(t), a), i.e., 9 periodic solutions
to (2.1) for the specific value of a. This does not quite prove what was claimed, since
when we pick a point (ql(t), a) still closer with 9 solutions we have no guarantee
that a a Thus, for a fixed a_, we do not know that q(t) can be chosen arbitrarily
close to 0 so there are still 9 solutions for the given a2. However, this is true because
by [D3, 9, Thm. 4], for almost all values a (or a2), the infinitesimally stable germ is
topologically a product mapping along the a-direction. This implies the desired result.
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This argument does not work in the general case of degree n; however, there is
an alternate way to obtain the case n 3 which suggests that the result should be true
for general n, provided certain technical points in the computation can be handled.

Aekaowletlgmeat. Special gratitude is expressed to Jorge Sotomayor for his valu-
able comments and suggestions concerning earlier and cruder forms of these results.
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THE CONVERSE OF POLYA’S MEAN VALUE THEOREM*

JAMES S. MULDOWNEYt

Abstract. Suppose L is a real linear scalar ordinary differential operator of order n with continuous
coefficients which is disconjugate on an interval I. P61ya showed that if v is any n times differentiable
function on I which has n + zeros, then Lv(p)= 0 for some point p intermediate to the zeros of v. It is
shown that an operator L has this mean value property with respect to functions v on an interval I if and
only if L is disconjugate on the interior of I.

Key words, linear equations, zeros, disconjugacy

AMS(MOS) subject classification. Primary 34C10

1. Introduction. We consider linear differential operators of the form

(1.1) Lu un) + al(t)un-1)+ + an( t)u

where ai, 1,..., n are continuous real valued functions on a fixed open interval
J. Such an operator is said to be disconjugate on an interval I c J if the only solution
of Lu 0 which, counting multiplicities, has n or more zeros in I is the zero solution.

In the paper [4], P61ya shows that disconjugate operators have the following mean
value property. Let v be any real valued function such that v<n) exists on I and v has
n + 1 or more zeros in I. Then, if L is disconjugate on I, there exists a point p intermediate
to the zeros of v such that Lv(p) O. The result is a generalization of Rolle’s Theorem
and, in fact, P61ya’s proof is an induction on the order of L based on Rolle’s Theorem.

P61ya also shows in [4, Thm. V] that, if v is a function which has n zeros in an
interval I on which L is disconjugate and Lv is of one sign, then v satisfies a certain
sign restriction on I. This result is often referred to as (aplygin’s Inequality since the
case of the n zeros of v all occurring at a single point was investigated by taplygin
(cf. [1]).

In this paper we consider the question of whether the converses of the P61ya
Mean Value Theorem and (aplygin’s Inequality hold. For example, if L has the P61ya
mean value property on an interval I, is L necessarily disconjugate on I ? We find that
this is in fact the case if the interval I is not closed. If I is a closed interval on which
L has the P61ya mean value property, we show that L is necessarily disconjugate on
the interior of I.

2. Results. The following notation will be used throughout this paper.
DEFINITION 2.1. (a) Let ti J, i- 1, , m, tl -< t2" t, and consider the

m-tuple - (tl," ", t,). If J, then zt= (Sl," ", Sin/l) is the (m + 1)-tuple obtained
by inserting an extra entry in - in such a way that Sl --< s2 <--" <-- Sm+l. If s -, then
’s denotes the (m- 1)-tuple obtained by deleting one occurrence of the entry s from
-. In particular .ts denotes the m-tuple obtained from - by deleting an entry s from -and adding an entry in such a way that the ordering is maintained.

* Received by the editors March 18, 1985; accepted for publication May 22, 1986. This work was
supported by Natural Sciences and Engineering Research Council of Canada grant 7197.

f Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1.
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(b) A function v has m zeros at r tl ", tm) if v( ti) v’( ti) vO-1)(ti) 0
for each distinct entry ti r, where j is the number of times the entry ti occurs in .

(c) If ul,’", u, are real functions on J and r is as in (a), l(ul,..., Um)(Z)
denotes the determinant of the mxm matrix whose kth column is
CO1 (Uk(tl), Uk(tm)), k 1, m, when the entries t in are all distinct; the terms
Uk(t), Uk(t+l), ", Uk(t+j-1) are replaced by Uk(ti), U’k(ti),’" ", Uk-l)(t) if the entry
t occurs j times in r. In particular, the Wronskian determinant W(Ul,’", Un)(t)=
(Ul,"" Um)(t, ", t).

(d) For r as in (a) co (’/’)--[tl, tm].
DEFINITION 2.2. Let I c J be an interval and let int I, el I denote the interior and

closure in J, respectively, of I.
(a) C’_1(I) denotes the set of real valued functions v on I such that v<"-1) exists

and is continuous on I and v<") exists on int I.
(b) ,(I) is the set of operators L of the form (1.1) which are disconjugate on

I as defined in the first paragraph of the introduction.
(c) ,(I) is the set of operators L of the form (1.1) with the property that if

vC’n_l(I) has n+l zeros at (tl,’" ", t.+l), tI, tl<-_t2<= "<=t,+l, tl<t,+l, then
Lv(p)=O for some pc (tl, tn+l). Thus ,(I) is the set of operators with the P61ya
mean value property on/.

(d) ,(I) denotes the set of operators L of the form (1.1) with the property that
iftIandvC’n_l(I) has nzerosatr=(tl,...,t,), tI, t#tiandLv>-0onintI
with Lv(p) > 0 for some p co (t), then

(2.1) 1-[ ti)v( t) > O.
i=l

,(I) is the set of operators for which (aplygin’s inequality holds on I.
We will prove the following theorem:
THEOREM 2.3. (a) For any subinterval I of J,

,(cl I)c ,(I), (cl I)= (I), (cl I)= (I);

(b) For any subinterval I ofJ such that I is not closed in R,

,(I)=.(I)=,(I).

It is clear that , , , are nonincreasing with respect to set inclusion: 11 c I2
implies

n(I2) n(I1), n(I2) n(I1), ’n(/2) (I1)"

In particular,

(2.2) ,(cl I)c ,,(I), ,,(cl I)c ,,(I), ,,(cl I)c ,,(I).

We will prove Theorem 2.3 by establishing the following three propositions and
using (2.2).

PROPOSITION 2.4. If I is any subinterval of J, then

n(I) Cn(I).

PROPOSITION 2.5. If I is any subinterval of J, then

,,(I) c .(cl I).
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PROPOSITION 2.6. If I is any subinterval ofJ such that I is not closed in R, then

,(I)c,(I).

Since Theorem 2.3(a) is trivial if I is closed, we may suppose that I is not closed.
Then the three propositions and (2.2) imply

,(cl I) ,(cl I)c ,(I)c ,(I) ,(cl I)

which proves Theorem 2.3(a),(b).
ProofofProposition 2.4. To prove Proposition 2.4, suppose L ,(I), v C’,_(I)

and v has n + 1 zeros at (tl, , t,+l), ti I, tl --< t2 =<" -<- t,+l, tl < t,+l. If Lv > 0 on
(tl, tn+l), then

n+l

ti)v( t) > O, 1-I ti)v( t) > 0
i=1 i=2

if t(tl, t,,+), t# 6, from (2.1), and these two inequalities contradict each other.
Similarly, the assumption Lv < 0 on (tl, t,/l) leads to a contradiction. Thus Lv(p)=0
for some pc (tl, t,/l) and we conclude that L ,(I), which proves Proposition 2.4.

P61ya’s Mean Value Theorem states that ,(I) c ,(I) and (aplygin’s Inequality,
which was also first proved in generality by P61ya [4], states that ,(I)c , (I) for
any interval L In view of (2.2) and Proposition 2.4, it follows that Proposition 2.5 is
a slightly stronger statement than both of these. To prove Proposition 2.5, we shall
need the following lemma which is essentially Theorem V of[4] and is P61ya’s statement
of taplygin’s inequality. A detailed proof may be found in [3, pp. 376-378].

LEMMA 2.7. Suppose Ul,’’" Un+ C!n-l(I),

(2.3) Ul>0, W(Ul, u2) > 0,. ., W(Ul, ., Un) > 0

and W(Ul,. ., Un/l) 0. Then, if tr (t,. ., tn+l), ti I, tl <= t,+l,

(2.4) (u,, , u.+,)(,)->_ 0

and the inequality (2.4) is strict if W(u,. , Un+l)(p) > 0 for some p t, t,+l].
Proof of Proposition 2.5. We first show that Lemma 2.7 implies Proposition 2.5

for subintervals I of J which are closed relative to J. Suppose I =cl/, L ,(I),
v C’,_(I) has n zeros at z= (t,. ., t,), 6 I, Lv>-O and ! is such that Lv(p)>=O
for some pco(-t). Since L,(co(zt)), solutions u,...,u, of Lu=O may be
chosen so that (2.3) is satisfied on co(-t) (cf. [2, p. 94]). Also Lv=
W(u,. u,, v)/ W(u,. u,) so that Lemma 2.7 implies t4/’(Ul,..., u,)(z) > O,
(Ul, Un, V)(7’t) > 0, and therefore

(Ul, ", Un, V)(q’t)/(Ul, ", Un)(’l" > O.

Now since

(2.6) /(Ul, Un, V)(7"t) v(t) /4/’(Ul, Un)(’/’) sgn -I (t- ti),
i=1

we conclude that v satisfies (2.1) and L (I). Thus Proposition 2.5 holds if I =cl/.
The discussion of the preceding paragraph also establishes Proposition 2.5 for
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subintervals I of J which have at least one endpoint in common with J, since (cf. [2,
p. 102])

(2.7) , (I) , (int I) if is not closed.

Also (2.7) shows that, to complete the proof, it suffices to consider open intervals
I (a, b) which have no endpoint in common with J. It is assumed that L and v satisfy
the same conditions as before while the conditions on ti, 1,. , n and are relaxed
to ti, cl I. The discussion of the preceding paragraph applied to closed subintervals
of I and continuity considerations imply that if Lug=O, i=l,...,n and
W(Ul, Un) > 0, then

(2.8) (Ul,""" Un)(7")O (Ul,""", Un,

We assert that the existence of the function v as described implies that both of these
inequalities are strict, and the result follows from (2.5), (2.6) as when I is closed.

To prove the last assertion, suppose first that W(Ul,- ., un)(z)-0. From (2.7),
both endpoints a, b of I must occur in z since W(Ul,..., un)(-)=0 implies the
existence of a nontrivial solution u of Lu 0 which has n zeros at ’. We suppose
further that, of all z, v satisfying our assumptions, the ones under consideration are
such that-the number of occurrences of endpoints of I in z is a minimum. The constant
c may be chosen so that w-v+cu has a zero at s/, s -. Therefore w has n+l
zeros at zS=(Sl,..., s,+l) and, in particular, w has n zeros at each of tr-z,-
(sl,. , s,), p ’] (s2," , S,+l). The number of occurrences of endpoints of I in
each of tr, p is one fewer than in ’. Since Lw Lv >-_ 0 and Lw(p)= Lv(p)> 0, and
from the minimal character of z with respect to endpoints, we conclude that
W(u, , u,)(tr) > 0, /’(u,. , u,,)(p) > 0. The second inequality (2.8) and (2.6)
hold with v, z, zt replaced by w, tr, tr respectively and by w, p, pt, respectively. Therefore

n+l

(t si)w(t) >-- O, I-I (t- si)w(t) >-- 0
i=1 i=2

for each I, and w(t)=0 for all 6 1 contradicting Lw(p)>0; we conclude that
either W(u,. , uu)(’)> 0 or v satisfying our hypothesis does not exist. It remains
to show that W(u,. , u,, v)(rt) > 0 for each cl I; if not then (2.6), (2.8) imply
that v has (n + 1) zeros at r (rl, ., r,/) for some s cl I and hence v has n zeros

Unat each of 6 ra, 3’ ’b. We have shown that the hypotheses on v imply W(u,
(6)>0, W(Ul,..-, un)(3’)>0 and, as before,

n+l

t- r,)v( t) >=0, 1-[ t- ri)v( t) >=0
i=1 i=2

implying v 0, which contradicts Lv(p) > O.
Before proving Proposition 2.6 we recall some facts about Green’s functions. The

function G(t, s), t, s J is Green’s function associated with the boundary value problem

(2.9) Lv =f, v has n zeros at ’,

if it has the following properties:
(i) For each s J, u(t) G(t, s) is a solution of Lu 0 for < s and > s and u

has n zeros at ’, if s z.

(ii) For each sJ, u(t) and its first n-2 derivatives are continuous at s and
u("-a)(s+)- u("-a)(s-) 1.
Green’s function exists provided 3g(Ul,’’’, u,)(-)# 0, where Ul," -, u, is a funda-
mental solution set for Lu-0 [2, p. 106] and has the property that, iff C(J), the
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solution of (2.9) is

(2.10) v( t) Iz f(s)G( t, s) ds.

In the special case that all n points in - equal tl, G(t, s) is called the Cauchy function
at tl for L. Thus the Cauchy function at tl is defined by: G(t, s)= u(t) is a solution
of Lu=O, u(s) u-2)(s)=O, u-l)(s)=sgn(t-s), if IS-tl[<=[t-tl[ and
G(t, s) 0 otherwise.

LEMMA 2.8. SupposeL [b, c] and G( t, s) is the Cauchyfunctionfor L at b. Then

G(t,s)=O, b<-t<=s<=c,
(2.11)

G(t,s)>O, b<-_s<t<=c.

Proof. Since G(t, s) 0, b s and G(t, s) u(t), b s t, is a solution of
Lu 0 which has n- 1 zeros at s, it follows from L [b, c] that u cannot have a
zero in (s, c] and thus u"-(s+)= 1 implies u(t)> 0, if (s, c].

Proof of Proposition 2.6. Suppose the proposition fails to hold for some interval
I c J. Since I is not closed, it may be assumed that I is open, from (2.7). Our hypothesis
implies the existence ofL ,(I), L (I). Thus I contains a subinterval [a, b] such
that b is the first right conjugate point of a with respect to L:

(2.12) L ,[a, b), L ,[a, b].

We will show that this leads to a contradiction. First (2.12) implies that a fundamental
solution set u,..., u, of Lu =0 satifies W(ua, ., u,)(r)=0 for some r, co (r)=
[a, b] (both endpoints a, b occur in r). We suppose that r is such that the number
rn + 1, rn => 0, of occurrences of b in r is a minimum. There is a nontrivial solution
of Lu 0 such that Um has n zeros at r and there is a neighbourhood of b in which
the only zeros of u,, are the rn + 1 zeros at b. Choose e I such that c > b, Um has no
zeros in (b, c] and

(2.13) L6 ,[b, c].

Now let -= r, the n-tuple obtained by deleting one of the entries b from r and
adding an extra entry a. Note that b occurs n _-> 0 times in -. From the minimal character
of r with respect to b, it follows that W(Ul,..., u,)(-)#0 and Green’s function
G(t, s) for (2.9) exists. Forf C(J), the solution v of (2.9) is given by (2.10). Moreover,
iff> 0, v satisfies (2.1), from (2.12) and Proposition 2.5, since

L,,[a,b).[a,b].

From (2.1) we conclude that v’(b)>-O. In fact this inequality is strict since, if
vm)(b)=O, v would have at least n+ 1 zeros in [a, c]= I and Lv=f>O contradicting
L ,(I). We conclude that, if f>0, the solution v of (2.9) satisfies

v(b) /)(m-1)(b) 0, /)(m)(b) > 0 ifm > 0,
(2.14)

v(b)> 0 ifm =0.

Note that if s > b and _-< s, then G(t, s) 0 since u(t) G(t, s) is a solution of
Lu =0 with n zeros at % which implies u =0, because V(Ul,..., u,)(-)0. Thus, if
s, (b, c), G(t, s) is the Cauchy function for L at b and, from (2.13), satisfies (2.11).
Similarly G(t, s) 0, if s < a and > s.
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Consider K(t, s)= G(t, s)-G(c, $)tlm(t)/Um(C). Observe that u(t)= K(t, s) is a
solution of Lu 0 if s, u and its first n 2 derivatives are continuous at s, u<n-1)(s+)
u<U-1)(s-) 1 and u has n- 1 zeros at the points common to z and tr as well as a zero
at c. Thus K (t, s) is Green’s function for the problem

(2.15) Lw=f, w has n zeros at

The point b occurs rn times in z. Let to (b, c) and letf C(J), f> 0, be chosen so that

(2.16) f(s)[G(to, s)-G(c,S)Um(to)/Um(C)] ds < f(s)G(c, s)u,,,(to)/u,,,(c) ds.

This may be accomplished by choosing f suflSciently large on (to, c) since, as we have
seen in the preceding paragraph, (2.11) implies G(c,s)>O for se(b, c) and Um has
no zeros in (b, c].

The solution of (2.15) is

(2.17) w(t)= f(s)I (t, s) as

and this function has m zeros at b, with

G(b,s) dsg(b, s) ds f(s) tgtm(2.18) w<m)(b) f(S)ot,,,
since u(m(b) =0, because Um has m+ 1 zeros at b. Therefore

w(m(b)=v(m(b)>O from (2.10), (2.14), (2.18),
so that for some e > 0

(2.19) (t) > 0, ce(b, b+e).
Now from (2.17)

W(to)= If(s)K(to, S)= If(s)[G(to, S)-t(c, S)Um(to)/Um(C)] ds

J-f(s)[G(to, s)-G(c, S)Um(to)/U(C)] ds

I, f(s)G(c, S)Um(tO)/tlm(C ds,

since G(to, s)=G(c,s)=0, s<a and G(to, S)=0, S>to and G(c,s)=0, s>c. It
follows from (2.16) that W(to)<0 which, with (2.19), implies w has a zero in (b, c).
Since w has n zeros at z, and a zero in (b, c), w has n+ 1 zeros in [a, c]/. But then
Lw =f> 0 contradicts L n(I).

We have now shown that the assumption L (I), L ,(I), where I is a
subinterval of J which is not closed, leads to a contradiction. This establishes Proposi-
tion 2.6.
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SUBSPACES OF STABLE AND UNSTABLE SOLUTIONS OF A
FUNCTIONAL DIFFERENTIAL EQUATION IN A FADING

MEMORY SPACE: THE CRITICAL CASE*

G. S. JORDANf, OLOF J. STAFFANS AND ROBERT L. WHEELER

Abstract. We study the asymptotic behavior ofthe linear infinite delay, autonomous system of functional
differential equations

x’(t)+lz x(t)=f(t) (t>=O),
(*)

x(t)=dp(t) (t<-0).

Here /z is an n-dimensional matrix-valued measure supported on [0, ), finite with respect to a weight
function, and f, b and x are Cn-valued continuous or locally integrable functions bounded with respect to
a fading memory norm. We find conditions that ensure that the state space of (*) can be written as a direct
sum of a stable subspace, which is characterized by the fact that solutions are small at infinity, a finite
dimensional central-stable subspace in which solutions are neither small nor large at infinity, and a finite
dimensional exponentially unstable subspace consisting ofexponentially growing solutions. We give estimates
for the rate of decay at infinity of solutions belonging to the stable subspace. Our results extend earlier
work of Staffans [10], [11] since we analyze the critical case in which the components of the solutions are
not exponentially separated, as well as the noncritical case.

Key words, functional differential equations, convolution, infinite delay, state space decomposition
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1. Introduction. We study the asymptotic behavior of the solutions of the linear,
infinite delay, autonomous system of functional differential equations

x’( t) + Ix * x(t) f( t), R+,
(1.1)

x( t) dp( t), E R-.

Here R+= [0, c), R-= (-c, 0], Ix is an n by n matrix-valued measure supported on
R/ which is finite with respect to a weight function, and x,f and b are Cn-valued
functions. The initial function b and the forcing function f belong to certain weighted
function spaces compatible with the weighted measure space containing Ix. As usual,
Ix x denotes the convolution

(Ix * x)(t) f? dIx(s)x(t-s).

We find conditions that ensure that the solution subspace of (1.1) can be decomposed
into a direct sum of a stable subspace , which is characterized by the fact that the
solutions in S are small at infinity, a finite dimensional central-stable subspace qg in
which solutions do not decay, but also do not grow at exponential rates, and finally
a finite dimensional unstable subspace ll consisting of exponentially growing solutions.
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The question that we consider here has been discussed before in a very similar
setting in [10] and [11], and our present results contain those of [10] and [11]. The
chief improvement of our results over those in [10] and [11] is that we now treat the
critical case in which the growth rates of the components of the solution are not
exponentially separated, as well as the noncritical case previously studied.

We do not employ semigroup theory, but one could give a semigroup formulation
of our results. In this formulation, the noncritical case is the one where the stable
subspace and its complementary subspace correspond to disjoint, separated parts of
the spectrum of the generator. This is in contrast to the critical case where the spectrum
corresponding to the central subspace lies on the boundary ofthe spectrum correspond-
ing to the stable subspace.

We also give an estimate for the rate of decay at infinity of solutions belonging
to the stable subspace (Corollary 6.1). In the case of systems of integrodifferential
equations, a similar decay estimate was obtained by Jordan and Wheeler [5]. For other
results on the structure of solutions of systems of integrodifferential equations, see [6]
and [8]. A similar structure theorem for an integrodifferential equation in Hilbert space
is given in [9].

In order to treat the critical case, we have been forced first to refine the description
given in 11 of the null space of the convolution operator appearing on the left side
of (1.1), since the description in [11] applies only to the noncritical case. We have
separated this part of the theory into the paper [4], and the present paper can be
regarded as a continuation of [4]. In [4] we describe the null space of this operator
in terms of the Jordan chains at its eigenvalues, and to do this we develop a Smith
factorization theorem for locally analytic matrix-valued functions. A similar description
of the null space in the case of finite delay equations is given by Kappel and Wimmer
[7]. We expect the reader to be familiar with the concepts and results of [4].

2. The functional differential equation. The setting in which we study the functional
differential equation (1.1) is very similar to the setting used in 7 of[11]. It is more
general in the sense that the critical case is also included. The equation in 1 is neutral
rather than retarded, but to keep the technical details as simple as possible we here
require the equation to be retarded.

As we already mentioned above, we expect the reader to be familiar with [4]. In
spite of this, let us recall the most basic concepts from [4].

We call a continuous positive function p a dominatingfunction or a weightfunction
if p is submultiplicative, i.e., p satisfies

(2.1) p(s+t)<-p(s)p(t), s,tR,

and p(0) 1. A continuous positive function r/is called an influencefunction dominated
by p if r/(0)= 1 and

(2.2) rl(s + t) <= n(s)p( t), t, s R.

It follows from (2.1) and (2.2) that rt always satisfies

(2.3) [p(-t)]-’-< r/(t)--< p(t), tR.

Throughout this paper we work in weighted spaces, where the weights are either
dominating functions or influence functions. For example, if we let the set of n by n
matrices be denoted by Cn", then M(R; Cn"; p) is the set of matrix-valued measures
/x on R for which Ia (In the scalar case I/.t[ is the total variation
measure of/x, and in the matrix case we use a matrix norm when computing the total
variation [/x of/z.) The space LI(R; C""; p) is defined analogously with measures
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replaced by measurable functions, and V(R; Cnn; p) is the subspace of measures
which one gets by adding point masses at zero to functions in LI(R; C""; p). When
we write x LP(R; C’; r/), we mean that x is defined on R with values in Cn, and that
r/x belongs to the ordinary nonweighted LP-space on R. A continuous function x
belongs to BUC(R; C; r/) if x L(R; Cn; r/), and if ztx-> x in L(R; C; r/) as t0,
where ’t is the translation operator z,x(s)= x(s+ t), s, R. A special subclass of
BUC(R; C"; r/) is BCo(R; C"; r/) which consists ofthose functions x in BUC(R; C
which satisfy limltl_. q(t)x(t)=O. We define W"’P(R; C"; ),BUCm(R; C"; r/) and
BC’(R; Cn; r/) to be the set of functions which together with their first m derivatives
belong to LP(R; C; r/), BUC(R; C"; r/) or BCo(R; C"; r/), respectively. In the preced-
ing function space notation, when we replace R by R+ or R-, we mean the spaces of
functions which one gets by restricting the functions in question to R+ or R-.

After these preliminaries, let us return to the original equation. Defining to be
the operator

(2.4) x x’+/z * x,

where x’ is the distribution derivative of x, we can write (1.1) in the following form:

x( t) f( t), R+,
(2.5)

x( t) qb( t), R-.

We let p be a given weight function on R, and suppose that/x M(R+ C""; p), i.e.,
/x M(R; Cn"; p), and /x is supported on R+. We let r/ be an influence function
dominated by p, let be one of the spaces Lp, 1 <= p <= , BUC, or BCo, and let ,+1
be one ofthe spaces W"’p, BUC or BC’. The functions b andfin (2.5) are throughout
assumed to satisfy b m+l(R-; Cn; r/) andf m(R+; C"; r/) for some m=>0.

We look for a solution of (2.5) which is locally in 3’+1; in particular, we require
x to be continuous at zero. A necessary condition for the existence of such a solution
is that b and f in (2.5) are compatible in the sense that if we define g by

(2.6) g(t)
b(t), < 0,

If(t), -> 0,

then g must belong to m. This is true, because the operator maps ?m+l(R; Cn;
continuously into "(R; C"; r/). If Lp, and m=0, then this extra condition is
automatically satisfied. If Lp and m > 0, then it is equivalent to

thk)(0) =fk)(0), 0 -< k_-< m- 1,

and if BUC or BCo, then it is equivalent to

b(k)(0) =f(g)(0), 0=< k -< m.

From now on, we shall only consider data (b,f) satisfying this extra condition, and
choose our state space to be

= {(b,f)e "+(R-; C"; r) (R+; C"; r/)lthe function g in (2.6)
belongs to m(R; Cn;

This is not the only possible choice. One could also restrict @ further, and get a slightly
different set of results. We shall return to that question elsewhere.

For each point (b,f) 9, we denote the solution of (2.5) which corresponds to
this pair of functions by x(b,f).
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Let r be the fundamental solution of (2.5), i.e., the unique right continuous solution
of the equation

r’ + r * r’+/x * r= 6I

which vanishes on (-, 0). Here r’ is the distribution derivative of r, 6 is the unit point
mass at zero, and I is the identity matrix. This function r is locally absolutely continuous
with the exception of a jump discontinuity at zero, and it grows at most exponentially
at infinity; see e.g. [10, Thm. 5.2].

The solution x x(ch, f) of (2.5) can be written in the form

j b(t), 6 R-,
(2.8) t)

r(t)dp(O)+r,(f+Mb)(t), tR+,
where

(2.9) Mb(t) / dtx(s)qb(t-s), tR+,

and we interpret f and Mb to be zero on (-, 0) in the definition of r, (f+ Mb).
See e.g. 12].

When one wants to know how the solutions of (2.5) behave asymptotically one
has to look at eigenvalues of the formal Laplace transform

(2.10) (z) zI + (z)
of the operator in (2.4). This function is well defined for z o, where

w lim - log p(t)

is the exponential order of decay of p at infinity (of. [4]). Throughout the sequel we
assume that w 0, so that (z) is defined in the closed right half plane. The impoance
of the eigenvalues of becomes obvious once one realizes that the Laplace transform
of r in (2.7) is (z)=[(z)]- for z sufficiently large. Roughly speaking, those

eigenvalues of (z) which belong to the open right half plane give rise to exponentially
growing solutions of (1.1), and those on the imaginary axis give rise to solutions which
neither grow exponentially, nor die out. If w < 0, then it is possible that L(z) also has
eigenvalues in the open left half plane, but these eigenvalues are less interesting in the
sense that the solutions of (1.1) which they produce die out exponentially as .
Accordingly, we shall more or less ignore the open left half plane, and we classify the
eigenvalues of L(z) in the closed right half plane as unstable or central depending on
whether they belong to the open right half plane or to the imaginary axis, respectively.

Even though the condition w 0 is sufficient to imply that L(z) is defined in the
closed right half plane, it is not yet sufficient to imply that the solutions of (1.1) behave
asymptotically in the way in which we would like. One also needs a growth condition
at infinity on f and MS in (2.8). To see this one can, e.g., transform (2.8) to get

(2.11) (z)= (z)($(O)+](z)+(M$)(z)).
It is impoant to us that ](z) and (M$)(z) are analytic in the open right half plane.
To insure this we shall impose a growth restriction on p at minus infinity, and suppose
that a 0, where a -lim,_, - log p(t) is the exponential order of decay of p at
minus infinity. It follows from (2.3) that the condition a 0 will indeed imply that
f(z) and (MS) (z) are analytic in the open right half plane. It is always true that
w a; hence the new assumption 0 implies the earlier one w 0.

Above we have divided the eigenvalues of L in the closed right half plane into
two classes" The set of unstable eigenvalues and the set of central eigenvalues. From
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a stability point of view, this division is very appropriate, but from a technical point
of view, the line Rz 0 is no different from any other vertical line in the complex
plane. In 10] and 11 all the decomposition arguments were made with the imaginary
axisreplaced by an arbitrary vertical line. A more technical division of the eigenvalues
of L(z), which in spirit is more similar to the approach in [10] and in [11], would be
to classify the eigenvalues as critical or noncritical depending on whether they belong
to the critical region o -< Rz <- a or to the noncritical region fit z > a. Roughly speaking,
the eienvalues on^ the line 9z o are those which are most difficult to handle (none
of L, f and (Md,) is analytic on this line), those in the strip o < Rz _<- a are somewhat
easier to deal with (here L is analytic but not f and (M)), and eigenvalues in 9z > a

cause virtually no technical difficulties (/, f and (Md,) are all analytic). In [10] and
11 only noncritical eigenvalues are allowed, and the chief improvement here is that
we are also able to treat critical eigenvalues. Going back to the original decomposition
of the eigenvalues into central and unstable eigenvalues, this means that here we are
able to deal with the case when a 0 and L(z) has central eigenvalues, and even with
the case when o a 0 and L(z) has central eigenvalues.

3. The central-stable and the unstable subspaces. As we observed earlier, the
eigenvalues in the closed right half plane of L in (2.8) are of crucial importance for
the asymptotic behavior of the^ solutions of (2.5). As Izl-  , also Idet (L(z))l-, so
the set of all eigenvalues of L is bounded. Because of the analyticity of L in Rz > o,
the eigenvalues can only accumulate at the line 9z o. Throughout the sequel we
shall suppose that the open right half plane contains only finitely many eigenvalues.
It follows from the preceding discussion that this assumption is automatically satisfied
if o < 0. Later on we shall also assume that there are at most finitely many central
eigenvalues, but for the moment this assumption is not needed.

In this section we intend to show that the state space can be divided into an
unstable subspace q/, and a central-stable subspace . Here we use the same technique
as is used in [10] and [11], and a reader familiar with [10] and [11] should have no
difficulty in extending the results presented here to the neutral equation (and to allow
infinitely many unstable eigenvalues of the same type as in 10] and 11]).

Let Ze be the set of all eigenvalues zt of L satisfying 9z > 0, and suppose that
Ze is a finite (possibly empty) set. If Ze , then define A oo, K 0; otherwise, define

(3.1) h min {9 ztlzt Zu}, max {)ZIIz e Zu}.

DEFINITION 3.1. A point (d,f) in belongs to the central-stable subspace 6e, if
the solution x(c,f) of (2.5) satisfies x(c,f)(t)=o(ext) as t-->. A point (b, 0) in
belongs to the unstable subspace oR if b(t)=0 for tR-, and (t)=O(e-Itl) as

--> -, for some e > 0.
Here we consider the growth condition x(b,f)= o(ext) as t--> o to be vacuously

satisfied if h =c. Also, Sb(t) is defined in the obvious way, namely b(t)=
b’(t)+/x tk(t) for R- (as/x vanishes on (-, 0), this definition makes sense).

As we already mentioned above, we want to show that c6e09 oR. To do this
we proceed as follows. Fix two constants y and sr, 0< y < A, and :> r. Define three
new dominating functions pC, pU and pe and a new influence function r/e by

pC (t) e-w, R,
u

(3.2)
P (t) e-t, R,

Pc(t) max {pC t), pe (t)}, R,

r/u(t) min {pC (t), pe (t)},
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By Theorem 5.2 of[ 10], we have r E LI(R+; cnxn; pu). It follows from (2.7) and Lemma
2.1 of [10] that r’-8I E LI(R; Cnn; p v); therefore rE WI’I(R+; Cnn; pu). By Lemma
3.7 of [10], rE BCo(R+; Cnn; pV). Also, by Theorem 5.1 of [10], there is a unique
right continuous function rcsE WI’I((-, 0); Cnn; pC)[ WI,I(R/; Cnn; pC) (the
comment above on the smoothness of r also applies here), which satisfies (2.7) with
r replaced by rcs. It follows again from Lemma 3.7 of [10] that rcsE
BCo((-o, 0); Cn; pc) BC0(R+; Cnn; pc). Define do r- rcs. Then do E

BC0(R; Cn; r/u) (the two jump discontinuities of r and rcs at zero cancel each other).
(A more explicit description of do is given in 6.)

The function do defined above plays a crucial role in our decomposition of @
into 0), and it will be very important that rcs and do can be convolved with the
function f+ Mb appearing in (2.8). That this is the case one can see as follows: We
know thatf+ Mb in (2.8)belongs to 3(R+; Cn; r/)when 3 Lp for some p, 1-<p_-<,
and to L(R+; Cn; r/) when BUC or 3 BCo. As y>0-> a, this implies that
f+M$E LI(R+; C; pv). If we define both f and Mb to vanish on (-o, 0) then
f+ Mb E LI(R; Cn; pu). Now, pc and r/v are both influence functions dominated by
pu, and therefore, by Lemma A.1 in Appendix A; rcs * (f+ M$) and do * (f+ Mb)
are well defined, rcs * (f+ M$) E BC0(R; Cn; pc), and do * (f+ Mb) E BCo(R; Cn; r/v).

For each point (b,f)E , we define y(b,f) and z($,f) by

y(dp, f)(t):
dp(t)+ rcs(t)b(O)+ rcs * (f+ Mb)(t),

(3.3) rcs(t) (0) + rcs * (f+ Mb)(t), >- O,

z(,f)(t) dv(t)b(O) + dr: * (f+ M)(t), tER.

Then, by (2.8), x(ck, f) y( 4, f) + z( dA f).
THEOREM 3.1. Given (k,f)E, define Mdp by (2.9), and y(qb, f) and z(dp, f) by

(3.3), and let and be the restrictions of y(dp, f) and z(ck, f), respectively, to R-. Let
Pcs be the operator which maps (ok, f) into ,, f), and let Pv be the operator which maps
(qb, f) into (, 0). Then Pcs and Pv are continuous projections in with ranges c6 and
ll, respectively, and Pcs + Pv I.

The proof of Theorem 3.1 depends upon two lemmas. In the first the unstable
subspace is described in a different and much more explicit way. For each unstable
eigenvalue z E Zv, we let V consist of the zero function together with all functions
of the form

p-1
zit(3.4) , rp_l_ e E R,

i=0

where ro 0 and ro," , rp_ is a right Jordan chain of/ at z (see [4, Definition 4.1]).
LEMMA 3.1. A point (dp, O) in belongs to all if and only if dp is the restriction to

R- of a function x E ),zu, or equivalently, if and only if k is the restriction to R- of
a function x E BUCI(R; Cn; r/v) satisfying x =0. Moreover, cb f’) q/= {(0, 0)}.

Lemma 3.1 has one especially important consequence, namely, it implies that the
dimension of 07/is finite, and equal to the sum of the algebraic orders of the unstable
eigenvalues of L. This is true because by the discussion in [4, 4], this is the dimension
ofZlZu/l, and because the correspondence between the initial function b and x(b, 0)
is one to one.

Proof. That a function x E BUCk(R; Cn; r/v) satisfies x =0 if and only if x E

O)z,zuAcl follows from Theorem 5.1 of [10]. Thus, the two different characterizations
of the functions x in Lemma 3.1 are equivalent.
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It is clear that if is of the type mentioned in Lemma 3.1, then (, 0)
Conversely, suppose that (, 0) 0//. We know that r BCo(R/; C""; r/u), that r

vanishes on (-, 0), and that f+MLI(R; C"; pt:). Hence, by (2.8) and Lemma
A.1 in Appendix A, we have x(, 0) BCo(R+; C"; r/t:). If we choose y in (3.2) to be
so small that (t)=O(et), t-oo, for some e> y, then x(, O) BCo(R-; C"; r/u).
Thus, since x(,0) is continuous at zero, x(, 0)BCo(R; C"; r/u). Moreover, as
(t)=0 for tR-, and x(,0) satisfies (2.5) with f=0, we have x(,0)=0.
Explicitly, the condition x(,0)=0 means that (x(,0))’=-tx * (,0), and this
together with Lemma 2.1 of [10] gives (x(,O))’BCo(R;C"; r/t:). Thus, is the
restriction to R- of the function x(, 0), which belongs to BC(R; C"; r/u) and satisfies
:ex(, 0) 0.

The fact that c f’l o-//= {(0, 0)} follows immediately from the growth rate at infinity
imposed on x(,f) in the case when (,f)e cSe together with the fact that x(, O)
zleZuJ! when (, 0)e a//.

LEMMA 3.2. The range ofPcs is contained in cSd, and the range ofPu is contained
in 71.

Proof Define and " as in Theorem 3.1. We have to show that (q,, f)e c5e, and
that (sr, 0)e

Let us begin with the claim that (’, 0)e 0//. It follows from the discussion in the
paragraph containing (3.2) that dt:e BCo(R; C""; r/t:). Moreover, as both r and rcs
satisfy (2.7), and dt: r-rcs, we have dt: =0. In the same way as in the preceding
proof we conclude that dt: BC(R; C""; r/t:). Recall that f+ Me LI(R; C"; pu),
and use (3.3) and Lemma 3.5 of [10] to get

z(,f) (dt:(O)) + LP(dt: (f+ Me))

(LPdv)(O) + (..dv) * (f+ Me) O.

It follows from (3.3) and Lemma 3.5 of [10] that z(,f) BC(R; C"; r/t:). By Lemma
3.1, (’, 0)e o-//.

It remains to show that (q, f)e Se. We know from the preceding argument that
z(,f) em+(R; C"; nu),z(,f)=O, and y(,f)=x(,f)-z(,f), so y(,f)
belongs locally to "+, and y(,f) is the solution of (2.5) with replaced by p (in
other words, y(,f)= x(q,f)). Therefore, to show that (q,f) e Se, it suffices to prove
that y(,f)( t) o( e) as t->. This, however, follows directly from (3.3), because
we already know that rcs BCo(R+; C""; pC) and rcs * (f+M) BCo(R+; C"; pC);
hence, y(,f)(t)=o(e’) as tc, which is a stronger statement than the needed
y(,f)(t)= o(eat) as t->. [3

Let us formally record the fact which became apparent at the end of the preceding
proof:

COROLLARY 3.1. If (qb,f) cf6, then x(,f)(t)=o(et) as t--> for every e>0.
If one strengthens the assumptions on/x,f and , then this growth estimate can

be further improved. See 4 and 6.
Proof of Theorem 3.1. By now the proof of Theorem 3.1 is trivial, i.e., Theorem

3.1 is a direct consequence of Lemmas 3.1 and 3.2 (if Pcs + Pt: I, the range of Pcs
is contained in S, the range of Pt: is contained in 0//, and Aef’)q/= {(0, 0)}, then
necessarily Pcs and Pv are projections, and their ranges are the claimed ones). [3

4. The stable and the central subspaces in the noncritical case. In the preceding
section we subtracted off an exponentially growing part from the solution, and got a
remainder in 6e which grows slower than exponentially as t-> . If a <0, then one
can use exactly the same technique to subtract off another part of the solution, which
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neither grows exponentially, nor tends to zero as t--> c. The new remainder tends to
zero exponentially as --> c. The technique is exactly the same as in 3, and therefore
we shall state the results, but leave the proofs to the reader.

Throughout this section we assume that a < 0 (except in Proposition 4.1). Let Zs
be the (possibly empty, possibly infinite) set of eigenvalues z of L satisfying a < 9z < 0,
and let Zc be the set of eigenvalues of L on the imaginary axis. Define A as in 3. If
Zs , then define a; otherwise define

(4.1) max {91zllz Zs}.
DEVINTON 4.1. A point (b,f) in belongs to the stable subspace 6e, if the

solution x(b,f) of (2.5) satisfies x(b,f)(t)O as t-. A point (b, 0) in 2 belongs
to the central subspace qg if b(t) 0 for tR-, b(t) O(e(+’) as t-, for some
e > 0, and x(b, 0)(t) o(e’) as o.

Clearly, both Sf and qg are subspaces of c6e.
We want to show that 6e 9 c. To do this we proceed as in 3. We fix two

constants , and % satisfying < , < 0 and 0 < ), < h. Define three dominating functions
pS, pC and pc, and a new influence function r/c by

ps(t)=e-",
c

(4.2)
p (t) e-v‘,
pc(t) max {ps(t), pC (t)},

r/c(t) min {pS(t), pC(t)},

tR,

tR,

tR,
tR.

By Theorem 5.1 of [10], we can find a unique right continuous solution rs
wl’l((-o, 0); Cnn; ps)f’l WI’I(R/; Cnn; ps) to the resolvent equation (2.7). Define
dc rcs rs. Then dc BCo(R; C""; r/c).

For each point (b, f) 9, we define v(b, f) and w(b, f) by

b(t) + rs(t)d(O)+ rs * (f+ Mdp)(t), t<-O,
v( dp, f)(

(4.3) rs(t) b(0) + rs * (f+ M6)(t), >= O,
w(dp, f)(t) dc(t)qb(O)+ dc * (f+ Mb)(t), R.

Then, by (3.3), v(p,f)+ w(p, f) y( p, f).
TI-IEOREM 4.1. Given (qb,f) 9, define v(ck, f) and w(ck, f) by (4.3), and let 0 and

X be the restrictions of v(ck, f) and w(ck, f), respectively, to R-. Let Ps be the operator
which maps dp, f) into (0, f), and let Pc be the operator which maps b,f) into (X, 0).
Then Ps and Pc are continuous projections in with ranges Sf and , respectively, and
Ps+ Pc Pcs

For each Zl Zc we define Ac in the same way as in the paragraph containing
(3.4). Analogously to Lemma 3.1 we have Lemma 4.1.

LEMMA 4.1. A point (qb, O) in belongs to if and only if qb is the restriction to
R- of a function x z,zc, or equivalently, if and only if dp is the restriction to R- of
a function x BUCI(R; C"; tic) satisfying x =0.

Corollary 3.1 has the following analogue:
COROLLARY 4.1. If (qb,f) Sf, then x(,f)(t)= O(e(+’) as t-->o for every e >0.
If a < 0 and L has no central eigenvalues, then by Lemma 4.1, {(0, 0)}, and

for every (b, f) 6e, the solution x(b, f) of (2;5) tends exponentially to zero as --> o.
A similar result is true also when a 0 and L has no critical eigenvalues:

PROPOSrrION 4.1. Suppose that a <-0 and that L has no eigenvalues in the region
o<-_9z<=O. Then, for each (qb,f), the solution x(qb, f) of (2.5) satisfies x
m+l(R; Cn; ).
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Proposition 4.1 is essentially contained in Theorems 6.5 and 6.6 of [10]. For
completeness we include a proof.

Proof. Fix % 0 < y < A, and define

ps(t) max {p(t), e-Vt},

,ls( t) [ps(-t)] -1, R.

Then */s is an influence function dominated by ps. It follows from Theorem 5.1 of
[10] that rcs LI(R; Cnn; Ps) and r’cs M(R; Cnn; Ps).

Let (b,f) gAe. Then, by (2.3), (2.5) and Corollary 3.1, x(dAf) (R; C"; /s).
Moreover, x(b, f) satisfies x(b,f) g, where g 3 (R; C"; /) is the function defined
in (2.6). If we write this equation in the form (x(dAf))’= g-:l- * x(,f), and use (2.3)
and Lemma 2.1 of [10], we get (x(dp, f))’ 3(R; C; *Is); i.e., x I(R; C; *Is). Con-
volving the equation x(b, f) g with rcs, and using (2.7), we obtain x(dp, f) rcs * g.
Here rcs LI(R; C; ps) C LI(R; Cn; p) and r’cs M(R; Cnn; ps)C M(R; C;
p), and g3"(R;C; 7); therefore, by Lemmas 3.5 and 3.6 of [10], x(d,f)
m+l(R; cn; 7). [-]

5. The singular part expansion. In the critical case, i.e., in the case when a 0,
the argument in the preceding section must be modified. Two problems arise. First,
the method used to construct rs and dc is no longer available, unless to < 0. Second,
even if to < 0, it need no longer be true that rs * (f+ Mb) and dc * (f+ Mb) are well
defined.

In the scalar case one can define rs and dc by an alternative method which is
based on the Ll-remainder theorem for locally analytic functions [3, Thm. 3.6]. The
same approach can also be used in the vector case provided that we have an analogue
of Theorem 3.6 in [3] for matrix-valued locally analytic functions. We devote this
section to the development of such a result.

Our treatment is general in the sense that we assume that p is any weight function
on R with exponential orders of growth to and a at plus and minus infinity, respectively.
Throughout this section we assume that the reader has our recent paper [4] at hand.
We refer to [4] for the significance of the region II {x]to _<-z=< a}, the definitions
of a zero, a locally analytic zero, smoothness of order m, a local Smith factorization
and partial multiplicity, and for the factorization theory for locally analytic matrix
functions developed in that paper.

DEFINITION 5.1. Let M be an n by n matrix-valued function, which is locally
analytic at Zo II. If M-1 has the form

p-1

(5.1) M-l(z) 2 Ki(z-zo)i-P+(z), ze U\{zo},
i=1

where each Ki is an n by n matrix, Ko 0, " is locally analytic at Zo, and U is a
neighborhood (relative to II) of Zo, then we say that M-1 has a singular part expansion

p-1 Ki(z- Zo) -p the singular part of M-1at Zo of length p, and call Yi=l
As one would expect from the scalar theory, (cf. [3, Thms. 3.4, 3.6]), the property

that M-1 has a singular part expansion at Zo is stronger than the property that M has
a local Smith factorization at Zo:

PROPOSITION 5.1. Let the n by n matrix function M be locally analytic at Zo II,
and let M-1 have a singular part expansion at Zo of length p. Then M has a local Smith
factorization at Zo, and the maximal partial multiplicity o- ofM at Zo is equal to p.
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Proof. By Theorem 4.4 of 1 ], one can construct a matrix function T that is analytic
at Zo such that T-1 and M-1 have the same singular part at Zo. In other words, if M-1

satisfies (5.1), then

p--1

(5.2) T-’(z) Y K,(z- Zo) ’-p + (z), z e U\{zo},
i=0

with analytic at Zo. Clearly,

M-(z) T-(z) (z) + ’(z), z 6 U\{zo},

so that the equations

T-(z)M(z) I-((z)- (z))M(z)

and

M-’(z) T(z) I + ((z) (z)) T(z)

both hold for all z U\{zo}. The right-hand sides of the last two equalities are locally
analytic at Zo, and they are inverses of each other for z Zo. Thus, if we define

S(z) I-((z)- (z))M(z), z U,

then $ is locally analytic and invertible at Zo, and

(5.3) M(z)= T(z)S(z), z e U.

By, e.g., Theorem 3.1 of [4], the analytic matrix function T has a left local Smith
factorization PDR at Zo, and, since S(Zo) is invertible, PDRS is a left local
Smith factorization of M at Zo. The existence of a right local Smith factorization is
proved in a completely analogous way.

The claim that p cr follows directly from the corresponding property in the
analytic case, the fact that (by the construction of T)T-1 and M- have the same
singular part expansion at Zo, and the fact that M and T have the same maximal
partial multiplicity at Zo (by Lemma 3.1 of [4] since S in (5.3) is invertible at Zo).

Proposition 5.1 tells us that a necessary condition for M-1 to have a singular part
expansion at Zo is that M has a local Smith factorization at Zo. If we require the locally
analytic factor in this factorization to be sufficiently smooth, then we get a sufficient
condition for the existence of a singular part expansion of M- at Zo.

TI-IEOREM 5.1. Let the n by n matrixfunction M have a left local Smithfactorization
at Zo II with maximal partial multiplicity o" > O. In addition, assume that each factor in
this factorization is smooth of order r at Zo. Then M- has a singular part expansion at

ZO.
Of course, the analogue of Theorem 5.1 in which left factorization is replaced by

right factorization is also valid.

Proof By the hypothesis, M can be written as M(z)= P(z)D(z)R(z) in a neigh-
borhood of Zo, where P is a unimodular quasipolynomial,

{(Z--Zo K1 (Z--Zo n }D(z) diag \_ c / \---c/
with 0_-< K _-< _-< K, =o-, and where R is locally analytic and smooth of order r at

z0 with det R(zo) 0. Here c is a fixed constant with Dtz < w [4, Definition 2.1]. Since
R is smooth of order r, Lemma 2.1 of [4] yields that R has the form R(z)=
Q(z) + (z Zo)X(z), where Q is a polynomial of degree at most r- 1 with det Q(zo) O,
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and X is locally analytic at Zo. It follows that in some neighborhood U of Zo,

R-(z) Q-() -R-(z)(z- Zo)X(z)Q-(z)

-(z- Zo)’-()x(z)O-(z), z u.
Thus, M-1 can be written as

M-(z) R-’(z)O-(z)p-(z)

(5.4) Q-’(z)D-(z)P-(z)

R-l(z)x(z)Q-l(z)(z Zo)’O-l(z)P-(z), z U.

Now PDQ is analytic at Zo, and therefore Q-D-IP- has a singular part expansion
at Zo (cf. [1, p. 98]). Since the second term on the right-hand side of (5.4) is clearly
locally analytic at Zo, M- has a singular part expansion at Zo.

As an immediaate consequence of Theorem 5.1 combined with the factorization
Theorem 3.1 of [4] (the localized matrix version of Theorem 3.4 of [3]), we obtain for
matrix functions the following localized analogue of the scalar L-remainder theorem
[3, Thm. 3.6].

COROLLARY 5.1. Let the n by n matrixfunction M be locally analytic at Zo H, and
assume that det M has a zero of integral order k >- 0 at Zo. If n > 1, let tr tr(M) be the
smallest nonnegative integer such that every minor A ofM of order n- 1 has a zero of
order at least k-tr at Zo; in the scalar case n 1 set tr k. IfM is smooth of order 2tr
at Zo, then M- has a singular part expansion at Zo.

Proof. By Theorem 3.1 of [4], M has a (left) local Smith factorization M PDR
in a neighborhood U of Zo with maximal partial multiplicity equal to o-. Since R(z)=
D-(z)P-l(z)M(z) for z U\{zo} and M is smooth of order 2tr, it follows from Lemma
2.2 of [4] that the locally analytic factor R is smooth of order o- at Zo. Corollary 5.1
then follows from Theorem 5.1.

We remark that the smoothness assumption on M in Corollary 5.1 is not necessary
for M-1 to have a singular part expansion (compare with the corresponding discussion
following the factorization Theorem 3.1 in [4]). For example, let M(z)=
diag (bl(Z), (z- Zo)), where bl is locally analytic at Zo, and thl(zo) 0. Then

M-(z) diag (0, (z- Zo)-) + diag (th-l(z), 0)

has a singular part expansion at Zo, but M is not smooth of order 2 at Zo unless 1 is
smooth of order 2 at Zo.

p--1 i--pWe conclude this section by showing that the singular part k=O K(z-Zo) of
M- is closely related to the left and right Jordan chains of M at Zo. In fact, the
sequence Ko, K1," ", Kp_I itself turns out to be both a left and a right Jordan chain
of M at Zo provided we define the notion of a matrix Jordan chain in the obvious way:

DEFINITION 5.2. Let the n by n matrix function M be locally analytic at Zo II.
p-1 K(z_zo) has a zero of order at least p at Zo, then we callIf Ko 0 and M(z) k=O

Ko, gl,""" Kp_ a right (matrix) Jordan chain of M at Zo. Similarly, if Ko 0 and
p--1 Mk=O K(z Zo) (z) has a zero of order at least p at Zo, then we call Ko, K1, Kp_I

a left (matrix) Jordan chain of M at Zo.
Apart from the different setting with matrices instead of vectors, this definition is

equivalent to Definition 4.1 in [4].
PROPOSITION 5.2. Let the n by n matrix function M be locally analytic at Zo II,

p--1 i--pand suppose that M-1 has a singular part expansion k=O Ki(z-zo) at Zo. Then
Ko, K1, ", Kp-1 is both a left and a right Jordan chain ofM at Zo.
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Proof. Define

p-1

R(z) E /(,(z- Zo)’.
k=0

Then, by the hypothesis, M-1 has the form

M-I(z) (z- Zo)-PR(z) + ’(z), z e U\{zo},

where U is a neighborhood of Zo, and sr is locally analytic at Zo. Multiplying this
equation from the left by (z- zo)PM(z) we get

M(z)R(z) (z- zo)P(I M(z)(z)), z e U.

By definition, this means that Ko, K1,’’ ", Kp_ is a right Jordan chain of M at Zo.
The proof of the fact that Ko, KI,..., Kp_l is also a left Jordan chain of M is
completely analogous.

6. The stable and central subspaces in the critical case. In this section we decompose
the central-stable subspace 6e into a central subspace and a stable subspace S in
the critical case when a 0. The crucial properties of the functions rs and dc in 4
are that they have the appropriate growth rates at plus and minus infinity, and that
dc O. In 4 we first construct rs, and then define dc to be rcs- rs. Here we proceed
in the opposite way, i.e., we first construct de, and then define rs rcs-dc. Our
construction of dc is based on the singular part expansion of ()- at the central
eigenvalues of/ in (2.7). In addition to being more general than the construction in

3, it has another advantage, since it gives a much more explicit description of dc
(and also of the function dt in 3).

We begin with the following lemma.
LEMMA 6.1. Let Zo be an eigenvalue of , and suppose that ()- has a singular

part expansion with singular part

p--1

(6.1) SPzo(Z) E K,(z-zo) ’-p

i=0

at Zo, and that

(6.2) In p-1 e-"dltzl(t) < c,

where y Zo. Then the function dzo(t) defined by
p-

(6.3) dzo(t) E gp-l-i eZt,
i=o

satisfies
(6.4) d’zo

We remark that assumption (6.2) is automatically satisfied whenever 3’ > to.

Proof. We prove the left-hand equality; the proof of the right-hand equality is
completely analogous.

By Proposition 5.2, Ko,’’’, Kp_l is a right Jordan chain of length p of/ at Zo.
Since (6.2) holds, (z) is smooth of order p-1 at Zo with respect to the dominating
function e-vt, R, and a standard multiplication of series (cf. [4, (4.2)]) shows that

’(Zo)
(6.5) E

i=o i!
Kj_i 0, O<-_j<-_p-1.
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Next, an elementary calculation that uses the binomial theorem and that is given in
the proof of Lemma 5.2 of [4] yields that

;=i P -J oIx * dzo(t)=ez’ (p--l--j)!i= i!

This calculation is valid since (6.2) holds. Using the last line and (6.5), we get after
another easy calculation that

d’( t) + Ix * dz( t) eZ’ Y o Kj_, 0. l-I
=o (p-l-j)! i= i!

We now proceed with our construction of the desired function rs. We let pS be
a positive, continuous, nondecreasing and submultiplicative function on R/ satisfying
pS(0) 1 and pS(t)<=p(t) for tell/ (this function will determine the rate of conver-
gence to zero of the solutions corresponding to initial data in the stable subspace). If
we extend pS to all of R by^defining pS(t)= 1 for < 0, then pS is a weight function
on R. We assume that L(z) has no eigenvalues in tos<-9z<O, where tos=
-lim,_,co -1 long pS(t) (if to

s =0, then this condition is vacuously satisfied). We also
assume that L(z) has only a finite number of eigenvalues zt in the closed right half
plane, and let the sets

z {z,l, 0}, z {z,lt z, > 0},

consist of the central and unstable eigenvalues, respectively. Let Z Zc U Zu. Assume
that (z) has a singular part expansion with respect to pS with singular part SPz,(Z)=
Y’- Kl.i(z Zl) i-p, at each eigenvalue zl Z. Ofcourse, this assumption is automaticallyi=0

satisfied at all the unstable eigenvalues, and also at all the central eigenvalues if to < 0.
Theorem 5.1 gives sufficient smoothness assumptions on for this hypothesis to hold
at central eigenvalues in the case when to 0.

For each eigenvalue zl Z, set

p-
eZddz,(t)= E Kl.pl-l-i tR.

i=O

Define the matrix-valued functions dr:, d and d by

do(t)= dz,( t), de(t)= dzt( t),
Z zi Z

and d dc + du.
Before proceeding we first observe that the function du as defined above is the

same as the function du previously defined in 3, and, in the noncritical case, dc as
defined above is the same as the function dc defined in 4. The verifications of these
two claims are completely similar, so let us only give the argument for du. Define

P u, rcs and du in the same way as in 3. We know that r e WI.I(R+., C., pu), that
r vanishes on (-oo, 0) and that (z) [/(z)]-’ for z= . Therefore, for each t 0
we can express r(t) as an inverse Laplace integral

r(t) lim 1_ f+ e,[(z)]_, dz.
T-CO 27ri ., --iT

In the same way, one gets for each O,

rcs(t) lim
1 --fT+iT zt[e (z)]- dz,

T-)co 2ri JT--iT
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where 3’ is the constant used in the definition of pc in (3.2). We defined dr: to be
r- rcs; hence, for each 0,

e (z)]- dz.at:(t) li_.rn 2.rri -ir .v-ir,

The function [/(z)]-1 tends to zero, uniformly in the strip 3’-<9z=<: as 3z-.
Therefore, if we define F to be the closed curve in the complex plane which is composed
of four straight lines, and joins the points 3’ iT, - iT, + iT, 3" + iT in a counterclock-
wise way, then, for 0,

dt (t) lim 1 feZ,[(z)]_l dz.
T- 2-rri 3r

By the residue theorem, the integral on the right-hand side is the sum of the residues
of the meromorphic function inside the integral. Expanding ezt into a power series
around each unstable eigenvalue Zl of L, and using the singular part expansion of
[(z)]- at Zl, one easily gets the desired formula.

Continuing with our construction of rs, we let rcs r-dt (as in 3 and 4), and
define rs r-d. Let

r max {PllZl Zc }

be the maximal partial multiplicity of the central eigenvalues of L. At this stage we
assume that Zc ; the case Zc will be discussed later.

Fix some constant 7, 0 < 3’ < A, with h defined as in 3, and define

(6.6)

1, tR-,
ps(t)= (l+t),_ps(t) tR+

+lt[) 1- tR-,
s(t): os(t), +,

pC (t) e-v’, R,

pc(t) max {pc (t), (1 + R,

)c(t)=[p(-t)]-, tR.

LEMMA 6.2. The function rs satisfies rs BUC((-o, 0); Cn"; r/s) BCo(R+;
Cn"; rls). In particular, rs( t) --> 0 as --> o.

Proof. For t<0we have rs(t)= -d(t), and the claim rs BUC((-o, 0); C"n;
follows immediately. It remains to show that rs BCo(R/; Cn"; r/s).

Define d+(t)=d(t) for t>-O,d+(t)=O for t<0, and likewise r-(t)=rs(t) for
t->0, r(t)=0 for <0. Then r= r-d/, and it follows from elementary Laplace
transform theory that for ffiz sufficiently large,

(6.7) (r-)^(z) (z)-(d+)^(z) [(z)]-1- SPz,(z).
ZlZ

The expression on the right-hand side is locally analytic with respect to V(R/; C"n; pS)
on {zlffiz>=os)u{c} and it vanishes at infinity; hence by Proposition 2.3 of [3],
r- LI(R+; C""; pS). Multiplying (6.7) by z, we get

[(r-)’]^(z)=z{[(z)]-l- SPz,(Z)},ZlZ
z >__ oj s.



SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS 1337

Again the expression on the right-hand side is easily seen to be locally analytic with
respect to V(R+; Cnn; ps) in {z[Otz>=tos}t.J{o}; hence, (r)’ V(R+; Cn"; pS). We

+conclude that r WI’I(R+" (2 n. pS) By Lemma 3.7 of[10] rs BCo(R+; (2 "" pS)
or equivently, rs BCo(R/; C""; r/s). l-]

We decompose c6e into the two subspaces 6e and c and construct projections of
onto b and c in a manner which parallels our earlier decomposition in 4. To do

this we must now assume that the influence function r/ is sufficiently small at minus
infinity and sufficiently large at plus infinity. More precisely, henceforth we assume that

(6.8) p(t) _-> 1 + t) -1, R+,
(6.9)

(6.10)

BUC(R-; C; r/s)C 5(R-; C";

(R+; C"; r/)c LI(R+; On; ps).

We discuss assumptions (6.8)-(6.10) after we have stated and proved our results. Note
that the closed graph theorem implies that the inclusions in (6.9) and (6.10) are
continuous.

DEFINITION 6.1. A point (b,f) in belongs to the stable subspace 6e if the
solution x(dp, f) of (2.5) satisfies x(dp, f)(t)-->O as t-->. A point (b, 0) in belongs
to the central subspace c if b(t)=0 for tR-, b(t)= O([t[ -1) as t-->-o, and
x(dp, O)(t)= o(e’) as t-->c.

THEOREM 6.1. Assume that (6.8)-(6.10) hold. Given (dp,f) 9, define v(ck, f) and
w( ck, f) by (4.3), and let 0 and X be the restrictions of v( dp, f) and w( dp, f), respectively,
to R-. Let Ps be the operator which maps (qb, f) into (0, f), and let Pc be the operator
which maps b, f) into (X, 0). Then Ps and Pc are continuous projections in with ranges
S and c, respectively, and Ps + Pc Pcs.

As usual, one can reduce the proof of Theorem 6.1 to the proof of the following
two lemmas.

LEMMA 6.3. A point (qb, O) in belongs to c if and only if ck is the restriction to
R- ofa function x O)z,zc tl, or equivalently, if and only if dp is the restriction to R- of
a function x BUCI(R; C; tic) satisfying x O. Moreover, S fq cg {(0, 0)}.

LEMMA 6.4. The range of Ps is contained in , and the range of Pc is contained in

Proof of Lemma 6.3. That the two different characterizations of the functions x
in Lemma 3.1 are equivalent follows as usual from Theorem 5.1 of [4]. It is also clear
that if b is of the type mentioned in Lemma 6.3, then (b, 0) c.

Conversely, suppose that (b, 0) c. Then (b, 0) c6e; hence, by Corollary 3.1,
x(b, 0)(t) o(e’) as --> . Therefore, x(b, 0) L(R; C"; r/c). As b(t) 0 for R-,
and x(b, 0) satisfies (2.5) with f=0, we have x(b, 0)=0. As usual, this makes it
possible for us first to conclude that x WI’(R; Cn; r/c), so that by Lemma 3.7 of
[10], x BUC(R; C"; r/c), and then to use the fact that x(b, 0)=0 once more to get
x BUCI(R; C; tic). Thus, b is the restriction to R- of the function x(b, 0), which
belongs to BUCI(R Cn; r/c) and satisfies x(b, 0)=0.

The fact that S fq C {(0, 0)} follows immediately from the growth rate at infinity
imposed on x(b,f) in the case when (b,f) 6e together with the fact that x(b, 0)
O)z,zcN when (b, 0) c. U

Proof of Lemma 6.4. Define 0 and X as in Theorem 6.1. We have to show that
(0, f) e, and that (X, 0) c.

It follows from the way in which dc was defined that dc BUCI(R; C""; r/c).
By (6.6) and (6.10), f+MckLI(R+; C";ps)C LI(R+; (2"; Pc). We can now argue
exactly in the same way as in the proof of Lemma 3.2 to show that (X, 0) c.
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It remains to show that (0, f) S. As in the proof of Lemma 3.2 we conclude that
v(ck, f)=x(O,f), so it suffices to show that v(ck, f)(t)O as too. To prove this, let
us first observe that r/s is dominated by ps. To see that this is the case it suffices to
note that the influence function which is (1 /ltl)- for =< 0 and 1 for > 0 is dominated
by the weight function which is 1 for t-<0 and (1 /ltl) for > 0, and pS, extended
to R to be 1 on (-o, 0), is dominated by itself. It follows trivially from (2.1) and (2.2)
that if r/1 is dominated by pl and r/2 is dominated by p2, then */lr/2 is dominated by
pip2, and therefore our claim that r/s is dominated by ps is correct. By Lemma 6.2,
rsBUC((-,O); C""; r/s)flBCo(R+; C"; r/s), and by (6.10), f+Mck
L(R+; C"; ps). It follows from (4.3) and Lemma A.1 in Appendix A that v(c,f)(t)
BCo(R+; C"; r/s)=BCo(R+;C";pS). As pS(t)>=l for tR+ we get v(qb, f)(t)->O as

--> . l-1

Again we observe that we obtained a better convergence rate in the stable subspace
than the one used in Definition 6.1"

COROLLARY 6.1. If (,f) St9, then x(cb, f)(t)=o([ps(t)]-’ as t-->.

Above, in the definition of or, and in the definition of the weight and influence
functions in (6.6), we assumed that Zc is nonempty. If Zc , then one can still
proceed in essentially the same way. There is no longer a need to assume (6.8) and
(6.9), so these two conditions can be dropped. In this case, since dc 0 and rs rcs,
we have rcs LI(R; C""; pS) and r’cs V(R; C""; pS). If we still assume (6.10), but
with ps replaced by pS, then for every (b,f) c6e, it follows from (3.3) that y(b,f)
x(ck, f), and from Lemma 2.1 of [10] that x(ck,f) WI’I(R/; C"; pS); hence, by Lemma
3.7 of [10], x(ck, f) o([pS(t)]-) as . In other words, the conclusion of Corollary
6.1 still holds if we replace 6e by c6e and assume (6.10) with ps replaced by pS, but
drop (6.8) and (6.9).

One can also obtain a slightly different result in the case when Zc by appealing
to Proposition 4.1 with p replaced by pS. For this to be possible we have to replace
(6.10) by the assumption that there exists an influence function r/s dominated by pS,
and satisfying

(6.11) r/s(t)<-r/(t), tR+.
Clearly, when (6.11) holds, we have (R/; C"; r/)c (R/; C"; r/s). If we also knew
that

(6.12) r/ s(t) <--_ r/(t), R-,

then we could apply Proposition 4.1 to conclude that for every (b,f) c6e, x(b,f)
m+l(R; Cn; r/s). However, in general (6.12) will not be satisfied. Still, it turns out
that (6.11) alone implies that x(ck,f) /dm+(R+; Cn; r/s) for each (b,f) c5e, a fact
one can see as follows. Let : be an infinitely many times continuously ditterentiable
"cutoff" function satisfying :(t) 1 for =< 1 and :(t) 0 for => 0. Define Xl(b, f)(t)
(t)x(ck, f)(t) and x2(ck, f)(t)=(1-(t))x(ck, f)(t) for tR. Then, if We let fl be the
restriction of the function Xl to R/ and f2=f-fl, we find that Xl(b,f)= x(b,fl)
and x2(qb, f)=x(ck2,f2), where Ckl(t)=(t)ck(t) and ck2(t)=(1-c(t))ck(t) for tR-.
As maps "+(R;C"; r/) into ’(R;C"; r/), both f and f2 belong to
"(R/; C"; r/)c m(R/; C"; r/s). If follows from Definition 3.1 and the fact that
(b,f) c6e that both (bl,fl) and (b2,f2) belong to c6e. We can apply Proposition 4.1
with t9 replaced by ps, r replaced by r/s, and (b,f) replaced by (th2,f2) to conclude
that x2(dp, f)--x(dp2,f2)G "+I(R; C"; r/s). But x(qb, f)(t)= X2(dp, f)(t for tR+, and
therefore also x(qb,f) m+l(R+; C"; r/s), as claimed.
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We conclude this section with a short discussion of the conditions (6.9) and (6.10),
and with an example which shows that the decay rate in Corollary 6.1 is optimal.

The conditions (6.9) and (6.10) require that be small and large at -oo and
respectively. As one might expect, this essentially implies (6.8), as the following example
shows:

Example 6.1. Let p _-> 0, and set p (t) 1 for -< 0, p (t) (1 + t)P for > 0. Then
is a dominating function with to a-0. Let q_ and q+ be nonnegative. Then the
function defined by

/(t)
(1 + It]) q+, R+,

is dominated by p if and only if q_ + q+ _-< p.
To show that the condition p >_- q_ + q+ is sufficient for p to dominate one argues

in the same way as in the proof of Lemma 6.4 (take pS(t)= B(t) for t>-0). That this
condition is necessary follows directly from (2.2), which for s=-t/2 gives p(t) >

l(t/2)/n(-t/2).
That the decay rate in Corollary 6.1 is the best possible one can be shown with

the following example.
Example 6.2. Let p and /be as in Example 6.1 with q_> 1, define pS(t)- (t)

for 0, and let L and rn 0. Consider the scalar equation

x’( t) f( t), tR+,
(6.13)

x(t)=dp(t), tR-.

The characteristic function L(z)- z has a simple central eigenvalue at z- 0. For this
example, ={(0, 0)}, rg={(k,O)lkC},ps(t)=pS(t) for t_>0, and

5:= ($,f) WI’I(R-; C; /)x LI(R+; C; /)[b(0)+ f(s) ds=O

The solution x of (6.13) corresponding to (b,f) is given by

x(b,f)(t)=- f(s) ds, teR+,

SO x(t)--o(t-q+) as c. Clearly, this estimate for the rate of decay of x(t) to zero
as o cannot be improved.

Appendix A. Above we needed the following variant of Lemma 2.3 of [10].
LEMMA A.1. Let aLl(p) and bL(/), where q is dominated by p. Then

a b BUC(I). If, inaddition, limt_ ess sups_>t/(t)lb(t)l 0, then n(t)(a * 6)(t) 0
as to, and if lim_,_ ess sups<=,/(t)lb(t)l 0, then l(t)(a * 6)(t)-0 as t--o.

As in 10], this follows directly from the fact that the same statement is true when
p( t) =- rl( t) =- l.
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LOCAL STABILITY RESULTS FOR THE ELASTIC BEAM EQUATION*

ALESSANDRA LUNARDIf

Abstract. We study classical solutions of a partial differential equation which arise as a model for the
transverse deflection of an extensible beam with hinged ends in a viscous medium. In particular, we study
the stability properties of all the stationary solutions and of small periodic orbits near stationary solutions.

Key words, stability, Hopf bifurcation, beam equation, abstract parabolic semilinear equations
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Introduction. In this paper we study the asymptotic behavior of the solutions of
a partial differential equation

Utt (t, x) + aUx,,,,x(t, x) [3 + k (ux(, t))2 d

(0.1) uxx(t, x) + yuxxx,( t, x) Ux( t, )Ux,( t, ) d,

Uxx(t,x)+isu,(t,x)=O, t>=O, O<--x<--_l

with initial and boundary conditions

(0.2) u( t, 0) u( t, I) U,x( t, O) u,,,,( t, l) O,

u(O,x)=uo(x), O<=x<=l,
(0.3)

ut(O,x)--Vo(X), O<=x<=l

for initial data near stationary solutions. In particular, we study stability and instability
of the stationary solutions and of small periodic orbits near stationary solutions.

Equation (0.1) arises as a model for the transverse deflection u(t, x) of the
centerline of an elastic beam in a viscous medium; the boundary conditions in (0.2)
correspond to the case of hinged ends (see [9], [14]). The coefficients are given by

E1 EAA
(0.4) a =m, /3- y=m, k-

p p p 21p’ Ip’

where E is the Young’s modulus, I is the cross-sectional second moment of area, p
is the mass per unit length, is the length of the beam at stress-free state, A is the
stretching, r/ is the viscosity and iS is the coefficient of external damping. Therefore
a, k, y, cr are positive whereas the sign of/ and is is unrestricted. The assumption
y > 0 gives a parabolic character to (0.1). For the hyperbolic case y 0 we refer to [8]
and the references quoted there.

The initial value problem for (0.1) has been studied first in [2] and then in [7],
[4], [5], [12], where results of existence in the large, uniqueness and continuous
dependence of the solution on Uo and Vo in suitable norms are given. Moreover in [2],
[4] and [5], sufficient conditions on the parameters are given which guarantee the
convergence of the solution to zero or to some other stationary solution for any initial
data. In [2] the Galerkin approximation method is used, and in [4], [5] the theory of

* Received by the editors March 5, 1986; accepted for publication (in revised form) August 14, 1986.
f Dipartimento di Matematica, Universit$ di Pisa, Via Buonarroti 2, 56100 Pisa, Italy.
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analytic semigroups in Hilbert space is used. In [7], 12] some qualitative methods (in
particular, center manifold theory) are suggested for the study of the behavior of the
solutions for small Uo and Vo. All the mentioned authors work in a Hilbert space setting
and obtain weak solutions which satisfy (0.1) in the variational sense ([2]), or strong
solutions such that u(t,. ), ut(t," belong to Ha(0, l), u,(t," belongs to L2(0, 1) ([2],
[4], [5]) or such that u(t,. + aut(t," belongs to Ha(0, l) and ut(t," e HE(0, l), u, e
L2(0, 1) ([7]).

We are interested here in classical solutions of (0.1) (that is, such that
utt, ux,x,, u,,,,t exist and are continuous with respect to (t, x) up to =0); therefore
we consider only initial data belonging to C4([0,/]) and satisfying the necessary
compatibility conditions

Uo(0) uo(l)= u(0)= u’d(l)= vo(O)= vo(l)= v’(O)= v"(l)=0,

au’(0) + "yv"(0) au"(l) + 3v(l) 0.

Setting

E {4’ C([0,/]; ); 4,(0)= b(l)=0},

D= {b C4([0,/]; ); b(0)= 4,(1)= b"(0)= b"(l)=0},

we transform problem (0.1)-(0.3) into an abstract parabolic initial value problem in
the Banach space X D x E:

(0.5) w(t):A(t)+g(w(t)), t>-_O, w(0) Wo,

where w(t)=(u(t,.),u,(t,.)), Wo=(Uo, Vo). The linear unbounded operator
A: D(A)= {(b, ff) Dx D;
(d/,-ad)iv-yd/iv+ 49"-d/) generates an analytic semigroup in X, and the nonlinear
function g maps D(A) into an interpolation space DA(O, 00). NOW (0.5) is nothing but
a semilinear abstract parabolic i.v.p., which is relatively easy to handle. In particular,
it is not difficult to show local existence, uniqueness and continuous-dependence (in
the norm of D(A)) on Wo of the solution and to give results of linearized stability and
instability for any stationary solution in the noncritical cases. Even in the cases of
instability, we are able to give conditions on Wo for existence in the large and conver-
gence of the solution to

We study also the critical cases of stability, when the operator L:D(A)-->X,
defined by Lw=(A+f’(ff))w, has some eigenvalues on the imaginary axis, and the
remainder of the spectrum has negative real part. In our case, the purely imaginary
eigenvalues of L are simple, and their corresponding eigenvectors span a subspace
X/ c D(A), whose dimension may be 1, 2, or 4. The dimension of X/ is 1 only when
=0 and t 7/’4/ /4) % /-"--(7r2//2)o. In this case, we have f(D(L))c X-, where
X-= (1 P)(X) and P is a projection on X/. Thanks to this property it is not difficult
to prove the stability of the null solution of (0.5).

In the other cases, the dimension of X/ is 2 or 4, and we have f(X/) X/: that
is, X/ is a center manifold, and it is shown to have the usual attractivity properties
of the center manifolds. In particular, to study stability properties of the stationary
solution considered, and existence and attractivity of small periodic orbits near
we can reduce our problem to a system of ordinary differential equations in N2 or in N4.

The well-known techniques of Hopf bifurcation are employed in the two-
dimensional system and we give necessary and sufficient conditions on the parameters
to get asymptotic stability or instability. The study of the four-dimensional system is
much more complicated because the results available in the literature are not as



STABILITY FOR THE BEAM EQUATION 1343

complete as in the two-dimensional case. Moreover, there are no relations between
the stability properties of the stationary solutions and the stability properties of the
periodic solutions given by Hopf’s theorem. However, in our case, a nonresonance
condition is satisfied and we find that is asymptotically stable, whereas the periodic
orbits are not stable.

The paper is organized as follows: in 1, problem (0.5) is treated; in 2, the
results of 1 are applied to problem (0.1)-(0.3) and the noncritical cases of stability
are studied. In 3 the critical cases of stability are considered. At the end of 3 we
give a summary scheme of all the results. Finally, the Appendix contains the proofs
of the propositions of 1.

1. Notation and preliminaries on abstract parabolic equations. Let X be a real
Banach space with norm ]1" and let X- {x / iy; x, y X} be its complexication. If
L: D(L) X-> X is a linear closed operator, we denote by /: D(L)-> X its com-
plexification defined by L(x / iy) Lx + iLy, x, y D(L). Throughout the paper we
shall assume that D(L) is dense in X and L generates an analytic semigroup e tL in
X, that is,

there exist to R, M> 0, 0 ]r/2, r[ such that the resolvent
(1.1) set p(L) of L contains a sector

and [[(A )-IIIL,)-< MIA o,[-’ for A S.

In this case, the interpolation spaces DL(O, ) (0 < 0 < 1) are defined by

DL(O, ) (x 6 X; [x]o O<,=<lSUp [[tl-LetLxl[ < +o},
(1.2)

Then we have D(L) DL(0, ) DL(a, o) X for 0 < a < 0 < 1, where D(L) is
endowed with the graph norm. For other properties see [21, 1.13, 1.14].

In the next section, problem (0.1), (0.2) will be reduced to an abstract semilinear
initial value problem:

(1.3). vb(t)= Lw(t)+g(w(t)), t_>-0, w(O)= Wo,

where

(1.4) L satisfies (1.1), g belongs to C(D(L); DI(O, o))

for some 0 ]0, 1[. For such a problem it is not difficult to give results of local existence
and uniqueness of the solution, continuous dependence on Wo and regularity (see the
Appendix for a proof).

PROPOSITION 1.1. Let (1.4) hold and let Woe D(L). Then there exists a maximal
time interval [0, 7.[(7.= 7.(Wo) > 0) and a unique w cl([0, 7.[; X) [") C([0, 7"[; D(L))
which satisfies (1.3).

Let Won D(L) (n) be such that [IWon WollD<)->O as n -> +, and denote by
wn" [0, 7"(wn)[->D(L) the solution of (1.3) with initial value Won. Thenfor each 7"< 7"(Wo)
and e 0 there exists such that, for n >- , 7"(Won) >- 7" and supo__< t-< wo (t) w(t)II -<

e. In other words, the mapping Wo-> w(t) is a local semiflow on D(L).
From now on, we shall assume

(1.5) g(0) =0, g’(0) =0

and we shall study the stability properties of the null solution of (1.3) and of other
invariant sets.
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We recall that, if S: {(t, Wo); Woe Y, [0, Z(Wo)[} Y is a semiflow on a Banach
space Y, a subset f/c y is said to be invariant if for each Wo 12 we have ’(Wo)
and S(t, Wo) fl for all _-> 0. 12 is said to be stable if for any r > 0 there exists e > 0
such that for any Woe Y with dist(wo,12)-<_e we have Z(Wo)=+oo and
dist (S(t, Wo), 12) <-- r for all _-> 0. 12 is said to be asymptotically stable if it is stable and
moreover, for any e > 0, there are 6 > 0, T> 0 such that if Wo Y and dist (Wo,
then dist (S(t, Wo), 12)-<_ e for all t-> T. 12 is said to be unstable if it is not stable.

Let now Y= D(L), S(t, Wo)=W(t), where w is the solution of (1.3). The null
solution of (1.3) is said to be stable (resp. asymptotically stable, unstable) if the set
12 {0} is stable (resp. asymptotically stable, unstable).

We begin with an exponential asymptotic stability result.
PROPOSITION 1.2. Assume that

(1.6) sup {Re A; h or(L)} --’-03 < 0.

Then the null solution of (1.3) is asymptotically stable. In particular, for each ]0, 03[
there exists r, C>0 such that for any Woe D(L) with IlWollo(L)<r we have

’(Wo) +o,
(1.7)

w(t)[[ o() <- C e-"t Wol D(L) for all >- O.

Assume now that the spectrum of L has an element with positive real part. Then,
if r+(L) {h r(L); Re h > 0} is closed, one can show (arguing as in [6, Thm. 5.1.3])
that the null solution is unstable. But, even in this case, it is often possible to prove
the existence of an invariant stable manifold M, such that 0 M c D(L), M is homeo-
morphic to a ball of some subspace of D(L), and for each Wo M the solution of (1.3)
is defined in [0, +[ and converges to 0 exponentially as +. Analogously, we
can show the existence of an invariant unstable manifold W, such that 0 Wc D(L), W
is homeomorphic to a ball of another subspace of D(L), and for each Woe W there
exists a backward solution of (1.3), w" ]-, 0]4 W, with limt_._ w(t)=0. To study
critical cases of stability (namely, when sup {Re A; h r(L)} =0), another invariant
manifoldmthe so-called center manifoldmmay be introduced. The study of such
manifolds and of their properties is, in general, rather lengthy and complicated. For
the sake of brevity we do not consider here the most general case, but we assume on
L and g some particular hypotheses which are satisfied in a sufficiently large class of
equations, including the beam equation (0.1), (0.2). In particular, we set, for w R"

(1.8) o-+(L) {h o-(/)," Re h > w}, o’o(L) r(/)\o’,o(L),+
and we assume that there exists w R such that

+

(1.9) tr,(L) consists of a finite (nonzero) number of eigenvalues with
finite algebraic multiplicity.

Let ,,/ be the eigenspace of corresponding to o’+(L). If / is spanned by Xl+
iyl, ", x, + iy, (n ), set

(1.10) X+ spana {Xl, Yl," ", Xn, Y,,}.
Let P+" X X+ be a projection that commutes with L, that is

P+ L(X), P+(X) c X+, P+x x Vx X+,
(1.11)

P+Lx LP+x fx D(L)

(such a P+ exists thanks to (1.9)), and set

(1.12) P-:X X, P-x x- P+x, X- P-(X).
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In the following we shall often assume

(1.13) g(X+) c X+.
Condition (1.13) implies that X+ is invariant; since, by (1.9), X+ is finite-dimensional,
all the stability results about ordinary differential equations hold for the semiflow in
X+. In particular, we easily get instability results as follows"

(1.14)

If to 0 satisfies (1.9), and (1.13) holds, then the null solution is unstable.
In particular, there is r > 0 such that for each Wo X+ with wollo(L)-<-r
there exists a backward solution w" ]-, 0[-> X+ of (1.3), which converges
exponentially to zero as t->-c.

Moreover, as a corollary of Proposition 1.2, we get a stability result as follows"

If some to <0 satisfies (1.9) and g(D(L)f)X-)c X-, then for each
(1.15) 7 ]0, -sup ro(L)[ there exist e- e(/)>0, C= C(/)>0 such that if

Woe D(L)f-)X- and Ilwollo< )-< , then (1.7) holds.

While (1.14) and (1.15) are quite obvious, the attractivity properties of X/ stated in
the next proposition are not trivial and will be proved in the Appendix.

PROPOSITION 1.3. Let (1.4), (1.5) hold, and assume that (1.9), (1.13) are satisfied
for some to < O. Then

(a)

(b)

for each ]0, -sup o’, (L)[ there exist eo eo(q) > O, Co Co(q) > 0 such
that if wo D(L) and IIw011o(L)_-< eo, then

IIP-w(t)[[D(/) <---- Co e-’llP-wollo() for all >- 0;

there exists r > 0 such that if [l X+ is compact and asymptotically
stable in X+, and diam 1) max {llxll ( ); x < r, then fl is
asymptotically stable in D(L).

Statement (a) is nothing but a local exponential attractivity property of X+.
Statement (b) gives the possibility of reducing local stability problems in Banach space
to finite-dimensional ones; it will be widely used in 3.

We finally consider a critical case of stability, which happens for some value of
the parameters in the beam equation.

PROPOSITION 1.4. Let (1.4), (1.5) hold. Assume that L has a ,finite number of
semisimple eigenvalues on the imaginary axis, and sup {Re A; A tr(L), Re A # 0} < 0,
so that (1.9) is satisfied for suitable to <0. Assume also g(D(L)) X-. Then the zero
solution of (1.13) is stable but not asymptotically stable.

2. Reduction to an abstract problem, stability and instability in the noncritical
cases. Setting ut- v, problem (0.1)-(0.3) becomes

(2.1)

(i)

(ii)

(iii)

U U,

Vt --Uxxxx q- (fl q- kluxl2 q- o(u, v))Uxx "yVxxxx v,
u( t, O)= u( t, l)= Uxx( t, O)= u,c( t, l)= O,

u(O, x) Uo(X), v(o, x)= Vo(X),

with the obvious notation

(2.2) (b, )= qb(x)O(x) dx, 161 (6(x))= dx
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Let E be the Banach space of all continuous functions b’[0, l]R such that
b(0) 4(1)-0, endowed with the sup norm, and let

(2.3) D= {{ E C4([0, 1]); b(0)= b(1)= b"(0)= &"(l)=0}
be endowed with the C4-norm. Set

X=DXE,
(2.4) D(A) {(b, )E DX D; aqb()(O)+yd/(")(O)=ab(’)(l)+70(")(l)=O}

(endowed with the product norms),

(2.5) A(th, )= (,-a(v)- yP(), (b, ) D(A).
Then the following proposition holds.
PROPOSITION 2.1. D(A) is dense in X and the operator A" D(A) X X satisfies

(1.1). For 0 ]0, 1 we have

X {( 6 C4([0,/]), 4,(0)= b(1)=0}

(2.6) DA( O, o)
if 0 < 0 < 1/2, 0

X {b C4([0,/]); b(0)= b(l)= gb"(0)= b"(1)=0}
if1/2<O<l, 0,

with equivalence of the respective norms.

Proofi The density of D(A) in X is obvious. Let A"D C([0,/]) be defined by
Au iv=-u uE D. It is easy to see that the spectrum of A consists of the simple
eigenvalues -r4n4/14, n , and that A satisfies (1.1). Therefore A generates an analytic
semigroup in C([0, 1]) (for analytic semigroups with nondcnse domain, see [19]).

For (4, O)X and h C, the equation h(u, v)-A(u, v) (4, ) is equivalent to

(2.7)
(u, v) D(A), v Au

XZu-(a + 7A)Au p + Ab- yAb.

Hence the spectrum of/ consists of the point o =-a/y and of the eigenvalues

7r2n2( 7r2n2 /7r4/’/4h,- 212 12 ),+ 14 3,2-4a

Moreover, for h Ep(/) we have: u=((h2/(a+yh)-A)-l(g/+hc-yAc)/(a+yh)),
so that (1.1) easily follows. Since the graph norm of A is equivalent to the norm of D
on D(A), then DA(O, ) D x DA(0, c), with equivalence of the respective norms. To
characterize DA(0, c) it is sufficient to observe that A=-A2, where A: D(A)- E,
D(A) {4, e C2([0, 1]); 4(0) 4(1) 0}, A4 4". Then we have DA(0 c)= Da(20, o)
for 0 # 1/2. Theorem 2.10 of 11] implies now

(2.8) Da(r/, )= {b C2" ([0, /]), b(0)= b(1)=0}, 0< r/< 1, , 1/2,
Da(r/, az) {b e C2" ([0,/]); b(0) b(l) b"(0) b"(l) 0},

(2.9)
1 < r/<2,

with equivalence of the respective norms, so that (2.6) follows. The results of general
interpolation theory which we have just used (such as DA(0, )= DA(20, o), etc.) are
well known in the dense domain case (see, for instance, [21, 1.13, 1.14]) and may
be easily extended to our case (see [11]).

The cases 0 1/4, 0 1/2, 0 would require the introduction of the Zygmund classes
and will not be considered here.
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Now set

(2.10) f(b, q) (0, kl’l= + r(, q>)", 6 C2([0,/]), O Cl([0,/]).
Then it is easy to see that f belongs to C(D(A), DA(O, o)) for each 0<1/2 and

f’(b, q)(b, q)= (0, 2k(b’, q’)+ tr(b’, q’)+ tr(b’, q’))b"
(2.11)

+ (0, k{’l + r(4S’, qT’)) ".
Finally, define a linear operator L" D(L)-- X by

(2.12) D(L)=D(A), L(qb, q)=(q,-ab-3,ffo+/3b"-O) (b, O)D(A).
Then L=A+B, where BL(X), B(d, q)= (0, flb"-). Therefore L satisfies (1.1)
and DL(O, ) DA(O, ) for each 0 ]0, 1[, with equivalence of the norms.

Now, if we set w (u, v), problem (2.1) may be written in the abstract form (1.3),
with

(2.13) Wo (Uo, Vo), g(w)=f(u, v).
In fact, if w(t)=(u(t), v(t)) is a solution of (1.3) in some interval [0, T] with X, D(L),
L defined by (2.4) and (2.12), then (u(t,x)’-u(t)(x), v( t, x) v( t)(x)) is a classical
solution of (2.1), such that each term appearing in (2.1)(i) is continuous in [0, T] x [0, l].
Conversely, if (u(t, x), v(t, x)) is a solution of (2.1) such that u, v, u,, vt, u,x,,, v,,,, are
continuous in [0, T]x[0,/], then the compatibility conditions v( t, O) v( t, /)
v,,,(t, O)= v,,,(t, 1)= eu,,,(t, 0)+ 3,v,xx,(t, 0)= au,,,x(t, 1)+ )’vxx,x(t, l)=0 (0_<- t<_- T)
hold. Therefore (u(t) u(t,. ), v(t) v(t,. )) belongs to D(A) for 0-_< =< T and w(t)
(u(t), v(t)) is a solution of (1.3) in [0, T].

Then, applying Proposition 1.1, it is possible to obtain a local existence and
uniqueness result for the solution of (2.1), together with continuous dependence on
(Uo, vo). More precisely, for each Uo, Vo C4([0,/]) such that the compatibility condi-
tions

Uo(0) uo(l)= u’(O)= u’(l)= Vo(0)= Vo(1)

(2.14) v(0) vg(/) 0,

aUo’)(O) + ),Vo’V)(0) aUo’V)(1) + 2,Vo’O)( l) 0

hold, there exist r > 0 and a unique solution u "[0, z[ x [0, l] of (0.1) such that each
derivative of u appearing in (0.1) is continuous in [0, z[ x[0, l]. Moreover, the C4

norms of u(t,.) and u,(t,.) depend continuously on the C4 norms of Uo and Vo (in
the sense of Proposition 1.1).

In fact, one could show existence, uniqueness and C regularity (for > 0) for
less regular initial data (Uo, Vo) and even existence in the large of the solution (that
is, Z(Uo, Vo)= +). These are not purposes of the present paper and we shall limit
ourselves to consider very regular initial data (Uo, Vo) near (, 0), where is any
stationary solution of (0.1), (0.2).

We begin with the stationry solution 0. To apply.the results of 1 we have
to compute the spectrum of L" it is easy to see that (L)= {--a/y}D{hh, h },
where the simple eigenvalues hh are given by

( 4 )1 [( 4)2 2h2( 2 )]1/2(2.15) Ah +Th4 +Th4 -4 iS’fl+ah heN,

and the eigenspace corresponding to the eigenvalue A+/-h is spanned by

(2.16) sin ---x, A+/-h sin --x
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Using (1.14), (1.15) and Proposition 1.2 gives some results about the stability of
the null solution.

THEOREM 2.2. Let Aj,j Z, be defined by (2.15). Then
(a) If 6 > -(/-4//4)T and /3 + (7r2/12)a > 0, the null solution of (0.1), (0.2) is

exponentially asymptotically stable in the C4 norm; more precisely, for each
]0, min {a/ T, -Re A 1}[ there exist r > O, C > 0 such that if Uo, Vo C4([0,/]) satisfy the
compatibility conditions (2.14) and Iluoll 4<to,,a)=< r, 11 oll 4 o,,a)<= r, then the solution u of
(0.1)-(0.3) is defined for all positive t, and

Ilk(t," )II c4(to,q)+ c4(to,,)
(2.17)

<= C e-m(llUollc4(to.q / Ilvoll ’ to,,  ) for all >-O.

(b) Ift < -(4//4) T or / (’tr2//2)a < 0, the null solution is unstable. In particular,
ifJ c 7/is such that Re Aj > 0 for each j J, then there exists r > 0 such thatfor a, b R,
lajI <- r, Ib l <- r (j J) and

(2.18) Uo(X)= asin--x, Vo(X)= bsin--x, O<=x<=l,
jJ jJ

there exists a backward solution u’]-oo, 0]x[0,/]-[ of (0.1), (0.2), u(t,x)=
jj a(t) sin (Trj/ l)x, and a, db decay exponentially to 0 as -oo.

On the other hand,
(c) let < -(Tr4//4)T or fl / (’/7"2//2)0 <0, and let J’= {j 7/; Re A <0}. Then for

each B]O, min{a/%-sup{ReAj;jJ’}}[ there exist r>0, c>0 such that if Uo
C4([0,/]), Vo C4([0,/]) satisfy (2.14),

and

Uoll c4([o,/]) r,

(2.19) Uo, sin--x Vo, sin---x =0 Vj7/\J’,

then the solution of (0.1) is defined for all positive and satisfies (2.17).
The critical cases 8 =-(r4//4)T and/3 + (7r2/12)a =0 will be studied in the next

section.
Let us consider now the other stationary solutions" it is easy to see that if

+ (r2/12)a >= 0 the unique stationary solution of (0.1), (0.2) is -= 0, whereas if
+ (Tr2n2/12)a < 0 for some n , then (0.1), (0.2) has exactly 2n nontrivial stationary

solutions + bg, j 1, , n, given by

(2.20)
O--<x -<l, j=l,...,n.

It is easy to see that a function u satisfies (0.1), (0.2) if and only if -u does. Therefore
for any j 1,- ., n, q and - have the same stability properties, and, from now on,
we shall consider only the b’s.

To use the results of 1 for the study of the stability of b,, we must define the
linear operators L, D(L,,) X and the functions g, D(L,,) D.(O, )"
(2.21) D(L,,) D(A), L.(qb, 0) L(qb, d/)+f’(ch., O)(dA q,), (dp, q,)e D(A),

(2.22) g,(b, q,)=f(b, + b, q)-f’(b,, O)(b, q,)-f(b,, 0), (, O)D(A),
where L,f,f’ are given by (2.12), (2.20), (2.21), respectively.
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Then L, satisfies (1.1), g,e C(D(L, ), DL. O, )) for O<1/2, g,(O)=g’,(O)=O, so
that the results of the previous section may be applied to problem

rO,(t)= L,w,(t)+g,(w(t)), t>-O, w,(0)= Wo,

with w(t)=(u(t, ")-ok,, u,(t, .)), Wo= (Uo-4,, Vo).
The spectrum of L, consists of the point Ao =-a/y and of the simple eigenvalues

A+h, h, defined by- 6+yh4 +yh4

12 (hz-nE)a

(2.23) /+h h NI, h # n,

1 1[ )2
8"/r2n2 {

12.
"r/’2 n212 )]1/2-(6+(n))+ (6+/.(n) + \fl+ a h=n,

with /.(n) (rr4n4/14)y-(rEn2/lE)(fl+(rrEnE/12)a)tr/k. The corresponding eigen-
space is spanned by

(2.24) sin---x, A+/-h sin-Tx O<--x<--l.

Applying (1.14), (1.15) and Proposition 1.2 gives results quite similar to those of
Theorem 2.2.

THEOREM 2.3. Let +(Tr2n2/12)a <0 for some n tN, and let j,j= 1,..., n be
defined by (2.20). The following are true"

(a) If 6 > max {61,62}, where

(2.25) 61 =---y+-- /3 +--c , 62 =-16--y,
then 1 is exponentially asymptotically stable: for each n ]0, min {-a/ y, Re X 1, Re A2}[
(AIA2 are given by (2.23) with n 1) there exist r > O, C > 0 such that if Uo, Vo C

4

([0,/]) satisfy the compatibility conditions (2.14), and IlUo- 4 c4to,,)-<- r, oll c4to,>-<_ r,
then the solution u of (0.1)-(0.3) is defined in [0, +oo[x[0, l], and

Ilu( t," 111 c4([o,/1)+ Ilu,( t,"
(2.26)

-< C e-"(lluo 6111c4(to.q)+ IlVollc4(to,la)) for all >- O.

(b) If 6 <max {61, 62}, then dp is unstable. In particular, if J 7] is such that
Re Aj > 0 for each j e J (the eigenvalues Ay are defined in (2.23) with n 1) then there
exists r > 0 such that if ay, b R, ayl <- r, bl_-< r for j J and

(2.27)
Uo(X)-’-I(X)-- Z aj sin---x, O<=x<=l,

jJ

Vo(X) E b sin
7rj

j -i-x’ O<-_x<- l,

then there exists a backward solution u’]-oo, 0]x[0, I]-R of (0.1)-(0.3), u(t,x)=
4(x) +jj a(t) sin (rj/l)x and aj, (t converge to 0 exponentially as

(c) The other stationary solutions 492," ", 49, are unstablefor each value of 6. The
second statement of (b) holds for 492," ", dp,, with obvious modifications.
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(d) Let , {1,..., n} and let Aj,j 7, be defined by (2.23) with n replaced by ,.
Assume that Re A < 0, and let Jc 71 be the set of all integers j such that Re Aj < 0.
Then for each q ]0, min {a/ , -sup {Re A,j J}}[ there exist r > O, C > 0 such that
if Uo, Vo C4([0,/]) satisfy (2.24), no- & c4([o.,]) r, oll <to,,a) r, ana

(2.28) Uo, sinx Vo, sinx =0 jZJ,

the solution u of (0.1)-(0.3) is defined for all positive t, and

u(," )- , c4(to,,)+ u,(," ’<to.,
(2.29)

Ce-"(llUo-,l}c4(to.,+ Ilvollc4(to.,) Vt0.

The critical case max {, 2} will be treated in the next section.
Let us remark that (d) differs from (c) of Theorem 2.2 because of the additional

assumption Re A, < 0. This is due to the fact that now we have (see (2.22))
g(, )= (kl’l+2k( ’, 2)+ (’; ’))"

(.30)
+(kl’l=+<’, ’>), = 1,..., n

so that, using the notation of 1, there exists w < 0 such that g(X-) X- if and only
if X-, that is, if and only if Re A<0. Then statement (d) follows from (1.15).

3. Critical eases of stabili, bifurcation and staili of periodic orbits. In this
section we shall treat the problem of the stability of the stationary solutions 0, a, -,
for the values of the parameters a, fl, y, 6, k, which we did not consider in 2" that
is, when max {Re A; A (L)} =0 and when max {Re A; A (L)} =0. In these cases,
X+ may be one-, two- or four-dimensional, so that we shall use classical results about
ordinary differential equations in " to study the stability of 0, ,- X+ for the
restriction of the semiflow to X+. By Proposition 1.3(b), asymptotic stability of any
stationary solution in X+ implies its asymptotic stability in D(L)" therefore our problem
is reduced to a finite-dimensional one. Proposition 1.3(b) holds not only for stationary
solutions, but also for small compact sets (near stationary solutions)" it will be used
for studying the stability of periodic orbits which we shall prove to exist for suitable
values of the parameters.

We shall use the following notion of stability, which involves not only u but also

DEFIYWOY 3.1. A stationary solution of (0.1) is said to be stable in C4([0,/])
if

(i) for any e > 0 there is 6 > 0 such that if Uo, Vo C4([0,/]) satisfy the compatibil-
ity conditions (2.14) and IlUo-llc,to,,)+llollc4to,), then the solution u of
(0.1)-(0.3) satisfies

Ilu(t,.)-llc4to.)e, Ilu,(t,.)llc4to.,a)e wto.

It is said to be asymptotically stable in C4([0,/]) if (i) holds and
(ii) there is g> 0 such that for any e > 0 there exists T > 0 such that if Uo, Vo

C4([0,/]) satisfy (2.14) and Iluo-llcto,,)+ Ilvollcto,,) L then

It is said to be unstable if it is not stable. A time periodic solution (t, x) of (0.1) is
said to be asymptotically stable in C4([0,/]) if

(i’) for any e>0 there is 6>0 such that if Uo, Vo C4([0,/]) satisfy (2.14) and

Iluo-(to,, )II c4<tO,l)+ Ilvo-6,(to," c4tO,l)
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for some to IR, then

Ilu(t, ")-b(to+ t, .)llc4(to,ta)/llu,(t, ")-bt(to+ t, ")llc4(to,/l)-<_ e Wt_->0;

(ii’) there is 8 > 0 such that for any e > 0 there exists T > 0 such that if Uo, Vo
C4([0,/]) satisfy (2.14), and Iluo- (to,. )[[c4(to,11)/ Iloo- ,(to,. )[[c4(to,a) <- g for some
to R, then

Ilu(t, ")-b(to+ t, .)[Ic4<to,,)+llu,(t, ")-bt(to+ t, ")[[c4(to.)_-< e Vt=> T.
We begin with the stationary solution b 0.

3.1. Stability of the null solution and of small periodic orbits near 0. By (2.15),
there are two possibilities for max {Re A; A r()} to be zero: either 8 >_- 80, where

4

(3.1) 80 ---y
and/3 +(Tr2/12)a =0, so that the unique element of 0-() on the imaginary axis is 0,
or 8 80 and/3 + (7r2/12)a > 0, so that tr(/) has exactly two purely imaginary conjugate
eigenvalues.

Let us consider the first case.
PROPOSITION 3.2. Let 8 >- 80, fl + Tr/ l-)a O. Then =- 0 is stable (but not

asymptotically stable) in C4([0,/]). Moreover, for any 7q ]0, min {a/y, -Re A2}[ (the
eigenvalues Aj,j 7/are defined in (2.15)) there exist r, C > 0 such that ifuo, Vo C4([0,/])
satisfy the compatibility conditions (2.14), Iluollc4<to,,  _-< r, Iloollc4  o,,  _-< r, and

(3.2) uo, sinx =0,

then (2.17) holds.
Proof. In this case, 0 is a simple eigenvalue of L and the correspondin.g eigenspace

is spanned by (sin(r/l)x,O); we have also max{ReA;Atr(L), A0}=
max {-t/y, Re A2} (see (2.15), (2.16)). Therefore any toe[max {-a/%Re A2}, 0[
satisfies (1.10), and the projection

P+(6, )= th, sinx sin -x, 0

obviously satisfies (1.11). The statements follow now from Proposition 1.4. l-]

Let us consider now the case 8 80,/3 + (r2//2)c > 0.
PROPOSITION 3.3. Let 8 80, fl + r2/12)oz > O. Then 0 is asymptotically stable

in C4([0,/]). Moreover, for any q ]0, min {a/ y, -Re A2}[ there exist r, C > 0 such that
ifuo, Vo C4([0,/]) satisfy (2.14), Iluollc4<to,,a)<-_r, Ilvollc4<tO,la)<=r, and

(3.3) Uo, sin-x Vo, sin-x 0,

then (2.17) hoMs.
By Theorem 2.2, when 8 < 80, the null solution is unstable. But, for 8 near

80, 8 < 80, it can be proved that other solutions are stable (in fact, asymptotically
stable). In particular, if/3 + (7r2/12)a < 0, the stationary solutions 1 and -1 are stable
(see further information later in the text), and if/3 + (7r2//2)a > 0, there exists a stable
small periodic orbit, as the following proposition states.
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PROPOSITION 3.4. Let fl + (r2/12)O > 0. Then there exists e < 0 such that for each
6]o-e, 6o[, problem (0.1), (0.2) has a time periodic solution ti(t,x)=
b(6, t) sin (Tr/ l)x, which is asymptotically stable in C4([0,/]). Denoting by T the period
of (., x), we have

(3.4)

71.2 ) -1/2

(i) lim_T=21 fl+--a-6

(ii) lim max {liar(t, .)[Ic4(to,,)/ [I8-,g
t8(t,’) 1 =0.

C4([0,1])

There exists ro > 0 such that is the unique periodic solution (translations apart) of
(0.1), (0.2) in the class of the u(t, x) such that Ilu(t,. )ll<to,/a)--< ro, Ilu,(t, )llc4(to,/l)<- ro
for all >- O.

The stability of the zero solution in Proposition 3.3 and the stability of the periodic
orbits in Proposition 3.4 are closely related, so that the two propositions above will
be proved together.

ProofofPropositions 3.3 and 3.4. Let r/> 0 be such that for 6 ]60-r/, 60+ r/[ we
have

(i)
(3.5)

(ii)

Re/.1 Re ’--1 -----(6- 60)

-1/2(6- 6o) > sup {Re A; a e tr(L), a # a+l} max {-a/y, Re a2}.

Then, by (3.5)(ii), each we[max{-a/y, Rea2},Real[ satisfies (1.9), and X+ is
spanned by (sin (r/l)x, 0) and (0, sin (r/l)x). A projection satisfying (1.11) is, for
instance,

(3.6) P+(tb, 0) b, sinx sinx, ,sinTx sinx
For 6o- r/< 6 < go + r/ set

(3.7) a(6)=-.(6-ao), b(,)=.L.- +-, -(,-ao)2

By (3.5)(ii), b(6)eR and a+l=a(6)+ib(6). Define a basis for X+, setting

(3.8)
(el -sin x, -a(6) sinx

e2 (0, b(6) sin x).
With this choice of the basis in X+ the operator Lix X+---> X+ may be represented
with the matrix

(3.9) A(6)
/ka(6)b(6) a(6) ]"

We have seen that if (Uo, Vo)eX+, then the solution (u(t), v(t)) of (2.1) belongs to
X+ for each belonging to the interval of existence. Set

(3.10) (u(t), v(t))= x(t)el + y(t)e2
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so that

(3.11)
(t) a(8)x(t) b(8)y(t),

(t) b(8)x(t)+ a()y(t)+ q(, x(t), y(t)),

where q(8, x, y)-(f(xel +ye2), e2) is given by
4

(3.12) q(8, x, y)= 2/3b(8

Moreover, by (3.7)

((k+ 0-a(8))x 0-b(8 x2y).

(3.13) a(8o) 0, b(8o) > 0, a’(8o) -1/2<0
so that the classical Hopf bifurcation assumptions are satisfied for system (3.11).
Therefore (see for instance [13, Thm. 3.1] or [16, Thm. 2.1]) there exist e >0, Co>0,
a neighborhood U of0 in R2 and a continuous function [0, Co[ - ]80 e, 8o + e[, c - 8(c)
(with 8(0)= 8o), such that system (3.11) has a nontrivial periodic solution (x(t), y(t))
with (x( t), y( t)) U for all tR if and only if there exists c]0, Co[ with
Moreover any periodic solution (x(t), y(t)) of (3.11) with (x(t), y(t)) U for all
is one of the above (translations apart). Since the data are analytic, our periodic orbits
have the same stability properties ofthe null solution of (3.11) for 8 80: more precisely,
exactly one of the following possibilities holds (see [16, Cor. 4.4]):

(3.14) (i) 0 is asymptotically stable for 8 8o, the periodic orbits given by Hopf’s
Theorem are asymptotically stable and occur only for 8 < 8o (that is,
8(c) < 8o for any c).

(ii) 0 is unstable for 8 80, and for any sufficiently small (Xo, Yo) R2 system
(3.11) has a backward solution (x(t), y(t)) such that x(0) Xo, y(0) Yo
and limt__x(t)=limt_,_o y(t)-O; the periodic orbits are unstable
and occur only for 8 > 80.

(iii) 0 is stable but not asymptotically stable for 8 8o; the periodic orbits
have the same property and occur only for 8- 8o (that is, 8(c)-= 80).

To see that, in our case, (3.14)(i) holds, we may, for instance, use the classical
Poincar6 procedure (see 16, 3]) which allows us to construct a Lyapunov function
for (3.13) when 8 80. Using this procedure, we find that the polynomial

7r4k ,/-4O" 7/-40
(3 15) V(x, y) x + y2+x4_xayq xy34/3b2(8o) 813b(8o) 8 b(8o)

is such that

(3.16)

OV OVx, y) --bo)y<x, y)+ b(oX+ qo, x, y)x, y)

y2)20-(x2 + -I- higher order terms

so that f" is negative for (x, y) near (0, 0). Therefore (0, 0) is asymptotically stable
when 8 80, so that (3.4)(i) holds. The statements of Propositions 3.2 and 3.3 now
follow from (b) of Proposition 1.3 and (3.14)(i) (except for the second part of
Proposition 3.2, which follows from Theorem 2.2(c), and (3.4)(i), which can be deduced
from [16, 2] or [13, Thm. 3.1]). U
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Let us consider system (3.11) for 8 80. Since V(x, y) defined in (3.15) has degree
4, the origin is said to be 3-asymptotically stable in the notation of [16] and it is said
to be a vague attractor in the notation of [13], [17].

Let us finally remark that the procedure above can be used to show the existence
of small periodic solutions of (2.1) for 8 near h48o, for each h e , h > 1.

3.2. Stability of }1 and of small periodic orbits near tbl. We have seen in 2 that
if

2

(3.17) fl+--a <0
then problem (0.1), (0.2) has (at least) two nontrivial stationary solutions +(f)l, given
by (2.20). The spectrum of the corresponding linear operator L1 consists of the point
Ao -a/y and of the eigenvalues h+h, h t, defined in (2.23) with n- 1. Therefore
there are three critical cases of stability: namely, 8 81 > 82, 8 82 > 81 and 8 81 82,
where 81 and 82 are defined by (2.25). In the first two cases, there are two eigenvalues
on the imaginary axis and the situation is very similar to the one of Propositions 3.3
and 3.4, so the proofs of Propositions 3.5 and 3.6 below will be only outlined. Also
in this section we shall consider only 4)1; all the results hold, with obvious modifications,
for-(hi also.

PROPOSITION 3.5. Let fl + (7r2/12)a < 0. Then, for 8 81 > 82, (1 is unstable. In
particular, for

UO(X I(X) "- a sin x, 0<x=< 1,

(3.18)
Vo(X) b sin x, 0 x

with a, b , a, b suciently small, then there exists a backward solution u’]-, 0] x
[0,/] of (0.1)-(0.3), u(t,x)=(x)+a(t)sin(/l)x such that limt_a(t)=
limt_ d(t)=0. If > 1, there 1 is asymptotically stable. Moreover, for any
n ]0, rain {a/y, Re A1, Re A3}[ there exist r, C>0 such that ifuo, Vo C([0, 1]) satisfy
(2.14), ]Uo-lllC4([O,l]) r, IlVollc4<to,/]) r, and

(3.19) (Uo, sinx> <Vo, sinx) =O,

then (2.26) holds.
PROPOSITION 3.6. Let + (2//2)a < 0 and 1 < 2 (resp. 1 > 2). en there exists

e > 0 such that for any ]2- e, :[ (resp. e ], + el), problem (0.1), (0.2) has a
nonconstant time periodic solution w(t,x)=6(, t) sin (2/l)x (resp. w(t,x)=
6(, t) sin (/l)x), which is asymptotically stable (resp. unstable) in C([0, 1]). Denoting
by Ta the period of 6 , ), we have

lim T =--(3)-/ resp. li. T 21 -2 +
lim resp. li+ max w(t,. C4([0,1]) + W(t,") e O.

aa/ C4([O,t])

Moreover, there exists r > 0 such that w is the unique periodic solution of (0.1), (0.2)
translations apart) satisfying w t,. , c4([o,t]) + II(d/ dr)w( t,. )ll c4([o,13) r for all
t.
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Sketch of the proof of Propositions 3.5 and 3.6. We have to use the procedure of
Propositions 3.3 and 3.4, with obvious changes: 60 must be replaced by
max {61, 62}, u(t) by u(t)-l, L by L1 (see (2.21)). Now a(6) and b(6) are defined by

1
a($) =-($-max {6,, $:}),

(3.20)

bl(8) - flWa --(--1)2 ifS> 82,

b()
b2(6)

and q(6, x, y) in (3.11) is given by

(3.21) q(6, x,y)=

(i) 2/b(a -- ,8 +--a
[(-3k- 2tra(6))x2 + 2trb(6)xy]

if 61 > 62,

4

2/3b(6) [(k + tra(6))x3- o’b(6)x2y]

Ax2 q- Bxy + CX3 + Dx2y if 61 > 82,

871-4
(ii) lab(6)[(k+tra(6))xa-trb(6)xEy]

Ex + Fx2y if 81 ( 82
Then the polynomials

Vl(X,y)=x2+y2+(61 Ax3-ny +c,,4+a o b{,) ’‘,y

V(x, y)= x+Y+2b(i) Nx+F(xy-xy) if <

(constructed by the Poincar procedure) satisfy

(x,y)= D-(,) (x+ + higher order terms

(x + +h.o.t.,

Fx y) 2+xy)(x, y) =( + + h.o.t. + h.o.t.

Therefore, if 61 > 82, then (3.14)(ii) holds and the instability statements of Propositions
3.5 and 3.6 follow easily. If 61 > 82, then (3.17)(i) holds and the stability results of
Propositions 3.5 and 3.6 follow by (1.15) and Proposition 1.3(b). l’]

The case 6 61 82 is much more complicated because it requires the study of a
four-dimensional system. The problem of the stability (in the critical cases) of the
stationary solutions of o.d.e, in R4 has not yet been completely solved, nor under
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nonresonance assumptions However, in our case, we will obtain an equation which
can be treated again by the Poincar6 procedure, since (0.4) implies the nonresonance
condition

(3.22) 81 82= bl( 81)/bE(81)

(bl(8) and bE(8) are defined in (3.20)).
PROPOSITION 3.7. Let 8 81 82. Then 1 is asymptotically stable in C4([0,/]).

Moreover, for any /E ]0, min {a/y,-Re A3}[ (A3 is defined in (2.23) with n= 1) there
exist r, C>O such that if Uo, Vo C4([O, l]) satisfy (2.14),
roll < r, and

Uo, sinx Uo, sin--x Vo, sinx Vo, sin x =0,

then (2.26) holds.
Proof. A procedure similar to the one employed in Propositions 3.4-3.6 gives rise

to the system

1(t) a(8)xl(t) bl(8)y,(t),

3)1(t) bl(8)Xl(t) + a(8)y,(t) + q1(8, Xl(t), yl(t), x2(t), Y2(t)),
(3.23)

2(t) a(8)x2(t) b2(8)y2(t),

))2(t) b2(8)x2(t) + a(8)y2(t) + q2(8, Xl(t), Yl(t), x2(t), Y2(t)),
where a, b, b2 are defined in (3.20), and

q1(8, Xl, Yl, x2,

[3kx2+4kx-2rx(-xa(G)+y,b(6))-4rx=(-x2a(6)+y2b2(6))]
4

[-kx31 4kXlX+ crx(-xl a( 8 + Yl bl 8(3.24) -2/3b,(8)
+ 4trx,x2(-x2a(8) + y2b2(8))]

c(8)x21 + d(8)x+ e(8)xly, +f(8)x2y2 + g(8)x3
+ h(8)XlX+ l(8)x21Yl + m(8)XlX2y2,

q2(8, Xl, ylx2, Y2)

2
(3.25) [2kxlx2-ox(-xla(8)+ ylbl(8))]-1362(8

[-kxx2-4kx3+
+ 4o’x(-x2a(8) + y262(8))]

p(8 )X1X2 -[- q(8)X2Yl + r(8)X2X2 + S(8)X3 + t(8)XlX2yl + U(8)X2_y2.
Using the generalization of the Poincar6 method described in [18] we construct

a Lyapunov function for system (3.23) when 8 81 82:
V(X1, Yl, X2, Y2)= XI +Y+ X22 +Y+ Ax31 + By31 + Cxlx+ Dxyl

+ Exly+ Fyly2z + Gxlx2Y2+ Hx2yly2,



STABILITY FOR THE BEAM EQUATION 1357

where

2c(,)
A-

3b1(6)’

2b2(6)(q(6) +f(6))
4b2(6) b12(6)

-2b2(6)(q(6) +f(6))
4b(6)- b(6)

b,(6)(4b2(6)- b12(6))
-2b(6)(q(6) +f(6))

G--
452z(6)_ blZ(6)

4b2(6)d(6) 2bl(6)p(6)
4b(6)- b1(6)

Then (see [18, 3]) ? is negative definite near (0, 0, 0, 0) if, setting for 6 61 6,

2
H- (bl(6)l(6)-e(6)),

7b1(6)

2(K
7

u(6)+
bl(6)p(6)f(6) + 2b2(6)q(6)d(6)

4b22(6) bl(6) }
b1(6)q(6)p(6)

S-
4b(6)-b(6)’

1(e(6) 2b2(6)q(6)d(6)
Q-- b1(6 4b(6)- b(6) -4b(6)- b(6

we have H < 0, K < 0 and HQ or KS 0; is positive definite if H or K is positive
and HQ or KSO. In our case (see (3.24), (3.25)) H is negative, K and S have the
same sign of b(6)-4b(6). Therefore the null solution of (3.23) is asymptotically
stable if 4b(6)-b(6)=fl+(252/12)a is positive, and it is unstable if fl+
(252/12)a <0. In our case (see (0.4)) we have fl+(252/12)a=(92/lE)(EI/p)>O.
The conclusions follow now from Proposition 1.3(b) and (1.15).

We have seen before that the problem of existence and stability of small periodic
orbits for system (3.11) is closely related to the problem of the stability of the null
solution. The same thing does not happen, in general, for higher-dimensional systems.
For studying small periodic solutions of (3.23) we shall use the method employed in 15].

PROPOSITION 3.8. Let fl +(2/12)a <0, 6 61 62 and assume (3.23). en there
exists e > 0 such that for any 6 ]6 e, 6 + e[, 6 6, problem (0.1), (0.2) has a
nonconstant time periodic solution u, given by u(t,x)=al(6, t) sin(/l)x+
a2(6, t) sin (2/l)x, , x [0, l], with a2(6," Ofor 6 > 61. u is unstable in C4([0,/])
and, denoting by T the period of u, we have

(3.26) lim T =--(3a)-1/2 li+ T 21 -2 fl +a
(3.27) lim max Ilu (t, ")-lllc4([o,t])+ u(t, ") ;te

66 C4([0,1])

Moreover there exists r > 0 such that if v(t, x): x [0, l] is a T-periodic solution of
(0.1), (0.2) with

sup v(,.) + v(,.
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and

T- 33 )-1/2 <_ r resp. T-21 -2 fl + a <- r

then v( t, v( + r, .) for some
Proof. Let us consider again system (3.23). Existence and uniqueness of small

periodic solutions satisfying (3.26) may be proved by applying Hopf’s Theorem twice
(see [13, Thm. 3.15], since the transversality condition a’(81)0 holds. We find that
the periodic orbits corresponding to the eigenvalues a()+ ibl() (resp. a() ib2())
occur for > 1 (resp. < 1).

Let us consider first the couple of eigenvalues a() ibl(), where a(), b() are
defined in (3.20). The manifold x Y2 0 is invariant for system (3.23). In paicular,
setting x2 Y2 =0, the (Xl, y)-pa of (3.23) takes the form

(3.28) Xl -b()yl, y b(8)Xl + q(, x, el),

where q(8, x, y) is defined in (3.21)(i). Therefore (see the proof of Proposition 3.6)
the small periodic solutions of (3.28) occurring for > are unstable. Setting now
u(t, x) l(t) sin (/l)x, u satisfies all the statements of Proposition 3.8 (the unique-
ness follows from Proposition 1.3(a)).

Let us consider now the second couple of eigenvalues a() ib(). The existence
of another invariant manifold (xy) (x2, Y2) (which could allow us to reduce again
(3.23) to a two-dimensional system) is not evident. To study the stability propeies of
the periodic solutions of (3.23) given by Hopf’s Theorem we shall use the procedure
of [15]. To use the notation of [15], we replace by z=t/b2(). Setting x(t)=
x2(t/b2(8)), y(t)=y(t/b(l)), z(t)=Xl(t/b(l)), z2(t)=yl(t/b2()), and taking

1, (3.23) becomes

1
-y, x + q2(8, z, z2, x, y),

bl(l)
(3.29)

1
)q,(,,z,,z2, x,y),z -z

where bl()/b(l) and q, q are defined in (3.24), (3.25). Thanks to the nonreson-
ance condition (3.22), for each h it is possible to find a polynomial <h):22
of degree h, such that

d
d(Z <)(x, y))[.<<.)= o(x + y:)/,

where d/dt is evaluated along the solutions of (3.29). In paicular, for h 3, we get

)(x, y) (Ax + Bxy + C,y, Ax + Bxy + Cy)

where

(3)(x, y), 23)(x, y)),

d(6) 2- to
2

A1 tob2(al) to2-4

f(8,)
A2 b2( 31)(to 2 4)’

tof(8,)
B1 b2(a1)(to2-4 C’ tob2(t$1)(to2- 4)’

2d(81) f(81)
B2= b2(a,)(to2_4), C2= b2(l)(to=_4)
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and the functions d,f are defined in (3.24) and (3.25). When we set z (3)(x, y) in
(3.29), the (x, y)-part becomes

))=x+
p(61) x3)(x, y) +
b:(6)

(3.30)

q(6’).xdP(23)(x, y

+S(6!) X3_ ).xy (O3)(X, y))2+
bz(61) b(61) b(61)

t(6,) )2.
b2(6,)

O3)(x’ Y)(O3)(x’ y)

By the Poincar6 procedure we find that the polynomial

satisfies

(3.31)

C(61) 4 1(p(61)) q(61) )V(x’ y) x2 + y2 +
2

x --t-- BI+ B2b2(6, b2(6,)

(x3y+xy3)_e(61) 4

2 Y

1 (p(61) q(61)) )(/(x,Y)=-\b2(61)B1+b2(61 B2 (x2+y2)+h.o.t.

G3(x2 + y2)2 + h.o.t.,

so that V is negative definite for small (x, y) (since 61 62 implies o92--4 > 0; see (0.4)).
The definiteness of V implies (see 15, Thms. 2.2, 3.1, 4.2]) that the stability properties
of the bifurcating orbits may be recognized by studying the auxiliary system (3.30)-
(3.32) and its normal form, where

63
1--

(3.32)

[2c(61)t131"(3)(X, y)+ e(61)O3)(x, y)+ h(61)x2 + m(61)xy]x1

e(61) 3+ P (x, Y)X2.
b2(61)

The normal form of (3.32) (see [1], [20]) may be obtained by a change of variables

X + L(x, y), where L(x, y)s= (thll(X, Y):I + b12(x, y):, b21(x, Y):I + b22(x, y)s2)
and bo(j 1, 2) are polynomials of degree 3 vanishing at the origin, such that (3.32)
becomes

(3.33)
1--" P(x2 + Y2):l-(to + Q(x2 + y2)):2 + ql (x, y)s,
2 (to + Q(x2 + y2))1 + P(x2+ y2)s2 + ,(x, y):,

where P, Q e R and ffj(x, y) o(x2"+ y2)3/2. Then ([ 15, Thm. 4.3]) the bifurcating orbits
given by Hopf’s Theorem are stable if both G3 and P are negative (G3 is given by
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(3.31)), they are unstable if one of them is positive. In our case we get

G d(6)
2 b1(82)

so that the orbits are unstable. Now it is sufficient to set us(t,x)=
-21(t) sin (r/l)x-22(t) sin (27r/l)x (where (21(’), )71(" ), 22(" ), 372(" )) is the periodic
solution of (3.32)), and the proof is finished.

In Tables 1 and 2 we summarize the stability properties of the stationary solutions
0, ,-1.

TABLE
Stability of the null solution.

8 <80

8=8

unstable
Theorem 2.2(b)

unstable
Theorem 2.2(b)

unstable
Theorem 2.2(b)

unstable
Theorem 2.2(b)

unstable
Theorem 2.2(b)

stable
Proposition 3.2

stable
Proposition 3.2

asymptotically stable
Proposition 3.3

asymptotically stable
Theorem 2.2(a)

TABLE 2
Stability of and - (fl < -(r2/l-)a).

8 < max {8, 8}

8 81 8

max {8, 82}

unstable

unstable

asymptotically stable

asymptotically stable

asymptotically stable

Theorem 2.3(b)

Proposition 3.5

Proposition 3.7

Proposition 3.5

Theorem 2.3(a)

Appendix.
Proofs of the propositions of 1.
ProofofProposition 1.1. The proof is straightforward, and it will be only outlined.
Let e D(L), and let r > 0 be such that g is Lipschitz continuous on the closed

ball centered at ff with radius r.
Let 0<- to< tl, Woe D(L), IlWo- fflloL) <-_ r/2. Consider the problem

(A.1) rb=Lw+g(w), to<-t<-tl, W(to)=Wo.

A function we Cl([to, tl]; X) f"l C([to, tl]; D(L)) is a solution of (A.1) if and only if

(A.2) w(t) e<t-to)Lwo + e<’-S)Lg(w(s)) ds, to <- t<- tl.
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Set

Y= {we C([to, tl]; D(L)); IIw(" )- }

F" Y--> C([ to, tl]; D(L)), F(w)(t) e’-’o)wo+ e’-g(w(s)) ds.
to

In fact, F( Y) C([ to, tl];D(L)) because for each we Y, g(w(.)) belongs to
C([to, tl]; DL(O, )) and Woe D(L), Lwoe X= D(L) (see [19, Thm. 5.5]). Moreover,
using the estimates (see [19, 1])

II’- ell.(o(o,oo);o()) K, OStl--to

we can easily see that if tl- to and r are sufficiently small, then F(Y) c Y and F is a
contraction with constant a < 1, not depending on Wo, so that F has a unique fixed
point w in Y. It is also easy to show that in fact w is the unique solution of (A.1), and
that if Won e D(L)(n eta) are such that limn_ Ilwo- Wo IID( )=0, then, denoting by wn
the solution of (A.1) with initial value Won, we have limn_+ IIw-w IIc(t,o,,;o())-0.
Consider again the solution of (A.1)" we have W(tl)e D(L), so that w can be continued
to some interval It1, t2]. Set

z=sup{T>0; (1.3) has a solution in [0, T]}.

Then [0, z[ is the maximal interval of existence of the solution of (1.3). The last
statement may be proved as in 10, Thm. 4.11 ], with obvious modifications.

Proof of Proposition 1.2. For r/e ]0, o3[ let M(r/)>0 be such that

lit1- etLIIL(OL(O.o).O(L)) <-- M(q) e-’ forall t>0,

[le’L[IL(O(L)) <=M() e-"t forall t>0.

Fix 0<r/<r/l<o3 and let R,K>O be such that Ilxllo( )<-R llg(x)llo (o,o )
gllxll o( ). Let r<=R be such that (M(n)Kr(O)/(n-n))r<=r/3 (r denotes the
Euler Gamma Function). We shall show that, if Woe D(L) and Ilwollo()< r/3M(rl),
then Z(Wo)= +o and (1.7) holds. Assume by contradiction that r(Wo)< +o. Then,
setting

T= sup {t > 0, r(Wo) > 2t, w(s) e’ [[o(L)_-< r, 0_-< s -<_ t},

we have T < +oo, and [[w(T) e’r[[o(L)= r because of the continuity of w. Therefore

r-IIw(T) e’llo() <-M(n)llwollo()/ e(r-)Lg(w(s)) ds
D(L)

<=M(q)llwollo()+e’rM(nl) e-’h(r-s)(r-s)-lKr2 e-,ds

<_ r+ M(*ll)Kr2 e(-"+’)(r-s)( T- s)-1 ds =<-r.
-3 3

Hence Z(Wo) T= +o, and (1.7) holds with C(r/)= (3/2)M(r/).
ProofofProposition 1.3. The proof follows the same lines as in [3, Thms. 3.3, 3.4],

but is simpler because of the invariance properties of X/.
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(a) Set tO =sup {Re A; h o-,(L)}, w2= min {Re A; h cr(L)}, to3 max {Re A;
h try(L)}, and define the operators"

LI" D(L1) D(L) f3 X-- X-, Llx Lx,
(A.3)

L2." D(L2) X+ -> X+, L2x Lx.

Then DL,(O, )= DL(O, o)f)X-. For r/ ]0,-Wl[ let Ml(r/) > 0 be such that

Ile’,ll(o(,)><_M() e-’t, t-o
(A.4)

-<Ml(r/) e-n’ /t>0

and, for e > 0, let M2(e)> 0 be such that

(m.5)
Ile’ll(x+)_-< M2(e) e

e’ll(x+)_-< Ms(e) e

For p > 0 (to be chosen later) consider the system

( t) L1x(t) + g,(x(t), y(t)),
(A.6)

)(t) y(t)+ g(x(t), y(t)),

where

x(0) Xo,

y(0) =yo,

Xo P-Wo, Yo P+
Wo,

gl" D(L1) x X+ - D,( O, o), gl(x, y) P-g(x + q(y/p)y),

g2" D(L1) x X+ X+, g(x, y) P+g(x + (y/p)y)

and q" X+- R is a C function such that

0-<_@(x)-<_l Vx X+,
q(x) 1 if Ilxll--< 1/2, 0(x) 0 if Ilxll - 1.

System (A.6) is equivalent (setting x(t)= P-w(t), y(t)= P/w(t)) to (3.1) when
IIw(t)llo() is sufficiently small. Proposition 1.1 may be applied to system (A.6) to get
local existence and uniqueness of the solution. Let

K(p’=max{llOo (x,Y’ll II0 ’ ,Y’II
e(O(L,),OL,(O,oo))’ II Oy (x+,o,(o,))

(A.7) (x, y) ii(x, y)
(D(L),X+) (X+)

Then limp_o K(p) 0.

y e X+, x D(L1), llxllo,) o}.
It is easy to see (arguing as in the proof of Proposition 1.2) that there exist 15, C" > 0

such that for 0< t9 < 15 and Ilxollol)_-< p then IIx(t)llo,)_-< p for each [0, Z(Xo, yo)[.
This a priori estimate implies easily r(Xo, Yo)= +. Fixed such p and Xo, let => 0 and
let z(s, t)(s ) be the solution of the i.v.p.

,(s)= L2z(s)+ g2(O, z(s)), z(t)= y(t).
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Then for 0 <= s -<_ and e > 0

Ily(s)-z(s, t)l =llf e(-)[g2(x(o.),y(o.))-g2(O z(o., t))] do.II
----< M2(e) e’-)s-)K(p)(llx(r)llo,)+lly(r)-z(cr, t)ll) do’.

Therefore, by Gronwall’s Lemma

Ily(s)- z(s, t)ll--< M2(e)g(p) e

IIx(o’)llo(L1)do’, O<--_s<= t,

so that, since g(O, w(s, t)) O, we have, for r/ ]max {-o2, 0}, -tOll and e

[[enSg(x(s),_
(ollex(sll,(,+ M((:(ol e-/-(- ae,(,(o(,-

st

K(p) 1+ P IIx()e"llo(,, Ost
2+ B ot

if p is SO small that +B-e> M(e)K(p). Then we have (since B <-1)

Ile"x(t)l[o(l): en‘ e’qXo+ e(t-s)L’gl(X(s), y(s)) dsllo(,)

=< Ml(n)llxollD(t,)+ Ml(n-W’) K(p)(l MzK(P) ) Io2
-ld sup Ile"x()llo(,.

Ost

Choose p so small that

K(p)M, n 1 1+ 2,2 + e ="
Then ]]x(t)llDt, ]]n-w(t)[lot2M,() e-n’llXo[D, 2M,()
for 0 and the proof of (a) is finished.

(b) Let n ]0,-,[ and r ]0, eo(n)/2] (eo(n) is given in (a)).
Let X+ be compact and asymptotically stable for the semiflow in X+, and

assume diam r. For 8 > 0 define I(, 8) {y X+; dist (y, ) }. Then, if is
suciently small, say 8 , there exists a Lyapunov function V" I(,) such that

IV(y)- V(ff)llly-]] foranyy, ffI(O, ),

V(w(t))e-’V(w(O)) if w(0) I(, ),
a (dist (y, )) V(y) dist (y, ) for any y I(, ),

where a" [0, +[ [0, +[ is increasing, continuous and a(0)= 0.
Let us define a Lyapunov function for system (A.6)"

W:D(L,)xI(O; 8) [0, +[, W(x,y)=pllxl]- V(y),

where p > 1 will be chosen later. We have

(A.8) (dist ((x, y), {0} x )) W(x, y) p dist ((x, y), {0} x ),
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where --1()=+O--1() for so_->0, and the distance is in the norm ][(x,y)[[=
IlxllD(l / Ilyll, x e O(t,), y X+.

Let z(t) (t e R) be the solution of

z’(t) L2z(t)+ g2(0, z(t)), z(0)=yo.

Then for IlXolID> o(n)/2, Ilyollo> eo(r/)/2, yoe I(g, 1) and e >0, we have (using
Proposition 1.3(a) and Gronwall’s Lemma)

IIz(t)- y(t)ll <- Cl e’llXollD
where

Since

for all --> 0,

K (p M3( e Co( rlc, c2 K (p M3(e rl.

W(x(t), y(t))= V(z(t))+[V(y(t))- V(z(t))]+pIIx(t)IIDL),

for T>_-0and T<_-t<_-2Twehave

W(x(t), y(t)) <- e-TV(yo)+[C, eC2t + Co(rl)p e-’T]llXollD.
Let T> 0 be such that

-1(A.9) e T<__1/2, Co(n) e-T<--, a (e-Tg)<=g

and choose p so large that Cl eC2T<<-p/4; then W(x(t),y(t))<=1/2W(xo, Yo) for all
T, 2 T]. Then for - eo()

Xo D <-- e ^2Cl 2

and yoI(f,,) with Ilyoll-<eo()/2 we have, by (A.9) and Proposition 1.3(a),
Ilx(T) D()----< [IXolIo(), and

dist (y(T), f)=< IIy(T)- z(T)ll +dist (z(T), f)

<-_ c e=TIIxollD( / -’( V(z( T)))

<__-+a-(e-rg)<=g
2

so that we can repeat the previous argument replacing (Xo, Yo) by (x(T), y(T)). We get

nT<=t<-_(n+l)T, nW(x( t), y(t)) <- 2-" W(xo, Yo),

so that W(x(t), y(t)) =< 2 e-(’/T)lg2 W(xo, Yo) for all => T. This implies, together with
(A.5), that W is a Lyapunov function for system (A.6) and the conclusion follows, lq

ProofofProposition 1.4. Consider again system (A.6). In our cases we have gl 0.
Since the purely imaginary eigenvalues of L are semisimple, there exists M4> 0 such
that

Ile’L=IIL(X+)M4 ltR.

Therefore we have

Ily(t) D() cM4IIP/ woll o(,
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where c>0 is such that Ilyllo) cllyll for all y X+. For each a ]0,-sup {Re A; A
tr,(L)}[ and t ]0, r(w0)[ we have, by (A.4),

Ilx(t)llo<)--< Ml(a)llP-wollo<)

+ Ml(a)
F(0)

0 sup Ilgl(x(s)+y(s))llDO,)
Ol O<=s<=t

--< M ce )ll P-w0 o( 4
MI(a)F(O)

K(P)(oU IIx(s)IID<)+ cMaIIP/wollD<,,>).

Therefore for IlWolID<>P, where p is such that (Ml(a)r(O)/)g(p)<-1/2, we have

IIX(t)IID<) <--2M(’)IIP--WoIID<)+ CMalIP+wolID<), 0<- < ,
and the statement follows easily.

Evaluation of the eigenvalues of . For any A C, the equation A (, if)= (, )
is equivalent to

(i) (, )D(L), (ii) A= ,
(A.IO)

Each solution of (A.10) is a couple of C functions whose even order derivatives
vanish at x 0, x 1. Therefore (x) const, sin (h/l)x(O x l) for some h , and

( "h44h22h22
12 , 12(A.11) h+h + ]+ + =0

so that the eigenvalues of L are given by (2.15).
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SOME MATHEMATICAL ASPECTS ON A PROBLEM OF THE
OPTIMAL DESIGN OF A VIBRATING BEAM*

KJELL HOLM,KER]

Abstract. An optimal design problem for a vibrating beam is considered. The problem is to maximize
(with respect to a design function a) the smallest eigenvalue of a certain eigenvalue problem involving a
fourth order differential equation. There is no positive lower bound prescribed for a. Instead it is found
that the proper condition on a is that a certain integral should be convergent. It is shown that without this
condition the eigenvalue problem need not have any solution. On the other hand it is shown that for functions
a satisfying the condition there are eigenvalues and, furthermore, that there is an ao such that the smallest
eigenvalue is as large as possible. Finally, some necessary conditions satisfied by ao are derived in a rigorous
way.

Key words, optimal design, eigenvalue optimization, vibrating beam

AMS(MOS) subject classifications. 34B25, 49A40, 49B40, 73K12, 73K40

1. Introduction. Problems of optimal design of beams or plates have been much
studied in the engineering literature during the last decades, see e.g. [9], [7], [10] and
11] ([11] is a review paper with many references). In a mathematical formulation it

is often the question of maximizing (with respect to a "design variable") the least
eigenvalue of a certain eigenvalue problem involving a differential equation of the
second or fourth order. Some ofthe mathematical problems appearing are the questions
of existence of an optimal solution and of a rigorous derivation of the necessary
conditions (justifying the formal calculations in many papers). Existence proofs when
the design variable is bounded away from zero can be found in some papers, e.g. [8]
and [3]. In this paper, however, we will have no such restriction. Necessary conditions
for optimality for certain problems are derived in 1 and [2]. For eigenvalue problems
the question of differentiability of the least eigenvalue with respect to the design
variable is important; this is discussed in [6].

In this paper we will take up the problem from [9] and discuss the questions of
existence and necessary conditions. The problem in [9] is to find the optimal shape
of a simply supported vibrating beam. The equation of motion gives, after separation
of variables, the eigenvalue problem

d ( d2y]
dxz EI(x) -xZ,] o02pA(x)y, 0<x<L,

y(O)=y(L)=O, EI(x)y"(x)[,=o EI(x)y"(x)l,,: 0

where y is the deflection, L is the length of the beam, E is Young’s modulus, p is the
density, I(x) is the cross sectional moment of inertia, A(x) is the cross sectional area
and w is a natural frequency of the beam. We consider the volume of the beam to be
given

A(x) dx V,
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and we want to choose the cross section in such a way that the least natural frequency
becomes as large as possible. We will assume a relation between I(x) and A(x) of the
form

I(x)=c[A(x)]p

where p 1, 2, 3 are ofparticular interest (see [7]). Introduce the dimensionless variable
x/L and replace then : by x. The equations are then simplified to the following:

( aP(x) Aa(x)y, O<x<l(1.1a)
dx2 -x2]

(1.1b) y(0) y(1) 0,

(1.1c) oP(x)y"(X)[x=o ,’(x)y"(x)l,= =0,

o

where

A xL L to2pLp+
oz(x)=

V
A=

cEVP_1.

The function a is ->0, and we allow that a(x)=0 at some points, so that (1.1a) might
be singular. We shall first (in 2 and 3) consider the eigenvalue problem (1.1) for a
fixed a. It turns out that there exist eigenvalues if and only if

(1.3) x2(1-x a (x) dx<,

provided that a satisfies (1.2) and a -p is locally integrable in (0, 1).
In 4 we prove that, in the class of a’s satisfying (1.2) and (1.3), there exists an

ao such that the corresponding smallest eigenvalue A1 is maximal. Finally, in 5, we
derive some necessary conditions for optimality.

2. The eigenvalue problem. Let a:[0, 1]-->R be a measurable function satisfying

(2.1) (x) _-> 0 a.e., (x) dx <

(2.2) x2(1 -x)2a-p(x) dx <

and consider the eigenvalue problem (1.1).
In discussing this problem it is convenient to introduce some classes of-functions.
DEFINITION 2.1. (i) Let D be the class of all functions f:[0, 1]-->1 such that f’

exists on all [0, 1] and is absolutely continuous on [0, 1]. If fe D, it follows that f is
absolutely continuous on [0, 1], and f" exists a.e. and belongs to Ll(0, 1).

(ii) Let Dlo be the class of all functions f: [0, 1]--> N such that f is absolutely
continuous on [0, 1 ], f’ exists on (0, 1) and is absolutely continuous on closed subinter-
vals of (0, 1). Iffe Oloc, it follows that f’e LI(0 1) and f"e Ll,loc(0 1).

(iii) Let D be the class of all functions f:[0, 1]--> such that fe Dloc, f(0)=
f(1) =0, and aP/2f"e L2(0, 1).
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The eigenvalue problem consists of finding h and y # 0 such that y Dloc, aPy D,
and such that (1.1) is satisfied; this means that there exists a g D such that

tP(x)y"(x) g(x) a.e.,

(2.3) g"(x) Aa(x)y(x) a.e.,

y(0) y(1) 0, g(O) g(1) O.

If (in a formal calculation) (1.1) is multiplied by y and integrated, then after
partial integrations, taking (1.1b), (1.1c) into account, we find that A satisfies

I a"(x)[y"(x)]: dx

(If y satisfies the conditions above, this can be justified.)
In most treatments (see e.g. [9], [7], [11]) the eigenvalue problem is replaced by

the problem of minimizing this Rayleigh quotient. It is therefore of interest to show
that the minimum is attained for some y. The exact problem is to find the minimum of

I aP(x)[Y"(x)]2 dx
(2.4) R(y) i-di"d-
as y varies over D\{0}. One can show by direct methods that this problem has a
solution y. Then, as a consequence of the necessary conditions for minimum, one can
show that aPy" D and that (1.1) is satisfied (note in particular that (1.1c) results from
the necessary conditions). We shall however proceed differently and transform (1.1)
to an eigenvalue problem for an integral operator. The following lemma will then be
useful.

LEMMA 2.1. The differential equation

y"=f in (0, 1),
y(0) =y(1) 0

has the unique solution

(2.5) y(x)= h(x, t)f(t) dr, x[0, 1],

where

(2.6) h(x, t)={-(1-x) forO<=t<-x,
-x(1-t) forx<= t<= l,

(a) f6 LI(0, 1), in which case y6 D and o-p/2yG Lz(O, 1), or
(b) f =a-P/2v, where v L2(0, 1), in which case yD.
The proof consists of an easy verification, so we omit the details. Let us only

remark that we use that

(2.7) Ih(x, t)l-< min (x(1-x), t(1-t)),

and that the function t-- t(1-t)a-P/Z(t) belongs to L2(0, 1).
THEOREM 2.1. Let a satisfy (2.1) and (2.2). Then the eigenvalue problem (1.1) (or

(2.3)) has infinitely many eigenvalues, 0<AI=<A2 <-... The Rayleigh quotient (2.4)
attains its minimum A if and only ify is an eigenfunetion corresponding to A1. The least
eigenvalue A1 is simple and the corresponding eigenfunction can be chosen to be positive
in (0, 1).
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Proof. By a double application of Lemma 2.1 we see that a function y 0 such
that y Doc and aPy" D satisfies (1.1) if and only if

(2.8) y(x) A h(x, t)a-P(t) h(t, ’)c(’)y(’) d" dt.

We have then used that ta-P/E(t) h(t, )()y() d belongs to L2(0, 1). This fact
also implies that y D.

Let us introduce the integral operator K defined by

(2.9) (Kv)(x)= h(x, t)/2(x)a-/2(t)v(t) dt.

For the kernel

ks(x, t)= h(x, t)t l/2(x)a-P/2( t)

we have

k(x, t) dxdt a(x) dx" tE(1-t)Et-P(t) dt<c,

and therefore Ks is a Hilbert-Schmidt operator from L2(0 1) to L2(0 1). This means
in particular that Ks is compact. Its adjoint K* is defined by

(K*v)(x)= h(x, t)ce’/2(t)t-P/2(x)v(t) dt, ve L_(O, 1).

We see then that (2.8) can be written

(2.10) z=A(K,K*)z

where

z(x)=al/2(x)y(x).
Thus the eigenvalue problem (1.1) is equivalent to the eigenvalue problem (2.10) for
the compact selfadjoint operator KK*. From the general theory for such operators
we know that there are infinitely many eigenvalues 0 < A l_-

< AE--<’" ", each with finite
multiplicity.

By Lemma 2.1(b) there is a one-to-one correspondence between L(0, 1) and D
given by

(2.11) v oP/2y", y o-l/2K,/), /3 L2(0, 1), y D.
Since the eigenvalues of KK* are also the eigenvalues of K*K, we see from (2.4)
and (2.11) that

(2.12) min R(y)
v0 y#0

where I1" is the norm in L2(0, 1). Thus the Rayleigh quotient R(y) attains its minimum
for some Yo D\{0} and it is also easy to see that this happens if and only if Yo is an
eigenfunction corresponding to A1.

It follows from general properties for compact operators with positive kernels
that A1 is simple and that the corresponding eigenfunction y can be chosen such that
y(x)>0 a.e.; see e.g. [4, pp. 287-288]. But then (2.3) shows that y(x)>0 for all
x(0, 1). 1-]
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3. A nonexistence result. If condition (2.2) is not satisfied, then the analysis in 2
breaks down. Let us in this section assume that a(x)>-_O, a LI(0, 1), a -" Ll(a, b)
for each [a, b]c (0, 1), and x2(1-x)2a-p(x)dx=o. The problem of minimizing
R(y) over D\{0) still makes sense, but we shall show that it has no solution in this case.

Let, for 0 < , X be the characteristic function of the inteal , 1 ]. Define

va(x) -x(1 x)a-P/2(x)xa(x),

y(x) h(x, t)a-P/2( t)v( t) dt,

A x2(1 x)2a -p (x) dx v(x) dx.

It follows from Lemma 2.1(b) that y a-p/2v and y DX{0}. Let Xo (0, 1) be such
that y(xo)= maxxto,11 y(x). By using (2.6) and the fact that y(xo)= 0, we easily find
that y(xo)A. Since y 0, y is concave and

y(x) y(xo) --x for 0 x Xo,
Xo

1--x
ya(x) ya(Xo) for Xo x 1.

1 Xo

From this we find that a(x)y(x) dx ky(xo) for a ceain constant k > 0 (indepen-
dent of Xo). Therefore

x)2( x a 4
g(y) a(x)y(x) dx a(x)y(x) dx kA"

But A as 0+. Thus
inf R(y)=O.

yDa{0}

But R(y) can obviously not attain the value 0.

4. Maximizing the least eigenvalue. Now we want to let a vary in the class of
functions satisfying (2.1), (2.2) and (1.2), and we want to maximize the least eigenvalue
A1 of (1.1). We consider however also a slightly larger class.

Let, for p 1, Mv be the class of all measurable functions a [0, 1 such that

(4.) (x) e 0 a.e., 0< (x) dxN,

(4. ( x( -xl-(xl ax <.
Let be the class of those in for which I (x) dx 1.

For each e there are eigenvalues of the eigenvalue problem (1.1) (see 2),
and in paicular there is a smallest one given by (2.12); let us denote it by I().

The main result of this section is the following theorem. We prove it now for
p > 1, whereas the result for p 1 will be obtained in 5.
ToM 4.1. ere is an o such that

(o= sup (.

In the proof the following lemma will be used.
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LEMMA 4.1. Let (x, u) h (x, u) be afunction definedfor x [0, 1 ] and u I, where
I
_
R is a closed interval, with values in [0, 00]. Assume that h(., u) is measurable for

each u I, and that h (x,.) is continuous and convex for each x [0, 1 ]. If u, [0, 1] --> I,
n 1, 2, , is a sequence offunctions in Lr(0, 1) such that Un --> U weakly in Lr(0, 1) as

n --> 00 for some r, 1 <- r < 00, then u (x) I a.e., and

(4.3) h(x, u(x)) dx-<_ lim inf h(x, un(x)) dx.

A similar result can be found in [5, p. 7], so we only remark that the proof of
Lemma 4.1 is based on Mazur’s Theorem and Fatou’s Lemma.

In the proof of Theorem 4.1 we need an estimate of A (a) in terms of Ap(a). This
estimate is first proved in a separate lemma.

LEMMA 4.2. There is a constant C > 0 such that

1 C
<- ,X() <-

A,()- -[A,()]
for all a p.

Proof If Vo L2(O, 1)\{0} achieves minimum in (2.12), we get from the Cauchy-
Schwarz inequality, using (2.12), (2.9), (4.2) and (4.1), the following:

Vo Vo - >
1

To get an estimate of A (a) from above, choose

v(x) -x(1 x)a-P/2(x)
and define

-p/2(y(x) h(x, t)a t)v(t) dt.

Since v L2(0, 1), Lemma 2.1(b) shows that yD and-y"--ol-p/21.)<O. By the same
arguments as in 3 we obtain

(4.4)

and

y(xo) max y(x)>-1/2Ap(o),
x[0,1]

IIKvll2: a(x)y2(x) dx

(4.5)
>-yE(xo) x2 xEa(x) dx+(1-Xo)-2 (1-x)2a(x) dx

Now, by H6lder’s inequality

(xlaxxg-/ x(1 xl-"

so that
o

a(x) ax >
o

x2 x2 =x(3-’/’)A’/’(a) x’+’/’(1-x) ’/" dx
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and in the same way

(1-Xo) -9- (1-x)2a(x) dx>-(1-Xo)-(3-1/p)A-l/P(a) xl/P(1--X) I+I/p dx

From (4.4) and (4.5) we then obtain

IIKvll_-> kA2p-’/(a)
for some constant k > 0 (which is independent of Xo). For our choice of v, Ilvll= Ap(a),
so that

1
x(), I111 <

llKvl]= kA-’/’(a)"
Proof of eorem 4.1 for p > 1. Let p > 1 and

o sup (a).

From Lemma 4.2 we deduce that A;/P(a)C and A(a)Cp for all ap, and
therefore 0 < Ao <. Let a, be a maximizing sequence, i.e., A (a) Ao as n .
We may assume that A (a) Ao/2 for all n. Then Lemma 4.2 gives

[ C ]p/(p-1)(4.6) Ap(a,) C for all n.

Let ft, a 12 and g,(x)= x(1-x)flP(x). Then (4.1), (4.2) and (4.6) show that ft, and
g, are uniformly bounded in L2(0 1). Therefore we can find a subsequence (we may
assume that it is the original sequence) such that ft, fl and g, g weakly in L2(0 1)
as n for some fl 0 and g 0 in L2(0, 1). Define

g(x

By Lemma 4.1

Io’ Io(x)6(x) dx liif [x(1-x)]/Pg/P(x)6(x) dx= (x)6(x) dx

for all L2(0, 1) such that 0. Thus

O fl(x) fl(x) a.e.(4.7)

Lemma 4.1 also gives

(4.8) (x) dx <-_ lim inf fl(x) dx <= 1.

If we put ao =/3 2, (4.7), (4.8) and the fact that Ap(ao) Jo g(x) dx < show that
oE p.

Let Vo E L2(0, 1)\{0} .be such that

Ilooll =(4.9) A (o)
Kovoll =.

We want to show that A (a,) A (ao) as n . We have that

I1oll =(4.10) A(a,)
]IKVoile,
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and

(4.11)
(K.vo)(X)= tln/2(X) h(x, t)t-P/2(t)Vo(t) dt

h(x, t)
ft,(x)

t(1 t)
g,(t)Vo(t) dt= fl,(x)yn(x)

where y,(x) is defined as the integral. If we also define

y(x)
t(1 t)

g( t)Vo( t) dt h(x, t)tP/E( t)Vo( t) dt,

then, since gn->g weakly, yn(x)-->y(x) as n->c for each x[0, 1].
Let e, 0< e < 1, be arbitrary, and choose 6 > 0 such that

(4.12) ao(x)y2(x) dx>(1-e) ao(x)y2(x) dx=(1-e)llK,ovoll.
Now we have

ly.()l g.(t)[Vo(t)l dt< c/lluoll for all x [0, 1 ],

and (using (2.6))

ly’(x)l_-< t(1- t)a:P/2(t)[Vo(t)l dt<-- for all x e 6, 1 6 ],

so that the sequence {Yn} is uniformly bounded and equicontinuous on [6, 1-6].
The Ascoli-Arzelfi Theorem and the fact that y,(x) y(x) pointwise show that Yn Y
uniformly on [6, 1-6] as n. Using (4.11), Lemma 4.1, (4.7) and (4.12), we then get

lim inf ]IK Voll2->lim inf fl:Z(x)y](x) dx

1--,5

y2lim inf /3 2.(x) (x) dx

>- 2(x)y(x) dx >- fl(x)yE(x) dx

ao(x)y2(x) dx>(1-)llKovoll =.
From (4.10) and (4.9) we then get

Vo[[ 1 I1oll =Ao lim A (an) ----< lim sup <. . Ilgooll =-- 1- e IIKooll =
1

,X(o).
l--e

But e >0 is arbitrary, so therefore A(ao)= Ao= supap A(a).
From the fact that A(/Zao)=/xP-lA(ao) for > 1, we find that ao(X) dx= 1, so

that ao M.
Let us also remark that in fact fl and ft, fl strongly in L2(O, 1). We have

Io’ Io1= ao(x) dx= flE(x) dx (x) dx

_-< lim inf fl2n(X) dx < lim sup fl](x) dx < 1,

so that/3(x) fl(x) a.e. and Ilflnl] --> 11/3ll as n ->o. This together with the weak conver-
gence of/3, towards/3 implies strong convergence. [3
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that
5. Necessary conditions. Assume that ao M, p _>- 1 and Vo L2(0, 1)\{0} are such

ho=h(ao)=maxh(a)= IIvll2 min Ilvll:
IIK.ovoll = v   (o,,)IIK.ovll ="

vO

Let 8 > 0 be arbitrary. Put

18 {x [0, 1]" ao(X) _-> }

and let b" [0, 1]- R be an arbitrary measurable function such that [(x)l-<- 1 for all
b(x) --0 for x [0, 1]\18, b(x) dx =0, and define

a(x) ao(X)+ e(x) for

It follows that % M. We consider the perturbed operator H K* K and find
that its kernel h(x, t) can be expanded in a convergent power series

h(x, t)= ho(x, t)+ eh(1)(x, t)+. .+ e’h(’)(x, t)+. for

where

[h(’)(x, t)[-< x(1-x)affP/2(x) t(1- t)affP/2(t) K"

for some constant K > O. For h( we get

h(1)(x, t) a-P/2(x)aP/:(t)
(5.1)

h(x, s)h(t, s)dp(s) ds-- Lo(X) + ao(t)g
ao(s)h(x, s)h(t, s) ds

Let h(’)(x, t) be the kernel of a selfadjoint Hilbert-Schmidt operator H(’) from L:(0, 1)
to L2(0, l). We can now apply a theorem of Rellich (see [13, 2] or [4, pp. 171-172])
which says that the eigenvalue /z=h-l(a,) of H and a suitable corresponding
eigenfunction v depend analytically on e (note that/Zo h is a simple eigenvalue
according to Theorem 2.1). Write

H=Ho+eH(1)+’’’, v,=vo+ev()+’’" and /z=/Zo+e/z(1)+...
where we assume that [[Vo[] 1. By identifying the coefficients of e in the equation
Hv tz,v, we get, after scalar multiplication by Vo

J(1) (H()Vo, Vo).

From the extremal property of Ao we get O=(d/de)txl=o=tX1, so that
(HVo, Vo) 0. From (5.1) we obtain after some computations

(5.2) 0= (Hl)vo, Vo)=
ao(X) [(Kv)2(x)-PtZv(x)] dx.

Now yo=a/2Kovo is an eigenfunction of (1.1) with a =ao corresponding to the
eigenvalue Ao =/z1. Since (5.2) holds for all b of the form described above, we get

(5.3) y(x ptxoa’(x)v(x) -a

a.e. on Is, where a is a constant. Since ao(X)> 0 a.e. on [0, 1], and 6 > 0 is arbitrary,
(5.3) holds a.e. on [0, 1]. If (5.3) is multiplied by ao and integrated, we get

a=(p-1)llr.oVoll:>-_O.
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Since y Ol-P/21)O, we find that Yo must satisfy

pag-l(x)y’E(x)- Aoyg(x) k a.e.,(5.4)

where

k (p- 1)Ao ao(x)y2o(X) dx.

Equations (5.4) and (5.5) constitute the necessary conditions for optimality for
our problem. They can be utilized to devise a numerical algorithm as in [7] and [9].
From them we can also obtain more information on the behavior of ao and yo. We
consider now the case p > 1, where we know that an optimal ao exists. From (2.3) we
get

(5.6)

(5.7)

(.8)

a(x)yg(x) g(x) a.e.,

g"(x) hoao(X)yo(x) a.e.,

g(0) g(1) 0,

for some g D. From Theorem 2.1 we know that we may assume that yo(x)>0 in
(0, 1). Then (5.7) and (5.8) imply that g(x)< 0 in (0, 1). From (5.4)-(5.6) we get

[ pg(x) ] /(p+’(5.9) ao(X)
k + Aoyg(x) where k > 0.

We can redefine ao on a set of measure zero so that (5.9) holds for all x. Then we see
that ao is continuous on [0, 1] and positive in (0, 1). Combining (5.7) and (5.9) we
find that g satisfies the equation

(5.10) g"(x) O(x)[g2(x)] U(p+I)

for some function O continuous on [0, 1]. We want to prove that g’(0) 0. Assume
g’(0)=0. Then (5.10) implies that [g(x)l<-C x2(p+/(p- for some constant C>0.
From (5.6) and (5.9) we then get y’(x)<=-Cx-2, and hence yo(x)<= C In x + C in a
neighborhood of 0, for certain constants C > 0 and C2, and that is impossible. Thus
g’(0) 0. Then g(x)= O(x) as x-0, and from (5.9) and (5.6) we get

Oo(X) O(x/(p+) as x--> O,

and y’(x)= O(x-(p-I/(P+), so that yg e Lx(O, 1/2) and

yo(x) y’o(O)x + O(x(p+3)/(p+I)) as x- 0.

The behavior at x 1 is similar.
We can now settle the question of existence in the case p 1, which was left open

in the proof of Theorem 4.1. If there is a solution for p 1, then ho, ao and Yo must
satisfy (5.6)-(5.8) and

yg2(x) Aoy2o(X).

As we noted above, (5.6) implies that Yo and y are of opposite sign, so that

(5.11) y(x) -VoYo(X), yo(0) yo(1 =0,

which has the solution ;to r4, yo(x)= cl sin rx, cl S0. For g we obtain the same
equation, so that g(x) c2 sin 7rx, c2 0, and ao(X) g(x)/y’(x) -c:z/(.a’:Zc) c3.
The condition ao(X) dx 1 gives c3 1.
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By an argument partly inspired by 12] we can show that the necessary conditions,
which Ao, ao and Yo satisfy, also are sufficient, i.e., that Co(X)-= 1 really is optimal. To
that end, consider the Rayleigh quotient

g(c, y) Ji a(x)[y"(x)]2 dx

where t , y D\{0}. Let y D\{0} be such that

A(a) g(a, y)= min g(c,y).
yeDa\{0}

Since yg is bounded, yo D for all a (see Definition 2.1), so that

g(a, y) <- g(a, yo) Ao;

in the last step we used (5.11 ). Since Ao A (ao) by construction, we see that A (a) _-< A (ao)
for all c , which means that ao is optimal.
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A NOTE ON THE IDENTIFIABILITY OF DISTRIBUTED
PARAMETERS IN ELLIPTIC EQUATIONS*

CARMEN CHICONE AND JORGEN GERLACHf

Abstract. For u and f given smooth functions on a bounded domain fl we consider solutions of the
PDE -div (aV u) =f for the parameter a. This problem arises in the identification of the flow of groundwater.
We say a is identifiable if, for given u and f, a is unique. Our main result shows that a is identifiable on
the points in ft which are the closure of the interior of the set of points which stay in f for all positive
time (or negative time) under the flow of the gradient field V u. We also show a is identifiable on fl if the
set of critical points of u has nonempty interior and the co-normal derivative of u is specified on OfL

Key words, parameter identification, uniqueness, inverse problems

AMS(MOS) subject classifications. 35R30, 76S05

1. Introduction. In this paper we investigate the following situation" A bounded
region l)c R" with smooth boundary 01) and a function u C2(l)) are given. We
consider solutions a(x) of the equation

(1) div (aVu) O,

where a cl(l)). Obviously, a(x)=-O solves (1). The main question which we are
going to address in this note is the following" What are the conditions on the function
u(x) so that a(x)= 0 is the only solution of (1)?

Background. This problem arises in the identification of the flow of groundwater.
If we denote the pressure head of an aquifer by u(x), its transmissivity by a(x), and
if we denote external sources such as wells by f(x), we obtain the equation

(2) -div(aVu)=f

in the case of a steady flow. The actual flow rates q are then calculated from q aV u.
Suppose that f and u are known everywhere, and suppose that (2) is satisfied for two
transmissivity functions al(x) and aE(x); then their difference a(x):= a(x)-a2(x)
satisfies (1). If a(x)=-0 is the only possible solution of (1), then the data u and f can
be explained by exactly one transmissivity function. In this case we call the parameter
a(x) identifiable from the data u. In 4 we will consider test conditions under which
a (x) is identifiable.

A related question can be asked from the point of view of dynamical systems"
Suppose we are given a gradient flow Vu; when is it possible to multiply the gradient
field by a nonzero function a(x) so that the resulting vector field v aVu is divergence
free?

Uniqueness of a(x) plays an important role in numerical schemes for parameter
identifications, e.g., this assumption is needed for the methods suggested by Kravaris
and Seinfeld [7], and Gerlach and Guenther [4]. Kitamura and Nakagiri [6] study the
identifiability for a one-dimensional time dependent problem, and Kunisch and White
[9] investigate the identifiability of a discretized version of (2) for several finite element
approximations for one space dimension. In higher dimensions Falk [3] considers the
case where the flow satisfies Vu.v-> tr > 0 for some fixed vector v R", and some
constant or, and uses inflow data for stability estimates. Similarly, Richter 11 considers

* Received by the editors May 7, 1986; accepted for publication (in revised form) October 29, 1986.
Department of Mathematics, University of Missouri, Columbia, Missouri 65211.
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the special cases where [V u] > 0, Au > 0, and max {IV ul, hu} > 0, and uses inflow data
on the boundary for estimates. Alessandrini considers the uniqueness problem in two
spatial variables with u 0 on 01"I for f 0 [2], and f 8(x x0) 1 ]. In this paper we
obtain uniqueness of the parameter on subregions of lI which are solely determined
by the observation u. In particular, uniqueness is not linked to flow data on the
boundary.

2. Notation and preliminaries. We first note two special cases of the identification
problem:

(1) If u is constant in a subregion of l-I, the gradient will vanish identically there,
and a(x) can be chosen arbitrarily.

(2) If u is harmonic on fl, (1) will be satisfied for any constant function a(x).
In addition we observe that (1) can be viewed as a first-order partial differential

equation for a(x), and we can rewrite it in the form

(3) Va. Vu+aAu=O.

The gradient field of u defines the characteristic curves for this equation, and a(x)
could be found by integration along the characteristics, provided Cauchy data for a
are known along a noncharacteristic manifold. The linear character of (3) implies that
a(x) does not change sign along characteristic curves, and in particular, if a(P)= 0
at some point P, it vanishes identically along the characteristic through that point. We
also recall that the function u itself is strictly increasing along flow lines of the gradient
field.

In what follows lI is an open, bounded and connected subset of R with smooth
boundary 01). The function u(x) belongs to C2(1), i.e., there exists an open set D
such that 1)c D and u C2(D). The set of all critical points of u is denoted by C.

Next we consider the gradient field of u. Its trajectories are denoted by dt(P),
i.e., if x(t) is a solution of

(4) dX=vu, x(0) P,
dt

we write dt(P):= x(t). It is understood that we take the maximal t-intervals so that
dt(P) e D.

Now we define subsets of f by

fl+:= {Pf: r,(P)D- for some t>0},

f_:={Pf: r,(P)D-f for some t<0},

fo := f+ f’) f_.

Any one of these sets may be empty, or may be equal to f, and none of them contains
critical points of u. The complements of I+ and f_ are denoted in the following way:

fy:=I-f+ and fb :=l-f--

The set fly contains all points P of I for which the trajectories b,(P) remain in f for
all > 0. In particular, the singular points of u are contained in the intersection of fy
and Ib.

The structure of the sets just defined is important to our considerations. We need
the following easy proposition, which we state without proof.

PROPOSITION 1. f+, _, and fo are relatively open in f. Thus, also ff, b, and
fl are closed subsets of R.
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DEFINITION. The parameter a(x) CI(I)) is called identifiable at a point P 1
from the data u(x), if for any solution a(x) of the equation div(aVu)-0 on 12
necessarily a(P)-0. We call the parameter identifiable on S c12, if it is identifiable
for all P S.

PROPOSITION 2. a(x) is not identifiable in 12o.
Proof. Let P 1o. By Proposition 1 and the fact that P is a nonsingular point of

u, there is an open (n- 1)-dimensional disk S c 12o of radius r > 0 contained in the
level set M of u through P.

Let f: S R be a smooth bump function with 0_-<f(s)_-< 1, and f-= 0 on S- So,
where So is the disk in M of radius r/2. We define a function a(x) in 12 as follows"
If for some we have Q= ckt(Po), where Poe S, we define a(Q) as a(t), where a(’)
is the solution of (3) with initial value a(O)=f(Po). Else we set a(Q)-0. It follows
that in 12, a satisfies div (aVu) =0, and a(P)- 1. Thus, a is not identifiable at P, and
P was arbitrary in 12o. [3

3. The main result. In the previous part we have seen that a(x) is not identifiable
on 12o, and in the introduction it was pointed out that a(x) is not identifiable in regions
where u(x) is identically constant. Our goal now is to show that a(x) is identifiable
in all other parts of 12. To this end we set

121 := 1) 12o and l)z :"- 121 C.

LEMMA 1. Let Vo 12 be any volume, and denote by V(t) the volume which is
obtained from Vo by following the gradient flow for time t, i.e.

Then

V(t) := {P" ::IQ Vo with P cht( Q)}.

a(X) dx Iv a(x) dx

for all for which V(t) .
Proof We apply the Reynolds transport theorem (cf. [10, p. 443]) and the diver-

gence theorem to obtain the following:

dt () (t)
O, a(x) dx + Iv(,) aVu. ndx

fv div(aVu) dx=O.
(t)

Therefore the integral of a(x) over any volume which follows the flow remains
constant.

LEMMA 2. Suppose there exists an open set U 122, such that either U 12b or
U c12f. Then a =- O on U.

Proof. We assume P U 12f, and a(P)> 0, the other cases being similar.
Since a is continuous, there is an open set W 122 on which a is everywhere

positive. Moreover, since P is not a critical point of u, the level set of u through P is
a smooth section for the flow qbt. Let S denote an open disk in this level set containing
P and contained in W. Also define Rs := [s, o) and/ := [0, s). The map b: Rs x S-->
given by b(t, Q)= b,(Q) is a diffeomorphism onto its image which we denote by
Moreover, by the remarks following (3), a is positive on V. If we set Ws := b(Is x S),
we find that Vs U Ws Vo.
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Now since Vs is an open subset of the bounded region 1), a(x) is integrable over
V and, in fact, its integral over V is a finite positive number. But clearly

fv, a(x) dX+fw a(x)dx=fvoa(X) dx,

so

dX < Ivoa(X) dx,

which contradicts Lemma 1. (See Fig. 1).
THEOIEM 1. a(x) is identifiable on the closure of int (2).
Proof Suppose int (12) is not empty, and let P belong to this set. If there exists

a neighborhood U of P which belongs entirely to either Of or lb, then a(P)=0 by
virtue of Lemma 2. Otherwise, every open neighborhood U of P contains points of

ff and fb.
Let us consider the remaining case, and assume WLOG that P flffq 1. Let U

be an open neighborhood of P and set V := U fq f+ (recall that 11+ is the complement
of 12f, and relatively open by Proposition 1). Then V is not empty, open, and P 0 V.
Therefore a(x) vanishes on V due to Lemma 2, a(x) being continuous, and P
implies a (P) 0.

To illustrate Proposition 2 and Theorem 1, consider the following simple example.
Let 1" denote the interior of the unit disk in R2 and let u x3/3-y2/2. The phase
portrait of 7 u, shown in Fig. 2, is easily described since the origin is the only stationary
point and it is a saddle node.

Now, in our notation, the portion of the region f in the closed left half-plane
together with the positive x-axis is 12, and the portion of the region f in the open
first and fourth quadrants is 1"o. Thus, by our theorems, the parameter a in div (aVu) 0
is identifiable in the closed left half-plane, and not identifiable on the open first and
fourth quadrants. However, in this example, we can make explicit calculations to
illustrate our results. Moreover, we can see that a is not identifiable at points in
along the positive x-axis. Hence we cannot replace the closure of int (f) by fl2 in
Theorem 1.

FIG. 1. Section S and "vortex" tube given by the gradient flow of u.
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-1

FIG. 2. Phase portrait for the gradient of u x3/3- y2/2.

For the calculations just consider the PDE for a(x, y) given by div (aVu)=0 as
the first order PDE

X2ax yay + (2x -1)a O,
which has the general solution

a(x, y) f(y/ e’/X)/ (x2 e l/x)
for any smooth functions f, where fl is defined for points in the left half-plane, and
f2 for points in the right half-plane subject only to the constraint that a(x, y) be smooth
on the y-axis.

However, for any choice of fl nonvanishing, a(x, y) will fail to be continuous at
the origin. To see this, observe that the characteristic curves of the PDE are given by
y=ce1Ix. Thus, to have a(x,y) defined continuously at the origin, the limit of
fl(c)/(x2e l/x) must be finite as x-0-. But the only way to insure this is to take f --0.
Therefore, any solution a(x, y) must vanish in the closed left half-plane, and a(x, y)
is identifiable there as predicted by Theorem 1.

To see that points in the right half-plane are not identifiable we may choose fl --0,
and f2 1, so

2e
/x x>0,

a(x, y)
O, x <--_ O.

We obtain a (x, y) as a smooth parameter which is nonzero in the open right half-plane
(including the positive x-axis) as predicted by Proposition 2.

4. Test conditions. In practice the function u is not arbitrary. It is obtained from
the (unknown) parameter a(x) and the function f(x) as a solution of (2)

-div (aVu) f
on 1) with appropriate boundary conditions. While for the well-posedness of this
problem it is necessary that a(x)>-ao> 0, we may drop this last requirement in our
approach. We assume that the functions a, u and f are given so that (2) is satisfied,
and ask for conditions which imply that a is unique.

In this section we will use the term "identifiable" in a slightly modified way. For
fixed f and u the parameter a is called identifiable at a point P e f if any parameter
which satisfies (2), with possibly prescribed Cauchy data, agrees with a at the point
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P. Identifiability on subsets of 12 is defined similarly. The connection to our original
definition becomes obvious when we consider the difference of two solutions for a.

PROPOSITION 3. Suppose a is a solution of (2), satisfying a(x)>= a0>0, and no
Cauchy data for a are prescribed. Then iff vanishes on 12, a is not identifiable on 12.

The proof of this result is trivial. However, Proposition 3 clearly shows that no
information about the flow rates q- aVu can be obtained if the rates at which water
is added to or taken from the aquifer are identically zero throughout the region 12. If
f vanishes on a subregion U of 12, the argument in the proof cannot be repeated
directly without introducing discontinuities if U is adjacent to a region on which a is
identifiable.

PROPOSITION 4. Let u be a solution of (2) with u =- Uo on 012, where Uo is a constant,
and suppose that int (C)- . Then a is identifiable on 12.

Proofi Let P 12, and assume that P is not a critical point of u. Then the trajectory
bt(P) contains at most one point of 912, since u increases along any trajectory, and u
is constant on the boundary. Therefore 12o , 12 121 and 122 12 C. Thus int (122)
12-C, and the closure of int (122) is all of 12, since int (C)- . The identifiability of
a on 12 now follows from Theorem 1.

PROPOSITION 5. Let u be a solution of (2) with aOu/On g on 012, and assume that
int C)=. Then a is identifiable on

Proof. Suppose we have two functions al(x), and a2(x which meet the conditions
stated in the hypotheses; then their difference a(x):= al(x) a2(x) satisfies div (aVu)
0 on 12. Also aOu/On =0 on 012.

Suppose P 12+ LI fl_, and assume P 12+, the case P 12_ being similar. Then
there is a point Q 012 such that Q- bt(P) and bs(Q) (D- 12) for small s > 0.

There are two cases. First suppose a(Q)= 0. Since a satisfies the linear equation
(3) along bt(Q) it follows that a(P)- 0. If a(Q) 0, we find a neighborhood U of Q
on 012 on which a is nonzero. Hence Ou/cgn =- 0 on U. But in this case bt(t) will remain
in U f’) 012, which contradicts the choice of Q. Hence we have shown that a(P)=0 on
12+ [_J fl_, and since 12o c l-l+ (.J 12_, it follows that a--0 on 12o.

To complete the proof, we recall that Theorem 1 implies a--0 on the closure of
int (122). Since 12 12o (-J 122 [-J C, and int (C) , the continuity of a(x) implies a(x) =- 0
on 12.

Proposition 5 agrees with a result of Falk’s [3] without using the assumption that
Vu. v-> r > 0 on 12 for some fixed vector v and a constant or.
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EXISTENCE OF GENERALIZED SOLUTIONS OF A NONLINEAR
DIFFUSION CAUCHY PROBLEM*

CARMEN CORTAZAR" AND MANUEL ELGUETA

Abstract. In this paper we prove the existence of a generalized solution of the initial value problem
Ou/Ot =O/Ox (u, O,(u)/Ox); u(x, O)- Uo(X) and the uniqueness of such a solution under certain conditions.

Key words, existence, parabolic, nonlinear, Cauchy problem

AMS(MOS) subject classifications. 35K65, 35D05

1. Introduction. In this note we prove the existence of at least one generalized
solution of the initial value problem

Ou 0
u,(1.1)

Ot -Ox Ox

(1.2) u(x,O)=f(x).

This is a generalization of the equation Ou/Ot =02E(u)/Ox2 that includes Ou/Ot
olox(louloxl ’- ou/ x and Ou/Ot--O/Ox(lOuX/OxJN-10u/Ox).

By a generalized solution to the above problem we understand a function u(x, t)
defined on S= x [0, ) so that

(i) u(x, t) is continuous in S x [0, o);
(ii) OE(u)/Ox, which exists in the sense of distributions, belongs to L;

(iii) I f [u"-(u’E(u))’x]
+I+f(x)dp(x,O)dx=O_ lbC=(S).

Throughout this paper the functions [0, c) x R R and E [0, ) [0, o) will
satisfy

(1.3) cl([o, oo)x []), cl([o, oo)), _. C2([0, oo)),

(1.4)
Yl < Y2:=(z, Yl) < Ii(z, Y2) Vz [0, 00),

(z,-y)=-(z,y) V(z, y) [0, c) x ,
(1.5) there exist constants al > 0, a2 > 0, /3 > 0, C > 0 and a function ff

C([0, )), (s) > 0 for all s > 0 and o l/%(s)E’(s)s ds < c so that
I(z, y)l<-,(z)lyl% if lyl<- and I(z, y)l_-> Clyl if lyl->fl,

(1.6) E’(s)->0 and E’(s)>0 if s>0.

We will produce a generalized solution to problem (1.1), (1.2) as the limit of
classical solutions of strictly parabolic problems that converge in a suitable way to

* Received by the editors March 15, 1984; accepted for publication June 19, 1986. This work was
supported in part by Direcci6n de Investigaci6n de la Universidad Cat61ica de Chile through DIUC Grant
and by Fondo Nacional de Desarrollo Cientifico y Tecnol6gico.

f Universidad Cat61ica de Chile, Facultad de Matemfiticas, Casilla l14-D, Santiago, Chile.
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problem (1.1), (1.2). Namely, for n 0, 1, 2,. ., let , [0, oo) x R --> R and E, [0, oo) -->

[0, o) be functions that satisfy hypotheses (1.3)-(1.6) with the constants al, a2,/3, C
and the function q, independent of n, and such that E, C2([0, oo)). Assume moreover
that

(1.7)

(1.8)

(1.9)

(1.10)

and

(1.11)

(1.12)

(1.13)

OdP"(z, y)>=a,O
Oy

E’,(s)>-_a,O tn,

dpo(Z y) >- dp,(z, y)

’o(s) >- ’.(s) vs >- o,
y=>0, n=0,1,2,...,

n =0, 1, 2,...,

,(z, y) --> (z, y) as n --> +oo uniformly on compact subsets,

E’,(s) - E’(s) as n +o uniformly on compact subsets and ,(0) - E(0)
as n --)

Let f, : ->R so that f, ->f on LI() as n --> +oo and I]f,(x)ll -< M < oo
with M independent of n. Let u, (x, t) be the solution in S of the strictly
parabolic problem,

Ou 0
u,

Ot Ox Ox

(1.2), u(x,O)=f,(x).

(For the existence of such a solution see [13].) We will refer to (1.1),, (1.2), as an
approximating sequence to problem (1.1), (1.2).

More precisely we will prove the following.
THEOREM 1. Let u, (x, t) be a solution ofproblem (1.1),, (1.2), with dp,, ,, and

f, as in the preceding paragraph and such that

(1.14)

with P independent ofn. Then there exists a subsequence of { u,, x, )} which converges
uniformly on compact subsets ofS to a generalized solution u(x, t) ofproblem (1.1), (1.2).
Moreover, for a fixed >- 0 the functions u,(., t) converge to u(., t) in LI(N).

As a corollary we obtain the following existence result.
COROLLARY 1. If and E satisfy hypotheses (1.3)-(1.7) andf, Of/Ox, oEf/ox2 and

O2,(f)/Ox2 belong to LI(N) then the initial value problem (1.1), (1.2) has at least a
generalized solution in S.

Related existence results appear in [4], [6], [7], and [13]-[15].
The next theorem shows that no matter which sequence of approximating problems

is taken, the solution we obtain is the same. In particular this proves that the sequence
{u, (x, t)},__ of Theorem 1 itself converges to a generalized solution of problem (1.1),
(1.2).

THEOREM 2. Let (i), ,(,), f(,i)i= 1, 2; n =0,. ., be sequences offunctions that
satisfy hypotheses (1.3)-(1.14).

Let u 0 x, t) 1, 2 be defined by

((x, t)u()(x, t)= lim u.
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where ui)(x, t) is the solution ofproblem

Ou_ 0 ,(ni) U, U(X, O) f(ni)(X).
Ot Ox Ox

Then u(1)(x, t)= u(2)(x, t) for all (x, t) S.
Although we have not been able to prove uniqueness of the generalized solution

of problem (1.1), (1.2) we have the following uniqueness theorem.
THEOREM 3. Let u(x, t) and v(x, t) be two generalized solutions ofproblem (1.1),

(1.2). In addition to hypotheses (1.3)-(1.7) assume that C([0, oo)xN),
C[O, )) and 0/Oy(z, y) a > 0, for all (z, y) 0, ) x. en u v.

For some uniqueness results see [3], [5] and [15].
We would like to note that several propeies of the solutions of strictly parabolic

problems are inherited by the limit solution given by Theorem 1, among them the
comparison theorems as they appear in [8]. This permits us, using the same techniques
as in [9] and [12], to study asymptotic behaviour of the solutions so obtained. The
details will appear somewhere else.

2. Proof of Theorem 1. Let u,(x, t) be the solution of problem (1.1),, (1.2),; it is
known that these are classical solutions. Since [u(., .)ll IIf M we obtain, by
(1.10), .))libido(M). We will prove now that the sequence E,(u,) is
equicontinuous in S.

By Theorem 1 of [8] and (1.14) we get

u, f P Vn.
OX OX

Therefore

n Un -P
OX

and, by (1.5), recalling that the constants do not depend on n, we obtain

-:-:7--(u")ox <- c Vn >-o.

Hence, for a fixed t, Xn(u,(’, t)) is Lipschitz continuous in x, with Lipschitz
constant C independent of and n.

On the other hand, since the solution u, (x, t) is given by a contraction semigroup,

Ilun(’, t,)- Un(’, tz)l]l N P It1- t[

(see [8], [13]).
Therefore, by (1.10),

IIn(U(., tl))--(Un(’, tz))l[ C. e Its- tzl.
This, and the uniform Lipschitz continuity in x, imply by a standard argument that
{2n(U)}=O is equicontinuous in S.

Now the Ascoli-Arzela Theorem gives a subsequence {Z(Un)}0 and hence a
subsequence {Un}o that converges uniformly on compact subsets of S to a continuous
function u. An immediate consequence of this is that O2n(U)/Ox converges weakly
to O2(u)/Ox. Since ]]O2n(Un)/Ox]] are uniformly bounded we get O2(u)/Oxe L.
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We will now prove that u(x, t) satisfies (iii) of the definition of a generalized
solution.

We define

H.(z, rl) yC.(z, y) rl and H(z, rl) yC(z, y) rl.

Now, since for a fixed t,

0
.k u.k, (.,t) <-P

OX

by the inbedding [11, Thm. 11.2, p. 31], we have that for a fixed interval [-A, A]
there exists a subsequence {nk,}k=O of {nk} SO that

.k, unk, (. t)l(" t)
OX

as k’- +c in LI[-A, A] and so we can extract another subsequence {nk,,} so that

r/nk,,( ", t) *,w, u-k,,, X ] (’’ t)--> r/(’, t)

as k" +oo a.e. in [-A, A]. But

a;’nk,,(Unk,,) (X, t)= Hnk,,(Unk,,, rink,,)
OX

and if we let k"-* +o, since

weakly as k" +c, we get

o(u)
Ox

So

and

Onk,,( Unk,,) O,(U
OX OX

(x, t) H(u, /)(x, t) a.e. in I-A, A].

/ O,(u)
(x, t)= [u(x, t), (x, t)| a.e. in I-A, A]

\ Ou /

Ox
(’,t) t:I) u(’,t),0’(U)0x (’,t)

as k" +o in LI([-A, A]).
Therefore the same is true for the whole subsequence {u,k}=l. Since

the dominated convergence theorem implies that -k (u-k, 0E-k (u.k)/Ox) converges to
(u, OE(u)/Ox) in LI([-A, A] x [0, T]) for our rectangle [-A, A] x [0, T].

Finally, letting k +oo in

we obtain that u(x, t) is a generalized solution of (1.1), (1.2).
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We have proved that the subsequence {u,k(x, )}k=l converges uniformly on
compact subsets to a generalized solution of problem (1.1), (1.2). It remains to prove

,t Lthat {uk(. )}= converges in () to u(., t). Now we need the following lemma.
LEMM 1. Let u(x, t) be a solution ofproblem (1.1), (1.2). Then given 0 and

T 0 there exists A 0 so that

u,(y, dy<-e Vn, Vte[0, T].t)
yl->a

Proof The main tool in the proof is the comparison theorem [8, Thm. 3] (see also
[16]).

We prove first the case f =f C. In this case let g C symmetric with respect
to x- 0, increasing for x _-<0 and f(x)<-_ g(x) for all x.

Let v(x, t)n-O, 1, 2,..., be the solution of

Ov 0
dp v, v(x, O) g(x)

Ot Ox Ox

According to the above-mentioned comparison theorem, we have

f,yl>=A tln(y,t)dy<=,l>=A )n(Y, t)dy<=Ilyl>=A )0(Y, t)<=yl>__A t(y’ T)dy.

As Vo(’, T) LI() the lemma is proved in the case fn =f C. The general case
follows now from the well-known fact that

u,(-, t)- a,(., t)ll, --< u,(., 0)- a,(., 0)11,
where un and fin are solutions of (1.1)n. This ends the proof of Lemma 1.

Lemma 1 and the fact that u,--> u uniformly on compact subsets of S imply that
un( ", t)--> u(., t) in LI(). This proves Theorem 1.

Remark. We would like to observe that an alternative proof to Theorem 1 could
be obtained by using nonlinear semigroup theory, in particular P. Benilan’s result that
states that if An, n 1, 2,..., o is an m-accretive operator in a Banach space and
A,-A as n +c in a suitable way; then for the corresponding semigroups Sn(t)
one has S,(t) So(t) as n- +c. For a precise statement of this result see [1], [2] or
[10].

Proof of Corollary 1. From the hypothesis it is easy to construct sequences ’I’n,
E that satisfy the requirements of Theorem 1 with fn =f, for all n.

3. Proof of Theorem 2. First we need the following lemma.
LEMMA 2. Let u(x, t) be a solution of problem (1.1)n, (1.2)n and assume that

O ( a <-f(x), for all x I-A, A] for all n. Then given T 0 there exists b 0 independent
of n so that un (x, t) b for all (x, t) I-A, A] x [0, T].

Proof. Let g be C, symmetric with respect to -A increasing for x <-_ -A, g(-A)
O, g(x)<-f(x) for all x.

Let v(x, t) be a solution of (1.1)n with initial condition g. The comparison theorem
([8], [16]) implies

I]Vn(y,t)<=I]vo(y, T) Vx<=-A, Vt[O, T]

Therefore, since --A Vn - V0 - g,

vn(y, t) dy >-_ vo(y, T) dy Vx <- -A.
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Hence

vn(-A, t)>- Vo(-A, T).

Pointwise comparison (see [8], [13]) gives

Similarly,

u,,(-A, t) >: Vo(-A, T) > O.

/(A, T) > 0u,,(A,t)>=Vo

/(A, T) is a solution to (1.1)o with initial condition g/ C, symmetric withwhere Vo
respect to A, increasing for x<=A, g+(A)#O, g+(x)<=f,(x) for all xR.

Since, by hypothesis, u,(x, 0) =f,(x) -> a > 0 for x [-A, A], the minimum prin-
ciple for parabolic equations implies that

un(x, t) > min (a, Vo(-A, T), v-(A, T)) b > 0

for all (x, t) I-A, A] x [0, T] and the lemma is proved.
Proof of Theorem 2. Let e > 0 be given. There exists f: R --> R and N > 0 so that

O/OX, 022/0X2 LI(R) and IlL -fll =< for all n N.
Let tT,i)(x, t) be the solution of (1.1), with initial condition ff,i)(x, O) =f(x).
It is well known that

(3.1) t)- u(,,i)( t)ll, II/-L I1 -
Since

e-’ J_ [ul)(y, ,)-u)(y, t)] dy:e-tJ_o [ul)(y, t)-(t)(y, t)] dy

+ e (y, t)- )(y, t)] dy

+ e-’ ff [a)(y, t)- u)(y, t)] @,

and e is arbitrary, by (3.1) in order to show that u) u2 it suffices to show that for

L(x, t) e-t fx [a)(Y, t) a t)] ay

we have

(3.2) max
(x,t)S

In order to prove (3.2) assume that

lim max J, (x, t) d > 0;
n+ (x, t)S

then there exists n > 0 and T> 0 such that

max J,(x, t) max J,(x, t) > d__> O.(3.3)
(,,t)s (, t)to, r 2
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By Lemma 1 we can find A > 0 so that

max J.(x, t)= J.(x, t)
(x,t)S

and (x, t.) I-A, A] x [0, T].
Since the maximum of J. (x, t) is attained at (x, t), the relations (O/Ox)J(x, t.)

O, (02/oxE)j(x, t.)<-_O and (OJ/Ox)(x, t)=0 imply

(3.4) t(n) (:X:n, t, t(n2) (:X:,, t, ),

ox <=GU(x., t.),

(3.6)

-*)(t(.23(x., t,),

So from (3.3) and (3.6) we obtain

(3.5)

(x"’ t"))
d

i(,,1) 1(,30<< + I(,2) +

where

evaluated at the point (x,, t,).
From the fact that (I)(,i) (I) uniformly on compact subsets as n - +oo we have that

1(,1), I(,2) 0 as n- +oo. Therefore in order to obtain the contradiction we are looking
for it suffices to prove that lim 1(.3)<_-0 as n

Using (3.4) and (3.5) and the monotonicity of the function (I) on the second
variable we get

I?)<. t;(,2), 05:("1)(t("2))

Ox Ox

where K is a Lipschitz constant for the C function (., in a suitable compact set
and does not depend on n.

Or, setting tr.i)(s)- (E.))’(s), we get

/(,,3)< K []O’V-")(t))" O’(nl)(/?)) O’(n2)(/(n2)

II ox o,)(u.’())
But we know that

I! ox K,
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independently of n and, by Lemma 5 and the hypothesis r + tr uniformly on compact
subsets as n-+ +oo, we have Itr)(u.(xn, t.))l-_> c > 0 for all n large enough where c is
independent of n.

Therefore

..,.(2)/g(2)(I < C]o’)(t)(x,, t.))-,.,,, ,.,, .,,, t,,))[
for a suitable constant C and letting n- +oo we get lim I)-< O.

Analogously we can prove that

lim max J, (x, t) -> 0
n-++o (x,t)S

and consequently (3.2) is proved.

4. Proof of Theorem 3. The proof of Theorem 3 is based on the following lemma
whose proof is exactly the same as the proof of Theorem 7 in [8], and we will not
give it here.

LEMMA 3. Let the hypothesis of Theorem 3 hold. If u(x, t) is a generalized solution

ofproblem (1.1), (1.2), then u(x, t) is a classical solution of (1.1) in a neighborhood of
any point (Xo, yo) so that U(Xo, to) > O.

Now we can prove Theorem 3. We note that we can assume that u(x, t) is the
solution given by Theorem 1 to problem (1.1), (1.2). From this it follows that

u(x,t)= lim u.(x,t) inL

where u. (x, t) is a solution of (1.1). with initial condition

u.(x,O)=f.(x)

where f.(x) > 0 for all x R and f. -+f in L1.
Now we essentially repeat the argument of the proof of Theorem 2.
Set

Assume that

J,,(x, t)= e-t Ifoo (u,,(y, t)-v(y, t)) dy.

max | (u(y, t)- v(y, t)) dy d > O.
(x,t)S

Then for n large enough we have

max J.(x, t) J.(x. t.) > d_> O.
(x,,)s =2

At the point (x., t.) where this maximum is attained we have

v(x.,t.)=u.(x.,t.)>O.

So by Lemma 3, v(x, t) is a classical solution in a neighborhood of (x., t.); this
lets us take higher order derivatives at this point to obtain, as in the proof of Theorem
2,

Ou---e(x. t.) <
Ov

ox =7xx



EXISTENCE OF GENERALIZED SOLUTIONS 1393

and

which is a contradiction. Consequently

L u(y, t) dyL u(y, t) dy x, t.

Analogously we obtain the reverse inequality to get u(y, t) dy v(y, t) dy
and hence u v.
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THREE-DIMENSIONAL TEMPERATURE RESPONSE TO
IMPULSIVE INPUT OUTSIDE A SPHERICAL RESERVOIR*
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Abstract. The classical expression for the Green’s function associated with heat conduction external
to a spherical reservoir involves an infinite series in which the radial/time contributions are given by
Laplace-type integrals containing cross products of spherical Bessel functions. This expression is most useful,
numerically, for large distances and/or long times. In this paper, using a combination of transform and
integral equations techniques, alternative expressions are derived for the radial/time components pre-
dominantly in terms of polynomials in the time variable. These new representations are thus valuable for
short-time heat conduction calculations. Moreover, when re-expressed in a quantum-mechanical setting,
they provide particularly useful closed-form expressions in terms of familiar functions for all the higher-order
partial waves of the two-particle density matrix under the assumption of hard-core interaction.

Key words. Green’s functions, heat conduction, quantum mechanical scattering, spherical Bessel func-
tions

AMS(MOS) subject classifications. Primary 35C10, 35K05, 42C10, 81F05; secondary 33A40

1. Introduction. The three-dimensional temperature distribution u(, ’; t) in an
unbounded homogeneous medium exterior to a spherical fixed-temperature reservoir,
which results from an impulsive input at time 0, satisfies the combined boundary/in-
itial value problem

V:u k o---u Il, I ’l> 1, t>0;
Ot

(1) u=O for Il 1,

lim u 8(- F).
t-O

Here k is a positive constant, g’ is the impulsive source point and the reservoir has
been both localized to the unit ball about the origin and given the normalized tem-
perature zero. If separation of variables in spherical coordinates is then applied, the
desired solution should have the following form, owing to symmetry and boundedness
considerations"

(2) u(, F" t)= (2n + 1) ,. 0).
:0 47r

un(r, r, t)P.(cos

In this expression 0 is the angle between the position vectors and ’, r = I 1,
" t) is the boundedP. is the Legendre polynomial of nonnegative order n and u(r, r,

solution of

r20un r’r/-n(n+l)u kr2ot’ r, >1, t>O,

?o(3) un(1, r,t)=O,

lim u.(r, r,
o rr

t(r- r’)
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The classical representation [2, p. 382] for the solution of (3) can be expressed as
the Laplace-type integral

1 fo D,(vr)D,(vr’) _v2,/k V
27r h,l)(v)h)(v) e dv (n =0, 1,2,...)

where D,(z)=-h)(z)h(2)(v)-h)(z)hl)(v) and the h1’2) are the spherical Hankel
functions of the first and second kinds, respectively, of nonnegative integer order n.
When this integral representation is employed in (2), an expression for the Dirichlet
heat conduction Green’s function is obtained which is most useful, computationally,
when r (or r’) and are large.

The problem (1) arises in other contexts as well, e.g., the quantum mechanical
interaction of two particles under the assumption of hard cores. Recently, alternative
representations have been derived in this setting for the lower-order solutions to (3)
([8], n 1, 2; see also [9], n 0) which show them to be polynomials in modified
by familiar functions such as exponentials, error functions and, of course, spherical
Hankel functions. In this paper, we continue in this same spirit and, using a combination
of transform and integral equations techniques, derive an analogous representation
for the general solution of (3) in the case of arbitrary n. This expression proves to be
of a form particularly advantageous in short-time heat conduction calculations.

The next section of this paper contains this new general solution of (3) along with
remarks concerning the nature of the solution and its behavior in various limiting
regimes. A word or two about computation of the solution components is included
also. The major details of the solution derivation are presented in 3.

2. General form of the solution u.(r, r’; t). As we shall show in the next section,
the solution of (3) may be expressed as the three-term summation

(4) " "t)+K,(r, "t)u,(r, r’ t)=- In(r, r, t)+Jn(r, r, r,

with each term in this representation having particular characteristics.
Singular term. The initial term in (4) is given by the formula

(5)

In(r, r,"t) e-k(r2+r’2)/4t(i)n()(k)3/9- ..nh 2)

\ ikrr’2t ]

e -k(r-r’)2/at k
(- 1) n + 1/2, m

rr’ =0

where h is again the spherical Hankel function of the second kind of nonnegative
integer order n, and (n +, m) (n + m) !/{m !(n m) !}. This component of un
is a "singular" solution of the equation in (3) and gives rise to the prescribed delta
function behavior as t--> 0.

Balancing term. The second term in the representation (4) is also a polynomial
in modified by x/ and multiplied by an exponential. One expression for Jn takes the
form

t)
e-k(r+r’-2)2/4t [x[.kJn(r, r,"

rr’ v aTrt

(6) .t_1 + , (_l)m+l(n+1/2, m)(n+1/2 l)(n+1/2 p--m--l)
rm(r’)2pm=0 /=0 p=m+l

p_2

Ap_j(a; t)Sj+,(n)
j=n
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Here, for m -> 0,

[2] (Ot)m+21-EJ(4t/k)J+l-l{(j+l) (m-2j)F(j+3/2)}(7) Am+E(Ce t)-- ’-
j=o /=o (2j+2)!(m-2j)! l! 2F(1+3/2)

with a r + r’-2, while the Sj are constants, depending upon n, which are generated
recursively from

(8)
Sn+l(rt) (,+1/2,,,)’

"-’(n+1/2, l-p)
Sn+p rg

l=n+ -( ; r
(-2)"+P-’S/(n)

(p->2). In (7) and elsewhere, [x] designates the greatest integer -<x. Moreover,
throughout this paper we adopt the usual convention of ignoring summations in which
the upper index is strictly less than the lower index.

Alternatively, J, can be expressed in a manner which more clearly exhibits its
dependence upon t, namely

e-k(r+r’-2)2/4tt" t)=-- f,(n’r, r’)(9) J,(r,r,
rr’ =0

where

fo(n; r, r’)=-1

and

f,(n;r, r’)= (-1) "+l(n+1/2’ n)
(rr’)"

In this representation the intermediate f,, (1 -< m -< n 1) are given recursively by

b

f,,(n;r,r’) (n+1/2, p-l-m)(m+1/2,1)(r+r’-2)m-l
m=[(p--n+l)/2] l=a

(10) (_l)l+m+p (n d-1/2, m)(n +1/2, l)(n +1/2, p- l- m)
m=cl=d rm(r’)

with p an integral parameter and a, b, c, d, e integral limits which satisfy

a=p-m-
b=m

c=p-2n
d =p-m-

e--n

for2n+ 1 <-p<-3n,
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a=0

b=p-m
c=0 for n+ <-p<-2n.
d=0

e=p-m

The term J,(r, r’; t), like I,(r, r’; t), is symmetric in r, r’ and "balances out" the
contribution of I, when r 1, i.e.,

J,(1, r’;t)=-I,(1, r’;t).
Last term. The remaining term in (4) is only present if n >_-1 in which case the

appropriate formula is

’" t) ( i)" e-k(r+r’-2)E/4tKn(r,r,

----(1) (iAjr)h)(iAr,)(11) ACt/. (iAj)h?) e-x(r+r’-I
j=l

w{i(Aj+r+r’-2-- ]}"
Here h1) and h(f are the spherical Hankel functions of the first and second kinds,
respectively, of order n, the Aj (j 1, 2,..., n) are the n roots of

h)(iA) 0,

the C; (j 1, 2,. ., n) are the (unique) solutions of the simultaneous equations

(12) Cj/I? =--lm (m 1, 2,..’, n),
j=l

formed with these roots and w is the complementary error function as given by

(13) w(iz)=-eerfc(z)=--e e-Xdx

(see [1, p. 297]).
In view of the nature of the A, K,(1, r’; t) vanishes. The three-term summation

(4) therefore has the appropriate behavior both for r= 1 and as r- r’. Hence the
presence of K may be viewed as ensuring that u, satisfies the ditterential equation
given in (3).

Component computation. Numerical evaluation of u,,(r, r’; t) for fixed n, k and

varying r, r’, and is straightforward for small to moderate values of n. With appropriate
organization, the bulk of the computation of I,, and J,, can be performed with integer
arithmetic. Evaluation of K,, however, is more demanding.

The spherical Hankel functions are given by

iw(n+l) (n+1/2, m)e:Z(14) hl’2)(iz)-
iz m=0 ---)

and the zeros A (j 1, 2, , n) of h)(iA) therefore lie in the right half of the complex
A-plane (see [1, p. 373]). (The A occur in complex conjugate pairs, except of course,
when n is odd, then one of the Aj is real.) If A is real, the corresponding C is real as
well. Otherwise the associated C also occur in complex conjugate pairs. This behavior,
coupled with the nature of the complementary error function, implies the expected
reality of K,.
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3. Derivation of the solution un (r, r’; t). The boundary/initial value problem (3)
is ideally suited to application of the Laplace transform. If we define

" t) e -st dt,U,,(r, r’ s)=- (u,,)=- u,,(r, r,

then U is the bounded (in r) solution of the ordinary boundary-value problem

(15) (rU’,)’-(r2ks+n(n+l))U,=-kS(r-r’), U(1, r’;s)=O.

The solutions underlying the homogeneous equation in (15) are the spherical Hankel
functions of order n and argument iriS-dr, and in view of (14), only hl)(iz) is bounded
for large z. The desired solution of (15), therefore, is essentially nothing more than
the ordinary Green’s function associated with this problem (see [4, p. 239], for example).
We thus deduce for r <-r’

(16) U(r, r’; s) --x/{hl)( ix/-r)h)( ix/-d) h)( i,ffk-dr)hl)( i,,/)} hl)( ix/-k-dr’)
hl)(ix/-)

with a symmetric expression valid in the regime r >= r’. To determine u we shall invert
U,. Indeed, the classical representation for u. given in the Introduction is equivalent
to the formal inverse Laplace transform of U.

The easier inversion. The "singular" component I, in the representation (4) arises
as a result of the following.

THEOREM 1.

,--1{ _x/h)(ix/r)h,)( iv/r,) } in( r, r’; t).

Proof We establish the result in the forward direction assuming r_-< r’. From (5)

{ ()(k)3/2

(ikrr’}..(In(r, r’; t))= e-k(r2+r’2)/4t(--i)n h)\--2]

(1)m(/’/+1 )(k--rt)
m+l Io,=o 2’

m k tm-/2e-st e-(-’/4 dt

( 1)r’-rm+l=-kv/ (-1)" n+ m
m=o \2rr’x/] imh)( i( r’ r)x/-)

by virtue of [7, 3.471(9), p. 340], and the relationship of the modified Bessel function
Km+l/E(Z) tO h)(iz). Hence, using (14) and expanding the resulting powers of r’-r,

(I) =ker-r’)4- Z (--1)
re(n+1/2 m)(m+1/2 l)(r’--r)m-I

m=0 !=0 rr’)m+l(2x/)m+l+l

=ke(r-r’)’/-s ’. Z (-1)
"(n+1/2’m)(m+1/2 l)

m=O /=0 (2x/)

"l (m-lj (-1)Jrj-m-1 (r’)-’--1

Changing the index j into m-j, and then interchanging the last summation with the
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first two, results in

(i)= ke(_,,/-, y (_l)(n+1/2, m)(m+1/2 l)
j=O m=j 1=0 tZA/KS

re+l+1

(mm_-;)r-J-l(/)J-l-m-1
and replacing with l-m +j this can be rewritten as

,.f In k e "J-K; X
j=O =j m--j

(_l)j (n +1/2, m)(m+1/2, l-m+j)
(2.’)J+/+1

(2m -l-f)r_j_,(r,)_l_
\m-j/

=ke(r-r’)4s (-1)Jr-J-l(r’)-l-1
j=o m=O !=0 (2X/’’)j+l+l

(n+m)!(l+j)!
m!(n- m)!(l+j- m)!(m-j)!(m- l)!"

In the last expression we have written out explicitly the various factorials and taken
advantage of the fact that the summand vanishes for 0 <= m <j, 0 <- < m-j and
m < l_-< n. The summation over m only involves factorials and fortuitously can be
carried out using a variant of Saalschutz’s formula (see [5, p. 66]) to give, using (14),

(I,,) k e(r-r’)’/s
(-1)r-Y-’(r’)-’-I

j=o/=0 (2V/’)j+/+l

(n+j)!(n+l)!
j!(n-j)!l!(n-l)!

kx/{ e
"/gTsr (_.n +___,j)

2 ivr=o (-2x/r)J

e ’/-iTr’ n + 1/2, 1) !
iv/-r ,=o -2-Vs--rtJ

h -r h{. i-r’
2

The remaining components. Inversion of the rest of U,(r, r’; s) as given by (16) is
detailed in the lemmas and theorems which follow. The general method is believed to
be of wide applicability. Our approach recognizes the transform at hand as a quotient
and begins with an inversion of the numerator. The inverse transform of the quotient
itself is then shown to satisfy an inhomogeneous integral equation of Volterra type.
Solution of this integral equation yields three terms, two of which can be recognized
as the J, and K, of (4). The third term is a multi-summation which, surprisingly, sums
to zero for arbitrary n.

LEMMA 1.

x/-h x/-r h (,, x/-r’ h (,,2 x/- / h (,, i,,/- --
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where

rm+l(r’) 1+1
=o I=O j=o

and

Proof. We prove by substitution using (14). [-1

LEMMA 2.

.-l(ke_-’/T; =_ I’(a. t)_=
e-k2/4’

i v/Trt/k
and for integer n >= 1

(,)n+l]
-= (-1)nlC-n)(cr; t)

1 ( a)n-’ e-karl4,
(n-l)! J k

Proof. Apply iterated integration to [6, 5.6(6), p. 246].
LEMMA 3. For integer n >=2, I-n)(a; t) can be expressed as a sum ofpolynomials

in a and multiplied by I(a; t) and I-l(a; t), respectively. The precise relationship is

I-n)(a; t)= An(a; t)I)(a; t)+ Bn(a; t)I-l)(a; t)
where An(a; t) is as defined by (7) and

tn/21 an-2J(t/k)
(17) Bn+l(a; t)-= ’,

=o (n-2j)!j!

Proofi One way to establish this result is to show that An, Bn are the solutions of
the appropriate initial-value problems. Unfortunately, while it is trivial to verify
dBn/da Bn-1 and the necessary initial values, the demonstration of dAn/da
(ka/2t)A,+An_l-Bn requires substantial series manipulations and sophisticated
knowledge regarding the sums of multi-binomial expressions. It is probably far easier,
therefore, to rederive the representation from the definition of I(-n given in the
preceding lemma, by expanding the (/3- or) n-1 factor and integrating by parts. Note
that odd powers of fl contribute to An and even powers to B,. We leave the details
to the interested reader. [3

LEMMA 4.

.,-l(p)=_ . (_l)m+l(n+1/2, m)(n+1/2,1)(n+1/2,J)
m=O/=oj=o rm+l(r’)l+12j+l+m+l

I(-J-l-m)(ol; t)
where a r + r’- 2.

Proof. The proof is a consequence of Lemmas 1 and 2.
LEMMA 5. For n _-> 1, b(a; t)=-,-l(p/ Q) satisfies the Volterra integral equation

(18) th(a" t) -l(p)_ (n +1/2, m) (/3 a)"-’
2,,,=1 (m-1)!

b(fl, t) d/3.

If n O, k a t) - p since Q =- 1 in this case.
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Proofi The integral equation (18) is equivalent to the initial-value problem

(-1)(n +’j)- b"->(a" t) {-’(P)}
j=0 2

lim tko)(a; t) O, j=0, 1, 2,. ., n-1.

Since differentiation with respect to the parameter a can be interchanged with transform
inversion, the left-hand side of this differential equation becomes for b(a; t)=
-l(p/Q), from Lemmas 1, 2 and 4.

_, 1 (_l)J(n+. j)d_"-JP:_ (n 1/2.,j)
=o 2

(- 1)"(x/)"-j }
-’{(- 1)" (x/)"P}

The "initial" conditions are likewise a ready consequence of the form of P, Q as given
in Lemma 1. [3

LEMMA 6. The resolvent kernel associated with the Volterra integral equation (18)
when n >-_ 1 has the representation

R(a, )= C eaJ("-t)
j=l

where the Aj (j= 1, 2,..., n) are the n roots of
h)(iA) =0

and the C (j 1, 2,..., n) are the (unique) solutions of the simultaneous equations

(12’) C/A’f’=-a,m (m 1,2,..., n).
j=l

Proof If L(a, ) designates the kernel of (18), we merely need to verify the validity
of one of the classic Fredholm identities, say,

R(a, 3)= L(a, )+ L(a, y)R(% 3) dy

(see [3, p. 58], for example). Substituting, we obtain

(--1) }
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or, rearranging we find

2
(fl-a)’-I -(n+1/2, m)

C
(n+1/2’P)(-1)(p+m)

m=l (m-- 1)! 2 j=l p=,, 2PAjp--m+l

Observe, however, that both sides of this equation vanish owing to (12’), the definition
of Aj and (14).

LEMMA 7. If n >- 1, let Sl(n)=-j=l C/Aj where the A and the Cy are as defined in
Lemma 6. Then for > n we have

(-2)"
&+,(n) (,+-, n)

and

(8’) S.+p(n) .+-1 (n +1/2, l-p)
,=.+1 i-in)(-2)"+p-IsI(n) (p=>2).

(19)

Proof. By virtue of the definition of A, using (14) we obtain

o=L c,
y=l (-2Ay)P m=O (-2ay)m j

Setting p= 1 we easily determine &+l since Si-----all (1= 1,2,..., n) by (12’). The
recursive expression given above for S,,+p with p => 2 is likewise a ready consequence
of this identity. (Note that if p > n + 1, the lower summation index can be decreased
to n+l since (n+1/2, l-p)=0 for n+l<=l<p.) [3

LEMMA 8.

ea(’-t)I(-")(fl; t) dfl= L I(-’)(a; t)Am-l-n+A e(a+2t/k)I(-1)(a+2At/k; t).
m:l

Proof We prove by substitution, using the definition of I(-") from Lemma 2, and
integration by parts. The summation term does not appear if n 0.

We come now to the principal results of this subsection.
THEOREM 2. th(a; t)=--l(p/Q) is given uniquely by

gp(a t)= J.(r, r’; t)+ K.(r, r, t)+ L.(r, r,

where a =- r+ r’-2, J. and K. have the representations (6)-(10) and (11)-(13), respec-
tively, and

(20)
m+l+n

"t) i(-1) ;t) ’, Y’, Y’,L.(r,r, (a
m=O 1=0 p=m+l

(_l)m+l+l(n+1/2, m)(n+1/2, l)(n+1/2,p-m-l)
rm+l(r,)l+12p+l

p-1

E Bp_y(o; t)y+l(n).
j----n

In this last expression the B.(a; t) are given by (17) for n=>2 (B1 1) and the Sj are

defined recursively by (8’).
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Proof. Applying fundamental integral equations theory (see [3, pp. 36, 37, 58],
for example), Lemmas 5 and 6 imply that b(a; t) is given uniquely by

b(c; t)= --l(P(a)) +f R(a, fl).-l(p(fl)) dfl

-(P(c))+I Cj eX"--(P(/3)) d/3
j=l

=-(P(c))+ Cj ea("-)-(P())d.
j=l

(The interchange of integration and summation here is justified by the exponential
decay of the integrand for large/3.) Substituting for -l(p) from Lemma 4, using the
results of Lemmas 8 and 3, and introducing the definition of St(n) from Lemma 7, we
easily derive the above expression (20) for L, (if n >- 1) and the representation (6)-(8)
for J,. Neither L, nor K, are present unless n -> 1, in which case the relation (11) for
K, is a consequence ofback-substitution using (14) and replacement of I-l(2zx/t/k; t)
by -e-Z2w(iz) using (13).

The alternative representation (9), (10) for J, is of a different character. It follows
from matching powers ofx/ in the Laplace transforms of b(c; t) and of J, (r, r’; t) +
K,(r, r’; t), anticipating the result of Theorem 3. Here it is helpful to recall

(tm-1/2 e-ka2/4t)--_ (ko)m+l

(_2iv/)m h)(iax/)

(see the proof of Theorem 1) and, in particular,

.( -1/2 e-ka2/4t) e -a4-s,
(t-3/2 e-ka2/4t) 2x/Tr/(ko 2) e-c-/-s,

which together imply

-kot2/4tw A +2 A+x/
e

The tedious details, which involve several summation interchanges and repeated
recognition that (l + 1/2, m) vanishes unless 0 <_- rn _-< l, are left to the interested reader.

TI-tEOREM 3. For n >-- 1, L, r, r’ t) =- O.
Proof. The result may be established by showing from (20) that for arbitrary

integer q (q 0, 1, 2, .)

dq{L.(r, r’; t)/I(-1)(a; t)}
O=kq

dtq t=o

(21)
m+,+.p-,

),.+,+, (n +1/2, m)(n+1/2, l)(n+1/2,p-m-1)
(-1 rm+l(r,)l+12p+m=0 /=0 p=m+lj=n

olP--j--l--2q

(p-j-l-2q)!

where a r+ r’-2. The demonstration involves expanding Ol
p-j-l-2q in powers of r

and r’, collecting all the like powers together, and then verifying that the resulting
coefficient vanishes in each instance. Since a considerable number of special cases
needs to be examined, the remainder of the proof is relegated to the Appendix. l-1
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Appendix. In order to complete the proof of Theorem 3 we need to show that

m+l+n p--1 p--j--l--2q p--j--l--2q--s

(21’) Mn -= I
m=0 /=0 p=m+l j=n s=0 t=0

vanishes for n _-> 1 and arbitrary nonnegative integer q, where

i=_(_l),,,+,+l(n+1/2 m)(n+1/2, l)(n+1/2,p-m-l)
r,,,+l(r,)t+12p+l

S+l(P-J-l-2q)(P-J-l-2q-s)rS(r’)’(-2)p-j-l-2q-s-’s (p-j-l-2q)!

Toward this end, we replace the indices s and with a--m + 1-s and /3--1 + 1-
and then interchange summations until the a and fl summations appear first. The
demonstration now devolves to several cases.

CASE 1: 2q+ 1 --> n.
a < 2 / 2q- n" No terms with such indices appear in Mn.
2 + 2q n <_- c <- n + 1" No terms with such indices appear in M, unless 3 + 2q a <_-

f _-< n + 1 also, in which case the resulting coefficient is, m+l+n p--m--l+a

C(n, q; a, fl)= I
m=c--I 1=/3--1 p=m+l+n--a j=n

where a ct +/3 3 2q, or, rearranging and shifting indices,

with

2a--1
r,(r,)t D(n; a)D(n; fl)E(n, q; a, fl)

(n+1/2, in)
D(n; a)= .,

m---,- (m/ 1- a)!

and

E(n, q; a, fl)= E
j=n p=O

(n +1/2, p+j- a)l(-1)p+1
p!

[(-1 +J(n+1/2,j-a)].
j=n

If a > 0, this last summation is zero by virtue of the identity (19).
For the case a 0 we reason as follows. D(n; a) can be alternatively expressed

in terms of the derivative of a product as

(A.1) D(n; a) (-2)1-’(x"(1 /x)n)(a+n-1)

n! --1/2

and this is readily seen to vanish whenever a + n is even, by symmetry. But if
a + fl 3 2q 0, a and/3 must be of opposite parity, one of a + n or/3 / n must
be even and the product D(n; c)D(n;/3) must therefore be zero.

n + 1 < a" No terms with such indices appear in M,.
CASE 2: 2q + 1 < n.
a < 2 / 2q--n: No terms with such indices appear in M.
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a 2 + 2q n: We find n, p 2n + m, j n,/3 n + 1, and hence the relevant
coefficient is

(-1)"+l(n +1/2, n)2

C(n, q; 2+2q-n, n+ 1)= r-t,z--7---g;r’)-i;’-+-lS"+lD(n; 2+2q- n)

which vanishes since a + n 2 + 2q is even (see (A.1) above).
2 / 2q n < a _-< 2q + 2: Precisely the same situation occurs as in Case 1.
2q + 2 < a -< n + 1: No terms with such indices appear in Mn unless 3 + 2q a _-</3 -<_

n + 1. For/3 _<- 3 + 2q a + n, the analysis again duplicates that of Case 1. Since (n + 1/2,
p m 1) 0 for p < m + l, rearrangements are possible when 3 + 2q a + n </3 _<- n + 1
which also make this situation equivalent to Case 1.

n + 1 < a: No terms with such indices appear in Mn.
Acknowledgment. Special thanks are due to Dr. Anthony Klemm for proposing

the investigation of which this research is a part.

REFERENCES

M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, Dover, New York, 1965;
NBS Applied Math Series 55, U.S. Dept. of Commerce, Washington, DC, 1964.

[2] n. S. CARSLAW AND J. C. JAEGER, Conduction ofHeat in Solids, 2nd ed., Clarendon Press, Oxford, 1959.
[3] J. A. COCHRAN, The Analysis of Linear Integral Equations, McGraw-Hill, New York, 1972.
[4], Applied Mathematics: Principles, Techniques, and Applications, Wadsworth International, Bel-

mont, CA, 1982.
[5] A. ERDILYI, et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
[6], Tables of Integral Transforms, Vol. I, McGraw-Hill, New York, 1954.
[7] I. S. GRADSHTEYN AND I. M. RYZHIK, Tables of Integrals, Series and Products, Academic Press, New

York, 1965.
[8] A. D. KLEMM, Exact solutions for a quantum hard-core system, Phys. Lett. A, 110 (1985), pp. 246-248.
[9] S. Y. LARSEN, Quantum-mechanical pair-correlation function of hard spheres, J. Chem. Phys., 48 (1968),

pp. 1701-1708.



SIAM J. MATH. ANAL.
Vol. 18, No. 5, September 1987

1987 Society for Industrial and Applied Mathematics
015

EXISTENCE OF A SOLUTION TO A CERTAIN PLANE PREMIXED
FLAME PROBLEM WITH TWO-STEP KINETICS*

C. M. BRAUNER’ AND CL. SCHMIDT-LAINt’

Abstract. We consider a nonlinear differential system modelling a two-step reaction in a plane premixed
flame. The unknowns are two functions u and v (temperature and mass fraction) and a parameter associated
with the burning rate. We introduce a normalized problem which is first studied on a bounded interval.
Upper and lower solutions induce a priori estimates which enable us to pass to the limit of a doubly infinite
interval. We obtain the existence of a solution and we provide an explicit value for which is related to
the L2-norm of w u- v.

Key words, nonlinear system, unbounded domain, upper/lower solutions, combustion, premixed flame,
2-step kinetics

AMS(MOS) subject classifications. 34A34, 34A45, 34A40, 80A25, 80A30

1. Physical framework. In a recent paper [6], G. Joulin, A. Lifian, G. S. S. Ludford,
N. Peters and one of the authors introduced a two-step irreversible reaction for a
steady plane flame, with chain-branching/chain-breaking kinetics:

(1.1) A + X-> 2X, 2X + M--> 2P + M.

Radical X is obtained in the production step, which has a very large activation
energy 0 and provides product P in the recombination step for which the activation
energy is taken to be zero; A is the reactant and M a third body.

This two-step scheme is presented as an alternative to classical single-step kinetics
[3] and allows the description of a wider range of phenomena.

The equations are derived in the stretched flame zone, described by the one-
dimensional space variable 7,-o< < +, by assuming a fast recombination, i.e.,
that both production and recombination of radicals take place in the same thin zone.
The system reads (see [6, p. 423])

(1.2) u"=qlr(u-v)ve-U+(u-v)2, v"=r(u-v)ve-,
and the associated boundary conditions are

u =-n +(1), v =-n+o(1)
(1.3)

u=o(1), v=o(1) asn-+.
The unknowns are positive functions u and v, representing temperature and mass

fraction of the reactant and a positive constant 8, representing the burning rate. The
parameters ql and q2 are the proportions of the total heat released in the first and
second steps of the reaction, so that ql / q2- 1. Physical considerations require the
recombination step to be exothermic, so that q> 0. Finally r is a positive parameter,
corresponding to the ratio of the two reaction rates. The boundary conditions (1.3)
are obtained by matching with expansions on either side of the flame sheet [6, p. 422].

* Received by the editors September 23, 1985; accepted for publication (in revised form) June 17, 1986.

" Ecole Centrale de Lyon, D6partement de Math6matiques, Informatique et Systmes, BP 163, 69131
Ecully Cedex, France.
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The mathematical problem is the following: ql, q2 and r > 0 being given, find two
functions u > 0, v > 0 and the constant 3 > 0 satisfying (1.2), (1.3). We refer again to
[6] for a numerical treatment of this problem, leading to curves in the (r, 6)-plane.

It is particularly convenient for our study to deal with an equivalent formulation
of the system involving the radical mass fraction w u-v > 0. It consists of the
equations

(1.4) v" rvw e e-w, w" -q2rvw e e + w2,

together with the boundary conditions

v---r//o(1), w=o(1) as r/-->-c,
(1.5)

v=o(1), w=o(1) as r/-->+.

We remark that ql is no longer involved. In the sequel the only hypothesis is
q2 > 0, which has a physical basis.

2. Main results. Let us introduce the following problem in the x-variable, which
is obtained from (1.4) by taking equal to 1"

(2.1)
d2v d2w
dx2 rvw e e-w,

dx2 --qErvw e e + w2.

We consider this nonlinear system subject to the following boundary conditions"

(2.2) v’0 asx+c, w0 asx+,

together with the normalization condition

(2.3) v(0) 1.

In this paper, we will prove the following theorem.
THEOREM 2.1. For any r>0 fixed, there exists a solution (v, w)(C(R)) to

problem (2.1)-(2.3) such that

r
(2.4) 0 < w < Mo q2-,

e

v > O, v’ < O, v-->+ as x--> -c,
(2.5)

v--> O as x--> +o.

Moreover, w H2([) and, as x -c, v(x) -l(x Xo) + E.S.T., where Xo and

(2.6) l= l-- I+ w(x) dx=l w,,

To return to the initial problem (1.4), (1.5), we make the transformation

n l(x Xo).(2.7)

Then (2.1) becomes

(2.8)

d2v 1

dq2 12 rvw
e e w,

d2w 1

d12 12 q2rvw e e-W+ w2
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and, as r/-, v(r/)=-r/+ E.S.T. Thus it is clear that (1.4), (1.5) is solved by the
pair (v(r/), w(r/)) with

1
(2.9) 8 =.

Therefore, we have determined

q2
(2.10) 6=+ w(r/)dr/"

In the sequel, we give a detailed demonstration of Theorem 2.1. A sketch of the
proof is the following" First, we exhibit positive upper and lower solutions of the
problem in a formal way. Next, we consider the system (2.1) on a bounded interval
[-a, b] with suitable boundary conditions and we prove the existence of a solution
(v, w) in a closed convex set K, by a fixed point argument (the convex K involves the
upper and lower solutions). We derive a priori estimates in the c-norm as well as in
the H-norm. Finally, we let a and b tend to +oo and prove the existence of a limit
which solves (2.1)-(2.3). Properties (2.5), (2.6) appear as a "spinoff" of the existence
proof.

Problem (2.1) is "nearly homogeneous" at r/-+, i.e., the exponential terms are
effectively constant there. In the reference [8] the stability of the homogeneous problem

v" r6vw, w" -qzr6vw +W2

is investigated., near the equilibrium point 0 4 corresponding to r/--> +c. The authors
exhibit a critical value r 1, corresponding to a bifurcation point. This value of r has
also been pointed out in [6] by means of formal asymptotic expansions.

As an extension to the problem, it is possible to consider, instead ofthe exponential
e-, some function O(v) with algebraic decay as v +oo. Then the asymptotic expansion
of v(r/) as r/-oo will be governed by the behavior of 0. See e.g. [1].

Finally, let us mention that a summary of this work has been presented as a Note
aux Comptes Rendus [2]. An alternative proof by a topological shooting method has
been announced by S. P. Hastings, C. Lu and Y. H. Wan [5]. The idea of considering
the problem in a bounded domain and taking an infinite domain limit is already used
in [4] in the case of one-step kinetics (see also [10]).

3. Upper and lower solutions in a formal setting. In this section, we perform a
formal analysis of the system (2.1)-(2.3), which is a nonlinear eigenvalue problem" it
admits the trivial solution w 0, v 1. In order to prove the existence of a nontrivial
solution, a positive lower solution _w is needed. The main trick is a logarithmic
transformation, but it turns out that a large part of the analysis lies on elementary
properties of the mapping t- e-’.

Let us state first the main comparison principles used, which go back to Nagumo.
Consider a nonlinear BVP on some interval (a,/3 ), namely: (,) z" + F(x, .z) O, z(a
z(/3) =0, where F is continuous (say). An upper solution to (,) is a C2 function
satisfying" -"+ F(x, ) _>- 0, g(a) => 0, (fl) >- 0. A lower solution _z satisfies the opposite
inequalities. If_z =< , then the problem (.) has a solution z such that _z -< z -<_ on a,/3 ].
For more general statements, see e.g. [9].

Part 1. Assume that (2.1)-(2.3) has a smooth positive solution (v, w). We remark
that v e e is bounded by 1/e so on (0, +oo) a lower solution to (2.1a) is

(3.1) _v"=-_v, _v(0)=l, _v’0 asx-+oo.
e
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Since v"> 0, v’ < 0, and v < 1 for x > 0, v > 1 for x < 0. So we define

v(x) c v/r/ e forx>0,e
(3.2)

_v(x)-I forx=<0.1
Integrating (2.1a) backwards from +o yields

v’2(x) 2r w e v e v’ ds <=-- -vv’ e ds
e

2r 2r
=--[(v+l) e-]<-,

e e

so

(3.3)
We define

(3.4)

O < -v’(x) < Ml x/2r/ e.

O(X) -M1x-F 1 for x < 0,

7(x) 1 for x _-> O.
Part 2. We look for an upper solution of the form

(3.5) g, Mo= Cst > O.
Replacing w by Mo and using (2.1b), we obtain

M2o q2rv e-Mo e-M> M- q2___r Mo,
e

so we may choose

(3.6) Mo- q2r.
e

Remark 3.1. The choice of ff may be improved by taking the root of
(3.7) Mo e-Y= y.

Part 3. Finally, we look for a lower solution of (2. lb), i.e., a C2 function satisfying
_w< ,

(3.8) w_"+ w2- q2rv e-w_ e -w- <-_ O,
w0 asx+oo.

Minorizing v e by v e-e we obtain

1
e_CX

1 eMX(3.9) v e =>- if x > 0, v e =>- if x < 0.
e e

When we set t9 max (c, M1)= M1, (3.9) yields

(3.10) re->-_ e -oo<x < +oo.
e

So we may replace (3.8) by
_w<

(3.11) -w_ + w_2- Mo e-M e-pll_w _-< 0,
w-0 as x- +c.

To avoid the trivial lower solution _w- 0, we introduce the logarithmic transfor-
mation

(3.12) f=-ln _w.

Note that _v and are genuine lower and upper solutions to (2.1) only on (0, +c), i.e., they verify:
v_">= rv_w e e and " =< rw e e-w. On (-oo, 0) it holds that _v =< v -< . Therefore we do not need _v and

to be smooth at the origin.
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Therefore the equivalent is to find f> 0 such that

e-s< min 1, Mo),

(3.13) f,,_f,2 + e-S <__ Mo e-M e-plxl,

f- +oo as x - +/-oo.

LEMMA 3.1. A convenient choice off is

(3.14) f=Moe- e-O+lxl +y

Proo Remark that f is even and C. Since

f,,_f,2_ Mo e- e-plxl -f’2-1/2Mo e-1 e-11 < 0

and does not vanish at +, it is obviously possible to choose the constant 3’ such that
the maximum of e-y is small enough to satisfy simultaneously (3.13a and b).

4. The problem on a bounded interval. Let a and b be two positive real numbers.
We consider the system (2.1) on the interval (-a, b), viz.,

(4.1) -v"+rve-Vwe-W=O, -w"+wE=q2rve-Vwe-w,
with the following conditions:

(4.2)
v(0)= 1, v’(b) 0,

w(-a)=w_(-a), w(b)=w_(b).

We formulate it as a fixed point problem:

(4.3) (v, w)= T[(v, w)]

in the following way: consider the space E { cgl([-a, hi)}2 and the closed convex set
KcE"

(4.4) K {(v, w)mE, w_<=w<=,v_<-v<-,O<--v’<-Ml,lW’l<-_m}
where the functions 3, ff and _v, _w, as well as the constant M1, have been defined in
the preceding section; they do not depend on a and b. Here only the constant rn
depend on a and b.

For (v, w) K, we define the operator T by

(4.5) (V, W)= T[(v, w)].

First V is solution of the nonlinear problem

V"+ rw e-w Ve- v O,
(4.6)

V(0) 1, V’(b) 0.

LEMMA 4.1. Vis the unique solution ofthe BVP (4.6) on [0, b]. Moreover, v_ <= V <- 1.

Proof. v_ defined by (3.1) is clearly a lower solution to (4.6), while is an upper
solution. So (4.6) admits a solution such that _v_< V <- 1. The uniqueness of V is
guaranteed by the monotonicity of the mapping e-t for 0_-< _-< 1.

LEIIA 4.2. On I-a, 0], V is the unique solution of the nonlinear IVP (4.6a) with

(4.7) V(0) 1, V’(0-) V’(0/).
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Proof The IVP (4.6a), (4.7) has a local solution V in some interval _-< x -< 0 which
can be extended to I-a, 0], for 1 <= V<= e-cx. l-1

Next W is given by the nonlinear BVP

W"+ W2
q2rv e w e-w,

(4.8)
W(-a) w_ (-a), W(b) w_ (b).

LEMMA 4.3. W is the unique solution of (4.8) on I-a, b]. Moreover w_ <= W <-_

Proof. (i) Let us check that Mo is an upper solution

Mo-q2rve-Vwe-W>=M-q----rw>_O for w_< Mo.
e

(ii) Now we verify that _w is a lower solution:

w_"+ w_2 q2rv e w e <--_ w_" + w_2 q2___r e_,lxl_w e_Mo __< 0
e

after (3.10), (3.11) and w->_w.
(iii) So (4.8) admits a solution such that _w =< W =< #. The uniqueness follows from

the monotonicity of the mapping t-> 2 for _-> 0.
LEMMA 4.4. T is a continuous compact mapping from K into itself
Proof (i) T maps K into itself. We already know V-> _v, _w-< W-< . Since V">

0, V’_-<0. From (4.6) we find for-a _-<x < b"

V’2(x) 2r w e-WVe-VV ds

<=m -VV’ e-v ds
e

2r
<=- M,

e

and clearly V(x)<= (x)=-Mix + 1 on I-a, 0].
Finally, let us consider W’. Let Xo be a point where W’(xo)= 0. Writing W’(x)=

o W"(s) ds, we find rn 2(a + b)Mo.
(ii) T is a continuous and compact mapping. Whenever (v, w) K, V" and W"

are clearly bounded on I-a, hi, which induces the boundedness of Range (T) in
(C2[-a, hi). Therefore Range (T) is relatively compact in E.

To show that T is continuous, take a sequence (vn, wn) K, converging to (v, w)
in E; let (V,, W,)= T[ v,, w,]. Since Range (T) is relatively compact in K, there exists
a subsequence Vnp, Wnp) converging to V, W) K, in E. We shall show that. V, W)
T[( V, W)]: let b be a smooth function with compact support in (-a, b); then (4.6)-(4.8)
yield

V’p.,.,’ dx + r w,,p e-V e-v,d dx =0,

(4.9)

W’&+ W& qr vw e-% e- dx,

and the convergence of the above integrals is straightforward. Finally T[(v,, w,)]
T[(v, w) by contradiction.
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THEOREM 4.1. Problem (4.1), (4.2) has a solution (v, w) belonging to K f-)

C[-a, b])2.
Proof. From Lemma 4.4, T is a continuous and compact mapping from K into

K and Schauder’s Fixed-Point Theorem implies the existence of a fixed point of T in
K. The smoothness of v and w is straightforward.

We may establish further estimates independently of a and b.
THEOREM 4.2. There exist positive constants M2, M3 and M4, independent ofa and

b, such that

(4.10)
w dx <-_ M3, ’ dx <- M4.

Proof. (i) Let us estimate w’; let Xo be a point where w’(xo)= 0; an integration of
(4.1b) leads to

_q2r[ve-O e-W(w+ 1)ix w(,o q2r e- w + l )v’ e- ds

+q2r e-W(w+l)v’ve ds+
Xo

b

<=2q2rsup{ve e-W(w+l)}+q2rsup{e-W(w+l)} -v’ e-ds

b 2
+q2rsup{e-W(w+l)} -vv’ e ds+-M3o.

3

Hence

(4.11) M2=2 q2r 1 + +

(ii) We are now going to estimate b W
2 dx. First, we combine (4.1) to get

(4.12) w"+ qEt" W2.

By integrating (4.12) and making use of the previous estimates, we obtain

(4.13) Ma=2M2+2qEM1.

(iii) Finally, we multiply (4.1b) by w and integrate on (-a, b) to obtain

w’2 dx q2r v e-" e w2 dx w dx + Ww’]ba_

N qr w dx + Mo w dx +2MoM.

Therefore

(4.14) . 2Mo(+ ,).

5. Passage to the limit. In this section, we will let a and b tend to infinity. Inasmuch
as our proof may have some numerical meaning and since the behavior of v near
is substantially different, it is interesting to let a and b tend independently to infinity,
although it is obviously possible to take a- b.
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Let a. and b. be two sequences tending to infinity, as n--> +. We consider a
sequence of solution to (4.1), (4.2) on the interval [-a., b.], denoted by (v., w.),
satisfying

rv.w,, e e W q2rvnw. e-o. e-w. + w2.,(5.1)

with

(5.2)
v.(0)=l, v’.(b.) =0,

w.(-a.)=w_(a.), w.(b.)=w_(b.).

Next we extend (v., w.) to R by

v’.(x) v.(x) if x [-a., b.]

=v.(-a.) ifx<-a.

(5.3) v.(b.) if x> b.,

.(x) w.(x) ifx [-a., b.]

_w(x) if not.

Note that _w given by (3.12), (3.14) is obviously in Hi(R). With Theorems 4.1 and
4.2, we have the following estimates on sequences t, and ft,"

_w-< .-< -Mo, I’.1--< M=+ II_w’ll(,

H (1)--" M3 + M4+ w =
0 < " <M1

(5.4)
_v(x)-< .(x) _-< e(x), -< -x _-<x < +,

Iv’.(x)l dx <- 1/
x

As a consequence of these estimates, we have the following.
LEMMA 5.1. There exists a subsequence v,k, w,k) and a pair v, w) such that, as

nk --->

(5.5) v’,-> v, ff, "-> w uniformly on compact subsets of .
Moreover, ff,--> w in HI() weakly, ’,--> v’ in LP(-X, +) weakly for all X > O,

p>l.
Proof Let Xo>0 be fixed. The sequences , and ft, are bounded in

WI’([-Xo, Xo]) by (5.4), so one can extract two subsequences ,x and ft,x converging
uniformly on [-Xo, Xo]. By means of a diagonal process one obtains two subsequences
which converge uniformly on I-X, X], for all X > 0.

On the other hand, (5.4) yields that ft, is bounded in HI() and the sequence
is bounded in Lp(-X, d-cx3),X> O, p _-> 1, hence the lemma.

Now, let b be a smooth test function, supp b = (-X, X), X > 0 fixed, and let
be large enough so that a,k > X, b, > X. It follows that

c’ dx r v, w,k e-% e-W. dp dxl)

X

and

w’,. dp’ dx + q2r v,. w. e-% e-W. dp dx- w.dp dx.
X -X -X
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In the limit rlk -boO, at least in the sense of distributions on R, we find that (v, w)
is a solution of2

(5.6) v" rvw e w" e-V w2.e =-q2rvw e- +

By bootstrapping the solution (v, w) is in fact in (C())2. We have v(0)= 1 and
since, w HI(),

(5.7) w(x)- 0 as x- +o.

Also the upper and lower solutions are preserved at the limit, in fact

(5.8) _v_-< v -< , _w -< w -<

In particular, it follows that v > 0, w > 0.

6. Asymptotic properties. We have already proved the existence of a positive
solution (v, w) to (5.6), i.e., (2.1). Some of the boundary conditions have been satisfied.
We now complete the proof of Theorem 2.1 by a couple of lemmas.

LZMMh 6.1. V’ < 0; V(X) and v’(x)- 0 as x-
Proof Through the limit process, we know v’ <=0, v’ L’(-X, +oO), for all X >

0, 1 < p <- +oO. Since vw > 0, we have v"> 0, hence v’ < 0 and v’(x) has a limit as x
which is necessarily 0. Next, v(x) has a limit v as x +oO (in particular it yields
v’ LI(-x, +oO)). Assume that Vl>O. Locally the behavior of w is given by the
dynamical system

(6.1) )1 =Y2, 2=Yl(Yl-q2re-Y’Vle-v’),

whose equilibrium point (0, 0) is a center. Therefore w cannot tend to 0 without
oscillations, a contradiction. Hence vt- 0 and the degenerate equilibrium point (0, 0)
has a one-dimensional stable manifold in the range Yl > 0, y < 0. For a more complete
stability analysis, we refer to [7], [8].

LEMMA 6.2. wH2().
Proof. We already know that we HI(R). From (5.6b), Iw"l<-2Mow; hence w"

L(). 0
Remark 6.1. Further results on regularity can be easily obtained in higher-order

Sobolev spaces. We conjecture that w W’I() from the formal asymptotic develop-
ments of [6].

LEMMA 6.3. As x-

(6.2) v’(x) - -l

with

(6.3) l--- w(x) dx

and there exists Xo g, such that

(6.4) v(x) -l(x Xo) -b E.S.T.

Proof. Since v’< 0 and bounded from below, we may define l= limx_,_ (-v’(x)).
Let us combine the system again as in (4.12)

(6.5) w"+ q2v" wE.

AS an alternative proof, it is easy to build subsequences such that the first and second derivatives
converge uniformly on compact subsets of R.



A SOLUTION TO A FLAME PROBLEM 1415

Integration of (6.5) on R yields, with Lemmas 6.2 and 6.3,

qEl IR wE(x) dx.

Therefore, v--> +o as x-->-c and

(6.6) v" rvw e e 0 exponentially.

Relation (6.6) may clearly be integrated twice to get (6.4). Xo is an integration constant.
So Theorem 2.1 is proved. 1-1

AeknowledgmelatS. We are indebted to F. Conrad, G. Bayada and M. Chambat
for their comments on the preliminary draft. We thank G. S. S. Ludford for his careful
reading of the manuscript.
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SHAPE SENSITIVITY ANALYSIS OF UNILATERAL PROBLEMS*

JAN SOKOLOWSKIf AND JEAN-PAUL ZOLESIO:I:

Abstract. After a short introduction we turn to the sensitivity analysis ofan abstract variational inequality
and we apply this result to the sensitivity analysis of an obstacle problem: fit is a domain built by a speed
vector field V, K(fit) a closed convex subset of the Sobolev space HI(fit), z is the element of K(fi t)
solution of an elliptic variational inequality. We characterize the shape derivative z’= .- Vz. V(0) (where

is the material derivative, ((d/dt)zt Tt)t=0) as the solution of another variational inequality well
posed on a new convex subset Sv(fi) of Hl(fi) depending on the speed vector field V only by boundary
expression (see Theorem 2). Finally we characterize the material derivative i of the solution of the Signorini
variational inequality associated with planar linear elasticity. For this purpose the material derivative has
been generalized to vectors situation by = d/dt (DT-.ft Tt)t=o. This material derivative is the solution
of a variational inequality posed on a convex subset S(fl) of H(fit)2.

Key words, shape optimization, variational inequality

AMS(MOS) subject classifications. 35R35, 49A29, 49A52

1. Introduction. This paper is devoted to sensitivity analysis of unilateral boundary
value problems with respect to the perturbations of the domain of integration.

Let us consider an example. Given a domain fi c R2, let us consider a family of
continuously ditterentiable, one-to-one mappings

Tt R2 R2.

fit is then the transformed domain; see Fig. 1. For the details we refer the reader to
3. Here [0, 6) is a real parameter. Let us consider the following obstacle problem

defined in fit Tt(fi) for a fixed parameter [0, 6). Find Yt H(fit) such that:

(1)
a Yt(x) -f(x) <= 0 in

Y,(x)-l=<0 in

(Y’t(x)-l)(AYt(x)+f(x))=O in fit
where f(. L2(R2) is a given element. It is well known 1 that there exists a unique
solution to the obstacle problem.

We denote here by E(Yt) the coincidence set, by yt the free boundary, i.e. (see
Fig. 2),

E(Y,)-{x,IY,(x)-I}.

FIG.
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France.
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Ft

FIG. 2

Let us denote/xt -fiE(v,). Since Y(. is sufficiently smooth [1], it folllows that the
element Yt(’) H(12t) satisfies the equation

A Yt(x) =f(x) + ,(x) in 12t.
The obstacle problem (1) can be transported to the domain 12o -= 12 using transforma-
tion T,, i.e. the function Y’(X)ae=f (y Tt)(X) is given by the following obstacle
problem defined in the fixed domain 12. Find Y’ H(12) such that:

-div(A(t,X) grad Y’(X))-f’(X)<-O in 12,
()

Y’(X)-I<_-0 in 12,

(Yt(X)-l)(-div(A(t,X) grad Y’(X))-ft(X))=O in 12.

Here we denote

f’(X) det (DT,(X))(fo Tt)(X),

A(t, X)-det (DTt(X))(DTt(X))-1. *(DT(X))-1,
where DTt(X) is the Jacobian matrix oftransformation Tt R2 R2 evaluated at X 12.

We prove that there exists the limit

I lim Y- yO)/t

in H(12). The element I H(f) is given by the following variational problem (see
Fig. 3). Find I H1(12) that minimizes:

I(r/) = (Vr/)a dx + A’ V Y, V rl)ga dx f’ rl dx

(3)

Here

subject to constraints

r/(X) 0 for q.e. X supp/Zo,

r/(X)-<_0 for q.e. XE(Yo)\supptxo.

A’(X) lom(A(t, X) A(O, X))/ t,

f’(X) lim (ft(X)-f(X))/ t.
t$o

The element I is the so-called material derivative of the solution to the obstacle
problem (1) in the direction of a transformations { Tt}. Using this result we prove that
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=0

FIG. 3

for an extension IT"t to R2 of elements Y, H(t)

Yt(X),Yt(X)
1.0, XeR2\tt,

we have the following expansion with respect to the parameter t, for > 0, small
enough,

’, 1 Yo+ tY’+ O(t) in Hl(f)
where o(t) I1,’(./t- 0 with 0 and Y’ Hl(f) is given by the following variational
problem:

find Y’ H(f) that minimizes

J(r/) = (Vr/)2 dx

subject to constraints

Yo
r/=-v onI’,

On

,/= 0 q.e. on supp /Zo,

r/<_-- 0 q.e. on E Yo)\supp/Zo.

Here v(X), X eF is a function uniquely determined by the family {Tt}, re[0, 8); for
the details we refer the reader to 3.

In this paper the continuous evolution of a given domain f c R n, n _->2 that
depends on a vector field V is introduced [2], [15]. The so-called material derivative
[16] of the solution of the boundary value problem in a direction of the field V is
defined. Existence of the material derivative is proved for an obstacle problem and
for the Signorini variational inequality of the plane elasticity. In the case of the obstacle
problem the so-called domain derivative in the direction of a field V is characterized
as a unique solution to an auxiliary variational inequality. Such characterization of
the domain derivative can be obtained under the assumption that the solution of the
unilateral boundary value problem is sufficiently smooth. Shape sensitivity analysis of
linear boundary value problems was investigated by many authors, in particular by J.
Cea [2], [3], J.-P. Zolesio [15], [16]; see also [9], [10] and references given in [3].
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Related results concerning sensitivity analysis of unilateral problems were presented
in [4], [8], [11]-[14]. For a detailed description of the material derivative method we
refer to the paper [16].

The plan of the paper is as follows. Notation is introduced in the next section.
In 2, differentiability properties of the solution to an abstract variational inequality
with respect to a parameter are investigated. Section 3 describes the results obtained
for the obstacle problem. Section 4 contains the results for the Signorini variational
inequality.

1.1. Notation. Let H be a HUbert space. Denote by H’ the dual space and by
(., the duality pairing between H’ and H. Let a (., ): H x H--> R be a bilinear form
and assume that there exist constants a and M, 0 < a-< M, such that

(1.1) a((, v4,H,

(1.2) a(4,, <-- II,/, II,-, ,: II,-, v4,,
Consider the nonlinear mapping:

(1.3) P:H’-> H,
which is defined in the following way:

for each f H’ the corresponding element P(f) H satisfies the variational
inequality

(1.4)
P(f) K,

a(P(f), - P(f)) >- (f, - P(f)) V K,
where K is a convex and closed subset of H.

It is well known [5], [6] that under assumptions (1.1) and (1.2) for any f H’ there
exists a unique solution to (1.4).

DEFINITION 1. Mapping (1.3) is Gateaux difterentiable at fe H’ if there exists
a continuous mapping

(1.5) Q:H’-> H
such that

(1.6) Vh H’" lim II(P(f+ zh) p(fO))/z Q(h)ll, 0.
-0

Remark. Mapping Q(. is positively homogeneous,

(1.7) Q(-h)=zQ(h) Vz>0, VhH’.

However, in general, Q(-h) # -Q(h).

2. Sensitivity analysis of an abstract variational inequality. Consider the following
family of variational inequalities depending on a parameter [0, 6), t > O:

p’K,
(2.1)

at(pt, _pt)_>_ (ft, _pt) V K

where for each [0, 6], a(., ):H x H--> R is a bilinear form and ft H’ is given.
For fixed [0, 6) denote pt= pt(ft), ft H’.

THEOREM 1. Assume that
(i) Bilinear forms a (.,.) satisfy (1.1), (1.2) uniformly for [0, 6) and there

exists a linear operator A’ L(H; H’) such that

(2.2) lim sup I(a’(w, b)-a(w, 4))/t-(A’w, b>l=0;
t,o 114,11

Ilwll=<
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(ii) There exists an element f’ H’ such that

(2.3) lim sup I(f’-f, dp)/t-(f’, b)l=0;
to 4,11H_<_1

(iii) pO(f), f H’ denotes a unique solution of the variation inequality

(2.4)
pO(f) K,

aO(pO(f),

_
pO(f)) >_ (f,

_
pO(f)) V K.

Assume that the mapping pO( H’ -> H is Gateaux differentiatiable, i.e. for > O, small
enough,

(2.5) Vh H’: pO(fO+ th)= pO(fO) + tQ(h)+ o(t)

where o(t) n / --> 0 with , O.
Then the solution p H to variational inequality (2.1) is right-differentiable at 0

in the norm of space H:
(2.6) p pO+ tQ(f’- A’p) + o(t)

where o (t) II,-, / 0 with , O.
Proof. By standard argument it follows that

(2.7) aO(pO_pt, pO_pt)<_(ft_fo, pO_pt)+aO(pt pt_pO)_at(pt pt_pO).
Using (1.1) we obtain

(2.8)

By assumption (i) there exists a constant C < oo such that for > 0, small enough,

(2.9) aO(p,, p,_pO)_a,(p, p,_pO)l < ctll pt I1, P’-PIIH.
Therefore, in view of (2.9), it follows from (2.8) that

(2.10) IIp’-pll,, --< fit, [0, 8).

Simple calculations show that the element p’ H satisfies the following variational
inequality:

(2.11)

where

pt K,
aO(pt, _pt)>_(fo+ t(f,_A,pO), _pt)+(r(t), _pt) VK

(r(t), >= (ri(t), > / H,
i=1

(2.12) rl(t)=f’-f-tf’,
def

(2.13) <rE(t), :)= a(p, )-a pO, )+ t<A,pO, ) V H,
def

(2.14) (ra(t), sc) a(pt-p, )-a(p-p, ) VE H.

By assumptions (i) and (ii) it follows that r,(t)lln,/tO with $0, i= 1,2.
Fuhermore, in view of (2.2), for > 0, small enough,

(2.15) I<r(t),>lv(t)llp’-pllllll, VH
where y(t) 0 with 0. erefore, taking into account (2.10), we obtain

(2.16) r3(t)I1,/t + 0 with 0.
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Thus

(.7)

Hence

(2.18)

where

r(t)II H’/t -> 0 with $ 0.

p, pO(fO + t(f’- A’p) + r(t)) pO(fO+ t(f’- A’p)) + o(t)
pO(fO) + tQ(f’- A’p) + o(t)

o(t)I1,/t -> 0 with 0.

3. Sensitivity analysis of an obstacle problem. This section is devoted to sensitivity
analysis with respect to the parameter [0, 3) of an obstacle problem posed in a
domain fit c R".

First we introduce notation. The following notation is used for the scalar product
in R ""

a. grad " {a, grad ’} a
i=1 OXi

where a=col (al,"" ", a,) is a vector and grad ’= col (O/Oxi,’" ,0/0x) denotes
the gradient of a given function r ’(x), x (xl, , x) R". Given n n matrix
A=[av], we denote by *A its transpose matrix, i.e., *A=[aj]. As in [3], [16], we
introduce a family of regular domains {fit} c R ", [0, 3) corresponding to a given
vector field:

(3.1) V(.,.):[0,)R"-->R ".

Domains fi, are constructed as follows. Denote by Tt Tt(V), [0, 3) the family of
mappings of the form

(3.2) T: R" X- x(t) R"

where the vector function x(.) satisfies the following ordinary differential equation:

dx
(s) V(s, x(s)), s [0, ),
al

(3.3)

and denote

x(0): x,

(3.4) fi, Tt(V)(fi) {x R"[:IX fi such that x x(t), x(0) X}.
Vector field V(.,. is assumed to be regular, i.e.,

(3.5) V(t,.)CI(R",R ") Vt[0,6),

(3.6) V(., x) C([0, 3)) Vx g".

Note that from (3.3) and (3.4) it follows that fo--fi.
Denote by DTt(X) the Jacobian matrix of mapping (3.2) evaluated at X R ".

Given the family of domains {fit} R", consider the following variational inequality,
parametrized by [0, t):

Zt Kt(fit) {t C Hi(fit) t on Ofit, t(x) >= tPo(X) a.e. in fit},
(3.7)

where b(.) and 4’o(’) are given elements of C(R"), (.,.)t is the duality pairing
between (H(l)t)) and H(fit). Bilinear forms at(’," and element f, (H(ft)) are
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defined respectively by

at(yt, ’t)= I_ {(A(x) grad yt(x), grad (X))R"

(3.8) /sr(x)(a(x), grad yt(X))R" + ao(x)y(x)t(x)} dx,

[0, ($) Vsrt, Yt H(-t),

(3.9) (ft,t)t={Fo(x)t(x)+(F(x)+gradt(X))R.}dx, t [0, ) Vt E Hl(-t)

where A(x) [aq(x)],,,a(x) col (al(x),’’’, a,(x)),F(x) col (Fl(X),’-" ,F(x)),
ao(x), Fo(x) are given elements and x E R ".

We shall characterize the so-called domain derivative 16] z’ HI(O) for a solution
to problem (3.7). Recall that in the case of variational inequality (3.7) the domain
derivative can be defined as follows:

(3.10) z’(x)
clef 0

where

.(t,x)=z,(x), xf,, t [0, ),
(3.11)

b(x), xRn\nt, E [0, iS).

THEOREM 2. Assume that
(i) Kt(t) is a nonempty, closed and convex subset ofspace H(t) for [0, ).
(ii) a(. ), a,(. ), ao(" ), F(. ), Fo(" CI(R), i, j 1,..., n,
(iii) There exists a constant > 0 such that

(3.12)

(iv) -fl(x) de=f 6(X) d/o(X) > 0

fl(’), 1/fl(’) cl(gn), b c2(g);

then the domain derivative z’ H() for the problem (1) exists and is given by the
following variational inequality:

&(n),
(3.13)

ao(z’, - z’) >= 0 / So(O),

where the cone So H I is defined by

On

z(Fo(X)-div

F(X)-(X) Vo(X) ao(X)qo(X)

+div (A(X). Vo(X)))(X) dX 0}.
For the proof of Theorem 2 we need some lemmas. Lemma 1 describes the results

obtained in the case of an obstacle problem defined in the fixed domain f. We introduce
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the necessary notation. Let there be given n xn matrix function C(t,x)=[cu(t,x)],
vector functions c(t, x) col (Cl(t, x),. ,c,(t, x)), H(t, x) col (Hl(t,x),.. ",

Hn(t,x)) and elements Co(t,x), Ho(t,x), t[0, ), xfi, which are supposed to be
continuous on [0, 8)x and continuously ditterentiable with respect to at =0/.
Define the following:

1) bilinear form ct(.,.) on H(f)

c’(y, )= f {(C(t, x). grad y(x), grad (X))R"

(3.14) +’(x)(e(t, x), grad y(x))a" + Co(t, x)y(x)(x)} dx

Vy,eH(),

2) elements h’ e H-l(f)

(3.15) (h’, st) f {Ho(t, x)(x)+(H(t, x), grad (X))R"} dx
d

3) linear operator C’e L(H(f); H-l(f))

(C’y, C)= - (0+, x) grad y(x), grad r(x)
R

(3.16)

Vts[O, a);

vc /4(a), vt [o, );

tgC / 0Co }+ st(x) (0+, x), grad y(x) +--(0+, x)y(x)(x) dx
R

4) element h’ H-l(f)

where

(3.21)

v So(,O,)

So(f) {ff H()I (x)<-0 q.e. on fo(w), c(w, ’): <h, ’>}

(3.20)
qSo(f),

c(q, - q) >- (h’- C’w, - q)

(3.17) (h’,’)= i.---(0+,x)’(x)+ -- (0+, x), grad ’(x) dx
R

Consider the variational inequality

w’ K() { H() (x) a.e. in },
(3.18)

c’(w’,-w’)(h’,-w’) VK()

where y R is given constant. In the sequel, without loss of generality we assume that

LEMMA 1. Assume that there exists a > 0 such that

Vt [0, a)" c’(, )=> I111 .(.) V e H(a).
en
(3.9) w’ w + tq + o( t)

hee o(t)I1--/t 0 wth 0 ,a q H(a). Se,tty o,t q ()
satisfies the vriational inequality



1424 JAN SOKOLOWSKI AND JEAN-PAUL ZOLESIO

and

(3.22) flo(W) {x 6 fl w(x) 1}.

Proof We apply Theorem 1 to variational inequality (3.18). Assumptions (i) and
(ii) of Theorem 1 are obviously satisfied by operator C’ and element h’.

We verify assumption (iii) ofTheorem 1. Denote by w= 7r(f) the unique solution
to (3.18) for t=0.

By a result of Mignot [8] we have

(3.23) Vh 6 H-(O): 7r(f+ zh) 7r(f)+ ’Tr’(h)+ o(r)

where element zr’(h) So(O) satisfies the variational inequality

(3.24) c(r’(h), -r’(h))>-_(h, -Tr’(h)) V6So(O).

Hence in this case Q(h)de---f,n"(h), th H-I().
Next Lemma 2 below applies to an obstacle problem posed in variable domain

(3.25)

where

(3.26) K(O,) {’, e H(S,) I’,(x)_-< 1 a.e. in O,},

b,(y,, st,)= (_ {(B(x) grad y,(x), grad ,(X))R"

(3.27) +srt(x)(b(x), grad yt(X))R" + bo(x)y,(x)t(x)} dx

Vyt, sr, e H(I),), e [0, 8),

(3.28) (g,, fft)t In {Go(x),(x)+(G(x), grad ’t(X))s"} dx VK, e H(O,).

Henceforth we assume that there exists a unique solution w, e H(Ot) to (3.25) for
e [0, 8) and denote

(3.29) ff(f) lim (wt Tt Wo)/ t.
t$o

LEMMA 2. Assume that

(i) Go(’) e C’(R"),

B(’)G[CI(Rn)]n2,
bo(.)eC’(R");

(ii) There exists a constant > 0 such that

(3.30) bt(sr,, ’,) > , ’, ,,, V’, e H,(t)

then mapping

(3.31) [0, 8) wt T H(f)

vt[o, 6);
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is strongly differentiable at 0+ and the element (l’) H(f) satisfies the variational
inequality

(3.32)

where

bo((l)), (l)) >- (g’- B’wo, - (l)) V

S,() {" HA()I ’(x) <=0 q.e. on "1 (Wo), bo(wo, ) (go, ’>},
(3.33)

l(wo) {x f Wo(X)= 1}.

Element g’ H-I(f) and operator B’ L(H(f); H-I(f)) are defined by (3.52) and
(3.51 ), respectively.

Proof Using mapping Tt we transport variational inequality (3.25) defined in
to the domain f T-(Ot). Then we can apply Lemma 1 to the resulting variational
inequality defined in f. To this end we need the following notation:

(3.34) B’(x) y(t, x)(*DT71)(x) (Bo Tt)(x) (DTTI)(x),

(3.35) b’(x) y(t, x)(DTT)(x) (bo T,)(x),

(3.36) b(x) y(t,x)(bo T,)(x),

(3.37) G’(x) y(t, x)(*DTT)(x) (G T,)(x),

(3.38) G(x) y(t, x)(Go T,)(x)

where y(t, x) =det (DT(x)),

b’(y, ) fa {(B’(x) grad y(x), grad (X))R"

(3.39) + (x)(bt(x), grad y(X))R"+ b(x)y(x)(x)} dx

(3.40)

Vy,H(O),

<gt, ,)= In {G(x)(x)+<Gt(x)’ grad ’(X))R"} dx V H(f).

It can be verified that

(3.41)

(3.42)

bt(yt T, t T)= b,(yt, t) Vy,, t H(ft),

(g’, t Tt)= (gt, t) Vt n(t),

Furthermore

(3.43) y, Tt K(f) itt y, K(f,).

Hence it follows that element w, Tt H(f) satisfies the variational inequality

(3.44)
wt Tt K (I),

bt(w, T, - w, Tt) >- (g’, ’- w, V’ K().

By assumption (iii) (see [14]), there exists a constant a a(6) > 0, for 6 > 0, sufficiently
small, such that

(3.45) b’(,’),llll :,_,. v H(I)), Vt6[O,t).
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Hence there exists a unique solution to (3.44). In order to apply Lemma 1 to variational
inequality (3.44), we calculate derivatives with respect to at 0/ of the coefficients
of bilinear form b’(.,. and linear forms g’ H-1(12). We obtain

OB
(3.46) _-7-7(x)=(divV)(x)B(x)-((*DV)(x)" B(x)+B(x). (DV)(x))+B(x)

dt

/ij(x) bij(x) Vk(X), i, j 1,’’ ", n,
k=l

0b-- (x)= (div V)(x)b(x)-(DV)(x). b(x) + (x),
Ot

=col(,’’’, b),

b(x) b,(x) Vk(X), i= 1,’’’, n,
k=l OXk

(3.48) Ob
(x)=div (boV)(x),

Ot

(3.49) 0G (x) (div V)(x)G(x) (*DV)(x) G(x) + (x),
Ot

(3.50) x div (GoV)(x)
Ot

where V(x)= V(0, x) and (x) is defined in exactly the same way as (x).
Denote by B’ L(H(); n-l()), g’ n-()

(B’y,

(3.51) +y(x) x(x), grad (x) +(x)y(x)(x) dx

y, e (a,

(3.52) (g’, if) [(x)(x) + (x), grad (x) dx V e H().
kOt R"

Since, in the case of variational inequality (3.44), all assumptions of Lemma 1
are satisfied it follows that

w, T, Wo+ t(a) + o(t)

where o(t) na)/t 0 with $ 0 and element () e H() is a unique solution to
(3.32).

We now characterize the domain derivative

(3.53 w’

in the case of variational inequality (3.25).
We prove that w’ depends actually on v (V(0), n)-, v is the normal component

of the vector field V(0) on F.

(3.47)

where
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LEMMA 3. If assumptions (i) and (ii) of Lemma 2 are satisfied, then the domain
derivative w’ HI(l)) satisfies the variational inequality

ow’eSo(),
(3.54)

where
bo(w’, - w’) >- 0 V S(f)

OWoS(fi)= srHl(g)lsrlr--V (x)<-_Oq.e. onZ(wo-1),
On

(3.55) fz (Go(x)- bo(x)-div G(x))(x) dx =O}(wo-1)

Z(wo-1)={xlwo(x)- 1}.

Proof. If the assumptions of Lemma 2 are satisfied then (see [1])

(3.56) Wo H2(fi) f) cl"(fi) Va < 1.

Hence (grad Wo, V)R" Hl(f) for an arbitrary regular vector field V=V(0,. ).
Denote

(3.57) S(f) {b Hl(f) b ’- (grad Wo, V)R", " S2(fi)}.

Simple calculations show, by taking into account (3.56), that cone (3.57) has the form
(3.55).

Note that

(3.58) So(f)- Sv(f) S2(f)- S2(f).

On the other hand, it follows from (3.53) that

(3.59)
ow’ So(f),

bo(w’, w’) >= G(wo, V, w’) v" s(n)
where

(3.60) G(wo, V, ) (g’- B’wo, )- bo((grad Wo, V)R", ’).

Element g’ H-l(fi) and operator B’ L(H(f); H-l(f)) are defined by (3.52) and
(3.51 ), respectively.

Observe that for a vector field V such that (V, n)R 0 on F, the mapping [0,
fi, R" is constant, i.e. fit II, [0, 6), hence w’ 0 and b (grad Wo, V)R whence

(3.61) 0-> G(wo, V,

If we put +V in (3.61) then we obtain

(3.62) G(wo, V, ’) 0

for an arbitrary vector field V such that V Iv" n 0, where we denote V Iv" n
From a general result of J. P. Zolesio 15] it follows that there exists a distribution

g, D(F) such that

(3.63) G(wo,V,)=(g,(wo,),V’n)o(r)o,(r) V" {S(I) S2(f)}
and domain derivative w’ H1(fi) satisfies the variational inequality

w’So(),
(3.64)

bo(w’, -w’)>=(g,(wo, -w’), V n)ow)o,w) V So().
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Taking into account (3.56) and by integrating by parts we obtain

<3.65) G(wo, V, )= Ia K<wo, )" V dx + Ir g,<wo, ’)V n dF

v H(n) n {s(n) o-so(n)},

and from (3.63) it follows that

(3.66) K(wo,)=0 VH(f)n{s(f)-S(f)}.

Simple calculations show (see [14]) that

(3.67) frg(wo,)V.ndF=O vr E H2() f’) H().

Hence

(3.68) G(wo, V, ’)=0 VsrE HE()fq{S(f)-S(f)}.

In order to prove that (3.68) is satisfied for an arbitrary element " {S(f)- S(I)},
consider vector field V with compact support in some open neighbourhood of the
boundary F--0I. Let U, U, c f be open sets such that U U,, Z(wo-1) U and let
r/(. be a smooth function such that

O /(x) 1, x,

(3.69) n(x)-- 1, x u,

n(x) O, x \ U,
o o H(12) ffl H)() be a sequence suchGiven an element b e {S()-S()}, let {b.}

that

(3.70) b b strongly in H(f/).

Note that the sequence

(3.71) .=(1-.O)6,,e{S(fl)-S(fl)}t-IH(i2)

for every vector field V 0 on U,.
Since

G(wo,V, 4,,)=Irg(Wo,(-n)4,)V.ndr=O n= 1,2,...,

it follows that

G(wo, V, b)= lim G(wo, V, b) =0 V6 e {s(a)-so(a)}.

Proof of Theorem 2. In order to use Lemma 3 we make a particular choice of
coefficients ofbilinear form b,(., and linear form (g,, in order to obtain the solution

Zt H’(’t) to the problem (3.7) in the form

(3.72) z, flw, + oh, [0, 6)
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where w, H(O,) is a unique solution to the problem (3.25), /3(x)= d/o(X)-qb(x),
x R". We select the coefficients B(.), b(.), bo(’) of bilinear form (3.27) and the
coefficients Go(" ), G(. of linear form (3.28) in the following way:

(3.73) B(x) 2(x)A(x),
(3.74) b(x) (x)(*A(x) A(x)). V/3 (x) +/32(x)a(x),
(3.75) bo(x) (x)((x)ao(x)+a(x) V/3 -div (A(x) Vfl(x))),

(3.76)
Go(X) #(x)(Fo(x)-a(x) Ve(x)- ao(x)6(x))+ F(x) Vt(x)

-(A(x). V(x), V/3(x))e-,

(3.77) G(x) (x)(F(x)-A(x)" Vb(x))

where A(. ), a(. ), ao(" and Fo(" ), F(. are the coefficients of bilinear form (3.8) and
linear form (3.9), respectively.

Using (3.73)-(3.77) we obtain

(3.78) b,(w,, so,)= a,(w,,/3so,) Vw,, :, H(O,),
(3.79) (gt :t), (ft, flt)t at(qb, flt) lt H(Ot),
therefore simple calculations show that (3.72) holds.

The domain derivative w’ Hi(o) for the problem (3.25) is given by (3.54),
henceforth, in view of (3.72), it follows that there exists the domain derivative z’ Hi(o)
for the problem (3.7) of the form

(3.80) z’=/3w’.
Furthermore, z’/

Let us denote by So(O)= Hi(o) a closed and convex cone such that z’ So(O).
Furthermore,

/3 S(O) iff S(O).
Let r/ So(O) be a given element; then : ,///3 So(O) and using (3.55) we obtain
(i) rt=-v(O/On)(zo-ch) on F, since =rt/=-v(Owo/On) on F and Wo

(Zo- )/(q,o- );
(ii) r/->0 q.e. on Z(zo-qo) since rt//3-<0 q.e. on Z(wo-1) and/3(x)<0 for all

xR";
(iii) It can be shown, in view of (3.75)-(3.77), that using the integral condition

on Z(wo-1) we obtain

(Fo(x)-div F(x)- a(x) Vfro(X)- ao(x)d/o(X)
(Zo-q,o)

+div (A(x). Vqto(X)))r/(x dx=O.

4. Sensitivity analysis of the Signorini variational inequality. Let O R’ be a domain
with smooth boundary F=00. Given a vector field V(t, x), [0, 6), x R, let
{Or} R2 be the corresponding family of domains (3.4). We assume that Ot R2, for
each [0, 6) is a bounded connected region with smooth boundary OOt and may be
expressed as

(4.1) 0n,=r,ur ur 
where F, F, F7 are smooth, disjoint and open one-dimensional manifolds.

We assume that O, lies on one side of 00, and that the one-dimensional measures
of F,, F7 are strictly positive for [0, 6).
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n2) and n (nl, n2) denote theWe denote 0f FU F U Fc. Furthermore,
unit outward normals to 0ft and 0f/, respectively. A vector function V, and a tensor
function "rt defined on It have components v it, zt, respectively, for i, j 1, 2. A vector
function v and tensor functions .r, c defined on R2 or on f/have components vi, %, Cok
respectively, and i, j, k, 1, 2.

We use the summation convention of summing on all repeated indices. The
following notation is used for the scalar product of vectors:

(4.2) g" n st,n,

and for the convolution of tensors:

(4.3)

Denote

(4.4)

e.. c. .: Cijkleij’l’kl

.’. ’-" 7"ijil)j,

(r" v) rvv.
H(a,) {[, e [U’(a,)y [,(x)=0, x e r,}

and let K(ft) be a convex and closed set of the form

(4.5) K(I’I,) {t E a([-t)I," lit < 0 a.e. on F}.
2Given a tensor function c with components Ck Llo(R ), i, j, k, 1, 2, assume that

the following conditions are satisfied:

(4.6) Cijkl(X Cjikl(X Cklij(X), X R2, i, j, k, l= 1, 2,

=i Vo > 0 such that

(4.7) Cijkt(X)eijekl >= voeoe
for every symmetric tensor e.

Denote at(’," ), e [0, ), the bilinear form

(4.8) at(vt, ’,)-- f 13(/t).. C.. (,) dx

where the symmetric tensor e(v) have components

(4.9) eij(v)(x) =- \Oxi Oxj
(x)

Given elements f= (fl, f2) e [L2(R2)]2, P= (P1, P2) e [HI(R2)]2, denote Ft e (H(FIt))’

def fff fF(4.10) (Ft, t}, f(x)’t(x) dx + Pi(x)Ci(x) dr V, e H(fl,.).

Consider, for [0, ), the Signorini variational inequality

u, K(t),
(4.11)

THEOREM 3. Mapping

(4.12) [0, 3) + u Tt H(f)
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is differentiable at 0/, i.e.,

(4.13) u, Tt =Uo+ ti+ o(t)

where o(t)IIs-/t - 0 with , O.
The element a e H(f/) is a unique solution to the variational inequality

as(),
(4.14)

aoOi,-i)_->(F’-Buo,-h)+ao(DV Uo,-h) YjeS(f)

where

(4.15)

(4.16)

S(fl)= (e H(I)Ia- =<n" DV’uo a.e. on Z(uo) c Fc,

(4.18) b’(w, )= J e(w)., b(t)., e() dx,

(4.19) (Gt’ )= It g,(t, x),(x)dx+ fr G,(t,x)i(x)dx,

b(t), e[0, 8), is a tensor function with components bokt(t x)--we assume that condi-
tions (4.6) and (4.7) are satisfied by b Ok1(’," on [0, 8) X 12, i, j, k, 1, 2. Furthermore

bokl(" )e C([0, 8); L(f/)),

ob,jk,
(0,’) e L(f), i, j, k, l= 1, 2.

Ot

Elements gi e C([0, 8); LE(f)), Gi e C([0, 8); L2(F1)) are assumed to be differentiable
with respect to t, at point 0/ with

0g--2 (0,.) e LE(f),
Ot

Element F’e (H(f/))’ and operator Be L(H(); (H(I))’) are defined by (4.55) and
(4.56) respectively.

For the proof of Theorem 3 we need some lemmas. First consider sensitivity
analysis of the Signorini variational inequality defined in

where

Z(uo) (x r luo(x) n(x)

(4.17)
bt(wt, -wt) >= (Gt, -wt) VteK(D,)

(0,.) e LE(F1), i- 1, 2.
Ot

We also need the following notation. Let E e L(H(f/); (H(f/))’), G’ e (H(I)))’ be defined
as follows

(4.20) (Ew, )= f ob,jk, (0, x)eo(w)(x)ekt()(x) dx Vw, e H()
Ot

(4.21) (G’, ) " (0, X)"i(X dx + " (0, X),(X) dF V e H().

ao(Uo, ’)-(Fo,/j) ao(DV Uo, Uo)},
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LEMMA 4. Mapping

(4.22) [0, 6) --> w’ e H(II)

is differentiable at 0/, i.e.,

(4.23) w w + tr + o ),

where o(t)II..)/t-0 with t, 0 and the element re H(II) is a unique solution to the
variational inequality

re SI(1),
(4.24)

b(r, - r) >- (G’- Ew,-r) V e SI(I))

where

(4.25) Sl(’ { a()[g, n-<0 a.e. on Z(w) c Fc, b(w, g)=(G, )}.

Proof. We shall apply Theorem 1. Assumptions (i) and (ii) of Theorem 1 are
verified by linear operator E e L(H(fl); (H(fl))’) and element G’e (H(fl))’. We have
to verify assumption (iii) of Theorem 1.

Assume that the outward unit normal vector on F has the form

(4.26) n(x) (1, 0), xeF

and denote by R e L(H(f/); L2(Fc)) the linear mapping

(4.27) (R)(x) ’(x) n(x). (x), x e F V e H(f).

Denote by H(Fc) c L2(F) the linear subspace

(4.28) H(F) {r/e LZ(FC) zig e H(f) such that Rg= rt}.

Define scalar product ((.,.)) in space H(F)

(4.29) ((1, r/2))de--fb(R-’r/1,R-’r/2) Vr/l, r/2eH(]e)

It can be verified that space H(F) with scalar product (4.29) is a Hilbert space.
Consider the following variational inequality posed on F, given element he (H(fl))’,
determine (h):

,(h)K(F)={H(F)I(x)>-_O a.e. on F},
(4.30)

((cI)(h), n-(h)))>-(h,R-l(n-(I)(h))) VnK(r).

Denote by w- P(G) the solution of (4.17) for t- 0. It follows that

(4.31) P(G) R-I(G) + Y(G)
where the element Y(G) solves the variational equation

Y(G) e HI(ll) ker R,
(4.32)

b(Y(G), [) (G, [) V[e HI(I’I).

Assume for the moment that the following conditions are satisfied:

(A1)

where r/+ max {0, r/},

(A2)

(a3)

r/ ,r/ eH(rc) Vr/eH(rc)

((n +, n-))_-<o VnH(r),

H(Fc) t’)Ceomp(rc) is dense in Ccomp(1-’c).
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Then from a result of Mignot [8] it follows that the solution to (4.30) is conically
diiterentiable with respect to he (H(f))’, i.e., ’q’z (H(12))’,

(4.33) I,(h + rz) P(h) + rw(z) + o(r)

where o()II.r)/- 0 with " $ 0 and the element w(z) H(Fc) is a unique solution
of the variational inequality

(4.34)
w(z) s(r),

((w(z), ,7- w(z)))_-> (z, g-l(, w(z)))

where

(4.35)

(4.36) Z(cP(h)) {x F (h)(x) 0}.

Hence, taking into account (4.31) we obtain ’q’z (H(I2))’,

P(G + zz) P(G) + -Q(z) + o(-)(4.37)

where

s(r) {, H(F)I r/(x)=< 0 a.e. on Z(O(h)) r, ((O(h), r/))= (h, R-17/)},

def

(4.38) Q(z) R-lw(z) + Y(z),

which implies that assumption (iii) of Theorem 1 is verified. From (1.11) follows (4.23)
with

r Q(G’- Ew).
The form (4.25) of cone S1(12) can be obtained by simple calculations, taking into
account (4.34), (4.35) and (4.36). Assumption (4.26) is not restrictive, since for F c C 1,1

the following linear transformation of displacement field can be defined

[n’(f)] - l [Hi(O)],
1 N1’1 +

N+N

_
where N(. ) W1’(12)]2 is an extension of normal field n(x), x 1-’. Since

.(x) (x) q,,(x), xer,
it follows that for displacement field $ condition (4.26) is satisfied.

For the proof of (A1)-(A3) see the following Lemma 5.
LEMMA 5. Assumptions (A1)-(A3) are satisfied.
Proof Assumption (A1) is obviously verified since space H(F) is a closed, linear

subspace of Sobolev space H/(F). It follows from a general property of Sobolev
spaces H/ [7] that assumption (A3) is satisfied. We prove that (A2) holds.

Recall that

(Rg)(.) ’1(" e H(F) (1, 2) H(fl).

Let /e H(Fc) be a given element, and denote

(4.39) g* R-iv/, ’* (’1", st2*).

We denote b(.,. b(., ).
Note that

(4.40) ((, ?))=inf{b(g,g):geH(12),Rg=q}=b(g*,g*).
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Since we have

(4.41) b(g, )= bl(’l, srl)+ b2(srl, ’2)+ b3(’2, Srl)+ b4(2, 2)
with appropriate bilinear forms bi(’,’), i= 1,...,4, by taking into account the
necessary and sufficient optimality conditions for (4.40), we obtain that

b(*, *) bl(’*, ’1")- b4(’2,(4.42)
Denote

(4.43)
where

I/1=/++/- for neH(r).
Furthermore, since sr* e H1(12), i= 1,2 it follows that ’*1 e H1(12), i--- 1,2, where

we denote

(4.44)
Note that

(4.45)

(4.46)
hence

(4.47)
whence

(4.48)

t* 1-0" e H,(f)=ker R,

0" e H2(f) (ker R)+/-,

b(O*, O*)- b(Ig* I, ItS* I): 2b(O*, O* -I[* l)- b(O* -I[* I, O*
-b(O*-I* I, **-I* 1)--< o.

By (4.48) it follows that

b,(lffl IffVI)- b4(lff[, Iffl)
(4.49)

b(, )-b4(L )
=((n, n)).

The condition ((+, -)) 0, H(F) follows from (4.49).
oofof eorem 3. Denote

(4.50) zt= DT? ut Tt.
Since we have

(4.51) It K(t) iff [= DT t Tt K()
it follows that the element z H() solves the variational inequality

z’ K(),
(4.52)

at(zt,[-zt)(F(t),-zt> K()
with appropriate bilinear forms a’(., .) and linear forms F(t) (H(O))’, t[0, ). It
can be verified that a proper choice of bilinear forms at( and elements F(t) is the
following:

(4.53) a’(u, ) [ ’(u).. c’.. ’([) dx Vu, [ H(O)
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where

e’() 1/2{D(DT,. ). DT-I + *DT-1. *(D(DT,. )))

and tensor c has components

(4.54)
Cok det (DT)Cok T, i, j, k, l= 1, 2,

(F( t), g) Ia ft g dx + Ir Pt g dF

where

f’ =det (DTt)*DTt. (fo Tt),

P’= M(DT). nil *DTt. po Tt,

M(DTt) =det (DTt)*DT-1.

We need the following notation:

(4.55)

(4.56)

+ (div (PV(0)))-(n DV(0). n)P. t+P. DV(0). dr,
F i=1

(BIl, g) Io l(u) c.’ .13(g) dx + ff l’(u) c l(g) dx

+ Ia e(u)., c.. e’({) dx Vu, { e H(I)

where

’() =Z ()
t--0

1
={D(DV- {)+*(D(DV. ))- D{ DV-*DV *D{}.

Tensor field c’= (O/Ot)c It=o has components

t=O
div Vijkl + grad Cijkl" V.

It can be verified that element F’ (H(f))’ and operator B L(H(O); (H(f))’) satisfy

d
<F’, {) Z <r(t), {)

t=0
V H(f),

d
(Bu, {) - at(u, {)

t=0
Vu, H().

Furthermore conditions corresponding to (2.3) and (2.2) are verified. We can apply
Lemma 4 to (4.52), hence the mapping

(4.57) [0, )t - z H(f)
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is differentiable at 0/, i.e.

(4.58) z =z+ tOz+ o(t)

where o(t)II ,-,<>/t o with , 0,

(4.59)
oz S(),

a(Oz, g Oz) >= (F’ Bz, g Oz)

S() (g H(m)lg" n_-<0 a.e. on Z(z), a(z, g) (F(0), z)},

z(,) {x r I,.(x) n(x) o}.

On the other hand, since

(4.60) at Tt DTt" z and DT,],=o-- I,

it follows that

(4.61)
fi 0z DV. z

0z DV. Uo

and simple calculations show that fi is determined by (4.14).
We use the material derivative fi’ in order to derive the form of the so-called

Eulerian semiderivative dJ(f; V) of a functional J(f) in the direction of a vector field
v(., .).

Let us consider a functional

J(l’)= ffn F(u(x)) dx

where F(.)6 CI(R2) and u(.) is given by (4.11) for t=0.
We denote

def
dJ(" V) lim (J(,)-J(l))/t.

t,l,O

It can be verified that

dJ(fl; V) f (DF(u(x)). fi(x)+ F(u(x)) div V(O, x)) dx.

Let us assume now, that the following regularity condition is verified

Du. V(0) (H1([),))2;

then there exists [17] the so-called domain derivative for problem (4.11) given by

u’= h- Du. V(0).

Furthermore,

dJ(a; V)= f DF(u(x))" u’(x) dx + f F(u(x))(V(0, x), n(x)) dF.
J

The form of the domain derivative u’ is given in [14], [17] and [19].
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THE INITIAL VELOCITY OF THE EMERGING FREE BOUNDARY
IN A TWO-PHASE STEFAN PROBLEM WITH IMPOSED FLUX*

A. SOLOMON, V. ALEXIADESf$ AND D. G. WILSON"

Abstract. Consider the one-dimensional, two-phase Stefan problem with an imposed flux, in which the
phase change front originates at the material boundary. We prove that, subject to suitable assumptions on
the initial temperature and imposed flux, the initial speed of the phase change front is equal to the jump
between the surface and initial fluxes at the boundary. Similarly, we prove that the front X(t) is continuously
differentiable in the closed interval [0, t*] for some t*> 0.

Key words, two-phase Stefan problem, initial interface speed, onset of melting, L2-estimates, smoothness
of free boundary, maximum principle

AMS(MOS) subject classifications. 35R35, 35K05, 35B65

Introduction. Consider a slab of material occupying the interval 0_-< x _-< L which
is initially totally solid, with a known temperature distribution (below the critical
temperature Tcr of the material). Heat is input at x 0 via a known heat flux q(t) > 0,
while the face x L is kept insulated. Then at some time to a melt front x X(t) will
emerge from x 0 and move into the material, separating liquid (x < X(t)) from solid
(x > X(t)). The location X(t) of the front as well as the temperature T(x, t) are to be
determined.

The mathematical problem here is a one-dimensional two-phase Stefan problem
which, however, involves the appearance of a new phase. The onset of melting is a
major source of difficulties for both the physical understanding of the phenomenon
as well as the mathematical analysis of the problem.

One of the key problems associated with the onset of melting is determining the
initial velocity of the melt front, which is the objective of this study. The possibilities
range from no melting at all (Solomon, Alexiades and Wilson 14]) to initially infinite
propagation speed (when a temperature jump is imposed at x 0 (Carslaw and Jaeger
[2])). Hence, finding conditions on the data that guarantee melting is also useful.

The problem we described in the beginning is typical of problems arising in diverse
areas of applications ranging from latent heat thermal energy storage (Solomon [10])
to crystal growth (Rubinstein [9]). The need to know the initial interface speed also
appears in the study of phase-change problems by either approximation methods
(Solomon [11]) or numerical methods (Solomon [12]). In particular, front tracking
numerical schemes for an emerging front require the initial front speed to be known
(Landau [7]).

Returning to the problem at hand, we note that it consists of two distinct parts"
a pure heat conduction problem until melting begins, and afterwards a Stefan problem
which is the one of interest. Taking as initial time (t 0) the instant at which the front
emerges, we are interested in finding X’(0) when we know the input flux q(t)> 0 and
the initial temperature T(x, O)=f(x)<-_ Tcr. This temperature f(x) is the result of the
premelting heat conduction problem and as such it has certain natural properties like
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by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of
Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.
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$ Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996.
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f(O) Tcr, f’(x) <- O, f"(x) >- O, which we take as assumptions for the data of the melting
problem (see 1).

At first glance, it appears reasonable that the initial speed should be determined
by the jump in the flux at the surface x- 0 at O, namely

(0.1) pHX’(O)- q(O)-[-ksf’(O)]

(see 1 for notation). In fact, (0.1) is merely the limiting value, as 0, of the Stefan
condition along the interface. Also, (0.1) is obeyed by a number of asymptotic results
for the first and third boundary conditions in Rubinstein [9] and for a problem with
internal heating and q(0)=-ksf’(O) =0 in Lacey and Shillor [6]. Thus, the question
of whether or not (0.1) is valid amounts to whether or not the fluxes in the liquid and
in the solid are continuous down to 0. Unfortunately, the existing literature on the
two-phase problem with imposed flux, for an initially one-phase state, does not answer
this smoothness question. Indeed, despite the very extensive literature on Stefan-type
problems (Wilson, Solomon and Trent [15], Niezgodka [8]), very few papers actually
allow a new phase to appear and we are not aware of any works establishing the
well-posedness of the classical formulation of our problem. Nevertheless, the methods
of Cannon and Primicerio [1] and of Ishii [5], dealing with Dirichlet data on x =0,
can also be applied to the case of imposed flux and thus answer the well-posedness
question. Furthermore, under certain restrictions on the flux q(t), the work of Fasano
and Primicerio [3] also applies.

In this paper we prove the continuity of the fluxes down to 0 under realistic
assumptions on the data f(x) and q(t). It then follows that X(t) is differentiable down
to =0 and (0.1) holds. These results and the notations are stated in 1. The steps
necessary to complete the proof are divided into four parts. Crucial bounds on the
interface location are derived in 2, and needed L2-estimates of Tx and Tx are derived
in 3. In 4 we generalize a version of the maximum principle (Solomon, Alexiades
and Wilson [13]) to the two-phase problem and establish the global boundedness of
T. The proof of the main results is finally completed in 5.

1. Notation and main results. Consider the following one-dimensional two-phase
Stefan problem with imposed flux"

For a given to>0, find a function X(.) C[0, too] CI(0, to), X(0)-0, and a
function T(.,. C(D L] Ds), where

DI- {(x, t)" O<x <X(t), O( to} (liquid),

D-{(x,t):X(t)x(L,O<t(to} (solid)

such that: for each t(O, to), T(.,t) is continuous on [0, X(t)) and (X(t),L] and
on each of the closed intervals can be extended to a continuous function with a possible
jump discontinuity at X(t); Tt, Tx are continuous in DI and D;

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

Tt=aiTxx in Di, i=l,s,

T(x,O)=f(x), O<-_x<-_L,

-ktT,(O, t) q( t), 0< t< too,

T(L,t)=O, O< t< too,

T(X(t), t)= Tcr 0 <- <- too,

pHX’( t) =-klT-[t]+ kT+[ t], 0< t< to.
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Here, T[t]:= limx_x(t)+/- Tx(x, t); k ki or ks is the conductivity; a at or as is the
diffusivity, ai ki/pc, l, s, p being the density and Cl, cs the specific heats; H is
the latent heat, Tcr the critical temperature and L the slab thickness. All these ther-
mophysical parameters are positive constants.

On the data q(t) and f(x) we assume

(1.7) q CI[0, too), q(t)>-O, 0 <-t<=too,

(1.8) f C2[0, L]f’) Ha(0, L),

(1.9) f(x) <-_ Tcr, f’(x) <- O, f"(x) >_- 0 for 0_-< x =< L,

(1.10) f(0)- T, f’(L) 0.

As mentioned in the Introduction, the assumptions on f(x) are natural for the tem-
perature of an initially cold solid, insulated at x L, and heated by a smooth flux at
x- 0. In fact, in that case f will also satisfy

(1.11) -ksf’(O) q(O).

The well-posedness ofthis Stefan problem we take as known (see the Introduction).
Precisely, we assume there exists a solution X(t), T(x, t) with

(1.12) X C[0, too] f’l Coo(0, too) for some 0 </x < 1,

(1.13) T C(DIU Ds) Coo(DtU
The paper is devoted to proving the following.

MAIN THEOREM 1.1. Under the assumptions (1.7)-(1.10), the solution of (1.1)-(1.6)
has the following properties"

T,, is continuous on each ofDt and Ds and has a continuous extension to each ofDl
ands; these continuous extensions differ along the line {(t, x) x X( t)} by afinitejump;

X C1[0, too),

(1.14) pHX’(O) q(O)+ ksf’(O).

COROLLARY 1.2. At the onset of melting of an initially solid slab [0, L], insulated
at x L and heated by aflux q(t) >= O, the initial velocity ofthe phase-changefront is zero.

2. Bounds on the interface. We begin with the derivation ofbounds on the interface
location.

By the maximum principle (Friedman [4]), the assumptions q(t) >= O, f(x) <- Tr,
and f"(x) <_- 0 imply the following.

LEMMA 2.1. f(x)<--_ T(x, t)<-- T in the solid Ds and T(x, t)>= Tr in the liquid D.
Hence

T-[ t] =--" T(X( t)-, t) <= 0
and

T+x[ t] =-- T,(X(t)+, t) <-_ O, 0 < <= too.

Proof Let z(x,t)= T(x, t)-f(x) in Ds. Then zC(Ds) satisfies zt-az,x=

af’(x)<=O in Ds; z(X(t), t)= Tr-f(X(t))>=O, z(L, t)=0, 0<= t<= too; z(x, 0)=0, 0=<
x=< L. Hence its minimum value must be ->0. The remaining inequalities are proved
similarly.

Next we obtain a crucial upper bound for the front location.
THEOREM 2.2. There exists a constant M0> 0 such that

(2.1) X( t) <= Mot, O < <- too.
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Proof. For any 0 < _-< too, using (1.1)-(1.6) we have

pc,[ T- Tc,] dx
at

pc[ T(x, t)- Tcr dx - pCl[ T- Tc,] dx +--d (t)

klT-[t]- ktTx(O, t)+ ksTx(L, t)-

-pHX’(t) + q(t).

Integrating over (% t) with 0_-< " < _-< too, we obtain

fo pelT(x, t)- Tcr] dx- [T(x, )- Tr] dx/H[X(t)-X(-)]- q(s) ds.

[X(t)+LTaking r-)0, using X(0)=0 and (1.2), and splitting into o x(t), we obtain the
following heat balance"

(2.2) oc[ T- Lr] dx + pc[ T-f(x)] dx + pHX( t)

q(s) ds + pcl[f(x)- T] dx.

By Lemma 2.1, the first two terms on the left are nonnegative and the last term on the
right is nonpositive. We conclude that

pHX(t) q(s) dsqmax" t,

where qmax:= max q(t) over 0--< -< too. This establishes (2.1) with Mo := qmax/pH.
To obtain a lower bound on X(t), we compare T with the solution of the following

heat conduction problem without phase change"

W OliWxx X > O, > O,

W(X, O) Tcr

-klWx(O, t) q( t) >-- O, t>0,

the solution of which is given explicitly (Carslaw and Jaeger [2, p. 76]) by

(2.3) w(x, t)= T+ k-/ q(t-s) exp {-x/4(t-s)}s-/ ds.

It is easy to see that T(x, t) <- w(x, t) in Dll,.J Ds and that w(x, t) >- Tcr>-f(x), O<--x<- L,
> 0. Hence, (2.2) implies the following.

PROPOSITION 2.3.

pHX(t) >- q(s) ds-pCma [W(X, t)--f(x)] dx, 0< t< too,

where Cmax:--max {Cl, Cs} and w(x, t) is given by (2.3).
This says that melting may not necessarily begin immediately, but since the

right-hand side will eventually become positive, the liquid will have to expand with
increasing time.
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Another useful relation obtainable from the heat balance (2.2) is

/gCmi IT(x, t)-f(x)] dx<-_ q(s) as, 0< t_-

where Cmi :-" min { Cl, Cs}.

3. Estimates on Tx and T=.
LEMMA 3.1. For any 0 < <--_ to,

(3.1) 0<--_ -ktT-[s] ds <- q(s) ds.

Proofi This is obtained from the heat balance in the liquid as follows:

d I;(t)

d OCl[ r(x, t) rcr] dx klT-[ t] + q( t).

Integrating over (0, t) and since T_> Tcr (see Lemma 2.1), we have

q(s) ds + ktT-[s] ds pcl[ T- Tcr] dx >= O.

THEOREM 3.2. There exists a constant M1 > 0, independent of time, such that

12(3.2) Tx(x, s) -f’(x) dx ds <- M 2, 0 < -< to.

Proof. For > 0,

(3.3)

d Iorl ]2 1

d---t -pc[T(x, t)-f(x) dx=-p(c,-cs)[Tcr-f(X)]2X’(t)

+ [r -/(x)][ r -f(x)] dx

+ k[ T-f(x)]f"(x) dx.

By integration by parts, the first integral in the right-hand side becomes

k[T-f][ Tx f’]x dx k([T-[T, f’])x k[ T, f’]2

k,[ Tcr-f(X)][ T][ t] -f’(X)]

k,[ T(0, t)-f(0)][ T, (0, t)-if(0)]

+ ks[ T(L, t)-f(L)][ T,(L, t)-f’(L)]

ks[ Tr-f(X)][ Tcr-f(X)][ T+[ t] -if(X)]

L

k[ Tx _f,)]2 dx
o
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and using (1.6), (1.10), (1.3) and f’(x)<-O,
[f(0) -f(X)]{-pHX’(t) (k ks)f’(X)}

+ T(0, t)- Tcr][q(t)+ ktf’(0)]- k[Tx-f’]2 dx.

Substituting this into (3.3) and integrating over (r, t), 0 < r < _-< to, we find

f.’ioT(x, t) --f(x)]2 dx T(x, r) -f(x)]2 dx + k[ Tx _f,]2 dx

I, P(C’-Cs)X’(s)[f(O)-f(X(s))]22 ds

(3.4) - {pHX’(s)+(k-ks)f’(X(s))}[f(O)-f(X(s))] ds

+ [T(0, s)- Tc,.][q(s)+ ktf’(0)] ds

+ k[ r-f(x)]f"(x) dx ds.

Now, applying (2.1) and (1.7)-(1.10), we estimate each term separately as follows.

f.,.t j-x(t)p(Cl-Cs)
X’(s)[f(O)-f(X(s))]2 ds p(el-C)[f(O)-f()]2 d2 x() 2

(3.5)

pHX’(s)[f(X(s)) f(O)] ds

pCmaxlftrnax X(/)3 X(T)3

3
x(s)

pH[f(s)-f(O)] d. x()
<__pHIf’rnaxl X(t)2

2
----< M13" t2,

f (kl- ks)f’(X(s))[f(O) f(X(s))] ds

<-_ kmaxlf’l X() d

<-_ M4 ,
T(0, s)- T,,.][q(s)+ ktf’(0)] ds

M12 /3,

[T,,(x, s)-f’(x)] dx+[f(O)-f(X(s))] [q(s)+ ktf’(0)] ds
,,,Io

[qmax d- k, lf’(o)l] X(S) 1/2 X(s)-l/2lTx(x, s)-if(x)] dx ds

+ If(O)-f(X(s))lds

=< M,5
2e

4- 1. ]Tx(x, s)-f’(x)[ dx ds
2x(s)
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M16 t2 eM15 f,12<- + Tx dx ds,
e 2

0<-_ k[T(x, s)-f(x)]f"(x) dxds<-f"max kiT(x, s)- T(x, 0)] dxds

kmaxfa Tt(x o.) do- dx ds M17 Tt(x, o-) dx do- ds

M17 lqTxx(X, o-) dx+ ksTxx(X, o-) dx do- ds
pc pc

t2
=M18 {-pHX’(o-)+q(o-)} do-ds<-O+ M,8qmax--= M19 2.

We incorporate these estimates into the right-hand side of (3.4), take r $0 (which
makes the negative term on the left-hand side vanish) and discard the first (positive)
term. We thus obtain

eM15 Tx _f,]2 dx < M2t + M13 t2 + M4t2+ +M92 e

kmin, we finally establish (3.2). Note that the constant M1 isChoosing eM15/2
essentially known explicitly.

By the Mean Value Theorem we immediately obtain the following.
COROLLARY 3.3. For each (0, t), there exists t* (t/2, t) such that

(3.6) ITx(x, t*)--f’(x) dx <- M2t.
o

Next we estimate the second derivative.
THEOREM 3.4. There exists a constant M3 > 0, independent of time, such that

(3.7) Irx(X,s)-f"(x)[ dxds<-M3 t, 0< t< t.

Proof. We begin with

d- --[ Tx(x, t)-f’(x)]2 dx

(3.8)

X’(t) {k[ T][ t] -f’(X( t))]2- k[ T+[ t] -f’(X( t))]2}
2

+ k2[ Tx(x, t)-f’(x)]aTx,,(x, t) dx._

The last integral can be rewritten as

ak2[ T, -f’][ Txxx f"] dx + ak2[ Tx f’]ff’ .dx

ak2{[( Tx -f’)( T,, -f")], -[ T,x _f,,]2 +f,,,[ T, -f’]} dx

a,k[ T-[ t] -f’(X)][ T,[ t] -if(X)] ak[ T,(O, t) -f’(0)][ T,x (0, t) -if(0)]
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+ O- ak[ T+[ t] -if(X)][ T+[ t] -if(X)]

ak2{[ T,, -f"]-f"’[ T, -f’]} dx.
o

By (1.12), (1.13) the front is C for t>0 and the heat equation is valid along it from
each side. Moreover, T(X(t), t)= T implies T[ + X’(t)T =0, so we have

ar,[ t] r:[ -X’( t) r[ t], > O.

X’(t) (k[ T[ t] -f’(X)]2- k2[ T+[ t] -f’(X)]2}
2

+ k[ T--f’(X)][-X’T-- af"(X)]

k[ Tx(0, t) -f’(0)][ r,(o, t) af’(0)]
k[ T+-f’(X)][-X’T+ af’(X)]

ak[ T. -f"] dx + T -f’] dx

X’ 1
karx -kalr)f"(X)

2
(kT2 kT]2)+(k-k)X’f’(X)2+( 2 +

+(kal-ka)f’(X)f"(X)+ kl[q(t)+ kf(O)][T,(O, t) af’(0)]

Io Ioak[ Txx _ff]2 dx + akEf"[ Tx -f’] dx.

Integrating over (r, t), 0 < r < < t, we obtain

TIT(x, t)-ff(x) dx- lT(x, ,)-if(x) dx

+ k2IT -f"l ex e

_! X’(s)(kT2[]-kT;[]2) e+(k-k) X’(g’(X())2e
2

(3.9)
+

k) f’(x(s))f"(x(s)) ds

+k, [q(s)+kd’(O)][T,(O,s)-d"(O)] as

+ kd"(x)[ T(x, s)-f’(x)] & es.

We now estimate each term separately as follows:

Then (3.8) becomes

d IoCk2

d-- x[ T-I’]- dx
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because of Lemma 2.1;

f f x(t)

f’(X(s))2X’(s) ds f,()2 dsc _<_ If,mxl=X(t) _--< M31" t,
d X(-r)

2 +kaTx kit,T-)f"(X) ds <- O+ kitt -ktT-[s]f"(X(s)) as

_-< M3 -r[s] ds -M q(s) ds <- M, t,

where we have used Lemmas 2.1 and 3.1;

’f’(X(sf"(X(s M ,ds

[q(s) + klf’(O)][Tt(O, s) ctf"(0)] ds

(3.10) =[q(s)+kf’(O)][T(O,s)-T,]

q’(s)[r(o, s)- r.] ds- [q(s)+ ’(0)]"(0) s

where now the second term can be made <M3. by choosing small enough. The
other terms are estimated as follows"

x()

It(o, - r. Ir(x, t)-f’(x) dx+f(o)-f(x(t))l

Io(’)(+ e
-f,I=}IT dx+lfxl, X(t)

M + T dx,

IT(0, s)- LI dsMt+ ITx- dxds (as in (3.5))

M t2M38t2+ by (3.2).
2

Hence the right-hand side of (3.10) is bounded by

f,IM. + Mo. e r &+M. +M +M3". f,I
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Finally, for the last term in (3.9) we have

I IoL I tfo { 1
__f, 2}ak2ff’(x)[Tx(x,s)-f’(x)]dxds<= ak2 I"I=/IT dxds

----< M43 -]- M44 2.

Incorporating all these bounds into (3.9) we obtain

I;fo Ion( )k-I r= -f’l dx ds <- M45. -4- 8M40- rx -fl2 dx

+ -lr(x,,-f’(x dx.

By Corollary 3.3 there exists z < such that the last term is _<-Mt. Thus, choosing
2eMo> k,x/2, we finally obtain (3.7).

COROLLARY 3.5. There exists a constant M4> 0, independent ofx and t, such that

(3.) Ir(x,s) &M. for OxL 0<t<t.

Proo Fix (xo, t), 0 < xoN L, 0 < < t. We have

I(xo, )-/’(xo)12 [(x, )-f"(x)] dx +21(0, )-f’(0)l. &+ --/’(0xo It= 2’1
q(

It= -f"l ex+.
Integrating and using (3.7) we obtain

Tx(xo, .)1o., If’(xo)l= ds +(M47t)l/2(M48t)l/2;

hence

fo Tx (Xo, s)l2 ds <-_ M48" t, 0 < Xo--< L, O< t< t,.

For xo=O, IT,(O, t)l=l-q(t)/ktl<=M49 and (3.11) still holds.
COROLLARY 3.6. There exists a constant M5 > 0 and a sequence of times { t.}-> 0

such that

(3.12) ]T(x, t,)l dx M.

Proof. By the Mean Value Theorem applied to (3.7), for any r, > 0 there exists
0 < t, < r, such that

r= IT,(x, t=)-f’(x)l= dx
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<L2(0.L) M3,

hence

4. Maximum principle and boundedness of the fluxes. Boundedness of the fluxes,
-kTx and -ksTx, can be deduced from Corollary 3.5 once we make certain that
unboundedness could only occur at the origin. This is shown in Theorem 4.2, the proof
of which requires the following form of the Corner Point Maximum Principle, proved
in Solomon, Alexiades and Wilson [13, p. 205].

LEMMA 4.1. Let D be a simply connected domain in the x, plane and Po- (Xo, to)
a point of its boundary. Let N be a disk of radius > 0 centered at Po, and set
GO D f’) N f’) { < to}, o to OD. If (a) u C(ff), ux, Ut, llxx C(D), and ut

^0aUx<-O in D, and (b) u(P)<u(Po) for PeG, u(P)<-_u(Po) for PODfqN and
D f) N is a C2-curve representable as x X( t), then

u(P)- u(Po)
lim sup < O,

,,-.,,o IP- Pol
pe (o

where P tends to Po in any nontangential direction.
THEOREM 4.2. The maximum and minimum values of the flux over any strip tl=

t2
{(x, t): 0-<x_-< L, tl -< t--< t2}, 0< tl < t2 < too, are attained either on the line x =0, tl =< t<_- t2
or on the bottom 0 <-_ x <- L, tl

Proof. Let u(x, t):=-kT(x, t) where, as before k kl in liquid and k ks in the
t and in Ds f-)t its extrema oversolid. Since u satisfies the heat equation in Dl

tlt must be attained on the parabolic boundaries of these domains. By Lemma 4.1
they cannot be assumed on x L, tl <- t<= t2 due to the boundary condition u(L, t)=
-ksTx(L, t)= 0 there. Thus the result will be proved once we show that the extrema
cannot be attained on the interface x X(t), tl < t<= t2.

Let u+[t] :=-kT[t] be the values of the flux on x X(t) from the solid (+) and
the liquid (-) respectively. Suppose u(x, t) attains its maximum over t at a point
(X(t*), t*), tl < t* _-< t2. Note that, by Lemma 2.1, u+/-[ t*] _-> 0.

If X’(t*) _-> 0 then pHX’(t*) u-[ t*] u+[ t*] _-> 0 implies the maximum of u must
be u-[t*]. But T(X(t), t)= TcrT-+ T-X’(t)=O=r>ktT-x[t]=pcT-[t]=
-pcT-[ t]X’(t)u-[ t*] pcT-[ t*]X’(t*) -(pCl/kl)U-[ t*]X’(t*) -< 0. This contra-
dicts Lemma 4.1 and we conclude that the maximum cannot occur at time t* but at
an earlier time, down to t.

If X’(t*)<0 then, similarly to the previous case we obtain u+[t*]
-(pcs/k)u/[ t*]X’(t*) -> 0, whereas Lemma 4.1 requires <0. Again, the maximum must
be at an earlier time, down to t.

At a minimum, all the inequalities reverse and we draw the same conclusion.
THEOREM 4.3. The flux is bounded uniformly in D! t_J D.
Proof. Suppose u(x, t)=-kT(x, t) is unbounded in DI t_J D. By Theorem 4.2, it

can only become unbounded at (0, 0) because on x 0, u q is bounded and at 0,
0< x -< L, u =-ksf’(x) is also bounded. Therefore, near (0, 0), Tx(x, t) is either uni-
formly large or experiences unbounded oscillations. But the former possibility contra-
dicts (3.11) while the latter one contradicts (3.12). We conclude that there exists a
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constant M6> 0 such that

(4.1) Tx(x, t)l--< M6 in D, O Ds,

in the sense that

-M6 -< lim inf Tx -< lim sup Tx _-< M6 as (x, t) (0, 0)

in case Tx(0, 0) does not exist.
COROLLARY 4.4. The interface speed is uniformly boundedfor 0 <- <= to, i.e., there

exists a constant M7 > 0 such that

(4.2) Ix’(t)l -< M7, 0 =< --< too,

in the sense

-M7 -< lim inf X’(t) -<_ lim sup X’(t) _-< MT.
t-->O t->O

(Note that we have not yet shown the existence of X’(0).)

5. Continuity of the fluxes. The uniform boundedness of the fluxes established in
the previous section allows us to estimate the third space derivation of T and improve
(3.12) at the same time, leading to our goal.

THEOREM 5.1. There exists a constant M8 > O, independent of time, such that

(5.1) Io [T(x, t)l= dx M8 for any 0 < < to.

Proof We begin with

d L 1 1X,(t){T_[t]2 +T,,,,[ ]2} + TxxTxt dxdt - T(x, t)2 dx
2

1
(5.2) =-X’(t){T-x[t]2- T+[t]2}+ TTt[x=L- TTtlx=o2

+{T-,,[t]T-t[t]- T+x,[t]T,,%[t]} aT,,x,(x, t)2 dx.

On x L, T(L, t)= 0 implies Tx, =-O. On x 0, by parabolic regularity theory, the
heat equation is valid up to the boundary so -T,o,T,l,=o=(1/at)Tt(O, t)(q’(t)/kl),
> 0. Similarly along the front, but separately from each side

Tx[ t] Txt[ t] _1 T[ t] T,t[ __1X’( t) T[ t] T%[ t]

a
(T)2 -X’(t)TxL[t]

X’(t) d X’(t)2

Tx[t]2) + Tx[ t]
2a dt a

1 d
2a dt

1
X"(t) T[t]2--[X’(T)2]+-a + X’(t)2

Tx[ t], t>0.
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With these modifications, we integrate (5.2) over (t,,, t), where t,, + 0 is the sequence in
(3.12) and > 0 is arbitrary, to obtain

aTxxx(X, s) dx ds +- Tx(X, t) dx
tn

1 t.

)2 1
X’(s){T[s]2- T+x[s]2} ds+ T(O, s)q’(s) ds-2 Txx(X, t, dx+ ,. atk ,.

(5.3)
+ ---(X’(sr:[s]l+ x"(sr:[sl+-x’(slr:[s] s

2 ds t

11 X"(s)T+[s]2+-X’(s)2T+x[s] ds.--(X’(s) T+[s]2) +
2as

Each term on the right can be bounded as follows.
By the choice of t, as in (3.12), the first integral is bounded by Ms. Along the

front, thanks to (4.1) and (4.2),

(5.4)
1

hence the second integral is bounded by (constant) t. If we apply the second Mean
Value Theorem, there exists ’, (t,, t) such that

T,(O, s)q’(s) Iq’(?.)[ T(0, t) T(0, t,,)] _-< Ms,,ds
tn

and there exists ?, e (t,, t) such that

Also,

X"(s) T[s]2 ds T[ ’. ]2(X’(t) X’(t.)) <= 2MMT.

t d
-d-s(X’(s) T;[s]2) ds <= 2M6Mv,

tn

X’(s)r-[s] ds <---M3Ma as in (5.4).

It is similar for the last three terms (from the solid side).
With its right-hand side thus bounded, (5.3) yields

tTxxx(X, s)2 dx ds +- Txx(X, dx <= M52,
tn

Taking t, + 0, we obtain

(5.5) Irxx(X, s)l

O< t. < -< to.

for O < < t,

as well as estimate (5.1).
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COROLLARY 5.2. For any points (Xl, t), (x2, t) in Ds, > O,

(5.6) ITx(x , t)- Tx(xl, t)l --< M / lx -x l
uniformly in 0 < < too. Hence the family { T, (., t)" 0 < < too} is equicontinuous.

Proof ITx(x, t)- Tx(x, t)[2:[ Tx(x, t) dx[lx-xl lTxx[ dx
M[x2- Xll, independently of (0, t).
THEOREM 5.3. e solid flux kTx(x, t) is continuous on Ds. Hence,

T(x, t)f’(O) as (x, t)(O, O) inside Ds,
and in particular,

T[t]f’(O) as tO.
oof The family of functions { T(., t)" 0 < < t} is equicontinuous on [0, L]

by (5.6) and equibounded by (4.1). The Ascoli-Arzela lemma implies that there exists
a sequence of times {t} 0 such that T(x, t) converges to its limit f’(x) uniformly
in x [0, L].

Suppose now that T(x, t) is not continuous at (0, 0), i.e., that there exists M > 0
and a sequence of points (x,, t,) (0, 0) such that

[T(x., t.)-f’(O)[M.
Then, by Ascoli-Arzela, there exists a subsequence {t}- 0 such that

M < IT(x=, t)-f’(O)llT(x, t)- T(x=,

the right-hand side of which can be made arbitrarily small by choosing x. sufficiently
close to x 0, a contradiction.

THEOREM 5.4. e liquid flux -klT(x, t) is continuous on D. Hence,

-kT(x, t) q(O) as (x, t) (0, O) inside Dl,

and in particular,

-T[t] - q(O) as O.

oof For (x, t) D, > 0, we have

I-k,T(x, t)-q(O)[k,[T(x, t)- T(O, t)[+[q(t)-q(O)[

kx’/ =(, )1 d

which 0 as (x, t) (0, 0).
Coo 5.5. e speed X’(t) of the phase change front is continuous for

O N N t, and

pHX’( t) =-k,r[t] + kr[t]

q(O) + ksf’(O) as O.
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1. Introduction. Consider

e2u"-f(x, u)=O, u(0)= u(1)=0, 0 <x < 1()

Let

F(x, u) f(x, z) dz, an antiderivative off,

and assume that for Xl < x0 < x2 we have (see Fig. A)" The energy functional associated
to (1) is

(2) J(u)=-- (u’)Z+ F(x, u).

For e 0 the global minimizer is given by

(3) a(x)={/s, 0_-<X<Xo,
re, Xo < x =< 1.

A-I A-II A-Ill

FIG. A
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The question we investigate concerns the convergence of any sequence {u,} of global
minimizers of (2) to as e 0. Since t is discontinuous, one expects a sharp transition
for u near x Xo and so a penalty in the energy in terms of a substantial contribution
from (u’)2, a fact that makes the problem from the mathematical point of view not
entirely clear (note that a, fl are local minimizers of J for all e). Setting e 0 and so
obtaining a profile by locally minimizing the energy is the natural approach in applica-
tions. As a rule the equation is coupled to a system and the limiting case has the
advantage of simplicity and therefore it is of interest to have rigorous justification of
the approximation. A typical physical setting where the question ofthe relation between
local and nonlocal models is raised can be found in Shaing IS].

Fife [F] constructs solutions to (1) that converge as e 0 to a given solution of
the limiting equation by developing singular perturbation techniques based ultimately
on a suitable implicit function theorem. No evaluation of the energy of the approximat-
ing family is considered in that work.

Recently Carr, Gurtin and Slemrod [CGS1] studied phase transitions on a finite
interval. They minimize the functional

(4) J(u) =-- (u’(x))2+ W(u(x))

with the constraint

(5) I u M

where W(u) has a sigmoid shape. Utilizing that the Euler-Lagrange equation to (4),
(5) is autonomous, they employ elaborate phase plane analysis arguments and establish
under appropriate conditions that the minimizers converge as e 0 to a two-phase
solution of the e 0 problem.

Our approach is different from any of the above. It is based on the observation
that if {u} is a family of stable equilibria of (1), bounded uniformly in e,

then the total variations, V(u), are uniformly bounded,

(6) V(u) <= C, C independent of e.

The obvious counterexample, u(x)=cos(x/e), for e:u+u=O, u’(0)=u’(1)=0,
shows that the hypothesis of stability is essential. By employing Helly’s compactness
theorem we can pass to the limit in the weak formulation of the e-problem along a
subsequence of minimizers and conclude its convergence to a solution of the e 0
problem. The rest of the argument turns out not to be difficult. This method, being a
compactness argument, has the advantage of not distinguishing between autonomous
and nonautonomous equations and it is potentially applicable to systems relevant, for
example, to the study of phase transitions of fluids which differ in more than one
scalar parameter (Cahn and Hilliard [CH, p. 260]), and to equations in more than
one space dimension. Estimates of the variation under general circumstances will be
pursued elsewhere. Here we describe the main idea in the simplest of circumstances.
In 2 under appropriate hypotheses on f the pointwise convergence of the global
minimizers to t7 is established. Finally in an appendix we give a quick self-contained
proof of the main result in [CGS1].

See also Novick-Cohen and Segel [NS].
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2. We will assume for simplicity that a,/3, y are independent of x and that F(., u)
changes in a monotone way from A-I to A-III, i.e. the left branch goes down while
the right goes up and that otherwise F is as in Fig. A. More precisely we introduce
the hypotheses:

(H1) F is C in both arguments.
(H2) f(x, a f(x,/3 f(x, y) 0, 0 <= x <- 1, u -->f(x, u) changes sign as u crosses

the roots, f(x, u)<0 for u<a, [F(O, a)-F(O, fl)][F(1, a)-F(1, fl)]<O.
(H3) fx(x, u)>0 for uC=(a, fl, y}, 0<=x_<-l.

We take

F(x, u) f(x, z) dz + const => 0.

Note that Fx(X, u)-<_0 (>=0) for u<=y(u > y). A concrete example would be

f(x, u)= u(u2-1) g(t) at

where g(t) > 0 with -oo g(t) dt < +o, /r , a -1, 1, y O, Xo .
LEMMA 1. There is a global minimizer u of J(u) over W ’2 that is a classical

solution to (1) and satisfying

(7)

with the inequalities being strict if u is not identically constant.

Proof This is standard. We sketch the argument for the convenience of the reader.
Take e 1 for definiteness. First note that for a given u in W 1’2 the truncated

v- min {u,/3} has energy less or equal to u. Clearly

i) U

Also,

f F(x,u)=fu F(x,u)+fu F(x,u)

>- fu F(x’u)+ fu F(x, fl)

since OF(x, u)/Ou =f(x, u)>-0 for u >-/3 by (H2). Therefore

Jl(1))Jl(U).

Applying an analogous argument to v, we conclude that max {a, min {u,/3 }} has energy
less than or equal to u. Consider J on

(8) X {u W1’21 a u /3}.

Clearly J is coercive on X (with the obvious norm) since F(x, u)>-_O and weakly
lower semicontinuous. Therefore J1 attains its infimum over X. By the observation
above this minimizer Ul minimizes J1 over W1’ as well. From

d
(9) - A=O

Jl(U + Ah)=O

we obtain that u is a weak solution to (1). A standard regularity argument shows that

ul is a classical solution. By applying a familiar variant ofthe strong maximum principle
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we obtain strict inequalities when the minimizer is not identically equal to a con-
stant. Q.E.D.

LEMMA 2. Let u be a global minimizer. Then we have the estimate2

C
(10) lu’l2<-

E

Proof. It follows from (1) by multiplying with u, integrating, and using the
Schwarz inequality and the uniform bound in (7). Q.E.D.

LEMMA 3. Stable equilibria of (1) are necessarily monotone decreasing in x.

Proof. We will show that if u is not monotone then the second variation of J

J(u)(h,h)=e2f (h’)-+Ifu(x,u)h2
is strictly negative for some h W1’2. We drop the e for convenience. Differentiating
(1) we obtain for u’= w

(11) eEw"-fu(x, u)w=f(x, u), w(0)= w(1) 0.

Since w is in W 1,2 (cf. Lemma 1), so is w+= max {w, 0}. Multiplying (11) by w+ and
integrating, we obtain

(12) --e2 I I(W+)12-- f fu(x, U)(W+)2= f fx(X, U)W+.

By (H3) the right-hand side is positive. Hence stability implies (ux)+=0. Q.E.D.
LEMMA 4. Let {u.} be a sequence ofglobal minimizers ofJ. over W 1"2. Then there

is a subsequence, denoted again by {u.} such that

(13) u,. u pointwise on [0, 1
,n O

where u is monotone decreasing

(14)

and

(15) f(x, u(x))=0 on [0, 1]

and thus u x { a, /, fl }.
Proof. By Lemma 3 the elements of the sequence {u.} are monotone decreasing

functions of x. We write u in the place of u. for convenience. Since

V(u) <= fl-a and so by Helly’s theorem [N, p. 220] there is a subsequence, denoted
again by {u} such that

(16) u(x)--> u(x), x[0, 1]

where u(x) necessarily is monotone decreasing and satisfies (14). Multiplying (1) by

2The stronger estimate lu’12 c/e holds. See [AS].
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b, a smooth function and integrating by parts,

(17) e2 I u’ck’+If(x,u)dp=O.
The first term in (17) goes to zero as e-->0 by the estimate (10). By (14) and the
dominated convergence theorem we obtain from (16), (17)

(18) f f(x, u)th =0

and therefore (15) follows. Q.E.D.
Remark 1. Since u(x) is monotone decreasing, the only left continuous

possibilities are:

(i) u(x) -= constant,

/3, 0_-< x -< ,
(ii)

(iii) u(x)
f’T,

(iv) u(x) { y’

(v)
0--<- x <-- :’

u(x) <-_x<=&

(a, .g<x=< 1.

LEMMA 5. Let {u.} be a sequence ofglobal minimizers. Then

L.(u.)- o()= f F(x, (x))
d

as en-> O.
Proof. Replace e, by e for simplicity. Consider the functions

/e E W1’2 and

a(x) a,

linear,

O<=x<=Xo--e,
Xo+ e <- x <- 1,

Xo-- e <=x<--Xo+ e,-- O
2 Xo+e
+ F(x,/3)+ F(x, a)+ F(x, a(x)).z(a) - .o- o o+ ,o-

Clearly J, (5) Jo(a), and since Jo() J, (u) J, (5), we are done. Q.E.D.
Remark 2. The weaker Statement limo J(u) Jo() would suce.
THEOREM 6. Let {u,} be a sequence ofglobal minimizers corresponding to J,, over

W’:. en

u.--> fi pointwise on [0, 1]

as en -> O.
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Proofi Assume that the limit u of some subsequence, denoted again by {u.}, is
different from ft. By Remark 1 it has to be one of the remaining four possibilities.
Since the global minimizer for Jo is unique, we can choose 5 such that

(19) F(x, )-Jo()<Jo(u)-= f F(x, u)-&

On the other hand by Lemma 5 above for e sufficiently small

J(u) =-- (u + F(x, u)-<Jo(a)+ F(x, fi)+-.
Therefore,

-ff fe2
)2 F(x, ) F(x, u)+-(20)

2
(u’ =< 2"

Taking now the limit and using that u u pointwise, we obtain via (19) that the
right-hand side of (20) becomes negative for e sufficiently small, a contra-
diction. Q.E.D.

Remark 3. The degree of complexity of stable equilibria for the case in which F
does not depend explicitly on x has been investigated in one space dimension by
Chafee [C] and in higher space dimensions by Casten and Holland [CH2] and
independently by Matano [M]. That the extent of complexity of stable equilibria in
the general case (r= F(x, u)) can be estimated uniformly with respect to the diffusion
coefficient is a point that apparently has not been exploited in settings similar to ours.

Remark 4. How small e has to be taken so that u is a qualitatively good
approximation to ff is determined by the difference between the energy levels. It can
be shown via the implicit function theorem that if e is outside this range then u in
general will not exhibit a sharp transition and so it will be a poor (qualitatively)
approximation. For example, u constant for e large enough is a possibility for
appropriate . This question seems to be intimately related to uniqueness for the
minimizer of J [AS].

Appendix. We refer the reader to [CGS1] and to the references therein for the
physical background of the problem.

Consider the functional

(21)

with the constraint

L(u)= [W(u(x))+ :(u’(x))q

(22) u=M.
-1

(P): Minimize J under the constraint (22) for u > 0, u e wl’2o
(Po): Minimize Jo under the constraint (22) for u > 0 such that W(u) e L1. We take
(i) W C2(0, o),
(ii) W">0 on (0, t)U (/3, m), W"<0 on (5,/3),
(iii) W’(0) < W’(B), W’(m) > W’(ti),
(iv) ao < r </30, r M/2.

(See Fig. B.)
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FIG. B

The problem (Po) is solved with the auxiliary functional

[w(u(x))-o-u(x)],

tr constant, a Lagrange multiplier. At a minimum the Weierstrass-Erdmann corner
conditions have to be satisfied:

W’(u) cr at points of continuity of u,

W(u) cru continuous across jumps of u.

These last conditions force the solution to be either constant or piecewise constant:

X( Sl,
(23) (x) o, x e s.
S1, $2 are disjoint measurable sets whose union is [-1, 1] and

W(o)- W(o) o(o- o),

o w’(o)= w’(/3o),

2(flo- r) 2(r-flo)
li Si], I1 12o- ,o 13o- ,o

The condition ao < r </3o forces the two-phase solution as the only possibility. Since
only the measures li are determined but not the sets themselves there are infinitely
many global minimizers for (Po). The following theorem shows that from these infinitely
many two-phase solutions the single-interface solution

ao, -1 -<x-1 + 11,
(x)=

/30, -l+l<x_--<l

or its reversal, ti(-x), are preferred. In fact we have the following.
THEOREM A1 [CGS1]. Let {u.} be a sequence ofglobal minimizers of (21), (22).

Then u. or its reversal converges as en- O, pointwise, to a(x).



1460 NICHOLAS D. ALIKAKOS AND K. C. SHAING

Remark A1. In [CGS1] additional information about the asymptotic shape (in
e) of the global minimizers is obtained as well as uniqueness of the global minimizer
for e small enough.

Fix e and consider the Euler-Lagrange equation corresponding to (21), (22)"
)--" W’(u) , u’(1) u(1) 0.(24) 2e u

LEMMA A2. There is a smooth minimizer to (21), (22) that satisfies classically (24)
and moreover

(25) __< r _-< , _a_-< u_-</3

with strict inequalities for nonconstant solutions.
Proof. The existence of a smooth minimizer is classical and is omitted. To establish

(25), note that it follows from (24) if u, attains its minimum and its maximum in the
interior. Indeed, in this case W’(max u) -< r -< W’(min u,) and the conclusion follows
from Fig. B. In general by reflecting we can extend u periodically on R so that the
extension satisfies (24) everywhere and thus we reduce the situation to that previously
considered. Q.E.D.

LEMMA A3. Let u be a global minimizer. Then we have the estimate

(26) lu’l2<-2"

Proof The argument is identical to that in Lemma 2, 2.
LEMMA A4. Nonmonotonic solutions of (24) are not stable.
Proof The argument is similar to the proof of Lemma 3. See also [CGS1, p. 348].
LEMMA A5. Let {u.} be a sequence of (monotone increasing) global minimizers.

Then there is a subsequence, denoted again by {u.} that convergespointwise to a monotone

function u which satisfies at points of continuity

W’(u) cr for some cr in g, ].

Proof Multiplying (24) by b, a smooth function, and integrating by parts, we
obtain (e. e)

(27) -2e f
By Lemma A3 and the Schwarz inequality we obtain that the left-hand side of (27)
converges to zero as e--> 0. By (24A) we may assume that

o’ -> or, _o"-<- o’-< ft.

By Helly’s theorem and the dominated convergence theorem we conclude from (26)

(28)

and by (22),

W’(u)6- f 6 =0

(29) u=M=2r.
-1

The lemma follows from (28). Q.E.D.
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Since u is monotone increasing, the only continuous possibilities left in the light
of ao < r </30 are (see Fig. B):

on [-1, xl].
(i) u(x) z on (Xl, x2],

/3 on (x2, 1],

(ii) u(x)={a on [--1, Xl],
z on (xl, 1],

on [-1, x],
(iii) u(x)-

flu on (x, 1],

(iv) u(x)={z on [-1, Xl],
/3 on (Xl, 1].

By the Weierstrass-Erdmann criterion from these the only one that is a global minimizer
for Jo under the constraint (22) is given in (23).

LEMMA A6. Let u be as in Lemma A5. Then

(30) lim J(u) <- Jo(a).
e’-0

Proof. Consider the function

ao on [-1, -1 + el,
t(x) /30 on (1 -12+ e, 1],

linear on (-1 + 11 e, 1 12 + e ].

Note that 1_ ff=M. A simple computation reveals that J(ff)l_ W()=Jo(O)
Since J(u) =< J() we are done. Q.E.D.

Proofof Theorem A1 (conclusion). Assume that for some subsequence the limiting
state u given by Lemma A5 is different from a. In the light of the remark following
that lemma we may assume that

(31) Jo(a)<Jo(u)-6, 8>0 fixed.

On the other hand by (30) for e sufficiently small we have

(32) J(u) _-< Jo(t) +.
Therefore

(33) e2 (u’(x))2<- W(a)- W(u)+-.
--1

Since I W(u)-I W(u)=Jo(u) we conclude via (31) that the right-hand side of (33)
becomes negative in the limit, a contradiction. Q.E.D.

Remark A2. In a similar way one can establish the analogue of Theorem A1 for

L(u)= [W(u’(x))+e(u"(x))]
--1

subject to

u(-1) u(1) =0
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that models exchanges ofphase of a one-dimensional elastic material, originally studied
with phase plane techniques by Carr, Gurtin and Slemrod [CGS2].

Acknowledgments. We are indebted to P. Fife for a valuable communication; also
we would like to acknowledge a conversation with B. Nicolaenko in the course of
which [CGS1 was brought to our attention. Finally we wish to thank H. Simpson for
useful discussions on the contents of this paper.
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Abstract. This paper considers solutions to singular differential equations in the sense of Filippov. Such
singular systems occur in the order reduced models of singularly perturbed systems as well as in the semistate
description of nonlinear circuits.
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Introduction. A problem often encountered in control and system theory is the
modelling of dynamical systems exhibiting a multi-time-scale behaviour. A model that
is often employed is the singular perturbation model, where the derivatives of some
of the state vectors are multiplied by a small parameter e, namely

-f(t,x,y)=O,

(1) ey,-g(t, x, y)=O,

x(to) x, y(to) y

where x is in Rn, y in RP, and f and g are functions defined on some open subset of
x xp with values in and RP, respectively. A first step in the analysis and

design of controllers for such systems consists of "order reduction" where e is formally
equated to 0. This reduced model

-f(t,x,y)=O,

(2) g(t,x,y)-O,

X(to) Xo, y(to) Yo,

represents the slow response or the "quasi-steady-state." Note that while the initial
conditions in (1) can be arbitrary, in (2) they must satisfy g(to, Xo, Yo)=0. For more
details see Kokotovic, O’Malley and Sannuti [6]. Systems such as (2) also occur in
the semistate description of nonlinear circuits [7].

The analysis of the reduced model (2) usually begins with the assumption that at
the initial point (to, Xo, Yo) satisfying g(to, Xo, Yo)=0, the partial derivative (Og/Oy) is
nonsingular. The implicit function theorem is then employed to determine the (locally)
unique manifold y- y(t, x) on which the system (2) is constrained to evolve. Of late
there have been attempts to develop a theory when the above assumption of nonsingu-
larity of (Og/Oy) is not satisfied (Rabier and Shankar [8]), or even when g fails to be
of class C (Dolezal and Shankar [2]). This note presents another approach to this
problem and is motivated by the following considerations.

An important difference between systems (1,) and (2), apart from the discrepancy
noted above in the assignment of initial values, is that while solutions to (1) are
guaranteed for an arbitrary continuous function g, this is not the case as regards system
(2). Given that g(to, Xo, Yo) -0, it may not be that g vanishes on a set whose projection

* Received by the editors November 27, 1983; accepted for publication (in revised form) September
17, 1986.

" Tata Institute of Fundamental Research, Bangalore 560012, India.
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to the R x Rn space contains a neighbourhood, say V, of (to, Xo). And even if so, the
zero set of g may not admit appropriate sections (that is a function y y(t, x) for
(t, x) in V with g(t, x, y(t, x)) 0) whose substitution in (2) allows the existence of a
solution to the resulting system, namely to

: -f(t, x, y( t, x)) 0, x(to) Xo.

This is certainly undesirable, for we would like to consider system (2) as a limit of
system (1) as e tends to 0, and hence would not like to impose any greater regularity
on g than is strictly necessary. However minimising regularity requirements on g
usually results in a loss of regularity of the solution. In this note we consider solutions
to system (2) in the sense of Filippov.

Definition. For D an open set in R x [n, let h:D--> map (t, x) in D to h(t, x)
in n. The function x(t) defined on an interval I is called a solution in the sense of
Filippov (or a Filippov solution) of the differential equation -h(t, x)=0 if x(t) is
absolutely continuous and if for almost all in I and for arbitrary 8 > 0, the vector
(t) belongs to the smallest closed convex set (of Rn) containing all the values of the
function h(t, x) where x ranges over almost all of the -neighbourhood of the point
x(t) (with fixed). Denoting by konv(E) the convex closure of E, x(t) is then a
Filippov solution if for almost all

:(t) fq f’l konvf(t, N(x(t))-M)
>0/M=0

where N(x(t)) is the g-ball about x(t) in " and/x is Lebesgue measure.
Filippov solutions to :(t)-h(t, x)=0 are guaranteed by the following.
THEOREM 1 (Filippov [3]). Let D be an open set in x and h:D R a locally

integrable measurablefunction. Thenfor any (to, Xo) in D, there exists a Filippov solution
to h( t, x) 0 satisfying x(to) Xo.

PROPOSIa’IOtq. For X a Polish space and V an open subset of RP, let g X x V--> P
be a continuousfunction such thatfor some Xo in X, the partial map gxo g(Xo, V P
is injective and whose image contains the origin. Then there exists a neighbourhood Nxo
of xo in X and a Borel function h Nxo V such that g(x, h(x)) =O for all x in Nxo.

Proof. By the invariance of domain theorem g(xo, V) is open in RP and gxo is a
homeomorphism from V onto g(xo, V). Choose a closed ball B centered at the origin
and contained in g(xo, V). Let 8 be small enough such that for all points v in B(vl)
for any Va in Bd(B)--where B(vl) is the ball of radius 8 with centre Vl and Bd(B)
is the boundary of B--the straight line from 0 through v intersects Bd (B) at a point
w with w v < diameter (B).

Let Yo and F be the pre-images in V of 0 and B respectively. F is compact and
contains Y0. Choose any y in F. Since g is continuous at (x0, y) there exist neighbour-
hoods My of y and Ny c X of Xo such that

(3) IIg(x, Y’)-g(xo, y)ll <-
2

for all x in Ny and y’ in My. The collection {My: y F} is then an open cover of F,
and consequently there exists a finite subcollection {My,: Yi F, 1 <=i<= n} which also
covers F. Let N,, f’)--1 Ny,. Then Nxo is a neighbourhood of Xo in X.

Given any x in Nxo and y in F, there is an i, 1 _-< i-< n such that y belongs to My,.
As x belongs to Nxoc Ny,, (3) yields

IIg(x, y)-g(xo, y,)ll <-.
2
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Further as Xo belongs to Ny,,

IIg(xo, Y)- g(xo, y,)ll
2

Hence by the triangle inequality

g(x, Y)- g(xo, y)ll
Now suppose that 0 is not contained in g(x, V) for some x in No. Let G: B --> Bd(B)

be the function which maps u in B to the intersection of Bd (B) with the straight line
from 0 through g(x, g-lo(u)). As 0 is not in g(x, V), G is well defined. Clearly G is
continuous. Moreover the choice of 6 ensures that IIG(u)-ull is strictly less than the
diameter of B.

G restricted to the boundary of B is homotopic to the identity where the homotopy
H moves G(u) to u along the shorter great circle path. Consider H G: B -> Bd(B).
This map is a retraction of the ball B onto its boundary, which is absurd (Brouwer’s
fixed point theorem). Thus for all x in No, g(x, V) contains the origin.

Let Zx {y V: g(x, y)=0}. By the above Zx is nonempty for each x in No. By
the continuity of g, each Z is closed. The union of the Z, for x in N is then clearly
a Polish subspace of X x V. A standard result now guarantees the existence of a Borel
section (Arveson, [1, p. 75, Thm. 3.4.1]) that is a Borel function h:No--> V such that
h(x) is in Z. But then g(x, h(x))= 0 for all x in No.

THEOREM 2. Let f: D R", g D Rp be functions defined on an open set D c x
n x RP such that

(i) f is a locally integrable Borel map,
(ii) g is continuous and for some (to, Xo, Yo) in D the partial map g(to, Xo,’) is

injective with Yo the (unique) point such that g(to, Xo, yo) 0.
Then there exists an open interval containing to, an absolutely continuous function

x: I-" and a Borel measurablefunction y: I-p such thatfor all in I (t, x(t), y(t))
is in D with

:(t) -f( t, x(t), y(t)) 0 (in the sense of Filippov),
g(t,x(t),y(t))=O,
x(to) Xo, y( to) Yo.

Proof By the above proposition, the projection of the zero set of g onto a subset
of x R" contains an open neighbourhood N of (to, Xo). Further there exists a Borel
function h N -> P such that g(t, x, h(t, x)) 0 for every (t, x) in N. Clearly h(to, Xo)
Yo.

Define the function f: N --> " which maps (t, x) in N to f(t, x, h(t, x)). Obviously
f is Borel. By replacing D by its intersection with a sufficiently large closed ball, it
can be assumed that h(N) is bounded. Hence f is locally integrable. By Filippov’s
Theorem, there is an absolutely continuous x: I-->" that is a Filippov solution to

: -f( t, x) 0, x(to) Xo.
Let y(t)= h(t, x(t)). Then y(t) is Borel and

(t) -f(t, x(t), y(t)) 0 (in the sense of Filippov),
g( t, x( t), y( t)) O,
X( to) Xo, y( to) Yo.

Remark. Although Filippov’s Theorem requires only Lebesgue measurability it is
necessary to assume that f be Borel measurable in the above theorem. This is because
Lebesgue measurability off and even continuity of h does not imply measurability of
f(t, x, h(t, x)) (Halmos [4, p. 83]).
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The above result can be somewhat sharpened for scalar constrained systems,
namely when p is equal to 1, that is, when g is a real valued function.

THEOREM 3. Let f: D Rn, g D- be functions defined on an open set D c x
Rnx such that

(i) f is a locally integrable Borel map;
(ii) g is continuous in the (t, x) and y variables separately. For some (to, Xo), the

image of the partial map g( to, Xo," contains a neighbourhood of the origin.
Then given Yo in such that g( to, Xo, Yo) -0, there exists an open interval containing

to, an absolutely continuous function x: I- and a Lebesgue measurable function
y:IR such that for all in I (t,x(t),y(t)) is in D with

(t)-f(t, x(t), y(t))=O (in the sense of Filippov),

g(t,x(t),y(t))=O,

X( to) Xo, y( to) Yo.

Proof. Choose compact sets T and X in R and " with nonempty interior that
contain the points to and Xo respectively. Let Y be a compact interval in R such that
g(to, Xo, Y) contains a neighbourhood of the origin. Consider g restricted to T x X x Y.
By a result of B. E. Johnson (namely Proposition 2.1 in [5]), Z-g-l(0) is a Borel
subset of T x X x Y. It can be easily verified that the projection of Z onto a subset of
T x X contains a neighbourhood N of (to, Xo). By Theorem 3.4.3 in Arveson 1] there
exists a Lebesgue measurable function h:N- such that g(t, x, h(t, x))-0. Also
h(to, Xo) can be chosen to equal Yo (as the value at a point can be changed without
effecting the measurability of h).

The remainder of the proof now follows in a manner identical to that of the second
half of the proof of Theorem 2. [3

Acknowledgments. These results appeared in [9]. I am grateful to Professor V.
Dolezal for many discussions as well as to Professor A. H. Zemanian for his careful
reading of that manuscript.
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ASYMPTOTIC ANALYSIS OF A SINGULAR
PERTURBATION PROBLEM*

SHAGI-DI SHIH AND R. BRUCE KELLOGG$

Abstract. We study, in a rectangle 0 < x < a and 0 < y < b, the Dirichlet problem for an
elliptic differential equation of the form

-eAue + P’-ff’’x + que f(x, y)

where e is a small parameter 0 < e << 1, A is the Laplacian operator, p is a positive number, q is a
nonnegative number and all of the input data are smooth. We establish a constructive procedure for
obtaining an asymptotic approximation of arbitrary order with respect to of this singular pertur-
bation problem, and also give a proof of its uniform validity in the closed rectangle by the use of the
maximum principle and exponential estimates of all boundary or corner layer functions. The corner
singularities of parabolic boundary layer functions are removed by introducing elliptic boundary layer
functions along the characteristic boundaries y 0 and y b. Both ordinary corner layer functions
and elliptic corner layer functions are employed at the outflow corners (a, 0) and (a, b).

An application is made to settle a long-standing problem in the magnetohydrodynamic flow in
a rectangular duct.

Key words, singular perturbation, outer approximation, ordinary boundary layer, elliptic boundary layer, para-
bolic boundary layer, ordinary corner layer, elliptic corner layer, maximum principle, magnetohydrodynamics
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1. Introduction. We study, in a rectangle 12 (0,a) (0, b), the Dirichlet
boundary value problem for an elliptic partial differential equation of the form

(1.1) L,u =_ -eAu, + p + qu, f(x, y)

with boundary conditions

(1.2a,b) u,(0, y) gl (y), u(a, y) g2(y), O<y<b,

(1.2c,d) u,(x, 0) g3(x), ue(x, b) ga(x), O<x<a,
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where e is a small parameter 0 < e << 1, A is the Laplacian operator, p is a
positive number, q is a nonnegative number, the remaining input data f(x, y), gl (y),
g2(Y), g3(x), and ga(x) are assumed to be smooth. We also suppose that the assigned
boundary functions are continuous at the corners. That is,

(1.3a,b) gl (0) g3(0), gl (b) g4(0),
(1.3c,d) g2(0)-- g3(a), g2(b) g4(a).

The distinguishing feature of a singular perturbation problem is that a small parameter
multiplies some terms in the differential equation which, if absent, would change the
character of the equation. Often these contain the highest derivatives in the equation
and the approximation as this parameter tends to zero is therefore governed by a
lower order equation which cannot satisfy all the boundary conditions prescribed.
Hence the solution converges nonuniformly in the domain as the parameter tends to
zero. Problems of this type frequently arise in fluid dynamics [14], [29], [34], [44],
heat transfer [1], [3], theory of plates and shells [30], oil reservoir simulation [38],
and magnetohydrodynamic flow [41]. The specific character of the problem (1.1),
(1.2a,b,c,d) is brought about by the presence of the four corners of right angle for the
domain and by the fact that the parts of the boundary, y 0 and y b, coincide with
the characteristic curves of the reduced equation

(1.4) Ou0
P -x + quo f(x, y),

which is obtained from (1.1) by putting e 0. The boundary x 0 is called the
inflow boundary while the boundary x a is called the outflow boundary.

The purpose of this paper is to establish a constructive procedure for obtaining
the asymptotic approximation of arbitrary order with respect to e of this singular
perturbation problem, and to give a proof of its uniform validity in the closed rect-
angle by use of the maximum principle and exponential estimates of all boundary or
corner layer functions, which will be defined in Section 3. It is well known [13] that
ordinary boundary layer functions appear along the outflow boundary x a while
parabolic boundary layer functions occur along the characteristic boundaries y 0
and y b. In 1966, W. Eckhaus and E. M. De Jager [11] discovered the singularities
of parabolic boundary layer functions near the inflow corners (0, 0) and (0, b). These
corner singularities of parabolic boundary layer functions are removed by introducing
elliptic boundary layer functions along the characteristic boundaries. Both ordinary
corner layer functions and elliptic corner layer functions are employed at the outflow
corners (a, 0) and (a,b).

An application is made to settle a long-standing problem in the magnetohydro-
dynamic flow in a rectangular duct.

We give a brief historical survey of studies on the elliptic singular perturbation
problems of the type considered in this work. In providing references we have tried
to give those that might be of interest for further reading, rather than presenting a
comprehensive bibliography of the subject. We apologize to those who feel neglected.
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2. Historical survey. In 1944, W. Wasow [46] studied the problem of the
following type

Ou
(2.1) -eAu -{- -x f(x, y)

over a finite plane domain B with the smooth boundary C under the prescribed
boundary condition

on C. Both f and g are smooth functions. It is shown that, as e - 0+, the solution
of the problem (2.1), (2.2) converges to the solution of the reduced equation

Ou
0- f(x, y),

assuming the prescribed boundary values along the inflow boundary of C, not the
whole boundary.

In 1950, N. Levinson [32] considered the Dirichlet boundary value problem for
the equation of the following type:

(2.3) -eAu + A(x, y)u + S(x, y)uu + C(x, y)u D(x, y)

over an open simply or multiply connected region R whose boundary S consists of a
finite number of simple closed curves. Let R t2 S be contained in an open connected
region R and suppose all of the data of the problem are smooth in R. Furthermore,
we require that A2(x, y) + B(x, y) > 0 in R’ and that either R’ is simply connected
or C(x, y) > 0 in R. Either hypothesis suffices to establish a maximum principle in
R t.J S. Under these conditions, the Dirichlet boundary value problem for (2.3) has a
unique solution in R U S for each e > 0.

Let $1 be a segment of one of curves of S such that (A, B). n < 0, where n is an
outward normal vector of S at point (x, y). Let the characteristic curves of the reduced
equation corresponding to (2.3) emanating from $1 pass out of R on the segment $2
of a curve of S. The closed simply connected region in R U S bounded by $1 and $2
and by the two characteristics of the reduced equation of (2.3) joining the endpoints
of $1 and S is called a "regular quadrilateral". Then Levinson proved the following
result.

THEOREM 2.1. In a regular quadrilateral Q in R S we have

(x, U) o(, U) + (, U; ) + O(Vq)

uniformly in the quadrilateral. The function uo(x,y) is the solution of the reduced
equation of (2.3) which takes on the given boundary value of u on $1. The ordinary
boundary layer term w(x, y; e) is defined as follows:

h(x, y)exp[ -g(x’ Y)] near $2
w(z, y;

exp - for ome > 0 elsewhere in Q,
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where h u- uo and g 0 on $2 and g is positive away from 82. The function g
satisfies the nonlinear equation

g + g + Agx + Bg 0

(g exists and is uniquely determined in a neighborhood of $2).
In terminology that we will establish below, Levinson treated the "ordinary

boundary layer" part of the solution.
In 1957, M. I. Vishik and L. A. Lyusternik [45] studied the equation of the fol-

lowing type

Ou
(2.4) -eAu + -x + u f(x, y)

in the rectangle f, 0 < x < a and 0 < y < b, under the homogeneous boundary
condition

u:0

on the boundary of f. They gave an expansion of the solution of the form for some
>0

+no(,u;)

where Y y/v/, yT (b y)/v, XI (a x)/e and the infinitely differentiable
2smoothing function (x) is identically equal to I for x _< 1/2 and equal to zero for x _> .

The function uo satisfies the reduced equation under the condition uo(0, y) 0. The
function zo(x, Y) is a boundary layer near the boundary y 0, which satisfies the
parabolic equation

Ozo Ozo
-OY--- + -x + Zo 0

over the semi-infinite region 0 < x < a, 0 < Y < oo under the conditions

zo(0, Y) 0, o(, 0) -o(, 0).

The function zc is a boundary layer near the part of the boundary given by y b,
0 _< x _< a, which has the same structure as zo. The function wo(X1, y) is a boundary
layer along the boundary x a, 0 <_ y <_ b, which satisfies the ordinary differential
equation

Owo Owo
OXI2 + - + ewo O

on the unbounded interval 0 < X1 < oc under the boundary condition

y y (a,b-y b-y))
From this Vishik and Lyusternik deduced on the basis of the maximum principle [39]
that

no o()
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everywhere except in the neighborhood of the points (a, 0) and (a, b), under the as-
sumption that the smooth function f(x,y) vanishes at the points (0,0) and (0, b).
They also asserted that on applying an iteration process, one can obtain, as above,
an asymptotic formula of arbitrary order if the parameters of the problem are suf-
ficiently smooth. In 1966, W. Eckhaus and E. M. De Jager [11] made the remark
that the extension of the theory involving parabolic boundary layers to higher order
approximation should not be considered a trivial matter.

In our terminology, Vishik and Lyusternik treated the "parabolic boundary lay-
ers" along the characteristic boundaries of the region.

In 1964, J. K. Knowles and R. E. Messick [30] discussed a class of singular pertur-
bation problems arising in the theory of thin elastic plates and shells. An important
feature of these problems is that the boundary of the domain coincides either partially
or entirely with portions of characteristic curves of the reduced equations. In order
to understand this exceptional character of a characteristic boundary, Knowles and
Messick considered the equation of the following type

(2.5) - Au + o

in the semi-infinite strip R 0 < x < a and 0 < y < oc, under the boundary conditions

(2.6a, b) u(0, y)=0, u(a,y)=O, O<y<

(2.6c) u(x, O) g(x), 0 <_ x <_ a,

where the function u and its partial derivatives are required to be bounded as y --* oo.
They obtained as an approximation to the solution the function

zo(x, Y) + Wo(Xl Y) -[" Vo(X1, Yl)

where Y y/v/, X1 (a- x)/e, and Y1 y/e. Note that for this problem, the
solution of the reduced equation under the condition uo(0, y) 0 is uo(x,y) 0,
which also satisfies the boundary condition (2.6b). Therefore the ordinary boundary
layer along the boundary x a is identical to zero. The function zo(x, Y) is the
parabolic boundary layer function along the boundary y 0, defined by the equation

over the domain 0 < x < a, 0 < Y < oo under the conditions

zo(x, O) g(x), zo(O, Y) O,

and the condition that zo(x, Y) decays exponentially in Y. The function Wo(X1, Y)
is a "corner layer" at the outflow corner (a, 0), defined by the ordinary differential
equation

OWo OWo 0
9X12 -- i)X-
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on the unbounded interval 0 < X1 < oc under the conditions

Wo(O, Y) -zo(a, Y)

and
Wo(X1, Y) has the exponential decay property in both X1 and Y.

Then it follows that
Wo(X, Y) -zo(a, Y) exp(-X1).

The function Vo(XI, Yx) is a "corner layer" at the outflow corner (a, 0), defined by the
elliptic equation

OVo OVo OVo 0+ o 1 ox--;
over the quarter-plane 0 < X1 < o and 0 < Y < cx under the conditions

Vo(Xl, O) -Wo(Xl, O) g(a) exp(-X1),
Vo(0, y,) =0,

and
Vo(X, YI) decays exponentially in Xl and Y.

Knowles and Messick mentioned that using a representation of the solution to the
original boundary value problem (2.5), (2.6a,b,c), which involves the expansion of the
Green’s function in a series of modified Bessel functions, it is possible to prove the
statements listed below. First let us define some notation: Let S be the boundary of
R. 5 denotes an arbitrary small positive number. The symbols D and D represent
quarter-discs at (0, 0) and (a, 0), respectively, and are defined as follows:

D= { (x,y) x >_O, y >_O, x2 + y < 5},
{ (, ) >_ O, <_ a, + ( a) < }.

It can be shown that
i) There exist positive constants M(5), c(5) such that

,u(x,y)[ <_ M(5)exp(-C-----) )
for all y >_ 5, 0 <_ x <_ a.

ii) There exists a positive constant M(5) such that

for all (x, y) E R t2 S D D.
iii) If g(x) O(x) as x 0+, then there exists a constant M(5) > 0 such that (2.7)

holds for (x, y) E R t2 S D.
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iv) If g(x) O(x) as x --. 0+ andg(x) O(a- x) as x --. a-, then there exists a
positive constant M such that

y a-x

for all (x, y) E R U S.
In our terminology, Knowles and Messick have thus treated the "ordinary corner

layer" and the "elliptic corner layer" at the outflow corner of the region.
In 1966, W. Eckhaus and E. M. De Jager [11] investigated the problem of the

following type

(2.8) Lu -eAu + 0

in the domain fl, 0 < x < a and 0 < y < b, with the boundary conditions

(2.9a,b) u(0, y) gl (y), t(a, y) g2(y), 0 < y < b,

(2.9c,d) u(x, 0) g3(x), u(x, b) g4(x), 0 < x < a.

The boundary data are assumed to be smooth and to be continuous at the corner
points. The solution of the reduced problem is gl(y), which does not satisfy the given
boundary conditions (2.9b,c,d) generally. The local variable Y y/v/’ along the
characteristic boundary y 0 transforms (2.8) into

Ou Ou Ou
OY2 + -x =eOx

Define the function zo(x, Y) as the solution of the reduced equation in local coordi-
nates, that is, we have

Ozo OZo
Oy---- + 0

in the domain 0 < x < a and 0 < Y < oc. Let zo satisfy boundary conditions

zo(O,Y) =0,

zo(x O) g3(x) gl (0) -- ((X).

An explicit form of this function is easily obtained as follows:

Furthermore, we have

(2.10) Lezo - 2Z0
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Due to the assumed continuity of the boundary data, i.e., /(0) 0, we obtain

O zolx,, l
Ox /,V

y
/

where the primes indicate derivatives with respect to the argument. We see that
02zo/Ox2 is uniformly bounded in the closure of f2 if and only if /(0) 0, which was
assumed to be true in the analysis of Vishik and Lyusternik [45]. In the case of general
boundary conditions, where "’ (0) 0, the right-hand side of (2.10) has a singularity
at the origin x 0, y 0. The nature of the singularity is most clearly revealed
if in (2.10) the origin is approached along any curve Y mxn, where m and n are
constants. The presence of this "corner singularity" indicates that in attempting a
proof of the asymptotic properties of the parabolic boundary layer, difficulties should
be expected. Also this corner singularity gives more singular functions in the course
of the construction of a high order approximation to the parabolic boundary layer.

Eckhaus and De Jager constructed a regularized parabolic boundary layer func-
tion 20 by replacing /(x)in zo by

X

In other words,

2o(x,Y)-fy/vexp(-)/(X

The important properties of this function (x) are
i) (0) ’(0) 0, which implies that O2o/i)x2 is bounded uniformly in the

closure of ft, and moreover,

(9220 (i[--1/2Ox O(1) + O )
in the closure of f.

ii) (x) -(x)+ O(x/), which implies that

eo(, Y) zo(z, Y) + o(eT)

uniformly in the closure of
Define another regularized parabolic boundary layer function 2r along the boundary
y b similarly. Introduce the local coordinate X1 (a- x)/e along the boundary
x a and define the boundary layer function Zo(X1, y) as the solution of the ordinary
differential equation

Obo 0o 0
OX12 -- OX-
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over the unbounded interval 0 < X < OO under the conditions

(),

and
lim Zo(X1, y) 0.

X1--*o

Then it follows that
Zo(X1, y) (y) exp(-X1).

Eckhaus and De Jager first showed by using the maximum principle [39] that the solu-
tion u of the boundary value problem (2.8) with the boundary conditions (2.9a,b,c,d)
has the asymptotic expansion

U(x,y)- gl(Y)-- 0(x,) "" ff’/" +(Vo ’Ye +Ro(x,y;),

where the remainder Ro satisfies

Ro o(v)
uniformly in the closure of fi with the exception of a neighborhood of the two corner
points (a, 0) and (a, b). Note that at y 0 and y b, 42" (y) is bounded but of order of
1/e. To get a better estimate for the remainder term, they introduced the expansion

4 +o , +o(,;),

with

zoo(a x y) [(y)+ e(a- x)"(y)] exp(a-x)
and arrived at the conclusion that

o(v)
uniformly in the closure of fi on the basis of the maximum principle. Furthermore
they showed that

ZOo ,y -5o ,y +O()

uniformly in the closure of ft. Summarizing these results, Eckhaus and De Jager have
established the following theorem.

THEOREM 2.2. The asymptotic approximation for u(x,y)

Y b-y -x) a
/

holds uniformly in the closure of , including the four corner points.
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We remark that the order of the asymptotic error in the above theorem is de-
termined by the presence of corner singularities. If one studies the exceptional case
g(0) 0, g (0) 0 in which the corner singularities are absent, one finds along the
lines of the preceding analysis that the asymptotic error is no longer O(vf) but O(e).
J. Mauss [35], [36] claimed to improve the estimate of the above theorem and to ob-
tain an O(e) remainder by using a rather special inequality for the maximum principle
when the right-hand side of the differential operator Le has the singular behavior. The
result asserted by Mauss is inconsistent with higher order expansions obtained in this
paper.

All of the ideas discussed here need to be modified in order to develop higher
order asymptotic expansions. The difficulties involved are

i) Corner singularities appear at the inflow corners of the region in the construction
of the parabolic boundary layers along the characteristic boundaries y 0 and
y=b.

ii) The parabolic boundary layer and ordinary boundary layer overlap in the vicini-
ties of the outflow corners of the region.
The proper way to treat the item ii) is to follow the construction of the ordinary

corner layer and the elliptic corner layer done by Knowles and Messick [30] after the
modification of the ordinary boundary layer. More precisely, the function Z0o(X1, y)
in the construction due to Eckhaus and De Jager may be decomposed as

+ Wo(X , Y) + w[
+ [Wl (Xl, Y) + WIT (Xl, yT)] _{_ (2w2 (Xl, y),

where the ordinary boundary layer functions wo (X1, y) and w2 (X1, y) satisfy the equa-
tions

Ow Ow f O, i O,

(X12 CXl- / -0Uwi-2 i 2
Oy2

over the unbounded interval 0 < X < oc under the conditions

i 0,
w(0, y)

0, i 2,

and
wi(X, y) decays exponentially as X

the ordinary corner layer functions Wo(X1, Y) and W1 (X, Y) satisfy the equations

OW OW f O, i O,

02Wi-1OXI OX1 i 1Oy

over the unbounded interval 0 < X1 < oc under the conditions

Wi(O, Y)
-2o(a, Y), i O,

0, i= 1,
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and

Wi(X1, Y) decays exponentially as X1 --+

The functions WoT and W1T are defined similarly. It is clear that the term w2 plays no
role in this improvement of estimate.

Eckhaus and De Jager investigated the singularities of parabolic boundary layers
near the inflow corners, obtained a formal approximation, and proved the uniform
validity of the asymptotic approximation to the solution with the estimate of O(x/7).
Since then, the problem of dealing with these singularities has attracted much atten-
tion from mathematicians, e.g., J. Grasman [15] [18]; L. P. Cook, G. S. S. Ludford
and J. S. Walker [9]; L. P. Cook and G. S. S. Ludford [10]; A. M. II’in and E. F. Le-
likova [24]; V. F. Butuzov [4]; and D. J. Temperley [43]. This type of difficulty also
takes place in the problems of the interior layers due to the nonsmooth boundary con-
ditions [8], [20], [36], the domains with corners and noncharacteristic boundary [20],
and the nonconvex domains [20], [36].

A similar phenomenon occurs in the problem

-(eUyy +Uxz) +Uy f(x,y), 0<e<<l,

defined on the unit square T, 0 < x < 1 and 0 < y <. 1, with the prescribed Dirichlet
boundary conditions. In the event that the solution of this problem converges to
the solution of the reduced problem, we can anticipate the ordinary boundary layer
behavior in the vicinity of the upper edge of T, since the solution uo(x, y) of the reduced
equation is uniquely determined throughout T by the boundary values assumed on
the other three edges. Note that the reduced equation is a partial differential equation
of parabolic type. Thus when one attempts to determine an asymptotic solution, one
has to treat the corner singularities of the derivative 02Uo/Oy2 first. Such singularities
always exist no matter how smooth the prescribed boundary conditions may be unless
certain compatibility conditions hold. Furthermore, the construction of the ordinary
boundary layer requires the smoothness of the derivative 02uo/Ox2 at point (x, 1).
This type of problem had been studied to obtain an asymptotic approximation of
arbitrary order with respect to by G. E. Latta [31], R. E. O’Malley, Jr. [37], and Peng-
Cheng Lin and Fa-Wang Liu [33]. None of these authors have treated the difficulties
mentioned above.

J. Grasman [15] studied the problem of the following type

(2.11) Lu -eAu + 0

over the quarter-plane 0 < x < (x) and 0 < y < oc under the boundary conditions

(2.12a) u(x, O) g(x), g(O) O,
(2.12b) u(O,y) =0,

by means of the Green’s theorem, which yields the exact solution. The asymptotic
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expansion of the integral representation of the solution is shown to be

uniformly for x > 0, y _> 0, where the term ego(x/e, y/e) represents the solution of
boundary value problem (2.11), (2.12a,b) in the case that g(x) xg’(O). In order to
understand this uniformly valid expansion from another viewpoint, let us define the
functions vo(x/e, y/e; e), Zo(X, y/v/-), and Zl(X, y/x by

and

y2 y2zo(x,’-)y

/x/exp(-)[g(x-)-g’(O).(x -)]dt,

respectively. In other words, it follows that

t(x,y) Z0 X,-- -Jl-eZl X, "JI-V0 --,--;el.e

From a direct computation, one finds that
i) The functions zo(x, Y) and Zl(X, Y) are the solutions of the equations

C2Zk
0,

Oz
0OX Zk--1
Ox2

over the quarter plane 0 < x < oc and 0 < Y < oc under the conditions

z(O,Y) -o,

() ’(o) :, o,
Zk(X O)

O, k- 1,

and
Zk(X, Y) - 0 as x2 + y2 (and x > 0 when k 0).
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ii) The function vo(X, Y1;e) is the solution of the elliptic partial differential equation

Ovo Ovo Ovo(-’" + Oy1 ) + - =0

over the quarter-plane 0 < X < and 0 < Y1 < oc under the conditions

 o(0, Y1;,) 0,  o(X, 0; g’(0)x,

and
 o(X, 0 as X2 + Y andX>0.

This means that a uniformly valid approximation with an accuracy O(e2) can be
constructed by the usual perturbation method even though Grasman claimed that
this cannot be done [15]. The detailed construction of such functions vk, which will
be called as the "elliptic boundary layer" functions, is in Section 3.3. It will be clear
later that vk(x/e, y/e; e) =-- O, for k _> 1 in the problem (2.11), (2.12a,b). For the sake
of convenience, let us write the function zo as

zo z z
where z denotes the integral which contains the function g(.) as part of integrand
and z is the remaining part of zo. Grasman [15], [16] asserted that

i) the function z is a uniformly valid approximation of the solution of problem (2.11),
(2.12a,b) with a remainder term O(e) for x >_ 0, y _> 0, and

ii) the estimate vo z O(e) holds uniformly for x _> 0, y _> 0.
We cannot draw these conclusions because of the singularity of z at the origin x 0,
y 0. For it is clear that vo z vanishes when x 0 or y 0, but

c2 z0 y2
g(O) yx-3/2 exp (- 4--x )

is singular in the neighborhood of the origin.
Cook and Ludford [10] studied the problem on a semi-infinite strip and analyzed

the asymptotic approximation from an exact representation of the solution obtained
by means of the Fourier sine transforms. Il’in and Lelikova [24] used the asymptotic
behavior of the solution at the inflow corners to obtain the uniqueness of the parabolic
boundary layer functions by matching two different asymptotic expansions. Butuzov
[4] imposed certain compatibility conditions on the input data so that the corner
singularities of the parabolic boundary layers disappear, and employed the corner
layers at the outflow corners to obtain the asymptotic approximations of arbitrary
order with respect to e, which is proved to be valid uniformly in the closure of the
rectangular region.

3. Main results. The main tool used in this paper for estimating solutions of
elliptic boundary value problems is furnished by the so-called maximum principle and
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the concept of barrier function. For the proof of the maximum principle see Eckhaus
and De Jager [11]. We now repeat the formulation of the boundary layer problem:

(1.1) Lu =_ -eAue + p + qu f(x, y) in

with boundary conditions

(1.2a, b) u(O, y) gl(Y), u(a, y) g2(Y), 0 < y < b,

(1.2c, d) u(x,O) g3(x), u(x, b) g4(x), 0 < X < a,

where is a small parameter 0 < e << 1, A is the Laplacian operator, p is a positive
number, q is a nonnegative number, f is the rectangular region 0 < x < a and
0 < y < b, and the remaining input data f(x,y), gl(y), g2(y), g3(x), and g4(x) are
assumed to be smooth. We also suppose that .the assigned boundary functions are
continuous at the corners. We are ready to state the maximum principle.

MAXIMUM PRINCIPLE. Let and g be twice continuously differentiable func-
tions in f such that

Then

Remark 3.1. For an elliptic differential operator of second order in an unbounded
domain a maximum principle holds if the solution satisfies a certain growth condition
at infinity. We will discuss this in Section 3.3.

In this work we investigate an asymptotic approximation of the solution of the
elliptic boundary value problem given by (1.1), (1.2a,b,c,d). From the assumption
that q is nonnegative in f, it follows that the solution is unique. Under the conditions
assumed, it is well known that for a fixed value of e, u(x, y) is continuous in f and
is smooth in gtl where fl is any compact subregion of Ft with positive distance from
the corners. In 1979, A. Azzam [2] improved this result to obtain the following:

THEOREM 3.1. For any fixed value of , there exists a number , E (1,2) such
that the solution u of the Dirichlet boundary value problem (1.1), (1.2a,b,c,d) with
the assumptions stated at the beginning of this section satisfies u(x,y) C().
Moreover, in a suciently small neighborhood of the corner, rrDue Cz for some
T, # (0, 1), where r is the distance from the corner point to (x, y) and D2u is any
second partial derivative of ue.

Remark 3.2. The maximum principle implies that the solution u(x, y) is bounded
uniformly with respect to

3.1. Outer approximation. In order to obtain the first rough approximation
of the solution ue(x,y) for small values of the parameter e, we consider a function
uo(x, y) which satisfies the reduced equation

(1.4)
(Uo

P -x + quo f(x, y).
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The function uo(x, y) can satisfy only one of the prescribed boundary conditions

(1.2a) uo(0, y) gl

and

(1.2b) uo(a, y) g2(y).

THEOREM 3.2. There exists a positive constant C independent ore such that the
inequality

(3.1)

holds uniformly in the closure of 12 for all values of .
Proof. The function (I)e(x, y), defined by

satisfies in 2 the differential equation

Le[(I)e] f(x,y) - eg(y) qgl(Y)

with the boundary conditions

(0, ) =0,
(I)e (a, y) g2(y) gl

(, o) (z) (0) () (0),
(I) (x, b) g4 (x) gl (b) g4 (x) g4 (0).

We now introduce the barrier function (x) Cx, where C is some positive constant
independent of e. By taking C sufficiently large it follows that the inequalities

on the boundary of 2 and
I(,)1 < ()

in gt can be satisfied for all values of e. Applying the maximum principle, we get the
desired inequality (3.1) uniformly valid in the closure of 12 for all values of e. This
completes the proof.

According to Theorem 3.2, as e tends to zero, we are led to the inequality

Therefore (1.2a) is the proper condition for the solution uo(x,y). Now the function
uo is easily determined, and the result is

0(X, y)- gl (Y)exp(--) p-1 0
x

f(8, y)exp[--(x Us.
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Since the remaining boundary conditions (1.2b,c,d) are not satisfied by the function
uo(x, y) and the difference ue uo satisfies in Ft the differential equation

Le[ue uo] eAuo,

it is quite evident that this approximation for u(x, y) is not valid in a neighborhood
of three parts of the boundary of fl, x a, y 0, and y b, and is valid in the
remaining subregion of t including the neighborhood of the inflow boundary x 0
up to the order O(e).

First of all, a better approximation of the solution u(x, y) in this subregion is to
n ek (X, y) which equals zero along thebe obtained by adding to uo(x, y) a sum k=l uk

inflow boundary x 0 and has the property that -=o ek uk(x, y) satisfies (1.1) up to
the order O(en+l) for some positive integer n. The functions uk(x, y) are determined
by iteration from the differential equations

Out(3.2) P-x " auk AUk-l,

with the boundary conditions

(a.a) (0, u) =0,
for k 1,2,..., n. Therefore it follows that the functions uk(x,y) are given by the
expressions

k(X, y) p-1 itk_ (s, y) exp ds
P

for k 1,2,...,n.
We will call the series

n

(a.4) (,; ) (,)

the outer asymptotic approximation (OA). (Other names that are given are the asymp-
totic approximation or the interior asymptotic approximation of u(x,y) in Ft.) Ap-
plying the differential operator L to the function u*(x, y; e), defined by

(3.5) u* u u,

yields the differential equation in

(3.6) Le [u*]----en’lAun
with the boundary conditions

(3.7a)

(3.7b)

(3.7c)

(3.7d)

*(0, u; ) =0,

u* (a, y; e) g2(Y) uo(a, y) Z ek uk(a, y),
k’-I
n

* (, o; 1 (1 o(, o) (, o),
k--1
n

u*(x, b; e ga(x) uo(x, b) Z ek uk(x, b).
k--1
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Now the outer approximation u(x, y; e) satisfies the boundary conditions (1.2a)
and introduces discrepancies in the boundary conditions (1.2b,c,d) on the remaining
parts of the boundary of . To obtain a "uniform" approximation of the solution
u in 12, we eliminate these discrepancies along the boundaries x a, y 0, and
y b by introducing other functions, called boundary layer functions and corner layer
functions, along the three boundaries and the two outflow corners (a, 0) and (a, b).
These functions will have the property that when acted on by L, the result will be
of order O(en+l) uniformly in the closure of . Also the boundary layer functions
have the property of being asymptotically equal to zero everywhere in except for a
small neighborhood of one of these three boundaries while the corner layer functions
have the property of being asymptotically equal to zero everywhere in 2 except for a
small neighborhood of one of the outflow corners of . The boundary layer functions
along the outflow boundary x a satisfy ordinary differential equations and define the
ordinary boundary layer (OBL). The boundary layer functions along the characteristic
boundaries y 0 and y b are of two types. One type of function satisfies a
parabolic differential equation and is the parabolic boundary layer (PBL) function.
The other type of boundary layer functions along the characteristic boundaries y 0
and y b satisfies an elliptic differential equation and is designed to remove the
corner singularities of PBL; it is called the elliptic boundary layer (EBL). There are
two types of corner layers at each of the outflow corners. One type of the corner layer
function satisfies an ordinary differential equation and is employed to remove the
discrepancy in the vicinity of the corner due to the PBL. This function is called an
ordinary corner layer (OCL) function. The other type of corner layer function satisfies
an elliptic differential equation and is used to remove the discrepancy in the vicinity
of the corner due to the EBL, OBL and OCL; this function is called an elliptic corner
layer (ECL) function. The detailed construction of these functions will be investigated
in the subsequent sections. The location of all functions is indicated in Figure 3.1 and
the order of construction is shown in Figure 3.2.

y=b

TEBL TPBL ITOCL
|TECL

oA IOBL

FIG. 3.1. Location of all functions.
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Ordinary Boundary Layer along
Outflow Boundary x a

,CC, ,)/, )

1. Outerttk(x,y)Approximation

3. Elliptic Boundary Layer
along Characteristic
Boundary y 0
Cl,yl;)

6. Elliptic Corner Layer at 1Outflow Corner (a, O)
(C- )/,/; 1

Ordinary Corner Layer at1Outflow Corner (a, 0)
w((- )/,/v)

4. Parabolic Boundary Layer along
Characteristic Boundary y 0

FIG. 3.2. Order of constructions.

The uniform asymptotic approximation of the solution ue(x, y) in the closure of gt is
expressed as follows:

ue(x, y) OA + OBL + BEBL + BPBL + BOCL + BECL
-t- TEBL -t- TPBL -I- TOCL -t- TECL
/ REMAINDER,

where BEBL and TEBL stand for the EBL along the characteristic boundaries y 0
and y b, respectively, etc.

In order to estimate the term REMAINDER in (3.8), we need the following result,
which is a consequence of the maximum principle.

THEOREM 3.3. If e(x, y) is the solution of the boundary value problem

Le[cI)e] he(x, y),

valid in with
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along the boundary F of fl, and if

h,(, ) 0(") in f, # >_ O,

and
g,(x, y) O(e’) along F, , >_ O,

then at most
in

From this theorem, we conclude that if it is possible to have L[REMAINDER]
being of order O(en+l) in the closure of f and the term REMAINDER being of order
O(en+l) on the boundary of f, then it follows that the estimate

REMAINDER O (en+

holds uniformly in the closure of f.

3.2. Ordinary boundary layer along the outflow boundary x- a. Let
the stretched variable X along the outflow boundary x a be defined by x a-eX1.
The ordinary boundary layer along the outflow boundary x a is defined by the series

n+l

(3.9) w(xx, y; ) w(X, y)
k=O

where the functions wk(X1, y) are defined iteratively by the ordinary differential equa-
tions

Ow Ow(3.10)
(9x1 2

q- P 11 71"k (x1, y)

over the unbounded interval 0 < X1 < oo, where y is a parameter 0 _< y _< b, and the
functions 7rk(X, y) have the expressions

7ro(Xl y) O,
7rl (X1, y) qwo,

and for 2 g k _< n+ 1,
C2Wk_271"k(X1, y) Oy2 + qwk-1.

The boundary conditions imposed on the functions wk(X1, y) are such that the dis-
crepancy, due to the introduction of the outer approximation u(x, y; e) in the boundary
condition (1.2b) at the outflow boundary x a, disappears and such that the func-
tions wk(X1, y) approach zero as x a and e tends to zero. That is, we impose the
boundary conditions

wo(O, y) g2(y) uo(a, y)
(3.11a) wk(O, y) --Uk(a,y) for 1 _< k _< n,

wn+ (0, y) 0
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and for 0 <_ k <_ n + 1,

(3.11b) wk(Xx, y) --* 0 as Xx oc.

It is easy to see that when k 0 and k 1 we obtain the solutions in the form

oo(X,, ) [() ,,o(a, )] ,xp(-x,),

’1/)1(Xl, y) I--ill (a, y) (g2(Y) ’so(a, Y))p-lqX1] exp(-pX1).

In general, for k _> 2, each of the functions 7rk(X, y) is the product of exp(-pX),
the function of boundary layer type along the boundary x a, and a polynomial of
degree k- 1 in X with the coefficients depending on y. Hence the solutions wk can
be expressed as

Wk(Xl Y) .k(Xl, Y) exp(-pZl),

where k(X1, Y) is a polynomial of degree k in X with the coefficients depending on
y.

Remark 3.3. From ODE theory, if p is a positive number, the integral

f(s) exp(-ps) ds

converges and

exp(-px) f s) ds

converges to 0 as x tends to c, then the solution of the ordinary differential equation

u"(x) + pu’(x) f(x) exp(-px)

defined over the unbounded interval 0 < x < oc under the boundary conditions

u(0) A and u(x) --, 0 as x

has the form

(3.12) u(x) A exp(-px) p-1 exp(-px) f(s) ds

p--1 f(s) exp(-ps)ds + p-1 exp(-px) f(s) exp(-ps) ds.

THEOREM 3.4. There exist two positive constants C and c independent of e such
that the inequalities

(3.13) ,l"y Wk (X1, y)]
_
C exp(-cX.)

hold for O <_ k g n + l and g O and 2.
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Proof. The above inequalities are quite clear because the functions wk, and
02wk/i)y2 are products of exp(-pX1) and a polynomial in X1 with the coefficients
depending on y.

Applying the differential operator Le to the series w gives

(3.14)
n+l

Lew E ek Lewk
k--O

n+l

( 92WkE ek --e
i)x2

k--O

i)2Wk OWk
qWk)e +p +Oy2

The equation (3.10) may be written as

(92Wk OZVk -1 ( a x )3.15) -e
Ox, +p

Ox
---e r

e ’Y

Substitution of (3.15) into (3.14) yields

n+l n+l n+l

(3.16) L’W -e-k+l O2W"’-’-k
_
’f.k qwk + f.k-X 71"k (a--x, Y)

k=O k=O k=O

( 02wn+lO2wn )en+l -e
Oy2 Oy2 + qwn+l

It follows from (3.13) that the estimate

Lew=O(en+l)
is valid uniformly in the closure of f. Furthermore, let us examine this series on the
boundary of f.

i) At x a, the series

n+l n

(3.17a) w ek wk(O, y) g2(Y) ek uk(a, y)
k=0 k=0

is equal to u* (a, y; e).
ii) At x 0, the series

n+l

()(3.17b) w ek wk -, y
k=0

is asymptotically exponentially small with respect to e in the interval 0 <_ y <_ b.
iii) At y 0 and y b, the series

n+l

(3.17c) w ek Wk y
k=0
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is asymptotically exponentially small with respect to e for each x in the interval
0 _< x < a, but not in the closed interval 0 <_ x <_ a. To circumvent this difficulty,
we define two series, called the elliptic corner layers, at the outflow corners (a, 0)
and (a, b). The construction of these elliptic corner layers is given in Section 3.6.

3.3. Elliptic boundary layer along the characteristic boundary y- 0.
Usually the given problem (1.1), (1.2a,b,c,d) may not have the necessary compatibility
conditions for the solution ue(x, y) at the inflow corner (0, 0) to insure the smooth-
ness of the parabolic boundary layer function zo(x, Y), which satisfies the parabolic
differential equation (3.26) in a semi-strip 0 < x < a and 0 < Y < x). The sec-
ond partial derivative of Zo with respect to the time-like variable x is singular near
the origin, and consequently the right-hand side of the differential equation for Zl is
singular in the vicinity of the origin. To remedy the presence of this "corner singular-
ity," we introduce some functions vk(X, Y1) with the stretched variables X x/e and
Y) y/e, which are defined by elliptic differential equations over the quarter plane
0 < X < oc and 0 < Y < oc with the values zero as the boundary conditions along
X 0 and a suitable boundary condition along Y 0 such that the desired compat-
ibility conditions for parabolic differential equations can be obtained to guarantee the
boundedness of the second partial derivative of all functions zk(x, Y) with respect to
x in the semi-strip domain. This enables us to carry out an iteration process related
to the parabolic boundary layer.

The elliptic boundary layer along the characteristic boundary y 0 is defined by
the series

n+l

(3.18) v(X, Y;e) Z ek vk(X, Y1; e),
k--O

where the functions v,(X, Y;e) are defined iteratively by the elliptic differential equa-
tions

(3.19) _( vk
OX

OVk ) OVa
+0Y12 + P + eqvk O

over the quarter plane 0 < X < oc and 0 < Y1 < oo. We impose the boundary
conditions for vk in the following way:

(3.20a) vk(O, Y1;e) 0, 0 _< k

_
n + 1,

and

(3.20b) vk(X, 0; e) wk(X; e), 0

_
k

_
n - 1,

where the functions wk(X; e) have the expressions

N xi oi

i--1
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and for 1 <_ k _< n,

and

N-k Xi Oi
(x; 1 ! o (’ 01 ,

i--1

(MnW (X; ) 0.

Note that wk(0; e) 0. In addition to the Dirichlet boundary conditions (3.20a,b), we
impose the following conditions at infinity:

(3.20c) vk(X, Y1; e) ---* 0 asX2+Y1candYl>0, 0<_k<_n+l.

We remark that an equivalent condition is

vk(X, Y1; e) does not grow exponentially as X

The elliptic equation (3.19) with the conditions. (3.20a,b,c) has a unique solution,
and the maximum principle is valid for this problem [12], [39]. The parameter e ap-
pears in this problem as a regular perturbation parameter. Therefore, vk(X, Y1; e)
could itself be written as a finite series in e plus a remainder term that is O(en+l).
The particular form of the function vk(X, Y1;e) was chosen to make subsequent com-
putations more tractable.

THEOREM 3.5. The solutions vk(X, Y1;e) have the integral representations

vk(X, Y1;e) rY1 [r-1Kl(vrs)-r1Kl(vr6)]Wk(S;e)exp _p(s-X) d8
2

where

(p2 ) 1/2
T= - + eq

% [(x- 1 + r?]
re [(X + 8)2 + Y1] 1/2

and K1 i8 the modified Besel function of the econd kind of the first order.
Proof. The transformation

vk(X, Y1;e)- v(X, Y1;e)exp(p--X2 )
yields the differential equations for v
(3.21)

over the quarter plane 0 < X < oc and 0 < Y1 < oc under the boundary conditions
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v(O, rl; e) =0,

and

v(X, Y1;e) --* 0 as X 4- Y --,

Since the fundamental solution for this differential operator (3.21) is

the Green’s function for this differential operator over the quarter plane is given by

1
G(x, Y; ,t)

_
rKo(l)- Ko(vr2) 4- Ko(vr3)- Ko(vr4)]

where Ko is the modified Bessel function of the second kind of the zeroth order, and

rl [(X- s)2 + (Y1 t) 2] 1/2,
r [(x + ) + (y, + t)] /,

r2 [(X + s)2 + (Y1 t)2] 1/2,. [(X- ) + (Y1 + t)] /.

It follows that the functions v have the expressions

/o (Vk(X, Y1;e. wk(s;e)exp

A computation gives, by using K)(x) -K1 (x),

O__G_G (X, Y1; 8, 0) "rY1 [rl KI (Tr5) r1KI (Tr6)].Ot r

Therefore we have the desired integral representations for v (X, Y1;e). This completes
the proof.

The value of the positive integer N should be at least 2n 4-1 in order to guarantee
the smoothness of the parabolic boundary layer function (O/Ox)zn(x, Y) and the
ordinary corner layer function (0/OY)Wn+ (X1, Y), which will be discussed shortly.
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In order to estimate the elliptic boundary layer, the following exponential esti-
mates for vk(X, Y1; e) are needed.

THEOREM 3.6. There exist two positive constants C and c independent of e such
that the inequalities

(3.22) Ivk(X, Y1;e)l < Cexp[-c( + Y12 X)]

hold for 0 <_ k <_ n + 1.

Proof. The condition at infinity (3.20c) enables us to have the maximum principle
for the boundary value problem over the unbounded domain. By the linearity, it
suffices to prove that the solutions vk(X, Y1;e) for the differential equation (3.19) over
the quarter plane 0 < X < oo and 0 < Y1 < oo under the boundary conditions (3.20a)
and

Vk(X, 0; {) xii,

and (3.20c) satisfy the estimate (3.22). Let the barrier function U(X, Yi;e) be defined
by

U(X, Y1;e) eic (X2 + YlU)I/U exp[-- (vfX2 + Y12 ],
a.=O

where the values of positive constants ca. will be determined in the course of this proof.
Note that the function U satisfies the restricted growth condition at infinity (3.20c).
It is clear that

u(x, 0; cx > v (X, 0;

for all k if ca. 1 and ca. >_ 0 for 0 < j <_ i 1, and

U(0, Y1;e) e Z ca" Yla" exp(- pYl) > vk(O, YI;
j=O
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for all k. A computation yields

OU \ OU

ei exp [- (v/X2 + Y cp(j+1/2) +

yi)(_)/ )E cJj2(x2 + + E eqcj (x2 +
=o =o

P X) ( (i+ y12)(i-1)/2_iexp[-(X2+Y12- cip )(X2q

+ E[cjp(j + 1/2)- Cj+l(j + 1)2](X2 + Y12) 0-1)/2
j=0

which is greater than or equal to zero if the numbers c. are chosen so that the in-
equalities

cjp(j "-
__

Cj+ (j -" 1)2
hold for j i 1, i 2, 2, 1, 0, then it follows from the maximum principle that
the inequalities

Irk(X, Y1; e)[ <_ e Ec(X2+ y2)j/2 exp [- (v/X2 + Y12
j=o

hold for 0 _< x < oo and 0 _< Y1 < oo. By the definition of the stretched variables X
and Y1, we obtain

x P y2 x)[Vk(-, Y;)[--e Ec(a2 + b2)/2 exp [--e (V/x2 + ]"
j=O

Hence over the closure of f], we are led to the estimate

Y;e)[e -< Cexp[- e
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where C is some constant independent of e. This completes the proof.
Now applying the differential operator L, to the series v yields

n+l

Lv E ek Levk
k=0

nh-1

k=O OY2

Equation (3.19) can be written as

(02v 02v) Ov
-e. (9X2-

q- y2 q P + qvk O.

Hence it follows that

(3.23) L,v -0

is valid uniformly in the closure of gt. Moreover, let us examine this series on the
boundary of Ft.

i) At y 0, the series becomes

(3.24a) -= ui--1 k=l I. i--1

ii) At x 0,

(3.24b) v 0.

iii) At y b, the series

(3.24c) v E ek vk --,-;
k=0

is asymptotically exponentially small with respect to e in the closed interval 0 _<
x<a.

iv) At x a, the series

n

E).3.24d. v e ve -, -; e
k=O

is asymptotically exponentially small with respect to e in the interval
0 < y _< b, but not in the closed interval 0 _< y _< b. To overcome this diffi-
culty, we will define a series, called an elliptic corner layer (ECL), at the outflow
corner (a, 0). The ECL is constructed in Section 3.6.
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3.4. Parabolic boundary layer along the characteristic boundary y =
O. The stretched variable Y along the characteristic boundary y 0 is defined by
y V Y. The parabolic boundary layer along the characteristic boundary y 0 is
defined by the series

(3.25) z(x, Y; e.) ek zk(x, Y),

where the functions Zk(X, Y) are defined iteratively by the parabolic differential equa-
tions

(3.26) 02Zk
bY2

Zk+ P -x + qzk #k(x, Y)

over the semi-strip 0 < x < a and 0 < Y < oo. The functions #k are given by

#o(x, Y) 0

and for 1 _< k _< n,

(, Y)

We impose boundary conditions on the functions zk to eliminate .the discrepancy along
the boundary y 0 introduced by both the outer approximation u(x, y; ) and the
elliptic boundary layer v(X, Y1;e), and to arrange that the functions z(x, Y) approach
zero for Y :fi 0 and as e 0. For this, we impose the following initial-boundary
conditions

(3.27a) zk(O, Y) O,
(3.27b) Zk (x, O) " (x),

and

(3.27c) zk(x, Y) 0 as Y oo.

The functions "k(X) are defined by

N xi oi
o/) )-o/, o)- :., [’, o/- o(O, o)],

i=1

and for 1 < k < n,

N-2kxi oi()=-[/x,0- , (0,0/].
i=1

Note that ’k(0) 0 for each k.
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THEOREM 3.7. The solutions Zk(X, Y) for the initial-boundary value problems
(3.26), (3.27a,b,c) have the integral representations

(3.28) zo(x, Y) exp\--T] dr,

and for 1 <_ k < n,

(3.29)

Proof. The transformation

.( ) (qx)Zk(X, Y) zk Y exp ----yields the heat equation for z(x, Y)

(3.30) Oz;
OY - x #k(px, Y)exp(qx)

over the semi-strip 0 < x < alp and 0 < Y < oc under the initial-boundary conditions

z(O, Y) O, z(x, O) "k(px) exp(qx),

and
*(x,Y)O as Y -, .Zk

The fundamental solution for the differential operator of (3.30) is

K(x, Y) exp --X-X
and hence Green’s function for the differential operator over the semi-strip
0 < x < alP and 0 < Y < oc is given by

G(x, Y; s, t) K(x s, Y t) K(x s, Y + t).

Therefore the solutions z(x, Y) can be expressed as [5]

z(x, Y) fo
x OG (x, Y s, O) "/k (ps) exp(qs) ds

+ G(x, Y; s, t) #k(ps, t) exp(qs) dt ds.
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A computation shows that

OG 0
0-- (x, Y; s, O) -2 - K(x s, Y)

Y Y2
2x/- (x- s)3/2

exp [-4(x- s)]’
and then we obtain

Zk(X’ Y) 2V/ (x s)3/ exp -4(x s) /k(PS) exp(qs) ds

+ G(x, Y; s, t) #k(ps, t) exp(qs) dt ds.

Making the changes of integrators as follows: let Y/V/2(x t) t in the first integral,
and let x- s s’ and then replace s by s in the second integral of z, we get

which gives the desired expressions for Zk(X, Y). This completes the proof.
THEOREM 3.8. There exist two positive constants C and c independent of such

that the inequalities

(3.31)

and

(3.32)

I-x Zk(x, Y)l
_
C exp(-cY),

c2i

[Oyi zk(x, Y)[ _< C exp(-cY),

hold for 0 <_ i <_ 2n + 2- 2k. The inequalities (3.32) will be used in Section 3.5 to
obtain estimates for the ordinary corner layer functions Wk(X1, Y).

Proof. First of all, let us prove the inequality (3.31) when k 0. Thanks to the
construction of "o(X), it is easy to see that

-to (o) o,

for i 0, 1, 2,..., 2n + 1 (the value of N should be at least 2n / 1), and hence we have

exp (__) /o(i) (x PYzo(x, Y)
/fi;]- --) dt,
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for 0 <_ i _< 2n / 2. Since
py2

and for arbitrary constant c > 0,

t2 c2 ct) ---exp(). exp(-ct)exp(---) _< exp(--
C exp(-ct),

we have

Oi /? exp(-ct) dt C exp( Y

( Y, )-Cexp(-cY),_< C exp -c
x//

for 0 _< Y < oc. It follows from (3.26) that 02izo/OY2 is a linear combination of
0jzo/Ox for 0 _< j _< i. Consequently, the inequality (3.32) is obtained for k 0.
Next consider the case k 1, we have from (3.29)

z(x, Y) exp\-qY2(--) dt

+2V/-o1f/jo 1 [exp(_(Y-t))_exp(_(Y+t)4s 4s )]
02+
Ox2+ zo(x ps, t) dt ds

for 0 _< i <_ 2n, because of

for 0 < i < 2n- 1 and

(o)=o

OxJ zo(O, y) 0

for 2 _< j _< 2n+l. (Note that (O/Oxl)zo(O, Y)is a linear combination of (O2i/OY2i)zo
(0, Y)for 0 _< i _< j.) As in the case k 0, the first integral of (Oi/Oxi)zl (x, Y) has
the desired estimate, and therefore we consider the second integral only. Now the
estimates

,,]_xu+, zo(x ps, t)[, _< C exp(-ct)

and

[exp (- (Y t)2 (Y + t)4----) -exp(- 4s )[
_< exp(- (Y t) ( IY tl

4s ) _< Cexp\-c 2x/ )
< C exp(-c [r t[

2X/r]
<_ Cexp(-clY -tl)
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imply

]second integral of 1 (x, r)l
< C [exp(-clg tl)exp(-ct)] dt ds

f/l joC ds exp[-c(Ig -t + t)] dt
o

C exp(-cY).

This completes the case k 1 for inequality (3.31). From (3.26), one can see that
02iZl/i)Y:u depends linearly on OJZl/OXj and c3t+lzo/Oxt+l for 0 g i < 2n, 0 g j < i
and 1 _< t <_ i.

Continuing in this manner, one can show the inequalities (3.31) and (3.32) for
k 2, 3,..., n. This completes the proof.

Now applying the differential operator L to the series z yields

n

Lez E ek Lezk
k=0
n

( 02ZkE ek --e. cox----
k=O

OU zt: Ozk
Oy2 + p + qzk).

Equation (3.26) can be written as

C2Zk(.) - i)y2
OZk (X, y+ P"-x + qZk #k -)"

Substitution of (3.34) into (3.33) gives

(3.35)
--,n 02

Lez i)x2
k=O

C2Zn

n

k--O

It follows from (3.31) that the estimate

Lz=O(en+l)
is valid uniformly in the closure of . Moreover, let us examine the parabolic boundary
layer z along the boundary of .

i) At x =0,

(3.36a) z 0.

ii) At y -0,

(3.36b) z=u*(x,0;)-v ,0;



ASYMPTOTIC ANALYSIS OF A SINGULAR PERTURBATION PROBLEM 1499

iii) At y b, the series

o

(3.36c) z Z ek Zk x, -k=O

is asymptotically exponentially small with respect to e in the closed interval 0 _<
x<a.

iv) At x a, the series

n

k=0

is asymptotically exponentially small with respect to e in the interval 0 < y _< b,
but not 0 _< y <_ b. In the next section we define a series, called ordinary corner
layer, at the outflow corner (a, 0) to overcome this difficulty.

3.5. Ordinary corner layer at the outflow corner (a, 0). As defined above,
the stretched variables X1 and Y are expressed by x a- eX1 and y vf Y. The
ordinary corner layer at the outflow corner (a, 0) is defined by the series

n+l

(3.37 W(Xx, Y; e Z ek Wk(X1, Y),
k=0

where the functions Wk(X1,Y) are defined iteratively by the ordinary differential
equations

02Wk OW,(3.38) 0X12 - p cX1
Tk(Xl, Y)

over the unbounded interval 0 < X1 < oc. In these equations, Y may be regarded as
a parameter 0 _< Y < oc and the functions Tk are defined as

T0(X1, Y) 0,

and for 1 _< k _< n+ 1,

Tk(X1, Y) Oy2 + qWk-1.

The boundary conditions imposed on the functions Wk remove the discrepancy along
the outflow boundary x a introduced by the parabolic boundary layer z and are
such that the functions Wk(X1, Y) become boundary layer functions with respect to
X. That is, we define

Wk(O, Y) --zk(a, Y)
(3.39a)

Wn+l (0, Y) O,
for 0 _< k _< n,
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and for 0 _< k _< n + 1,

(3.39b) Wk(X1,Y) O asXl

It is easy to see that the function Wo(X1, Y) has the following representation:

Wo(Xl, Y) -zo(a, Y) exp(-pXl).

In general, for k >_ 1, the functions Tk(X1, Y) are the products of a boundary layer
function exp(-pX1) and a polynomial of degree k- 1 in X1 with the coefficients
depending on the parabolic boundary layer functions z(a, Y), 0 <_ i <_ k- 1, and their
even-order partial derivatives with respect to Y. Therefore, it follows from (3.12) that
the solutions Wk(X1, Y) can be expressed as

Wk(XI, Y) mk(Xl, Y) exp(-pX1),

where the function mk is a polynomial of degree k in X1 with the coefficients depending
on the functions zi(a, Y), 0 <_ i <_ k (0 <_ i <_ n when k n + 1), and their even-order
partial derivatives with respect to Y, (02J/OY2J)zi(a, Y), for 0 _< i _< k- 1, and
l<_j<_k-i.

Note that the functions W(X1, Y) and their second partial derivatives with re-
spect to Y (the latter is required for the estimate of LW) determine how smooth the
parabolic boundary layer functions zk(x, Y) should be in the domain 0 <_ x <_ a and
O<Y<o.

THEOREM 3.9. There exist two positive constants C and c independent of such
that the inequalities

(3.40) ]b- Wk(X1, Y)] _< C exp[-c(X1 + Y)]

hold for i 0 and i 2.

Proof. The functions Wk and O2Wk/OY are products of exp(-pX1) and a
polynomial in X1 with the coefficients depending on the functions zi and 02zi/
OY. It follows from (3.32) that we have the desired inequalities.

Now applying the differential operator L, to the ordinary corner layer W yields

(3.41)
n+l

LW E LW
k--O

N+I 02Wkk (- Ox
k=0

OW OW
e +P +qWkl

Equation (3.38) can be written as

OW OW(3.42) -e Ox2... + p
Ox

Substitution of (3.42) into (3.41) gives
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(3.43) LW en+l (-02Wn+li)y2 + qWn+l )
It follows from (3.40) that the estimate

LeW--O(n+i)
holds uniformly in the closure of 12. Moreover, let us examine the ordinary corner
layer W along the boundary of f.

i) At z a,

(3.44a)

ii) At x 0, the series

W -z(a,Y;e).

n+l

(3.44b1 W ek Wk -,
k=O

is asymptotically exponentially small with respect to e in the closed interval
ygb.

iii) At y b, the series

n+l

(3.44C) W ZekWk(a-x b )
k=O

is asymptotically exponentially small with respect to e in the closed interval
x<a.

iv) At y 0, the series

(3.44d)
n+l

k=0

is asymptotically exponentially small with respect to e in the interval 0 _< x < a,
but not the closed interval 0 _< x <_ a. We shall define a series, called the elliptic
corner layer, at the outflow corner (a, 01 to overcome this difficulty.

3.6. Elliptic corner layer at the outflow corner (a,0). As defined above,
the stretched variables X1 and Y1 are expressed by x a- eX1 and y eY1. The
elliptic corner layer at the outflow corner (a, 01 is defined by the series

n+l

(3.45) V(X1,Y1;e) Z ekvk(Xl’Y1;e)’
k=O

where the functions Vk(X1, Y1;) are defined by the elliptic differential equations

{ 02V OV OV(3.46/ -\’bXl: + Oyl: ) p + eqVk 0

over the quarter plane 0 < X1 < oo and 0 < Y1 < x). The boundary conditions for
Vk (X1, Y1; ) are specified so that

i) the discrepancy introduced by both the ordinary boundary layer w(X1, y; ) and
the ordinary corner layer W(X1, Y; ) in the boundary condition along y 0 is
eliminated;
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ii) the discrepancy introduced by the elliptic boundary layer v(X, Y1;e) in the bound-
ary condition along x a is eliminated; and

iii) the functions Vk(X1, Y1;e) are corner layer functions with respect to X1 and Y1.
Thus, we impose the following conditions

(3.47a) Va(X1,0; ) k(Xl) 0 _< k _< n + 1,
_= -,(x,, 0) w, (x,, 0),

(3.47b) y,(0, Yl;) ,(Yl; )

()-v Y1; e

0,

O<_k<n,

k=n+ 1,

and

(3.47c) Vk(Xl, Y1; e) 0 as X21/ Y12 4 oo, O <_ k <_ n / l.

Note that k(0) Ck(0;e) for 0 <_ k _< n / 1. The elliptic problem (3.46),
(3.47a,b,c) has a unique solution, and the maximum principle is valid for this problem.
Note that the parameter e appears in the equation (3.46) as a regular perturbation
problem. The particular form of the functions Vk(X1, Y1; e) was chosen to make the
computations more tractable.

THEOREM 3.10. The solutions Vk(Xl, Y1; e) of the boundary value problem (3.46),
(3.47a,b,c) have the integral repreentation

Vk X Y1; TYler fO (K Tpb
5

rXi fo (Kl (rP)?r P7

KI(TP6)) k(8)exp(p(8-- X1))d8
P6 2

pX1KI(TPs)) ’k(t; )exp(----/dt,Ps

where

p [(x ): + y.?]’/
p7 [x + (Y1 -t)2] 1/2,

P6 [(X1 + s)2 + Y12] 1/2

p [x + (y + t)] /,
and

Proof. The transformation

pXl)Vk(Xl, Y1;e) V* (X1, Y1;e) exp ----yields the differential equation for Vk*

\ OXl 2 + 0y12 )+ (-- + e.q)V =o
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over the quarter plane 0 < X1 < oo and 0 < Y1 < o under the boundary conditions

V(X1,0; e)- k(X1) exp(-),
y* (0, y; ) (y; )

and
v; (x,, y;) - 0 z + y? - o, y > 0.

As in the case of the elliptic boundary layer, the solution V has the expression of the
form

V(Xl, Y1; e) k(8) exp

+ (k(t; e)
oa

(x1 Y1;0, t) dr,

where the Green’s function for this problem is given by

1 [Ko(TPl) Ko(Tp2) + Ko(TP3) Ko(P4)],c(x y , t)

with

p [(x ) + (y, -)]’/,
p [(x + ) + (Y + t)]’/,

p [(x + ) + (y -t)] /,
p [(x, ) + (y + t)] /.

Computations give

and

OG
(XI Y1; s, 0) vY1 [K1 (Tp5)

Ot r P5

oc
(x, Y,;O, t)

-x, [K(-pT)08 7r P7

P6

and hence we obtain the desired integral representations. This completes the proof.
THEOREM 3.11. There exist two positive constants C and c independent ore such

that the inequalities

(3.48) IVk(X1, Y1; e)l < Cexp[-c(X d- /()2 d_ y2 _a)]
hold.

Proof. From (3.22), we have

IVk(O,Y;e)l <_ Cexp[--P((a)
The estimates (3.13) and (3.40) give

IVk(XI,0; e)l <_ Cexp(-cX1)
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for some constant c between p/2 and p. Let the barrier function V*(X1, Y1; e) be
defined by

V*(X,Y;e) Cexp - X + -Then a computation yields

+ eq) > O.

Furthermore, we have

Iv(o, Y’; )l <- v*(o,; ),

Ivy(x,, o; )1 _< v*(x,, o; ),

for sufficiently large values of C in the definition of V*. By the maximum principle,
we are led to have the desired inequalities for 0 _< k _< n / 1, 0 _< X < x3, and
0 _< Y1 < (x. This completes the proof.

Now applying the differential operator L to the elliptic corner layer V yields

’+

( 02V(3.49) LeV E ek -e
Ox2

k=O

02Vk OVk
qVk)- 0 +- +

Equation (3.46) can be written as

_e (OV 02V OV
Ox, + ) + p + qVk =0,

Oy -x
for each k. Therefore substitution of (3.50) into (3.49) gives

(3.51) LeV =0,

uniformly in the closure of . Moreover, let us examine this function V along the
boundary of .

i) At y =0,

(a-x)(a-x)(3.52a) V=-w ,O;e -W ,O;e

ii) At x =a,

(3.52b) V =-v
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iii) At y b, the series

n+l x

k=0

is asymptotically exponentially small with respect to e in the closed interval 0 <_
x<a.

iv) At x 0, the series

n+l

k=0

is asymptotically exponentially small with respect to e in the closed interval 0 _<
y<_b.

T TBy symmetry, the remaining functions vk, Zk, W, and VkT can be constructed
similarly along the upper characteristic boundary y b for the terms TEBL, TPBL,
TOCL, and TECL, respectively.

3.7. Asymptotic representation of the solution. Consider the remainder
term Rn+ (x, y; e), which is defined by

R.+ , (z. ) (. ; ,) (Xx. ; ,)
(X. Y; ) z(z. Y; ) W(X. Y; ) V(X.. Y; )
’(X.;) z’(x, Y’; ) W(x, Y’; ) V(x, Yl; ).

where u, is the solution of the boundary value problem (1.1), (1.2a,b,c,d); the functions
u, w, v, z, W, Y are defined in (3.4), (3.9), (3.18), (3.25), (3.37), (3.45), respectively;
and analogously for the other terms. Here we have used the stretched variables:
XI (a- x)/e, X x/e, Y, y/e, Y y/v/-, YlT (b- y)/e, yT (b- y)/v’7.
Then it follows from the analysis of the preceding sections that the function Rn+l
satisfies the elliptic differential equation

en+ "tOn+ Wn
LeRn+l AUn -t" e qWn+l

i)y2 i)y2
2 T0 z, OW,+ 0 z,+ Ox2 + Oy2 -qWn+l W Ox2

q-
2 TC Wn+
OyT2 qWnT+

which is of order O(en+l) in the closure of gt, and we have the following conditions
for Rn+ along the boundary of

i) At x 0, the remainder

Rn+=-w ,y;e -W -, ;e -V -,-;e

--wT( a b-y),;e --vT( a b-y),
is asymptotically exponentially small for 0 _< y <_ b.
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ii) At x =a,

Rn+l--0 for0_<y_<b.

iii) At y 0, the remainder

is asymptotically exponentially small for 0 _< x _< a.

iv) At y b, the remainder

Rn+l -V -, -; e z x, ---; e W

is asymptotically exponentially small for 0 _< x <_ a.

By using Theorem 3.3., we have the following estimate:

Rn+l o(en+l),

which holds uniformly in the closure of . Furthermore, the functions wn+, vn+,
Wn+, and Vn+ are uniformly bounded in the closure of gt. Consequently, we obtain
finally the following:

THEOREM 3.12. The solution ue(x,y) of the boundary value problem (1.1),
(1.2a,b,c,d) has a uniform approximation U(x,y;e) in the closure of the rectangular
region with error o(en+), where U i8 defined by the 8erie.

U(x, y; e) E ek [uk(x, y) + wk(X, y) + vk(X, Y1) + zk(x, Y)
k--0

+ Wk(X, Y) + Vk(Xx, Yx) + v[(X, yT) + z[(x, yT)

+ W[(X, yT) + V[(X, yT)].

4. Magnetohydrodynamic flow in a rectangular duct with nonconduct-
ing walls. The design of magnetohydrodynamic generators, flow-meters, pumps and
accelerators requires an understanding of the flows of conducting fluids in rectangu-
lar ducts under transverse magnetic fields. These flows have received much attention
from theoreticians because the governing equations are linear but the phenomena are
neither trivially simple nor physically attainable in the laboratory.

In 1937, Jul. Hartmann [19] solved the one-dimensional problem where the flow
was between two parallel walls, the fluid being virtually infinite in directions perpen-
dicular to the imposed transverse magnetic field. Coordinates are then dependent on
the transverse coordinate only.

We are concerned with the flow of a steady, incompressible, electrically conducting
fluid through a rectangular duct with a uniform, external magnetic field applied trans-
verse to the flow and parallel to two of the walls. Various forms of this problem with
different combinations of conducting and nonconducting bounding walls have been
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considered, see J. A. Shercliff [41], C. C. Chang and T. S. Lundgren [6], W. E. Williams
[47], J. C. R. Hunt [21], J. C. R. Hunt and K. Stewartson [22], D. Chiang and T. Lund-
gren [7], J. C. R. Hunt and J. A. Shercliff [23], D. J. Temperley and L. Todd [42], and
L. A. Kalyakin [25]- [28].

As is known from the work of Shercliff [41] and Chang and Lundgren [6], the
problem of magnetohydrodynamic flow in a rectangular duct with an applied magnetic
field transverse to the axis of the duct is described by two second-order elliptic partial
differential equations for the fluid velocity V and the axial component of the magnetic
field B, namely, the z-component of the momentum equation

Bo OB Op
puAV +

#o Ox Oz’

and the z-component of the curl of Ohm’s law

OVAB + a#oBo O,

where p is the mass density; v is the kinematic viscosity; Bo is the magnitude of the
transverse magnetic field which is applied in the x-direction; #o is the permeability in
a vacuum; Op/Oz is the pressure gradient, which is a constant; and a is the electrical

FIG. 4.1. Rectangular duct.

conductivity of the incompressible fluid medium. Let the origin be the centerline of
the duct and let 2a and 2b be the lengths of the sides of the duct (see Figure 4.I).

In the case of nonconducting walls, the boundary conditions are

V=B=0 atx=+a,
V=B=O aty=:t:b.

We shall examine the flow for large Hartmann number M, which is defined by

M Boa-,
or the small value of e 1/M. With these dimensionless variables
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x y

B* 2B-1B,

the problem is to solve

V*--2#opvfBly

p _2#oaB Op

OV OV )e
O + OrlZ --02B* O2B*e( O2 + 07 )+

with the boundary conditions

cOB*

V* B* 0

V* B* 0

at q-l,

at r/= +l, e- b/a.

The equations can be decoupled by the change of variables

and

u=P-(V -B*),

v=p-(V*-B*).

The equations for u and v are

and

u
-eAu + 1,

-eAv 1,

with the boundary conditions

u=v-O atC=+l,
u=v-O at r/= =i=.

It is obvious that having determined the functions u, we can find v by the relationship

Hence the function u alone needs to be investigated. The asymptotic approximation
to u, being uniformly valid in the closure of the rectangular duct for large Hartmann
number M, is still an open question in the literature, see Shercliff [41], Roberts [40,
pp. 186-190], Cook, Ludford and Walker [9], and Temperley [43].

With an application of the preceding analysis, we conclude that the solution u
can be written as

u(, r/) (1 + ) 2 exp(-2) + Vl(’I, 1; -[- Vl(2, 1; )
+ v(, r/; e) + V(2, r/; ) + ins,



ASYMPTOTIC ANALYSIS OF A SINGULAR PERTURBATION PROBLEM 1509

where the stretched variables are

and r/2

the function 1 + is known as a "core flow"; the function -2 exp(-2) is called a
"Hartmann boundary layer"; the functions v1(1, r/l; e) and v(l, r/2; e) satisfy the
elliptic partial differential equation of the form

( 0 vi 0 vi Ovi
GI2 + ) q’- 0

Oi2 - for i 1, 2,

over the quarter plane 0 < 1 < O0 and 0 < r/i < oc under the boundary conditions

Vi(l O; ) --1, vi(O, r/1 ) O,

and
vi(Cl, r/i; e) --* 0 as 12 + r/ oo and r/i > 0;

and the functions V1(2, r/l; e) and V(2, r/2; e) satisfy the elliptic partial differential
equation of the form

02V 02V
02 +0r/i2)+--2=0 fori=l,2,

over the quarter plane 0 < c2 < o) and 0 < r/i < oc under the boundary conditions

V(2, 0; e) 2 exp(-c2),

(0, ;) -v -, m;

and
vi(,m;e) o

and AES denotes asymptotically exponentially small terms with respect to e in the
closure of the rectangular duct.
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A TRIPLE PRODUCT THEOREM FOR HYPERGEOMETRIC SERIES*

PETER HENRICIf

Abstract. The product of three hypergeometric series of type 0F with arguments x, tax, ta2x (ta third
root of unity) is expressed as a single hypergeometric series of type 2F7 The proof uses differential equations;
the basic idea (elimination of irreducible terms by means of the Cayley-Hamilton theorem) is more generally
applicable.

Key words, hypergeometric series, product theorems for special functions
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1. THEOREM. Let c be complex, 6c O, -1, -2,..., and let to ".= exp (27ri/3). In
the usual notation for generalized hypergeometric series (see Bailey [1936]) there holds

oF[6c; x] oF,[6c; tox] oF,[6c; to2x]
(1) 3c-,3c+;

=2F7 6c, 2c, 2c+,2c+,4c-1/2,4c, 4c+1/2; ()3x3

The proof is given in 2-4 below. The idea is to regard (1) as an identity between
formal power series and to show that the series on the left and on the right formally
satisfy the same hypergeometric differential equation. Section 5 features corollaries
and remarks.

2. Derivatives. If

P=, anx"
rl=0

is any formal power series (over C, or over any field of characteristic 0), we call

OP := na,x
n=0

the derivate of P. (The relation to the ordinary derivative P’ is obvious.) Derivatives
satisfy many of the usual rules of calculus, such as the product rule,

0(PQ) POQ + QoP,

and the further rules (such as the Leibniz rule for the higher derivatives of a product)
that follow from it.

In terms of derivates, the (formal) generalized hypergeometric series

O1 O2 Op;P pFq
fl 82 flq

x

where p and q are arbitrary nonnegative integers, satisfies the differential equation

(2) {O(O+ fll-1) (O+ flq-1)-x(O+ al) (O+ ap)}P=O;
see Bailey [1936]. Similarly if a C and s is a positive integer,

,/3," ",

* Received by the editors December 16, 1985; accepted for publication December 1, 1986.
Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27514. It is

with great regret that SIAM learned of the untimely death of Peter Henrici in March 1987. The editorial
staff of the SIAM Journal on Mathematical Analysis feel especially his absence, as Peter was an active
member of the Editorial Board for many years.--J.B.
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satisfies

(3) {O(O-t-Sfll-S) (O+sflq-S)-asn+l-mxs(O+SOl) (O4rsOp)IQ=O.

Conversely, if the/3i are such that none of the numbers s/3i-s is zero or a negative
integer, the series Q is a formal solution of (3), and it is the only such solution that
has zeroth coefficient 1.

3. The triple product lloFd6c, to’x] and its derivatives. To prove (1), let

U := oFl[6C; x], V := oFl[6C; tox], W:= oFl[6C; to2x].
If a := 6c-1, the differential equation satisfied by U is

We thus have

O(O+a)-xU=O.

02 V aOV+ toxV,

(4c) 02 W -aOW+ w:zxW.
To discover a differential equation satisfied by

Z:= UVW,

we form the derivatives OZ, 02Z, and eliminate derivates of U, V, W of order =>2
by means of (4). Some of the remaining terms OUOJVOkW may be expressed in
terms of Z or

OZ UVOW+ VWOU+ WUOV,

and thus are "reducible," but many terms cannot be so expressed. It is convenient to
define a basis for the space of irreducible terms as follows"

F:= UOVOW+ VOWOU+ WOUOV,

P:= OUOVOW,

A := VWOU+ ooWUOV+ oo:zUVOW,
()

B:= UOVOW+ to VOWOU+ to:Z WOUOV,

C := VWOU -1L ooZ wuov Ar- (.o4 UVOW

O:= UOVOW+ to
E vowoU+ oo 4 WOUOV.

We require the derivates of these irreducible forms. We have, for instance,

OF 3 OUOVOW+ UO:Z VOW+ UOVO:ZW+ VO:Z WOU+ VOWO2 U+ woE uov+ WouoE v
and thus, using (4),

OF 3P+ U(wxV- aOV)OW+ UOV(oo2xW- aOW)+ V(w:zxW- aOW)OU

+ VOW(xU-aOU)+ W(xU-aOU)OV+ WOU(toxV-aOV)

3P+ x[(1 + to) UVOW+ (to + to :z) VWOU+ (to :z + 1) WUOV]

-2a[ UOVOW+ VOWOU+ WOUOV]

and similarly

(4b)

(4a) 02U =-aOU+xU
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or, using 1 + w + w2 O,

(6a)
In a similar manner we obtain

OF=-2aF+3P-xA.

OP -3aP+ xB,

(6b)

OA aA B,

OB -2aB + 2xC,

OC -aC D 3xZ,

OD= -2aD-xOZ.

Defining the vector of irreducible terms

the matrix

F
P
xA
xB
r2C
c2D

-2a 3 -1 0 0

0 -3a 0 1 0

0 0 1-a -1 0

0 0 0 1-2a 2
0 0 0 0 2-a

0 0 0 0 0

0

2-2a!

and the vector of operators

the relations (6) are expressed as

s(0)

(7) Ov=Mv+x3s(O)Z.

(Here we have used, for instance, that O(x2C)= 2xC + x20C.)
4. Elimination of the irreducible terms. Using (4), we have

02Z UVO2W VWO2 U-I WUOV+2( UOVOW+ VOWOU+ WOUOV)

UV(wZxW-aOW)+ VW(xU-aOU)+ WU(wxV-aOV)+2(.

-aOZ + 2F.

Introducing c := (2, 0, 0, 0, 0, 0), this is written:

(8) O(O+a)Z=crv.
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By successive applications of 0, always using (7), there results

02(0 + a)Z c"(My+ x35(0)Z),
03( 0 "- a)g cT{M2v+ x3[M + 0 + 3)I]s( 0)g},

and generally, as may be verified by induction,

(9) ok+(O+a)Z=cT"{Mkv+x3[Mk-I+(O+3)Mk-2+" "+(O+3)k-I]s(O)Z},
k 0, 1, . A hypergeometric differential equation for Z (of the type (3) where s 3)
will result if v can be eliminated by forming a suitable linear combination of sufficiently
many of the relations (9). To effect the elimination, the Cayley-Hamilton theorem
offers itself. The characteristic polynomial of the matrix M is

p(A) (A +2a)(A +3a)...
6

k=O

say. For later reference we note that

(10) ’)/6-- 1, y5 lla-6, y4=49a2-57a+ 13.

We multiply the kth relation (9) by Yk (k =0, 1," ", 6) and add. On the left we obtain

6

E ykOk+(O + a)Z 0(0 + a)p(O)Z.
k=0

On the right, the factor of v is

6

c E  , rvI
k=O

which vanishes by the Cayley-Hamilton theorem. The vector v thus is eliminated.
There remains

x3cT{ k=l yk[Mk- +(O+3)Mk-2+" "+(O+3)k-ll]s(O)Z)
--x3cT "yk(O+3)k-lI+ 2 "yk(O+3)k-2M

k=l k=2- k:3
yk(O+3)k-aM’+’" "--’)/6M5}S(0)g"

We evaluate this expression by first forming the iterates crMJ, j 0, 1, 2,. , 5. Since
only the last two components of s(0) are S0, only the last two components of these
iterates are relevant for the result. These components are different from zero only for
j => 3, and they have the following values (see Table 1). With the values of the yg given

TABLE

(cTM3)k
(cTM4)k
(crMS)k

5 6

16 0
-120a+52 -16

584a2-452a + 128 152a 84
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in (10), we thus find

/ 6

C7 2 "yk(O+3)k-lMj S(0)
j=0 k=j+

c{[,4+ ,/(0+3)+

+ [, + /6(0 + 3)]M4s(o) +

6402+ (192a + 192)0+ 114a2+ 288a + 108

=4 0++ 0+-?-
It follows that Z UVW is a solution of the generalized hypergeometic differential
equation

{ ( 3a )( 3a+9}O(O+ a)p(O)-64x 0+-+ 0+- -] Z=0.

By (3), if expressed in terms of c a/6+ 1/6, this solution must be identical with the
series on the right of (1).. llem’s mt erllres. (i) By using obvious identities for Pochhammer sym-
bols, the series on the right of (1) may also be expressed as

( 2
(c +3 x

k=O k t(fffk6)3k
(ii) Any product theorem for hypergeometric series, i.e., any theorem expressing

a product of hypergeometric series as a single such series, on comparing coecients
furnishes a formula expressing a sum of products of Pochhammer symbols (or of
binomial coecients) by a single such product. In this manner we obtain from (1),
using the representation (11) and letting b := 6c,

(12)
_,, |" 0, n 0 mod 3,

to

=1 (2b+3q-1)q
k/t+m=n k!l!m!(b)k(b),(b)m n=3q.

q!(b)q(b)2q(b)aq

For instance, for b 1 this yields

Formula (12) is of a similar type as the formulas

,_m

{(14) =to 1, n =0,
k+l+m=n k!l! m! O, n > O,

and

(15) . (a)k(a),(a)m ,_={ 0, n0mod3,
k+l/m=n k!l!m!

to
(a)q/q!, n =3q,
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which follows from the trivial product theorems

oFo[x] oFo[tOX] oFo[tO2x]
(i.e., exp ((1 + to + to2)x) 1) and

1Fo[a; x] 1Fo[a; cox] iFo[a; co2x] iFo[a; x3]
(i.e., (1--x)-a(1--tDx)-a(1--(.O2x)-o=(1--X3)-a).

(iii) The method used in this work has the advantage of not requiring the result
to be known in advance. Although the algebraic manipulations, if done by hand, soon
become unmanageable, the method can be used in principle whenever the irreducible
terms in the derivatives of a product satisfy a recurrence relation of the general
form (7).
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CANONICAL EQUATIONS AND SYMMETRY
TECHNIQUES FOR q-SERIES*

A. K. AGARWALt, E. G. KALNINSt AND WILLARD MILLER, JR.

Abstract. The authors introduce symmetry techniques for the classification and derivation of generating
functions for families of basic hypergeometric functions, in analogy with the Lie theory techniques for
ordinary hypergeometric functions. To each family of basic hypergeometric functions there is associated a

canonical system of partial q-difference equations and the symmetries of these equations are used to derive
q-series identities and orthogonality relations for the special functions.

Key words, q-series, q-difference equations, basic hypergeometric functions

AMS(MOS) subject classifications. 33A30, 33A65, 39A10, 20N99

1. Introduction. In [11], [13], [14] a Lie algebraic method was developed which
associated with each family of multivariable hypergeometric functions a canonical
system of partial differential equations constructed from the differential recurrence
relations obeyed by the family. (The basic idea behind this method followed from the
work of Weisner [16].) The hypergeometric functions arise by partial separation of
variables in the canonical systems and any analytic solution of these equations can be
considered as a generating function for this family. Furthermore the generating func-
tions can be characterized in terms of symmetry operators for the canonical systems.

In this paper we present the foundations of an analogous theory for families of
many-variable basic hypergeometric functions. To each family we associate a canonical
system of partial q-difference equations constructed from the q-difference recurrence
relations obeyed by the family. The basic hypergeometric functions arise by partial
separation of variables in the canonical systems and any analytic solution of these
equations is a generating function for the family. Symmetry operators for the canonical
system can be used to characterize the generating functions. Thus a direct link is
established between symmetries of the canonical system and identities obeyed by
q-series.

In 2 we show how to derive the canonical system of q-difference equations
associated with a given family of q-series, using as examples the one-variable hyper-
geometric functions r0,, and the two-variable function f2, a q-analogue of the Appell
function F2. In 3 we describe how to relate two different families of basic hyper-
geometric functions, that is, the procedures of embedding and augmentation. In the
procedure of embedding the canonical system for one basic hypergeometric family
restricts through a specialization of variables to the canonical system for a second
hypergeometric family, so that the restricted family can be considered as a generating
function for the second family. Augmentation is a process inverse to this. By augmenta-
tion we can write the defining equations for a generating function as the .restriction of
a canonical system of higher dimension.

In 4 we apply our techniques to derive and characterize in terms of symmetries,
a variety of generating functions for the families r0s. In 5 we treat the family 201 in
somewhat more detail. (This family needs special treatment because its canonical

* Received bythe editors February 19,1986; accepted for publication (in revised form) November 5,1986.
f Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802.
t Mathematics Department, University of Waikato, Hamilton, New Zealand.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. The work of this

author was supported in part by National Science Foundation grant MCS 82-19847.
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system admits symmetries not shared by the systems for general rCs.) Furthermore we
show how orthogonality relations for q-series follow from symmetry ideas.

Our theory provides a simple uniform procedure for derivation and symmetry
classification of a wide variety of q-identities, in analogy with the Lie theoretic
procedures for ordinary hypergeometric series. The full power of the theory becomes
evident in the study of many-variable q-series and in the study of Askey-Wilson
polynomials, as we will show in future papers. However, in distinction to the case of
differential equations we do not have the tools of local Lie transformation group theory
or the relationship between Lie symmetries and separation of variables to help us
obtain the generating functions in the most compact form. Our procedures enable us
to classify and characterize generating functions in terms of symmetry operators;
unaided, they do not enable us to write the generating functions in simplest form, i.e.,
factorized or in terms of a new choice of variables. It will be very interesting to see if
(as is the case for differential equations) factorization and coordinates have symmetry
operator interpretations.

The symmetry techniques presented here apply to formal power series and are
essentially independent of convergence criteria. Hence, we shall ordinarily not specify
the domains of validity for the identities derived in this paper. In most cases they can
be determined easily for one-variable hypergeometric functions by the ratio test. For
multivariable hypergeometric functions the full domain of convergence may be very
difficult to determine (or even unknown). In those cases one can specialize some of
the parameters in the functions (so that infinite series truncate to finite series for
example) to guarantee convergence.

Finally we note that the symbolic method of Burchnall and Chaundy for ordinary
hypergeometric series [4], [5], and some works of Hahn on q-series [7], [8] contain
points of similarity with our method, although these authors did not use symmetry
techniques.

2. The "basic" idea. We begin our study of canonical equations for q-series by
deriving the canonical form associated with the q-hypergeometric functions

a ) (al;_q, )n. (a; q)nx

_
x

where

al,

q’, bj q and

(2.2) (a; q)n
(a; q)o

(a; q)= 1-I (1-q’a).
(aq"; q)’ m;O

Here ai, /3j, x are complex variables, (/3 0, -1,-2,...) and we normally require
that 0 < q < 1. Note that for n a nonnegative integer we have

(2.3) (a; q), =(1-a)(1-qa)... (1-qn-a).

As is well known [3], I-5] p is a q-analogue of the hypergeometric series

where

(.5) ().
r(+n)
r()
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and F(. is the gamma function. For n a nonnegative integer

(2.6) (a), a(a+l)... (a+n-1).

Here r(Os and rFs are related by

(2.7) rFs j,X =limrqSq_,l bj (1-q)r-s-1

Let Tu be the q-dilation operator corresponding to the variable u, i.e., Tu maps
a function f of the variables u, v, w,. to the function

(2.8) Tuf(u, v, w,. .)=f(qu, v, w,. .).

From the q-series (2.1) one can easily verify the recurrence relations

(1--akT,)qs
bj’

x =(1-ak)q
b

x l<__k<-r,

(2.9) (1 blq-1Tx)p
b

x (1 btq-1)ps
elba’

x

x-’(1-Tx)ro
b’

x =(l-b1) (1-bs) \qbj’ x

where

(2.10)

ai if k,
e ka

qak if i= k,

f b ifj l,
elbj q-l bl ifj=l.

Note that relations (2.9) imply the fundamental q-difference equation satisfied by the
rqgs

(2.11)

{x(1--alrx) (1-aT)-(1- T)(1-bq-T) (1-b,q-lTx)}o,
b’

x =0.

Indeed, for fl 0, -1, -2,. the only solution of this equation which is analytic in
x at x 0 is o(]; x).

Now we define the function s of 2(r + s)+ 1 variables by

ai. Ur+l Ur+s+l)U_a U_aU_ -1(2.12t rtZIs(ai, b; Up)= r(t)s
b2’ Ul" U

"r+l "’’Urn-s"

Let A be the q-difference operators

(2.13)
+ -1(1_ Tu,)Ap Up

A; ul(1 TS}), 1 _<- p _-< r + s + 1.
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In terms of these operators, relations (2.9) take the simple form

A rdps (1-- ak )rdps ( ekai
b ]’ l<--k<-r’

r+l rs (1 blq-1)rs
el

a/.s.l =(I-b,)... (1-bs) "\qb,l
and (2.11) becomes the (canonical) partial q-difference equation

I r+s+ )(2.15) A;- I-I Ap r*s=O.
k=l p=r+l

Furthermore r(s satisfies the eigenvalue equations

T-+ls+lT qkr, 1 < k < r,
(2.16)

Tr-l+s+l Tr+ rdPs q’-lrdPs, 1 < < S.

Indeed, r is characterized by (2.15), (2.16): It is (to within a constant multiple) the
only solution of these equations analytic in the Up at Ur++l 0.

We can regard an analytic solution q(Up) of the canonical equation

(2 17) (A ’’A -A+ + )=0r+l mr+s+l
as a generating function for basic hypergeometric functions. Indeed, expanding as
a power series

(2.18)
j

where x= Ur+l""" Ur+s+l/ll’’’Ur, we see that if is analytic at x =0 and if no
nonzero term occurs with some/3 O, -1,-2,... then always

(2.19) f,,t3(x) Cotij I’(S
bj’

x

for some constants c,j. We shall typically compute such a generating function q by
characterizing it as a simultaneous eigenfunction of a set of r + s commuting symmetry
operators for (2.17). By a symmetry operator for the canonical equation we mean a
linear operator L which maps any local analytic solution F for (2.17) into another
local analytic solution L. Clearly the dilation operators Tr-+s+l T- (1 _-< k_-< r),

-1T// T/I (1 =< l<=s) are commuting symmetries, and the eigenvalue equations (2.16)
characterize the basis solutions rs in terms of these symmetries. Furthermore the
q-difference operators A i- (1 < < r) and A/

/h (1 --<_ h s + 1) are commuting symmetries.
Note also that any permutation of the variables {ui: 1-<i -< r} is a symmetry of (2.17)
as is any permutation of the variables {U/h: 1 =< h =< s + 1}. (For example, the transposi-
tion symmetry (ur/, u/+) implies that

aib -( q )q q2b-l, b2b-q
x x-t3’

is another solution of (2.11).)
The canonical equation (2.17) for q-hypergeometric functions is a clear analogue

of the canonical equation for the hypergeometric functions rFs [13]. Indeed the basis
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functions

(2.20) ra
3j

fdp rG ull Ur+s+l’,
fir

satisfy the canonical equation

(2.21) (O,,’’’Our--(--1)rOur+, 0......,)rs =0
and the eigenvalue equations

(-Dr+s+ Dk)r 0lk rs, 1 <= k <-_ r,
(2.22)

(-Dr+s+l q- D,.+l),.,s (3l- 1)s, 1 _<-- =< s,

where Dv upon,,,. Furthermore ,o% is the only solution of (2.21), (2.22) that is analytic
in the u, at Ur++l =0.

Our procedure applies to a family of q-analogues for the rG. Let 3 be a function
with domain { 1, 2, , r + s + 1} and range contained in the set { +, }. The canonical
equation

8(r+s+l)It8(r+l)... A 0(2.23) (A(’) Ar6(r)- Ar+l r+s+l

and eigenvalue equations- T{ q, 1 < k < r,Tr+s+
(2.24)

--1T+s+ 1XI/’, 1 =< <- s,

have the unique (to within a constant multiple) solution

(2.25)

where

(2.26)

bi
tip rqOs

bj
r+l’’" r+s+l

1’/1
ill--1 fls--1II 10ll bl l,l + bl +

r(s
hi’

X 6(r+l)]l, q(r+l)l)=o(q

X

(q,3(r+s+l). qa(r+s+l)l)

(qS’(,),,r; qS’(r)l)n
(q(r+s)&; q6(r+s)l)n

and

J+ if3(p)=-,
(2.27) 8’(p)

if3(p)=+.

Each of these q-analogues of ,Fs can be further treated by the methods presented in
this paper.

Canonical equations for many-variable hypergeometric q-series can be derived
almost as easily as for the one-variable case. Consider for example the Appell function
F2:

(2.28) F2( ce’ 3’ fl’ )% ,y, x, y E
(a)’’+" (fl)m (,8’),,x’y

.,.,=o (y).,(y’).m !n

As shown in 11 the canonical differential equations are

(2.29) (OUlOU2 Ou30.4) ,-2 0, (OUlO.5 0u60.7),2 0
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with eigenvalue equations

D1 + D3 + D6"-, Dz+ D3---fl,
(2.30)

D4- D3 T- 1, D5+ D6 -fl’, D7 D6 3/’- 1.

Here A---a stands for A a:, and D uO,. Furthermore,

2 F2(a’/3,y, y’ ---’uu u u uu-’u-u’-.

Now consider the q-analogue

[a,b,b’ )= (a," q),+,(b; q),(b’; q)nxmy
f: c,c’ ;x’Y

..,.=o (c; q).(c’; q).(qi
where a q", b q, etc. The function

(2.31) f2=f:,_(a, b, b’.
C C U l,l2 l,I1U5]

satisfies the recurrence relations

A-;f:=(1-a)fz(aq), ZXf=(1-b)f(bq),

A
(l--c) f2 cq /’3+f

(1 a)(1 b) aq, bq

(2.32) A-f2=(1-cq-)fz(cq-), A-f=(1-b’)f2(b’q),

+ (1- a)(1-b’)(aq, b’q)z6f2 (1 c’) f2 c’q /’

Af= (1- c’q-)f( c’q-),

hence the canonical equations

(2.33) A-A- A+ + 6A7 "0.A4 0, A?A-- A+ +

(Here again A X signifies thatf is an eigenfunction of the operator A with eigenvalue
X.) Furthermore f2 satisfies the dilation eigenvalue equations

(2.34)
T T T6 a -1 T2 T b-1 T4T; cq

TsT6,.... b’-l, TTTI,... c’q -1,

and for 3’, Y’ 0, -1,-2,... the only solution of equations (2.33), (2.34) analytic in
the u at u3 u6= 0 is (2.31). The standard pair of q-difference equations for the
function f

[(1-aTxTy)(1-bTx)-x-l(1 T)(1-cq-Tx)]f2=O,

[(1- aTxTr)(1- b’Ty)- y-(1 Ty)(1- c’q- Tr)]f=O,

is obtained directly from the canonical equations by setting x
and factoring out the remaining "ignorable" variables. Note the perfect correspondence
between the differential equations (2.29), (2.30) for the Appell function and the
q-difference equations (2.33), (2.34) for the q-analogue.
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Just as in the single-variable case we can study a family of q-analogues for F2,
one for each function 6 with domain {1, 2,..., 7} and range contained in {+,-}.
The canonical equations are

A()A2(2)- A3(s)A48(4) O,
(2.35)

m 18(’>m(5)- m(6)m78(7) 0

and the corresponding q-series is

(2.36)

Similar computations can be performed for any two-variable (or many-variable)
q-hypergeometric series g. Corresponding to each parameter a q such that the
symbol (a; q)Am+tn appears in the numerator of the expansion

(a; q)Am+Bn
g -’,.,, (c; q)o,,+o,,

xmy
"’’(q;q),,,(q;q),,

there is a "raising operator" E= A- associated with the recurrence relation

B(1 aTAxTy )g (1 a)g(aq).

Similarly, for each denominator parameter c we can construct a "lowering operator"
E A+ associated with

D -1 -1(1-cq-lTCxTy)g=(1-cq )g(cq ).

Application of x-i(1- T),), corresponding to A+, takes each numerator parameter a to
aqA and each denominator parameter c to cq c, whereas application of y-l(1-Ty),
corresponding to A+, takes each numerator parameter a to aqt and each denominator
parameter c to cq.

Hrabowski [9] has discussed the general procedures for associating a system of
canonical differential equations and eigenvalue equations with a given hypergeometric
series and, conversely, for associating one or more hypergeometric series with a given
system of canonical differential equations and eigenvalue equations. His analysis
applies, with minor modifications, to q-hypergeometric series as we will discuss in a
subsequent paper. The principal distinction is that there are two types of q-difference
operators A and only one type of differential operator 0

3. Embeddings and augmentations. If the canonical equations of a q-hyper-
geometric series can be identified with a subset of the canonical equations of a second
q-hypergeometric series, then by a suitable restriction of coordinates we can regard
the second series to be a generating function for the first series. As an illustrative
example we consider the canonical equation

(3.1) A-A- A-A- 0

for the basic hypergeometric function

(3.2)
( a, b u u_)

_
u utu2(I)1 2(01

C U

T T-I q,, T-I T-I qt, T-1 T3 q,-1,
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and the canonical equations (2.33) and eigenvalue equations (2.34) for the q-Appell
function f2. Identifying the variables ul," ", u4 for 21 with the variables u,. ., u4
for f2 we see from (2.33) and (3.1) that for any choice of us, u6, u7 the function f2(Up)
can be regarded as a solution of the canonical equation (3.1) for 2. For uniqueness
we require us u6 u7 1 and obtain the solution

(3.3) f=f(a,b,b’.C, C’
/’/3/’/4 1 )

of (3.1). Our approach is to characterize the generating function (3.3) in terms of
symmetry operators for (3.1). However the remaining canonical equation for f2 and
the eigenvalue equations (2.34) involve the variables us, u6, u7. We need to evaluate
the operators A;, A-, A- applied to f2 for us =/,/6 u7 1, in terms of operators acting
only on functions of the variables Ul,’" ", u4. From (2.34) we find

T6 a- T-1Tf 1, T7 c’q-1 a-1T- T-I.
Thus the solution (3.3) is characterized by the equations

(3.4)
T2 T3 b- T4 Tf cq-

A 1--- T-1T; 1 T-1T 1-
a a qa

Note that the operators T2T3, Y4Tf1, A- and T-IT are all symmetries of A-A--
+ +A3A4, SO that we have characterized the solution (3.3) of (3.1) in terms of a set of

(mixed) eigenvalue equations for symmetries of (3.1). (It is not always the case that
the generating function of the restricted canonical system obtained through this process
is characterized in terms of symmetries of the restricted system. An example is the
restriction of the canonical system for the Appell function G to the wave equation
[11]. However, in this case and in all other such examples known to the authors
appropriate functional linear combinations of the mixed eigenvalue equations can be
expressed in terms of symmetry operators and the resulting system still uniquely
characterizes the generating function.) This is the process of embedding.

The process inverse to embedding is augmentation. Here we are given a canonical
system of q-difference equations and a characterization of a generating function for
this system by a set of mixed eigenvalue equations expressed in terms of symmetry
operators for the canonical system. Our aim is to establish simple rules for determination
of the generating function as an explicit q-hypergeometric series by recasting the
defining equations as a canonical system with dilation eigenvalue equations in a greater
number of variables than the original problem.

To see how this procedure works, consider the generating function, characterized
as the function analytic in u,. ., u4 at u3 0 and satisfying the canonical equation
(3.1) and the mixed eigenvalue equations (3.4). Since the last equation in (3.4) is
neither a canonical equation or a dilation eigenvalue equation for (3.!), we cannot
determine the power series expression for the generating function by inspection.
However, we can replace the expressions

l b,a-l T-l Tf, l a-l T-l Tf1, 1 -c’q-a-lT-lTf

by A, A-, A, respectively, for U5--U6"-U7---1 where T--b’a-lT-aTf, T6-
a-T-IT-3- and T7 c’q--a-lT-Tf 1. Then for general Up the defining equations of
the generating function take the canonical form (2.33), (2.34) with the unique solution
(2.31), analytic at u3 u6 =0. Setting us= u6 u7 we obtain the generating function.
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+(Note that the choice A, A-, A- is unique. If we had taken A5 for example, we would
have obtained the condition TsT1T3"-b’a -1, but TsT1T3 is not a symmetry of the
canonical equations (2.33).) We also note that q-analogues of the Appell function F3
and the Horn function 2 correspond to these same canonical equations but have
different analyticity properties 11 ].

The following sections contain several more examples of augmentation.

4. Generating functions for rps. Here we will present several examples showing
how generating functions for the rqs, (2.1) are associated with the canonical equation

(4.1) (x, .A-A++, + ),I,=0.r+s+l

Recall that

ai Ilr+l Ilr+s+l) Ill al Ilr rIlfll-1 fls--1rl’)s r(4)s
bj u U

r+l U rs

is a solution of (4.1) and that A, (1 < < r), A+
r+k, (lks), Tr++ and T+s+l-1 Tk

are symmetries of this equation.
There appears to be no convenient general q-analogue of the local Lie theory

which permits us to compute Lie group symmetries of differential equations from Lie
algebra symmetries through the process of exponentiation. However, in paicular cases
the analogy is successful. Consider the q-exponential

x 1
(4.2) eq(x) E [xl <1

,=o(q; q), (x; q)’

satisfying A+xeq eq [15, p. 92]. In a formal sense at least, the operator eq(hA[), h E C,
is a symmetry of (4.1). Applying this operator to a basis solution r(s and making use
of (2.14), (4.2) we obtain

A"(a,; q).
(4.3) eq(AA-)rs(a,) rqs(a,q").

,=o (q;

To compute the left-hand side of (4.3) we utilize Fleines’s (q-binomial) theorem [15,
p. 92], [2],

(at; q)’,
(a’q)m

.,=o (q; q)m (t; q)

to derive

(4.4) eq(A A-)x" x
,(Aq-"/x;q)oo

(A/x;q)o (A/x,q)_,"

From (4.4), (2.1) and (2.12) we find

(4.5)
eq(A A-()rts( al)

(A/aul; q)
(A/u,;q)

ai. Ilr+l Ur+s+lr(Os+l
bj

A/alUl; Ill-
’r+l r+s

so that

(4.6)
(x/al;q)oo
(x; q)

ai. x/al; y
bj

ar
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Another way to understand this result is to note that the right-hand side of (4.3) is an
eigenfunction of the operator Tr/s/IT1-Aq-IA-Tr/s/T1 with eigenvalue a-1. The
method of augmentation can then be employed to derive (4.5). Still another point of
view is that since rs(a) is an eigenfunction of the symmetry operator Tr+/T with
eigenvalue a- then eq(AA-)rs(a) must be an eigenfunction of the formal symmetry
operator

(4.7) eq (A A-) T++ TEq(-AA-()

with the same eigenvalue. Here [15, p. 93]

q(-)/2
Eq(x) y x" (-x" q)oo

=o (q; q),
(4.8)

a-dE,=-q-’Eq, eq(x)Eq(-X)= l.

Let X, Y be linear operators.
LEMMA.

(4.9)

where

f(A)------ eq(AX) YEq(-AX) ,=oE (qi t),, IX, Y].

(4.10)
[X, Y]o Y, IX, Y]I XY-YX,

IX, Y],+, X[X, Y],,- q"[X, Y],,X, n 1,2,....

Proof. This result is equivalent to the identity A -f(A Xf(A Txf(A )X and the
identity can be verified by formal power series expansion in the variable A. (The authors
learned of this result from Mourad Ismail and Dennis Stanton.)

For X A-, Y= T,++ T it is easily verified that IX, Y] (1-q-)A-T,++ TI,
IX, Y]2 0 so, by the lemma:

eq(AA) Tr+s+, T1Eq(-AA) T+s+, T, q-AA Tr+s+l T,.

Using the q-binomial theorem we can verify that

(4.11) Eq(-AA)x x" (A/x; q)
(Aq"/x;q)"

From (2.14) we have

(bX/q)" (b-1+ q;
Eq(-AAr+)rs(b)= E q)"r(bq ),

.=o (q; q)

Eq(-Aar+s+l)rs
bj .=o (q; q).

"(b q; (b q)"Applying (4.11) we obtain the generating functions

=o (q; q bq- b’" b,
"y x’

(ai, x)qn(n-1)/2(alq)n’’’(r;q)n(aiq )+ b
y

=o (q; q) (hi; q)" (bs; q) rPs bjq" (-xy)
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Now we consider some examples where the generating functions are directly
characterized in terms of symmetry operators for the canonical equation (4.1). Let A,
B, C be nonnegative integers with B -> 1, A + B r, C + B s. We look for an eigenfunc-
tion of (4.1) characterized by the following conditions:

Ai-A- A2 / / / cA+Ar/lAr/2.-. At/ r/s/l 0,

Ar+c+IAr+c+2... Ar+s" 0

T-I -1 Tr+I --1 --1Tr+s+ al clqTr+s+

(4.13)
Tr+s+l aA, Tr+c Tr+s+l--" ccq

TA+ T-/1 bq-1 -1 T71 dTr+c+l

TA+n- T71"" bn-lq- Tr-l+c+nT71"" dn

Choosing Ur and Ur+s+ as the distinguished variables such that the generating function
is analytic at Ur Ur/s/ =0, we see that equations (4.13) are in canonical form with
solution

al, aA Ur+l Ur+C
AOC

el CC Ill IlA Ur+s+l) llTal’ U;tIA’’YI--1"r+l Il Yc--lr+c

dl," ", dn qbl" bB-1IIA+I" IIA+B--1 )UrBB--1 bl,. bB-1 dl" dBilr+C+l" Ur+s

/31--1 U/3B_1 --81 --8IlA+l A+B-1Ilr+C+I Ilr+s

(al,Z Xn A+B(C+B
n=O

Ur+l .Ur/s+l)Ul Ilr

ii il--AaA /3 +n--1 /3a_t+n--1 lly--I l/yc il--81--n ii--8--nUA-I iiA+B--1 ilr "r+l r+ r+C+l r+s

Setting Ur+s+l =0, we find that

=(qb...bn_’" (dl; q),,... (dn; q),x. \ ,]d,dn (b,; q),.-. (bn_,; q),(q;

and the generating function simplifies to

A(C tz B(OB_I
Cl, CC bl bn-1 bl," bn-1

(4.14) . (dl, q_,_ (dn; q),
,,=o (b,; q) i---;q),,

al, ", aA, q-", q-"/b, q-"/ bn-1
A+BOC+B qz

c,. Cc; ql-"/d, ql-"/dn (q; q),
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Finally we derive a generating function for the q-series

( al ap+ -l )p+lp+r
bl bp+

q x

__. (a,; q-’),,. (ap+,; q-’),, x"
(4.15)

=o

n’’" ap+l; q),(-1) q {Xal’’:a_p+_(a-’ q)ii (-’ r,,,,-,)/2

1",=0’ b- q )-,, ---i-, -11: bp+rq /"(bp+r;q),,(q;q),,

Consider the equations
+ ...ap+ 0,(4.16) A’" Ap+ Ap+2 r+2

T- -1 q,T2p+r+2 ai 1, 1 <= <= p + 1
(4.17)

-1TT_p+r+ q3- b-j- q-, p + 2 <=j <= 2p + r + 1,

in canonical form. The solution of these equations, analytic at U2p++2--0 is"

( al ap+l _1 tip+2" tl2p____+.r.+2)p+lp+r
bl, bp+

q
Ul Up+

(4.18)
-’p+l "*p+2

We search for a generating function satisfying (4.16) and the following conditions:

(a) A+ cTi T2p+r+z---1,
(4.19)

(b) T-’ --1Tp+r+ a 2 <- <= p + 1,
--1 bfl 1, _-<j 2p + r+ 1TjT2p+r+2 q- p + 2 <

Introducing a new variable U)_p++3 and conditions

(4.20) T1T2p+r+2Tzp+r+3"" c-1, A- AZ-p+r+3 0

we see that (4.20) reduces to (4.19) (a) when U2p+r+3 1 and conditions (4.16), (4.19)
(b), (4.20) are in canonical form. It is straightforward to write down the generating
function analytic at ul U2p+r+3--0 and, with simplification, to obtain the identity

(ct;q)o [ c, a-l, --1
ap+l

(t, q) P+dPP++I ct, b-, -1 q, xt
bp+r

(4.21)

k’ (c’
_p+l(p+ [q al, --1

q, xqn]tk=0 q)k bl l, "’, b-+
where

b, bp+
q’ x

(4.22)

Z
(al, q) ...(ap+,;q) (-1)rq"’-1)/2

._-o (b,; q).... (b,+.; q). (q; q)."

The generating functions derived above are not "deep." Indeed each can be proven
by equating coefficients of powers of appropriate variables and using the q-binomial
theorem. Fuhermore, more general generating functions hold when some of the
q-shifted factorials are replaced by arbitrary sequences; see [6]. Our point is that
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generating functions in their totality can be classified and derived using symmetry
methods. In the following section we consider cases where the q-series have a richer
symmetry structure and the generating functions are more interesting.

5. Generating functions for 2tl The canonical equations for the q-hypergeometric
functions 2(t)l and 1(1 admit certain simple symmetry operators which do not extend
to symmetries of the equations for general r0s. This is closely related to the fact that
2Ol and ol obey q-difference recurrence relations not shared by general r0s. We shall
examine the case )_ql in some detail. Here the canonical equation is

(5 1) Q A-A- + +--m3m4 0

and the eigenvalue equations for the basis

are

a, b U U424) u7 u3u’
U

(5.2) T T- a, T- T b, T- T3 cq- 1.

In addition to the dilation operators T4T1, T4T, T4T1, their products and inverses,
we have as symmetries of (5.1) the operators

+E=A, E=A, E=A, E=A4,

Ea __q-1U3U4T2TeA+ Ul u3T1Y-l qul T3T + UlT T3Y2,

E -u3u4q-T T2A+ uu3T1TA; qu T3T + uT1 T3T,
(5.3) ET= U3[NT3T2_ TT1TIT2+ q2 UlU2 T3AT1],U3

+Ev -UlU2TIA3 + q- u4T -q-2u4T?ITIT2

EV=u3Tl+qu2, EV=u3T+qul,

Ev=-UlA+q-u4T-TIA, Ev=-uA+q-lu4TITIA.
These symmetry operators correspond to recurrence relations for the since, when
applied to the standard basis (b), they yield

E,=(1-a)2l(aq),

E Pl (1 b)cP,(bq),

(c-a)(c-b)
E2 2(1)1 (q)

c--1

(5.4) E’/3v2
(1-a)(1-b) 2(i)l(aq, bq)

1-c cq /’

(b c)(1- a)
1E’

1 c cq

E/3,2(I)1 (a c)(1
1 c cq

2(I)1 (a c)2dPl(aq-1),

2(I) (b c)21(bq-’),

/ 2(I) ( 1 )2 (cq-1),

(_ ) (aq-’,bq-), 1 1 cql

( ) (aq-lEo,.,/ zd 1-
C

2d)l
cq-1]’

l-
C

cq-]"

There appear to be no simple standardized expressions for these symmetries as q-
difference operators applied to the null space of Q. Indeed one can always multiply
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each such symmetry by a dilation symmetry and Obtain a recurrence relation (5.4)
equivalent to the original relation. Second, given any q-difference operator D we can
add DQ to any symmetry operator, since DQ acts as the zero operator on the null
space of 0. One can use the above modifications to simplify considerably some of the
expressions for the operators (5.3), but at the expense of complicating relations (5.4).

From the raising and lowering operators E we can form the following equations,
each equivalent to the canonical equation (5.1):

E"E,, + T-I(qT3 T-I)(1- q-ITIT-)-O,

EE3 + T-t( qT3 Tf)(1- q-I T-I T) O,

ErE, + T-d2( T3 T-I)( T3 T1) 0,
(5.5)

E’tVEo,tv + (1 q-1 T-d1T-I)(1 q-1T TI) 0,

E’VEo,, T-d(T T;)( 1 q- T- T-) O,

EVE3, TI( T-’- T-)(1 q-’T1T1) ---0.

The operators E and the dilation symmetries T4T, T4 T2, T4T form a q-analogue
of the 15-dimensional conformal symmetry algebra of the wave equation in four-
dimensional space-time. Although these q-symmetry operators do not generate a
finite-dimensional Lie algebra under operator commutation they still permit us to
construct the invariants (5.5).

The method of augmentation can be used to obtain explicit expressions for many
generating functions characterized by E symmetry operators. For example, while the
conditions

(5.6) E,, -c, T2 T--- b -1, T T-1’’ cq -1

would be difficult to solve directly, due to the complicated expression for E, we note
that the first of these conditions implies E"E--.-cE" so from the first expression
(5.5) for EE

A- (1 c-1T1T-I)(1 q-T1T-1) 0.

Setting T5 c-T T-1, T6"-- q-T T-, we see that the desired generating functions
are the restrictions to us u6 1 of certain solutions of the canonical system

(5.7)

A-A / / /--m3m4 0, m --m-m6 0,

T2 T, b , T3 T-d cq -1,

TI T4T.-. c-, T, T4T6... q-.
We can immediately write down a series solution:

(5.8) xlt f:z( c’ b, O U3U4 U5U6
C, C II1U2 gl /

where f2 is defined by (2.31). Setting u= u6 1 we find the (not very interesting)
generating function

(5.9) f(c, b, O ) .z, 2Pl(cq"’b )c, c --o (q; q). c
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We shall return to this example after introducing the q-Kummer transformation
symmetry.

The q-Kummer transformation

(5.10)
a, b, ) (ax; q)oo (a; q),,(c/b; q),,q,,(,,-1)/_ (-bn)"

201 X
c (x; q) ,,=o -;-i-iq;qi- (-x-

[1] and the q-Euler transform

(a, b, ) (abx/c; q)oo (c/a, c/b ax)(5.11) 2(1 X 2(1
c (x; q)oo c

15, p. 97], [2] can be related to symmetries of (5.1). For this we consider the restriction
of the operator Q, (5.1), to the space of convergent Laurent series in the monomials

where k is a nonnegative integer and a,/3, 3’ are complex numbers such that 3’ 0,
-1, -2,. .. (That is, we do not consider the complication of logarithmic solutions.)
We define the operator R on this space as the unique linear operator such that

(azq ’, q)oo k(k-1)/2 aR1 (fk"’t’v) (Z; q)
q U

(5.13) q
(aqk; q_.),,Z,,+ku_,Uf_VU._k(k-,)/2 n=OE ({ q).

U3U4 qV.z- a q, b q, c
//1/,/2

(This is a q-analogy of the inversion in a cone conformal symmetry of 012 034 0.
Similarly we define R by

(5.14) R2(fk,a,/,v) qk(k-,/2 (bzq q) ,_,ut u._
(z; q)

and linearity, and S by linearity and

(5.15) S(fkatv)
(cz/ab; q)( C-bb)kul -(z; q) //2

It is not difficult to show that (5.10), (5.11) are equivalent to the assertion that R1, R_
and S are symmetries of (5.1). (The direct proofs of (5.10), (5.11) involve nothing
more complicated than the q-Vandermonde theorem [3].)

Note that a basis for the solution space of Q--0 and the eigenvalue equations
T-’ T- a, T’ T2 b, T3T1"" cq- consists of the functions

=2(fl Z Ul U U and

C q2/c
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Furthermore the operators R,, R2, S satisfy

R’2(a’cb)= 2(a, cC/b)’
R1 2f

a b
__(__C1/2/b)l_Y2()

C

a, b
=2dO(5.16) R2l c c

R=R=S=I, R1R2=R2RI=S,

where I is the identity operator. Other easily derived properties of R are as follows:

(5.17)

R,E’R-= E’,

RE,R-= E,,

RIER-I qET3 T2,

RER-(= E,,

R E R- E3TT
R E,,R-

RE’R- -qETT
RE"’R- E"’T T4,

R, T-T-IR-( T-(1T-, R TflT-R-I= qT2T3,

R1 T3 T-d R-( T3 T-d ’.
Similar results for R2 follow from (5.17) and the interchanges -2, a-[3, and the
corresponding results for S follow from S RR2 R2R,.

As an example of the use of these symmetries we consider a generating function
characterized by

(5.18) EE,-A, T-Ta,-A, TE4T1T2---1/Atxq.

Due to the occurrence of the operator E, it is not easy to find a simple form for the
generating function by direct computation from . However, we can transform this
problem into a simpler one. Indeed, ’= R,0 satisfies

(5.19) qEET3T2"" A, T T3
Although these equations are not in canonical form they are easy to solve by substituting
a formal power series for ’. The solution analytic at Ul--u4 0 is

qk(k-1)/2-1k-l(l+l)/2uk,,k+lx,,l+A(rtx+l,, l
t’ 2 "2 "3 \tt "41

g=O (q+l; q)k(qX+l; i;--i k’k--i i;
From (5.13) we then find easily that

(5.20) ,= R’=
(z-; q)k(--zt/q)k (qi-lzt)lqlYo= (q+l -)-k--i q--k t=O (--"," q),(q," q)l

U-/.t--A -1 A
U3

where z U3U4/UlU2, =/,/1//,/2. (The factorization in this expression is not surprising,
based on variable separation for the corresponding differential equation problem and
the fact that the operators E, Et commute.) The generating relation is

qn(n-1)/2 ( q+X+n+l )(5.21) * 2
q

//3
,,=o (q; q)n(q"+l; q)n

2ql qX+, Z tnu"-x x
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where the coefficient of 2q1 has been determined by setting z :--0 in (5.20). This is the
generating function for little q-Jacobi polynomials 10]; set z qx.

For our final example we return to (5.6) and note that the function ’= R2It
satisfies the conditions

E TI T4----1, T2 T4 b- ’, T3 T- cq-1

which are easily solved by power series substitution to yield

xF’=
q-k(k+l)/2-1k(q q)k( z)kuI+kuu

k,l=O (qV; q)k(q; q)k(q; q)!

Then from (5.14) we find

(qt3z; q)oo qk2(qzt),trutU-aq= R2’ (z; q)(t; q)ok=o(q-z li-ki--’,-ki-q-’, )k

--,01 (cqn’bOtn+r;-l.(q;q).2 c
z

where z u3u4/uu2, t= u?.
Our symmetry approach has profound relationships with the theory of oahogonal

polynomials. We shall illustrate these relationships by presenting a new derivation of
the ohogonality for little q-Jacobi polynomials which we normalize in the form

(5.22) ’b(X)= aq

with -1 < q < 1, 0 < aq < 1, bq < 1 10]. The symmetries N and E, (5.3), induce
recurrences for these polynomials"

(,b.,b(x q(1 q-)(1 q+ab)
iq(x),

(1-aq)
(5.3

*(o,o__o,q(x q ,(x

where

7.,(aq,bq) (X 1 T- + aq abq2x).

The existence of this pair of "raising" and "lowering" operators suggests that there
might exist a Hilbert space structure with respect to which 7.* and 7. are mutually
adjoint, so that 7.*7. would be selfadjoint.

To be more explicit, let Wa,b(X) be a (complex-valued) weight function and Sa,b
the indefinite inner-product space of polynomials f(x) with respect to the inner product

(5.24) (fl, f2)a,b -27ri fl(X)f2(x)W,b(X) dXx
where the contour C is a deformation of the circle Ix 1 + e, e > 0 in the complex
x-plane. Consider 7.(,b) and 7.,q,bq) as mappings"

7"
a,b Sa,b ._) Saq,bq 7.,( aq,bq) Saq,bq .0 Sa,b

and determine Wa,b(X) SO that

(5.25) 7.*g),b7.f g)q,bq f
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for all f Sa,b, g Saq,bq. A straightforward "integration by parts" yields the following
conditions"

-q Waq,bq(X/ q) 1 Waq,bq(X aq(1 bqx)--x-l,
x wo,(x) x wo,(x)

with the solution

(x/a; q)o(qa/x; q)
wo,(x) (xbq; q)o(1/x; q)os(a, q)’

(5.26)
s(a, q)=(aq; q)(1/a; q)(-aq; q)o(-1/a; q).

It follows immediately that -*z is selfadjoint on Sa,b and from the recurrence relations
(5.23) we have

(5.27) ’7"*"l’((a’b)’-" An()(a’b) A,, -q(1- q-n)(1- q"+lab)

Clearly An A,, if n m and since eigenfunctions corresponding to distinct eigenvalues
are orthogonal we have

(a,b)](5.28) ((a,b)n ,,,
,b 0 for n m.

From (5.23) and (5.25) with f= (,b), g (,ibq) we obtain the following recurrence"

(5.29) II(’b)[] -q(1-q-")(1-q"+lab)
a,b aq )2

(na-q’lbq)[[2aq,bq"

From (5.29) we can compute [](,’b)l12o, once we know Illll ,b ((oa’b, (O’b),,b for
all admissible a, b.

We now turn to the task of computing 1[1112,b. We know that (a,b (o,b)a,b =0
and, substituting the explicit expression (5.22) for the orthogonal polynomial ’b)(x),
we can write this relation in the form

(5.30) i]1112
(1-bq)

a,b",,bq (1 abq2) Illll

(Here we have used the evident fact that (1-xbq, 1).,b IllllZ,bo.) To obtain an addi-
tional condition on the norm we consider the symmetries E v, Ev in the form"

IX (,,b)
(,b) (1 a)(aq-l’bq)

(5.31)
*"q-"bq)q-"bq) q-" (1 aq" )(1 bq "+

a(1-a)

where

IX
(,b) 1 aT, tx

(a’b) Sa,b -.9, Saq-l,bq,

,(aq--1,bq) X- 1
--TS --,1 bqx

Ix
,(aq-’ bq)

ax ax

It is easily verified that

(5.32) (ixf g)q-,bq (f Ix *g),b

for all f Sa,b, g Saq-,bq SO that Ix and Ix* are mutually adjoint. Setting f=o’b),
g ((0aq-’bq) in this relation, we see immediately that

(1 bq) 111[[2a,b.(5.33) 111112aq-’,bq a(1 a)
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The recurrences (5.30), (5.33) have the solution

111 = (abq2; q)K(q)
’’b--(bq; q)(aq; q)(--1/a; q)(--aq; q)"

Thus

(5.34)
1 (x/a; q)(qa/x; q)dx (abq2; q)K(q)

2ri (l/a; q)(1/x; q)(xbq; q)ox (bq; q)(aq; q)"

(Here we are assuming a> 1 +e> 1 > qa.) With the choice bq= 1/a the integral
becomes trivial to evaluate and we find that K(q) 1/(q; q). The complex orthogonal-
ity relations just determined can be recast as real discrete orthogonality through
evaluation of the contour integral by residues at the poles x qk, k 0, 1, 2, . The
final result is

(5.35)
ko(aq)k(qk+’; q)o

(bq k+l’, q)o
dp ,,,b )( q t,)Cb ,b)( qk)

(aq)"(abq"+a; q)(q; q)ntm,n
(bq"+l; q)(aq; q)(aq; q),,(1-abqZ"+l)"

Note that the proof of this result follows entirely from the symmetries; no special
function identities are needed.

The ideas behind this derivation of orthogonality relations can be generalized
substantially. In particular in 12] it is shown how to derive the orthogonality relations
for the Askey-Wilson polynomials (the most general extension of the classical
orthogonal polynomials known) using this symmetry method. A simple corollary of
the derivation is an identity for 4(3 polynomials (Sears’ transformation) that includes
the q-Kummer and q-Euler transforms as special cases.

The fundamental symmetry concepts introduced in this paper extend to the very
important q-series of the form

+ q
bj

q and + (P
bj

q

They will be the subject of future papers by the authors.
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A PROBABILISTIC PROOF OF RAMANUJAN’S Ol SUM*
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Abstract. The q-binomial theorem and Ramanujan’s 1’ sum provide q-analogues of the beta and F
distributions, respectively. We obtain these discrete distributions using order statistics, thus deriving the
summation formulas probabilistically. We obtain a q-analogue of the X distribution and interpret it
probabilistically. We show that an appropriate ratio follows our q-analogue of the F distribution.

Key words. Ramanujan’s lff/1 sum, q-binomial theorem, q-gamma function, Gaussian polynomial, order
statistics, beta distribution, F distribution, and X distribution
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1. Introduction and summary. Fix q with Iql < 1 and set

(a)o- 1,

n-1

(1.1) (a),, H (1 ozqi), r/-> 1,
i=0

(a): lim (a), H (1-aq’).
i=0

The q-binomial theorem is (see [3, (2.2.1)])

(a), t" (at)
(1.2) ,=o (t)oo Itl < 1.

We can interpret (a), for all integers n by

(1.3)

Ramanujan’s ’1 sum is

(aq")"

(a), (at)(qa-lt-1)(q)(ba-1) -1(1.4)

The sum on the left side of (1.4) is usually denoted ll[a;bq’t]. By (1.3), we have

1
(1.5)

(q),
-0, n<0.

Thus Ramanujan’s sum (1.4) reduces to the q-binomial theorem (1.2) when b=q.
Ismail 12] gave an elegant proof of (1.4) by observing that (1.4) reduces to. (1.2) when
b qn for all integers n and that both sides of (1.4) are analytic at b 0. Ramanujan’s
sum (1.4) then follows using the following well-known theorem.

THEOREM 1. Iff and g are analytic at Zo and agree at infinitely many points which
include Zo as an accumulation point, then f g.
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See Andrews [1], [2], Andrews and Askey [4], Askey [6], Hahn [11] and M.
Jackson [14] for some other proofs of (1.4).

There are a number of other opportunites to use Ismail’s argument to prove
summation formulas for basic hypergeometric series. Askey and Ismail [7] used it to
prove the summation formula for a very well poised 61]t6 using the limiting form of
Jackson’s theorem. Gauss [10] introduced the q-binomial coefficient

(1.6) [] (1--q’)(1--q"-l) (1--qm-k+)
O<-k<-_m,(l_q)(l_q2)...(1-qk)

which clearly tends to (’) as q tends to 1. Setting a q-’, xqN+m, where m _--> 0 in
(1.2), we obtain

(1.7) =o qrq+( (-x) (xq ).

Equating coefficients in (1.7), we have the representation

(1.8) q2=,, q 0 <= k <- m,

from which it immediately follows that [’] is a polynomial. Equivalent formulations
of (1.8) occur in a number of related topics. Kendall and Stuart [15, pp. 496-512]
evaluate the characteristic function of the Wilcoxon rank sum (Mann-Whitney U)
statistic. Polya 16] gives the probability generating function of an equivalent statistic
on lattice paths. Andrews [3, Chaps. 3 and 13] gives an extensive account of the role
of [’] in the theory of partitions and finite vector spaces.

The basic result (1.8) implies (1.7) directly. Thus (1.2) holds for a q-m, xq N+m.
Set z at. Equation (1.2) now follows using Theorem 1 twice since both sides are
analytic at z 0 and at 0.

Askey [5] has observed that (1.2) and (1.4) provide q-analogues ofthe beta integral

(-(1 t)(- d(.9
r(x+

(1.10) c s(_l ds

(1 + cs)(+

where c > 0, Re (x) > 0, and Re (y) > 0, on the intervals (0, 1) and (0, m), respectively.
When these are normalized to integrate to 1, the resulting probability mass functions
provide q-analogues of the beta and F distributions, respectively.

In 2, we use (1.8) to show that the order statistics of a ceain discrete random
sample follow our q-beta distribution. This proves the q-binomial theorem (1.2) using
Theorem 1. In 3, we use a simple transformation to show that the F distribution also
arises from order statistics. We give the q-F distribution with both degrees of freedom
equal to 2. In 4, we give an extension of (1.8). We use the order statistics of a discrete
random sample to obtain the q-F distribution. This establishes Ramanujan’s sum (1.4)
using Theorem 1. In 5, we set the denominator degrees of freedom in our q-F
distribution equal to m. This gives a q-analogue of the distribution with 2x degrees
of freedom, which we interpret probabilistically. We obtain a different q-analogue of
the X distribution from our q-beta distribution. We show that an appropriate ratio
follows our q-F distribution.
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2. The q-beta distribution. Let x and y be positive integers and let ui, 1 <_-i-<

x + y 1, be i.i.d, uniform random variables on (0, 1). We denote the order statistics by

(2.1) u() < 1t(2 < < U(x+y_l).

The xth order statistic u<,,) has a beta distribution with parameters x and y. The density
is

F(x + y) t(x_)(1 t)(y-) 0 < < 1(2.2) be,,y(t)
r(x)r(y)

which integrates to 1 by (1.9). Feller [8, pp. 21-24] establishes this fact by a direct
combinatorial argument. We require the case q 1 of (1.8). It is

v=<,,<,2<...<,k<__N+,_ k !(m k)

Let u(x) un and set

(2.4) S {Sl,""", sx-,} {slus < u(x)},

There are

L {l,,’’’, ly_,} {ll ,, > u<)}.

(x+y_l)(x+y-2) r(x+y)
x- 1 F(x)F(y)

ways of choosing n, S and L. We have

1
Prob t-_-<u(,)<t+At 2

1 f t+At/2

(2.5) Y Prob [us < u for all s S and Ul > u for all L]du
n,S,L ,It--At/2

F(x+y) 1 [ t+At/2

u(X-)(1 u)(y-l) du.
r(x)r(y) at J

The density be,y(t) of U(x) follows by letting At tend to 0.
Fix q with 0< q < 1. F. H. Jackson [13] introduced the q-gamma function

(.6) to(a)
(q) (-a)

(q)
(l-q)

which clearly tends to F(a) when a is a positive integer. Askey [5] treats the general
case. F. H. Jackson [13] also gave the q-integral

(2.7) f(t)dqt=(1-q) 2 q"f(q").
n=O

This is the approximation which results when the unit interval is partitioned by the
powers of q. The measure du of a uniform random variable u is replaced by

(2.8) dq(q")=q"(1-q)=Prob[q"+’<=u<q"], n>-O,

which is the probability mass function of a geometric distribution with parameter
0 1- q. While n follows a generalization of the exponential distribution, q" follows
a natural discrete version of the uniform.



1542 KEVIN W. J. KADELL

A random sample from a continuous distribution will be distinct with probability
1. Choose x + y 1 distinct observations from the distribution (2.8). Our sample contains

(2.9) q n(x+y-, <... < q n(2 < q(, __< 1,

where the exponents are

(2.10) 0 -< n(1 <//(2) (" < n(x+y_).

We require the limiting case of (1.8) as m tends to . It is

(2.11 E qtEt=,-, q Nk+()

N"lK"2K’"K"k (q)k

The joint probability mass function of the order statistics is given by

(2.12) q-("+-’)( q)(x+y_l)q[Z72f-’n(’)],
where (2.10) holds and 0 otherwise. This is clearly correct up to a constant which is
supplied by setting N =0, k x+y-1, in (2.11). The xth order statistic from our
sample (2.9) is q"(,. We have the probability mass function

qbex.y( q’) Prob n(y) y + t]

-(+-) (=q (q)(x+y-1) 2
0N n(1)<" < n(y_l)Ny-2+

(2.13) qt2:_-,(,),_
q ( vx/y-, )

y+tn(y+l)<’"<n(x+y-1)

where 0. We may evaluate the two sums on the right side of (2.13) by setting N 0,
m =y-l+ and k=y-1 in (1.8) and N=y+ t, k=x-1 in (2.11). This yields

[y--l+t]q(y+t)(x-1)+(xl)
qbex.(q’) q_(X+-,)(q)(+_)q(,,)

y- 1 (q)(_)

(q)(+,-l
(2.14)

(q)(,-)(q)(-) (q),

Fq(x+y) (q’)(-)(q’+’)(_)[q’(1-q)].

Since qbex,y(q t) is a probability, we have

2 qbex,y(qt)
t=O

(2.15) y,, qtX (q)(,+y-,) (q)(y-,+t)
t=O (q)(x--1)(q)(y-,) (q)t

(qX) (qY)t
(qX+y)oo t=o (q)t (qX)t.

Solving for the sum on the right side of (2.15), we find that (1.2) holds for a qY,
qX, where x and y are positive integers. Since both sides are analytic at a 0 and

at =0, the result (1.2) follows from two applications of Theorem 1.
We may also rewrite (2.15) as the q-analogue

(2.16) (x-l) dt=
ro(x)r"(y)(qt)

(qYt) Fq(X+y)
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of the beta integral (1.9). Two applications of Theorem 1 establish (2.16) for Re (x)> 0,
Re (y) > 0. See Askey [5].

3. A transformation. Let c > 0 be a fixed scale parameter. Then

(3.1) vi=c
-1 Ui

(l--u/)
I<--i<=x+y--I’

are i.i.d, random variables with the density function

C
(3.2) (l+ct),

t>O.

Since our transformation is monotonic, it preserves order. Thus the xth order statistic

(3.3) v<)=c

has the density function

-1 t/(x)

F(x + y) s
(3.4) c

r(x)r(y) (1 + cs)x+y
$ ) O.

This integrates to by (1.10). For c xy-1, we observe that v(x) has an F distribution
with numerator and denominator degrees of freedom 2x and 2y, respectively. This
also follows from Fisher’s principle [9]. Let ei, 1 -< _-< x + y, be i.i.d, exponential random
variables (with any scale parameter) and set s el+ e2 +"" + ex+y. Then the random
variables

(3.5) ( el + e2 el + e2 +

have the same joint distribution as the order statistics

(3.6) (u(1), U(2),""", U(x+y-1)).

For a given value of the sum s, the joint density of the random variables (3.5) is
constant. Integrating over s, the joint density of (3.5) is constant, as is that of the order
statistics (3.6). Since they have the same support, they both have the joint density

(3.7) f(tl’t2"’"tx+y-1)={ +y-l)! otherwise.if0<tl<’"<tx+y-l<l’
The density of u() may be obtained by integrating over all of the variables except t.
This is, of course, what was done in 2 with the q-analogue (2.12) of (3.7).

Choosing the common scale parameter E(el)= 2, we have

(3.8) e,--- X2(2), 1 _-< -< x + y.

We have the independent random variables

(3.9) o el + e2 +" + ex x2(2x), toy e+l +" + ex+y x(2y).

Observe for a Poisson process with parameter 1, that tax is the waiting time for the
xth event and toy is the waiting time between the xth and the (x + y)th events. Clearly
S tox + toy X2(2x + 2y). We have

e + e: +. + ex to(3.10)
S tox + toy
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and

(3.11) vo, C--1 ,-...U(x) C--1 ,-._,W" c- xZ(2x)
(1 uo,)) toy X2(2y)

which has an F distribution when c xy-1.
We require a q-analogue of the density function (3.2). Let u be uniformly dis-

tributed on (0, 1) and set s q", where n is the unique integer satisfying

(3.12) q,+<c_ u
<q
(l-u)

We have the probability mass function

Prob [ q"+-<_ c-lu,tl-ua<q"] =Prob [Cqfq+2+l)<u<--(l+
(3.13)

cq" ](1 + cq")

c(1-q)q" c(1-q)q"
(1 + cq")(1 + cq"+) (-cq")2

This provides a q-analogue of the F distribution with both degrees of freedom equal
to 2.

4. The q-F distribution. We want to find the distribution of the order statistics of
an appropriate random sample from the distribution (3.13). This requires a new
representation of the Gaussian polynomial [’]. Replace each /1 on the right side of
(2.3) by tl d-i--1. Then (2.3) becomes

(4.1)
N<--nl,nk <=N+m+k-2

We have the following theorem.
THEOREM 2.

(4.2) 2
N<-_n,,nk<--_N+m+k-2 i=1 (-cq"’)_ (--cqN)k(--cqN+m)k
ni+2<=ni+,l <-i<=k-1,

Proof We proceed by induction on k. For k 1, we have

y. q "_ 1 N+m--1 [ +1

N<_n<_N+m-l(--cqnl)2 c(1 q) ,=NZ Prob
(1 +Cq"cq "+1) =<

1 [ cq
rq+

(4.3)
c(m-q)

Prob
(1 +cq1+")

qrV (1_ q.)
(l+cq)(l+cq1+") (l-q)’

Okm.

(1 +cq")

cq rV

(1 + cq N)

as required. For each k => 1, we proceed by induction on m. For rn k, the sum on the
left side of (4.2) contains only the term with

(4.4) n N+ 2i- 2, 1 <_- <_- k,

and we easily verify (4.2). Let F(N, m, k) denote the sum on the left side of (4.2).
Classifying the terms of the sum according to whether n > N or n N, we have

qU
(4.5) F(N,m,k)=F(N+l,m-l,k)- (_cqN)2F(N+2, m-l,k-1).
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Substitute the right side of (4.2) into (4.5) and divide by

q+’ [m-1](--cq)k(--cq/m)k k 1

This gives

(1--q’)__qk (1--qm-k) (l+cq N) (1-l--cq N+m)
(4.6) (1--qk) (1--qk) (l+cqN+k) +(l+cqN+k)
which is easily verified. Equation (4.5) completes our induction on k and m. [3

Observe that the condition of minimal difference 2 is precisely what is required
for each term of the sum on the left side of (4.2) to have only simple poles as a function
of c. We have the limiting cases rn

(4.7) I q qNk+2(2k)
N<=,,, ,=, (--cq"’)2 (--cqN)k (q)k

ni/2<--ni+l,lik-1,

and N=-, N+m=M,
k ni

(4.8) l_i1
q c- 1

.-<M+- ,= (-cq")2 (--cqM)k (q)k

We also require the case N =-c of (4.7) (or M o of (4.8)). It is

q,,, c-kq(k2)
(4.9)

ni+2<--ni.,,l<--i’<-k-1, i=l (-cq"’)2 (q)k

Choose a sample q",, 1 --< i-< x +y- 1, of x +y- 1 random variables from the
distribution (3.13) subject to the condition

(4.10) ni)+2<_- ni/l), l<=i<=x+y-2.

The joint probability mass function of the order statistics is given by
x+y--I cqn(i)

(4.11) q-(+-)(q)(+y-a) 1-I
i=1

where (4.10) holds and 0 otherwise. The constant is obtained by setting k x +y-1
in (4.9). The xth order statistic is qn. It has probability mass function

qF2x,2y(q Prob [tl(y)-- y- 1 + s]

(4.12) q-U+-’)(q)(x+y-1) E
n(y_l)Ny--3+s

n(i)+2N n(i+ 1), iNy-2,

cqy-l+s( x+ii_
(-cq-’+)2 y+l+s<n(y+l) i=y+l

n(i)+2 n(i+l),y+

We may evaluate the two sums on the right side of (4.12) by setting N y+ 1 + s,
k x-1 in (4.7) and M s, k y-1 in (4.8). This yields

q() 1
qF2x’2Y(qs)-- q-U+-’)(q)(x+y-1) (-qS)(y-1) (q)(y-1)

cqy-1+s +s)(x- +2(x

c(X_l) q(Y+ 1

(-cqY-’+s)2 (--cqy+l+S)(x-1) (q)x-1)
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(4.13)
cXq<)+x (q)(x+y-1)

(-cq)x+y) (q)<x-,)(q)<y-1)

=cq<;) Fq(X+y) (q)<x-,)
[q(1-q)]

r(x)r(y) (-cqS)(x+y)

Since F2x,2y(q) is a probability, we have

(q)(x+y-l) X

Observe that

(4.15) cXq()
(--cqX)oo(--c-lq-X)o

holds, but only when x is an integer. Solving for the sum on the right side of (4.14),
we obtain

(-c) qX
(-cqX)(-c-lq’-X)oo(q)oo(qX+Y)oo

(4.16) =-E (_cqX+Y)s )s= (-cqX+Y)(-c-’q)oo(qX)(qY)

Thus Ramanujan’s sum (1.4) holds for a =-c, b =--cqx+y, qX. Since

(a)oo 1 q(,,-l) 1
(4.17) (a)_.

(aq-’) (1-aq-’)...(1-aq-1) (-a)’(qa-1)"

we have

(4.18)
(a). (a)_" (qb-1)

-lt-ln2 ,7, t’= 2 t-’= 2 -1E(ba )"
to),, "=-oo (b)_" (qa)"

This shows the analyticity at b 0 used by Ismail [12]. Both sides of (1.4) are analytic
at any value of a which does not give a pole. Fix qX, where x is a positive integer.
Two applications of Theorem 1 establish Ramanujan’s sum (1.4) in this case. Now fix
a and t. By (4.18), (1.4) holds for ha-it-= qX, which is b atqx. The full result (1.4)
now follows by a third application of Theorem 1.

Using

(4.19) f(s)dqs=(1-q) Z q’f(q’),

we may write (4.14) as the q-analogue

io(4.20) s(x-l)
(-csqX+Y)

dqs
(-cqX)(-c-q-X) rq(x)ro.(y)

(--CS) (--C)o(--c-lq)o r(x+y)

of the beta integral (1.10). Three applications of Theorem 1 establish (4.20) for
Re (x)> 0, Re (y)> 0, and all c for which the integrand has no poles. See Askey [5].

5. The q-X
2 distribution. The F distribution normally occurs as the ratio of two

X
2 distributions, each of which is divided by its degrees of freedom. It is well known

(we may use the Central Limit Theorem) that x2(n)/n converges in distribution to 1
as n tends to . Hence we may recover the X

2 distribution from the F distribution by
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letting either the numerator or denominator degrees of freedom tend to 0o. Setting
y =0o in (4.13), we have the probability mass function

(5.1) 2 qS
cXq()/sx 1

qX2x( )=
(_cq)o (q)(x-,)

which provides a q-analogue of the X
2 distribution with 2x degrees of freedom. Since

qGx,2y(q )-- -’q-’’+Y)’-"
ql_,2y,Zxt q -s),

we obtain essentially the same q-analogue of the g2 distribution by taking x- 0o.

To obtain a q-analogue of a Poisson process with c events per unit time, we let
the events occur independently at integer powers of q with

(5.3) Prob [event at qt]
(1 +cqt)

The following theorem interprets our q-x9- distribution probabilistically.
THEOREM 3.

(5.4) 2 qtqX2x( Prob [xth event at qt].

Proof We may, of course, use (1.8) to sum over all of the possible occurrences
of the first x- 1 events. We proceed by induction on x. For x 1, we have

Prob [first event at q t] Prob [event at q’] 1-I Prob [no event at q"]
n=t+l

(5.5)

as required. We have

Prob [xth event at q’]

cq 1

(1 ; /’) ,,_-t+l (1 + cq"
cq

(-cq’)o’

Prob [event at q’]
n=t+l

Prob [(x 1)st event at q"

(5.6) n-1

I] Prob [no event at qJ]
j=t+l

cqt c(X-1)q(X-)+n(x-1)
(1 + cq’) Z

,=,+1 (-cq")

c’q(’-’)+’ 1 q,,(x-1).
(-cq’) (q)(_:)

I-I(q)(x--:) j=t+l (1 +cqj)

The result (5.4) follows using the well-known sum (put a q in the q-binomial theorem
(1.2)) of a geometric series. [3

The limiting case b 0 of Ramanujan’s sum (1.4) is

(at)(qa-lt-)(q)o
(5.7) ,:- (a),t": (t)o(qa-’)o ]tl<l"

Since : qqX2x( sums to 1, (5.7) holds for a =-c, qX. By Theorem 1, it holds for
q, where x is a positive integer. Observe that we have only used the sum of a

geometric series to obtain this result.
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The X
2 distribution may be obtained by rescaling the beta distribution on (0, y)

and letting y tend to . We find that

qyn
(5.8) qbeEy.(q (qY) (i-.’ n >-_ O,

is also a q-analogue ofthe X
2 distribution. We close by showing that our q-F distribution

also arises as a ratio of (5.1) and (5.8).
THEOREM 4. Ifq’ has the q-x2 distribution (5.1) and q" has the distribution (5.8),

then the ratio q’-" has the q-F distribution (4.13).
Proof. A simple application of the q-binomial theorem (1.2) gives

(5.9)

as required.
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LUIGI GATTESCHI"

Abstract. It is shown that certain asymptotic approximations are upper or lower bounds for the zeros

On,k(a, fl) of Jacobi polynomials P,’’t)(cos 0). The procedure for deriving these bounds is based on the
Sturm comparison theorem. Numerical examples are given to illustrate the sharpness of the new inequalities.

Key words. Jacobi polynomials, zeros, inequalities, Sturm comparison theorem
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1. Introduction. The purpose of this paper is to show that certain asymptotic
approximations for the zeros of Jacobi polynomials are in fact inequalities.

The mairr tool that we need is the well-known Sturm comparison theorem in the
following form given by Szeg/5 [9, p. 19].

THEOREM 1.1 (Sturm’s comparison theorem). Let f(x) and F(x) be functions
continuous in Xo < x < Xo with f(x) <= F(x). Let the functions y(x) and Y(x), both not
identically zero, satisfy the differential equations

(1.1) y"+f(x)y O, Y"+ F(x) Y O,

respectively. Let x’ and x", x’< x", be two consecutive zeros of y(x). Then the function
Y(x) has at least one zero in the interval x’ < x < x" provided f(x) F(x) in [x’, x"].

The statement also holds for x’= xo[y(xo+O)=0] /f the additional condition

(1.2) lim [y’(x) Y(x) y(x) Y’(x)] 0
xo+O

is satisfied (similarly for x"=Xo).
Throughout this paper we denote by X,,k X,,k (a, ) the zeros, in decreasing order,

of the Jacobi polynomial P,"’t)(x):
1 > Xn, > Xn,2 > > Xn, > 1,

and by 0..k -= 0..k (a,/3),
0 < 0,,1 < 0,,2 <- < 0,,, <

the corresponding zeros of P,"")(cos 0).
Let us recall the following asymptotic results and inequalities.
THEOREM 1.2 (Frenzen and Wong [3], [4]). Let a > -1/2, a + >- -1. Then as n

,1.3, 0, k
j,,,k 1 [( 2)( ) ( :,)N 4N2 -ce -cot + -/3 tan + t20(n -3)

where

(1.4) N=n+a+fl+l

j,,,k is the kth positive zero of the Bessel function J,(x) and =j,k/N. The O-term is
uniformly bounded for all values of k 1, 2,. ., yn ], where y (0, 1).
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THEOREM 1.3 (Gatteschi and Pittaluga [6], [7]). Let -1/2<=a<-1/2, =fl<-_1/2 Then
for all the zeros On,k belonging to the interval a < 0 < b, with 0 < a < b < or, the following
asymptotic expansion holds as n

(1.5) On,k tn,k+- a cot- -/3 tan + O(n -4)

where

2k + a 1/2 "rr
tn’k’-" N 2

and N has the same meaning as in the previous theorem.
THEOREM 1.4 (Buell’s inequalities; see Szeg6 [9, p. 125]). Under the conditions

-1/2 <- a <= 1/2, -1/2 <= fl <-_ 1/2 and excluding the case a 2 fl2 1/4, we have

k+(a + fl-1)/2 k
(1.6)

N
7r < O,k <- 7r, k 1, 2, , n,

whereas in the ultraspherical case a fl

(1.7) Onk > 7r, k 1 2,.
N

When a=fl=-1/2, a =fl=1/2, a =-/3 =-1/2, a=-fl=1/2, we notice that

k-l/2 k k-l/2 k
n n+ i n +/ n + 1/

respectively.
TUEOREM 1.5 (Gatteschi [5], [6]). Let - a,-fl. en

(1.8) ;; O,k k= 1, 2,

where j,k, as in eorem 1.2, is the kth positive zero ofJ (x) and

[ 1--a2--3f12] 1/2

12
(1.9)

[ 1 a+fl2 1- ]’/ap* N2+
4 2

We remark (see Gatteschi [6, Thm. 3.1]) that the inequality

(1.o) o., j’,

under the same conditions for the parameters a and /3, holds for all the zeros On,k
located in the interval 0 < 0 <

For the ultraspherical case a =/3, using Sturm’s theorem, Ahmed, Muldoon and
Spigler [2] have recently obtained the following interesting inequalities involving only
elementary functions.

THEOREM 1.6. Let a fl and let Xn,k(Ol), k 1,2,’’ ", [n/2], be the zeros of the
ultrasphericalpolynomial P(’" x). Then,for 1/2 < a < 1/2 and k 1, 2,. ., n/2], we have

(1.11) Xnk(Ol)< COS
2n2 + 1 + (2a + 1)(2n + 1) n + 1’
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and

[ 2n2+1 ]1/2 2k-1
(1.12) Xn,k(a) > COS

2n2+ l+(2a + 1)(2n+ 1) 2n

Ahmed, Muldoon and Spigler [2] have considered also values of a outside the
range -1/2 < a < 1/2, but the method used cannot be applied to obtain similar results for
the general Jacobi case [8].

2. A lower bound for the zeros of Pt’)(cos 0). We shall assume throughout this
paper that the parameters and fl satisfy the inequalities

Moreover, we shall refer to the differential equation

(2.2)
du [ 1/4- a 1/4-/32]dO--5+ N2+ + u=O, N=n+

4sin20/2 4cos20/2
which is satisfied by

()ct+l/2( )t+l/p(,,)(cos O).(2.3) u (0) sin cos

Now we observe that the function

(2.4) z(O) J[f(O)]

satisfies the differential equation

(2.5)
dz
dO2 F F(O)2 =0

where

lf" 3 (f"2

(2.6) F(0)-2 f’ 4\f’]
+ -a2 +f,2.

In this section we assume that

+
1

(2.7) f(O)=NO -[(-:)(- cot) +(-t) tan]
and make use of (2.5) as a comparison equation to derive, by means of Sturm’s method,
inequalities for the zeros 0.(, ), k 1, 2,. , n, of P(,,’(cos 0).

LMMa 2.1. Lee and saisfy (2.1). efunction F(O) defined by (2.6) and (2.7)
is such

1/4-a2 1/4-fl 2

(2.8) F(O)>-_N2+ +
4sin20/2 4cos20/2

for 0 < 0 < r. Here the equality sign holds if and only if a 2 f12_
__

4o

For the proof we put

2 0 0
a(0) =-- cot , b(0) =tan,
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and we observe that

A A Bf,2(0) N2 +
4sin20/2 02 4cos20/2

1
_

(Aa,+Bb,)2.
16N2

Hence

F(O)-N- A B
4 sin2 0/2 4 COS

2 0/2

A(f’O+f) 1 )2
2f,

Fl(O)+ f202 F2(O)+16N.(Aa’+ Bb’

where

3
F,(O) =f’"-- F2(0) =f’O-f,

and it suffices to show that F1 (0) ->_ 0 and F2(0) >= 0.
To this end we note that a(O) and b(O) are positive increasing functions for

0 < 0 < 7r as are all their derivatives. Moreover, the following expansions hold 1, p. 75]:

0 0
=-++...+a(O)
6 360 (2n)!

0 03 (- 1)"-2(22" 1)B2" 0"-’ + ([0< )=-++...+b(O)
2 24 (2n)

where Bzn is the 2nth Bernoulli number.
It is readily seen that F2(0) 0 for 0 < 0 < . Indeed, we have

A B
F2(0) -:-7-; a’ O a)+7-7-;.(b’0- b)>= O.

To study F(0) we first consider the interval 0 < 0 =< r/2 where we have

Aa’" + Bb’" >--+-, Aa"+ <= A 1 + B <=-5;.r
thus

1 [ Bb,,,
3 (Aa"+Bb")2 ]F(0) - Aa’"+
2 4N + Aa’+ Bb’

--+------- A -1 +B =>0.
4N 60 4

Similar considerations may be applied to

4N(4N2 + Aa’+ Bb’)F(O)

for the interval 7r/2 < 0 < 7r. More precisely, it is straightforward to prove that

4N:Aa --3A2a":>A[4N2a’"()= -3 a"2(’rr)] -->0,

b"’b’
3 b’t2 1 1

2 8 cos4 0/2
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and

a’b’"-3a"b"> 1- 1 +3 tan2 -tan >0.
2 COS

2 0/2
Having established both FI(O) and F2(0)>-0, Lemma 2.1 is proved and we can

state the following main result of this section.
THEOREM 2.1. Let -1/2 <-- a <-- 1/2, -1/2 <= fl <= 1/2. Then the Frenzen- Wong approximation

for O.,k(a, fl), obtained by omitting the O(n -3) term in (1.3), is in fact a lower bound;
that is

N 4N2 a2 --cot + _f12 tan

where

a+fl+l j,k
N=n+-- t-

2 N

and k 1, 2,..., n. The equality sign in (2.9) holds when a2= fiE= 1/4.
Indeed, the validity of (2.8) enables us to apply Theorem 1.1 to the differential

equations (2.2) and (2.5) and to compare the positive zeros of the function z(0) defined
by (2.4), i.e., the positive zeros r,,k, k 1, 2," ",

Tn, < Tn,2 <" < Tn,

of the function J[f(0)], with the zeros

0, On, l, On,2," ", On,
of the function u(0) defined by (2.3).

The condition (1.2), which is required when we apply Theorem 1.1 to the interval
[0, 0.,], is satisfied. Hence, we conclude that

(2.10) rn,k On,k, k 1, 2, ,
where, since f(0) is a continuous increasing function in 0 < 0 < rr,

-a2 -cot + -/3 2 tan =j.k.(2.11) Ur.,k + --4- - r.,k
We also have

Now, when we set

h(O) _j,,k
N

j,k <=f(O.,k), k-l,2,..-,n.

4q:,.[(-a2)(-COt)+ (-/32) tan ],
it follows that the equation 0 h(0) has the solution 0 Tn.k. Since the function h(0)
decreases and, from (1.10),

O. k <= j..___k <= j,,k
b’ 1’

we obtain the following from (2.10)"

O.,k > r.,k h(r,,,k)>=h(O.,k)>=h(’) >=h(),
which proves the theorem.

This theorem can be improved by using (1.10) and by observing that On,k
h (j,k/ U ), k= 1, 2,..., n.
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P’)(cos 0) the following inequalities hold"

N 4N2 -a -cot + -/32 tan k=l,2,...,n

where
c+fl+l (N2 1-z2-3fl2) 1/2 ja,kN=n+-- v= + --2. v

As before, the equality sign in (2.12) holds when O2= 2__ 1/4.
Using this result and the property

(2.13) P’)(cos 0) (-1)"P’)[cos (Tr- 0)],
we can obtain upper bounds for O,,k(a, fl), k 1, 2,’’’, n.
Cooa. 2.1. e -- <_- -<_ 1/2, -<_ t --< . The.

0.,(, ) - 0..._+(, )

(2.14) r-jfl,n-k+

where

N
+4-[(--/32)(--C0t)+(-a2) tan ],

k=l,2,...,n

N n + ,a+fl+l = (N21--flZ--3Ot2)l/2j,n_k+l+

the equality sign holding when Ol
2 2

Inequalities (2.12) and (2.14) give very sharp results for the zeros which are close
to 7r, when we apply (2.12), or close to zero, when we apply (2.14). Table 1 provides
lower and upper bounds, obtained using (2.12) and (2.14), in the case n 10, a =3
and/3 =0.

TABLE
Zeros of 01/3 o),

-lo tcos 0).

k Lower bound Exact value Upper bound

0.2720 2843 0.2720 2854 0.2721 5052
2 0.5653 8156 0.5653 8183 0.5653 9792
3 0.8594 3899 0.8594 3944 0.8594 4435
4 1.1536 6321 1.1536 6395 1.1536 6610
5 1.4479 3628 1.4479 3750 1.4479 3864
6 1.7422 0569 1.7422 0784 1.7422 0853
7 2.0364 2307 2.0364 2737 2.0364 2780
8 2.3305 0083 2.3305 1150 2.3305 1177
9 2.6241 7391 1.6242 1351 2.6242 1367
10 2.9157 9656 2.9161 9539 2.9161 9545

Should we be interested in obtaining sharper numerical results, it is convenient
to use the inequalities (2.12) and (2.14) jointly with the following simpler ones

O"’k(a’fl)<--J’k N2+ i-
(2.15)

(1-f12-3a)O,,k(a,)>--Tr--jt3,,_k+ N2+ ] (k=l,2,. .,n)
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obtained by means of the inequality (1.10) and the property (2.13). Indeed, the first
of (2.15) may be better than (2.14) for the first few values of k, while the second of
(2.15) may be better than (2.12) for the last few values of k. Thus, for example, by
using (2.15) we obtain

0o,(, 0) < 0.2720 2892, 0o,(1/2, 0) < 0.5653 8602,

0,o,8(, 0) > 2.3305 0366, 0o,9(1/2, 0) > 2.6242 1163,

01o,o(1/2, 0)> 2.9161 9528,

which are better than those given in Table 1.
The sharpness of the results furnished by applying inequalities (2.12) and (2.14)

together with (2.15) is shown in Fig. 1 for n 16, a =-1/2,/3 =1/2 and a =0,/3 =. More
precisely, in the Fig. 1 we can see the digits of accuracy

p,(a, fl; k)=-log,o Uk--Lk,u
obtained by means of the upper bound Uk and the lower bound Lk of the kth zero
0.,(, fl).

FIG. 1. P16(o, fl; k) versus k 1(1)16.
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In the ultraspherical case a =/3 Theorem 2.2 and the first of inequalities (2.15)
yield the following corollary.

COROLLARY 2.2. Let -1/2<--a <--1/2 and let On,k(a) be the zeros of the ultraspherical
polynomial P(,")(cos 0). Then

(2.16) j,kN 1--4a-
2

where

cot_)__< 0.,k(O ja,kl

N=n+a+-, v= +
12 ]

k=l,2,... ,n.

The equality signs in (2.16) hold when a 1/2.

3. Other separation results for the zeros of Pt."’)(cos 0) and upper hounds in the
ultraspherieal ease. We now use the differential equation

(3.1)
d2z
dOE + G(O)z O,

1 g"--_3(g"E

G(0)=2 g’ 4\-] +g,2,

with

satisfied by

z (g,)-,/E cos g(0).
Further, we assume that

(3.2) g(0)= NO- a+ ---4- -a- cot- -/3 tan

1/4- fl 2 1 1
4 cos2 0/2’ 2-

B =_flE

suggested by (1.5), and we show that

1/4-aE

(3.3) G(O)>-NE+
4 sinE 0/2

with equality sign when a 2 f12__
For the proof we set

A=-a
and we study the sign of

3
+

A B
4sinE 0/2 4cosE0/2’

when A->0, B->0, g(O) is defined by (3.2) and 0< 0<
We find that

,E__ NE A B A
g

4sin2 0/2 4cosE 0/2 64N2\sin 0/2
and

g,/

[=32Ng’ sin /2
B

r(O)
cos4 0/2

B )
2

+ 0/cos 2
->0

--s(O)+6ABt(O)]
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where

t(O)=(8Nz sin 0/2 COS20/2+A cos20/2+B sin2 0/2)-1,

r(0) 3 2 sin2 0/2- 3At(O) cos4 0/2,

s(O) 3-2 cos20/2-3Bt(O) sin4 0/2.

When we observe that t(0)> 0 and that

r(0) > 3 2 sin2 0/2 3 COS
2 0/2 sin2 0/ 2,

s(0) > 3 2 COS
2 0/2 3 sin2 0/2 cos2 0/2,

the proof of (3.3) immediately follows.
The application of Sturm’s method to the differential equations (3.1) and (2.2)

requires an accurate study of the distribution of the zeros 0,,k----bn,k(a, fl) of the
function

(3.4) Z(n’’13)(O)--[g’(O)]-1/2 COS g(O).

If we exclude not only the case a2=/32= 1/4, but also the cases in which only one of
the two parameters a and/3 is +1/2, it is easy to see that z(.’t)(0) has infinitely many zeros

(3.5) < q.,-2 < q..-, < q.,o < q.., < q..2 <" ",

lying in the interval 0 < 0 < zr. These zeros can be obtained by solving the equations

NO- + ---- Acorn-Bran =(2-1),
(3.6)

A=]-a2, B=1/4-fl 2 k=0,+l +2,...

with respect to 0; that is they are (see Fig. 2) the abscissae of the intersections of the

FG. 2
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straight lines rk

with the curve

k=0, +1, +2,. .,

1
A cot B tan 0 < 0 < 7r.u

4N 2

LEMMA 3.1. The function z’t3(O) satisfies the identity

(3.7) z’t)(Tr-O)=(-1)"zt3")(O).
Consequently, for the zeros q.,k(a, fl) we have

(3.8) b.,k(a,/3)= 7r--q...-k+l(fl, ), k=0, +1, +2, .
The proof is readily obtained by means of (3.4).
LEMMA 3.2. The zeros q.,, q.,2,""", q.,. of z’t3)(O) belong to the same interval

(3.9)
1 +(a +/3- 1)/2 n

7r < 0 <--Tr,
N N

as do (in view of the inequalities of Buell (1.6)) the zeros O..k of P’t(cos 0), while the
other zeros ofz’t)( O), i.e.,. < q.,-2 < d/.,_ < d/.,o and q.,.+l < q...+2 <" ", lie outside
this interval (3.9).

For the proof we first observe that

0 0 2
-<A-A cot B tan

2 2 0

Then, if qo* denotes the abscissa (see Fig. 2) of the intersection of the straight line
ro with the curve 3’*

A
u -2NO’ 0>0,

1 [( ) 7r+ /( _):z 7r:__+ 2A],qo* - a-
2

a-
4

it is easy to see that, for -1/2 < a < 1/2 and -1/2 /3 1/2,

a+fl+l
2N

By applying Lemma 3.1 we have analogously

ctn, -- 71" l]tn, +

The above results can be extended to the cases a +1/2 or /3 +1/2 taking into
account that, instead of the sequence (3.5), we have one of the two sequences

q.,1 < .,2 <" < q.,. < qt.,.+l <" ", or
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We now apply Theorem 1.1 to the differential equations (2.2) and (3.1) relatively
to the interval (3.9). Inequality (3.3) readily furnishes the following separation result.

THEOREM 3.1. Let -1/2<--_ a <--_1/2, -1/2<--_ fl <=1/2. Then, between any two consecutive zeros

On,h(a, fl), h 1, 2," , n, of the Jacobi polynomial p(,,t)(cos 0) there is at least one

zero d/n,k(a, fl), k= 1,2,""" ,n, of the function z(,’t)(0) defined by (3.4).
We notice that this theorem does not allow us to derive inequalities satisfied by

the zeros On,k for general a and/3, -1/2-< a _-< 1/2 and -1/2_-</3 <_- 1/2. Indeed, it assures us only
that if 0n,1 --< 0n,1 or qn,n ----> 0,n then, for each k 1, 2, , n 1, either On,k < On,k+l <
On,k+l or On,k < tP,k < On,k+l; otherwise there is one of the intervals [On,h, On,h/l], h
1, 2,’’’, n-1, which contains two q-zeros and all the others contain exactly one
q-zero in their interior. A more precise result can be obtained for the ultraspherical
case a =/3.

THEOREM 3.2. Let -1/2<-_ a <-_ 1/2 and let On,k(a) =- O,k(a, t), k 1, 2,’’’, n, be the
zeros of the ultraspherical polynomial P(’)(cos 0). Then

(3.10) 0n,k(a) _--< n,k(t), k=l,2,"" ",[]
where $n.k(a) is the root lying in 0< 0 < r/2 of the equation

1 2(3.11) NO---- a cot0= 2k+a- -,
with N n + a +1/2. The equality sign in (3.10) holds only when 32=1/4.

For the proof we exclude the trivial case 32=- and observe that, according to
Lemma 3.1, the zeros n,k(OZ) are symmetric with respect to r/2 and that the same
property holds for the zeros On,k(). Hence for n even, the "central" interval

On,Hi2( Ol ( 0 ( On,HI2+ Ol ),

must contain, by virtue of Theorem 3.1, exactly the two zeros qn,n/2(a) and d/n,n/2+(a),
and consequently each of the other n- 2 intervals

On,k(Ol) ( O ( On,k+l(Ol), k=l,2,...,n-1, k-
2’

contains exactly one zero qn.k(a). For n odd, we have n,(n+l/2(a) 0,(n+/2(a) r/2
and each interval

On,k(Ol) ( 0 ( On,k+l(Ol), k= 1, 2,..., n 1,

contains exactly one zero qn,k(C), k # (n+ 1)/2.
As a consequence of Theorem 3.2 we can obtain an exact statement concerning

the location of the zeros of Jacobi polynomials with a or/3 +1/2. Indeed, it is well
known that the following formulas hold [9, p. 59]:

P(’(cos 0)=
F(2n + a + 1)F(n + 1) p(,,_,/2)(cos 20),
F(n+a + 1)F(2n+ 1)

() r(2n+a+2)r(n+l) Op(n,,l/Z)(cos20)"P2d-;1 (cos 0) cos
F(n+a+l)F(2n+2)

Now, observe that similar relationships are valid for the function z(,’)(0) defined

by (3.4). Specifically we have

(,), (0)= 2- /Zz’-’/z)(20), ,+1(0) 2-1/z’/)(20)
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where 0 < 0 < 7r/2. Hence, applying Theorem 3.2 and recalling Lemma 3.1, we obtain
the following result.

COROLLARY 3.1. Let -1/2 <-- <-- 1/2, -1/2 <-- fl <-- 1/2. Then

(3.12)
On,k(a, +1/2) <= n,k(a, +1/2),

k 1, 2,’’" n,
0.,(+/-, t)---> q,o.(+/-, t),

where d/n,k(a, + 1/2) and d/,,k(+ 1/2, fl are the roots, in 0 < 0 < zr, of the equations

In+(a+ 1)/2+] 0-
1/4- ct

2

4[n + (a + 1)/2+ 1/4] cot= 2k+a- ,
[n+(fl + l)/2+]O+ 1/4-/32

4[n + (fl + 1)/2+ 1/4] tan= 2k+--2 ’
respectively. The equality signs in (3.12) hold when a +/- or fl +/- 1/2.

Another interesting consequence of Theorem 3.2 can be obtained by observing
that d/,,k(a) is the solution of the equation 0 h(O) in the interval 0< 0 < 7r/2, where

h(O)
2k+a-1/2r 1 (N +-- a2 cot 0,

and that, from (3.10) and (1.7),

2k + a 1/2 7r

N 2"

Since h(0) is monotonic decreasing, we have

O,,,k(a) <- d/,,,k(a) h(O,,,k(a)) <= h(d,b,,,k(a));

that is, the following final result holds.
COROLLARY 3.2. Let -1/2<=a<--1/2 and let O,,k(a), k= 1,2,..., [n/2], be the zeros

ofP’ cos 0). Then

(3.13) Ch,,,k a <-- O,,,k a <-- 4,,.k a +’5 a cotb.,k(a)

where

1 2k+ ct- 1/2 7r
N=n+a+- tn,k (a)2’ N 2"

The equality signs in (3.13) hold only when al 1/2.
This corollary establishes that the approximations obtained by omitting the O-term

in the Gatteschi-Pittaluga formula (1.5) are upper bounds for O,,k(a), k=
1, 2,"" ", [n/2], in the ultraspherical case.

These bounds are very sharp, except for the early values of k, and numerical
comparisons have shown that they are better than those derived from the Ahmed,
Muldoon and Spigler inequality (1.12).
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Corollary 2.1 provides lower bounds of a nonelementary type, that is in terms of
the zeros of the Bessel function J(x). For elementary lower bounds we can use (3.13),
that is the Buell inequality (1.7). Moreover, we can use also, as soon as it is convenient,
the inequality

(3.14) 0.,(a) -> arccos x.*,(a)

where X*,k(a) is defined by

2n_+4n + 3 ]/Xn,k(O)
2n2 + 1 + (2a + 1)(2n + 1)

COS
k77-
n+l

for the values of k and ce such that the right-hand side of (1.11) is -< 1. Ahmed, Muldoon
and Spigler [2] have observed that (3.14) is sometimes sharper than (1.7).

In Table 2 the exact values of the zeros 016,k(0), k 1, 2,. ., 8, of the Legendre
polynomial P16(cos 0) are compared with the upper bounds given by (3.13), the lower
bounds given by the nonelementary inequality (2.16) and the lower bounds obtained
from the larger of (3.13) or (3.14). The asterisk indicates the case where the lower
bound in (3.14) is better than the one in (3.13).

TABLE 2
Bounds for the zeros 016,k(0).

Lower bound Lower bound Upper bound
k (3.13) or (3.14) (2.16) Exact value (3.13)

0.1427 9967 0.1457 2467 0.1457 2468 0.1459 9303
2 0.3331 9922 0.3344 9861 0.3344 9864 0.3345 2581
3 0.5235 9878 0.5243 8659 0.5243 8664 0.5243 9402
4 0.7139 9833 0.7145 2518 0.7145 2525 0.7145 2820
5 0.9043 9789 0.9047 5743 0.9047 5753 0.9047 5895
6 1.0947 9744 1.0950 3327 1.0950 3340 1.0950 3414
7 1.2851 9699 1.2853 3126 1.2853 3144 1.2853 3181
8 1.4756 3699* 1.4756 4003 1.4756 4028 1.4756 4039
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Abstract. In this paper we investigate the sign of (d/dx)iP’t3)(x), (i =0, 1,. ., n) at the point x sn
(/3-a)/(2n+ a +/3), where P’t)(x) is the Jacobi polynomial of degree n. As an application we establish
new inequalities for the zeros x’t) of P’t)(x). The asymptotic property x’’ sn, as the parameters a,/3
tend to in a particular way, is shown.

Key words. Jacobi polynomials, zeros of Jacobi polynomials, asymptotics
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1. Introduction and preliminaries. The ultraspherical polynomials P)(x) satisfy
the symmetry relation [3, p. 80]

(1.1) PT)(-x)=(-1)"P.X)(x), n:l,2,..., A>-1/2
which implies

(1.2) o(x) (0) 0,
d

o(X)(x)2k-1 -X 2k x=0

=0, k=l,2,..., A>-.

Thus the value x =0 plays a particular role in studying the properties of the
ultraspherical polynomials. The usefulness of properties (1.2) can be seen for example
in applications of Sturmian comparison theorems where the value x 0 is used as the
initial point. Unfortunately the properties (1.1) and (1.2) cannot be extended to the
more general case of Jacobi polynomials P’t)(x), a,/3 > 1. (In the common notation
we have P)(x)-- P-/2"x-1/2(x).) Thus in Jacobi’s case the question arises naturally
to find a value s. which would play a similar role as x 0 in (1.2).

For a,/3 >-1 and n 1, 2,... let s. be defined by

2n+a+fl
1.3) s, s,t)

We know that P"’)(x) has single zeros X.k Xk’t)(k 1, 2," , n) in (-1, 1) denoted
in decreasing order, i.e., 1 > x.1 > x.2 > > x.. >- 1.

We observe that the zeros X.k and the value s. in (1.3) are connected by

1
(1.4) s.=- Z Xnk"

flk=l

The meaning of (1.4) is that s. is the centroid of the zeros of P"’)(x). In fact the
polynomial Pfl’O)(x) can be written as

P’t)(x) k’t3)(x x.1)(x x.2) (x

k.,t3)[x" --(Xnl-- Xn2--.,. + Xnn)xn-l- "]

k.t3)(x" + r,t3)x"-’+...).

* Received by the editors April 21, 1986; accepted for publication May 20, 1986. This research was
supported by the Consiglio Nazionale delle Ricerche of Italy.

? Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Hungary.
t Dipartimento di Matematica, Ed Applicazioni, via Archirafi 34, 90123 Palermo, Italy.
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Therefore [1, p. 169]

x. + x,, + + x,, -r’) n

which proves (1.4).
Actually we have by [1, 10.8 (16), (17)]

2P’t)(x) (2 + a + fl)x fl + a,

d
dx

2n+a+fl

1 1P’’t)(x)= (c +/3 + 3)P+l’t+l)(x)= (a + fl + 3)[(4+ a + fl)x + a -fl],
Z Z

and it is not difficult to see that

P"’ts)(sl) =0,
d

xx P("’)(s:) 0

which resembles (1.2) for n 1 and n 2.
Now we can formulate the main results, which shows that the situation changes

completely for n _-> 3.
THEOREM 1.1. Let n 1, 2,. , a, fl > 1, a ft. Let s, be defined by (1.4) and put

k- [(n- 1)/2], Yk 8k2/(k- 1)(2k- 1). Then the Jacobi polynomial P’t)(x) satisfied
the relations

P(,,"’t)(x) >0, P(,,"’t3)(x) =0,

(1.5) x=s. x=s.

(--1) P"’)(x) >0, (-1)’+’(fl a) P"’)(x) >0,

for 1 andfor 2, 3,. , k, a fl < Moreover ifn is even then also the inequality

(-1)"/:p-,)(.) > 0

holds for a, fl > 0 and a fl Yk+.
Theorem 1.1 will be proved in 2. In 3 some applications and consequences of

our theorem will be given.

2. The proof of Theorem 1.1. For the proof of the theorem we shall need the
following result.

LEMMA 2.1. For real variables a, b let the functions 6, ei(i 1, 2,...) be defined
by the recurrence relations

el=0, 61=ab(a+b),

(2.1) e+=,+ab( a+b )2i_1-1 ei,

+= ab
2i

-1 -(a-b) -(a-b)ab a+b_l e.2i- 1

Letj 1, 2, 3,.. "; supse a, b e 2j, forj 2, 3,... also a b , where has
the same meaning as in eorem 1.1. en

(. , > J-2i-l(J-i)(a-b)e’ e+>O, fori=l,2,...,j.
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Proof It is clear that the function ei ei(a, b) and 3 6i(a, b) are polynomials
in the variables a, b.

The proof of (2.2) will be carried out by complete induction.
By (2.1) we obtain

61 ab(a + b) > (2j- 1)(j- 1)(a b)2el =0,

e2 1 + ab(a + b- 1)el 61 > 0,

which proves also the validity of (2.2) at j 1.
From now on we may assume j>_-2. Suppose the validity of (2.2) for a fixed

{ 1, 2, ,j- }. Then we have to prove that

’+1>
2i+ 1

(J-i-1)(a-b)2e+l

which can be written in the form

(2.3)

where the notation

ti-t- O’i+lA2ei+l

o-,-
2i-

(j i), A a b[

have been used. By (2.1) the inequality (2.3) is equivalent to

(2.4) [ab(a+b 1) A ] ( -1)(l+o-+l)ei.2i ’i+lA2 6i > Aab
a + b

2i-1
First we prove that the quantity in the brackets is positive. Since a, b _-> 2j, we have

ab ( a + 1)_->4j2(-1)
and A_--< yj, hence it is sufficient to show that

(2i+1) -1 -(j-1)(2j-1)[(2j-1)(j-i-1)+2i+l]>O"
Since

(2j- i)(2i + 1)
>4j-2i+1

then we need only to prove that

2
4j-2i+1- [(2j-1)(j-i-1)+2i+l]>O, i=1,2,. .,j-1.

(j- 1)(2j- 1)

The expression on the left-hand side is linear in i, thus we have to check this
inequality only at and =j- 1. Actually at 0 we have

2
4j-l- >0

(j- 1)(2j- 1)

and at i-j-1

2
2j+3->0,

j-1



1566 A. ELBERT AND A. LAFORGIA

respectively. Therefore the coefficient of 6i in (2.4) is positive. By induction we know
that 6i > o’iA2ei----> 0; thus instead of (2.4) it is sufficient to prove the inequality

a+b a+b
1 >--o’i(1-1-o’i+1)-, i=1 2,’’" j--1tri 1 --(1 + tri+l)

or equivalently

(a + b -4j + 4)[(2j- 1)(j + i)- 2i(2i + 1)] + (j- i- 1)[4j(2j- 1) + 8(j 1)i- 8i2]

>-2i(2j-1)(j-i)[(2j-1)(j-i-1)+2i+l]--a i=1,2,. .,j-1.

Since the coefficient of (a+b-4j+4) is positive and a,b_>-2j, A2yj=
8jz/(2j 1)(j-1), we have only to show that

Q(i) 4[(2j 1)(j + i) 2i(2i + 1)] + (j i- 1) [4j(2j 1) + 8(j 1)i- 8i2]

-4i J-’ [(2j_l)(j-i-1)+2i+l]>_O.
j-1

By straightforward calculations Q(i) can be written as

Q(i) 4
j- i- !.. i(j i- +j(4j2-j 2)]
j-1

which is clearly positive for i= 1, 2, ,j-2, while for i=j-1, Q(j-1)--0. Thus we
have proved the inequality + > tri+lA2e+. Since by induction step we know that
e+ > 0, hence 8+ > 0.

To complete the proof of Lemma 2.1 we have still to show that ei+2 > 0. But this
is true by the recurrence relation (2.1). This completes the proof of Lemma 2.1.

Now we can pass over to the proof of Theorem 1.1.
From [3, p. 68] we know that

(2.6)

Let us consider the positive variables a, b as

(2.7) a=n+a, b=n+/3;

then by using (1.3) and (2.6) we get

(2.8) s,
a + b ,,=o n- rn

(x 1)"-"(x + 1)’.

From [3, p. 63]

d p,.3(x 1
--.-,

dx (n++t+) (x)

2-"(n + a +/3 + ). (x 1 )n--m--l(x "J- 1)"
m=O n--m--1
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it follows

d

(2.9)

P’’t)(x) 2-"(n + a +/3 + 1)’.. (n + a +/3 + l)

,,=o rn n-m-I
(X--1)n-m-l(x+ 1) 1=0,1,. .,n.

or equivalently,

1 + (b a)x- abxZ]ck’= -ab(a + b)xck.

Equating the coefficients of the terms x in both sides we obtain

(2.14) (m+l)c,,+l=-(b-a)mc,,,+ab(m-l-a-b)c,,_l, m=l,2,....

For our purposes it is convenient to use the notation

By (2.8) we have s-1 =-2a/(a+b),s+l=2b/(a+b); hence

Ch (--a)h-mb m, h =0, 1 "’’.
m=O m h-m

It is clear that the function Ch(a, b) is a polynomial in the variables a, b and
moreover

-1
(2.11) co=l, Cl- 0 C2--" ab(a+b).

The functions Ch satisfy a recurrence relation which we are going to find. To this
end we consider the generating function

(2.12) th(x)= ChX h.
h=O

We claim that

(2.13) b(x) (1 ax)b(1 + bx) ’,

so the power series in (2.12) is convergent for ]xl<min{1/a, 1/b}. Indeed

(1-ax)b= (-ax) k, (1 + bx)" ., a
(bx)";

k=0 =0 m

therefore

(1 ax)b(1 + bx) . 2 (-a)b’x+m
=0

2 xh a b
(-a)h-b= 2 ChXh=(X)

h=O m=O m h m h=O

Taking the logarithmic derivative of 4(x) in (2.13) we get

4’ -ab(a+b)x
4 ( ax)( + bx)’
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This follows directly from [1, 10.8 (14), (17)]. Now because of (2.11) the values of Co
and ca are known, hence the sequence {c,}n=o is well defined.

Replacing in (2.14) c,, by

(2.15)
(2i- 1)c2,-1 (-1)’(b- a)e,,

2ic2i (-1)i6i,

i= 1,2,.’.

we obtain for ei and 6i the recurrence relations (2.1) given in Lemma 2.1. By (2.9),
(2.10), (2.15) the connection between the derivatives of P’O)(x) at x= sn and the
functions ei and 8 is the following:

(-1)’ P’t)(x) 22i-n-1 n-2i

(a+b)-2’6i 1-I (n+a+fl+j),

p,t3)(x)

22i-n+1 n-2i-1

(-a)2(a+b)-2’-le,+ (n+a+fl+j),
2i+1 j=

where, in view of (2.7), the relation b a =/3 c was used. In order to prove Theorem
1.1 we need to show that e2, e3," ek+l, tl, t2," "’, tk are positive.

When n is odd, i.e., n 2k+ 1, applying Lemma 2.1 with j k we have that
e,..., ek+ and ,..., k are positive. Finally when n is even, i.e., n=2k+2 we
have as before the desired sign of the derivatives in (1.5) as in the previous case.

It remains only to investigate the inequality (-1)"/P’)(sn)>O, which is
equivalent to the relation k+ > 0. But for a,/3--> 0 we can apply the lemma with
j k + 1 leading to k+ > 0.

The proof of Theorem 1.1 is complete.

3. Further results. We are concerned in this section with some consequences of
Theorem 1.1 and related problems. The first result is the following.

THEOREM 3.1. Let x7"t denote the ith zero of P"’(x) in decreasing, order and
suppose a- fll <k, where "k has been defined in Theorem 1.1. Then

(’,) < (,) .(,)(i) for fl > a > -I X2k+.k+2 k+ k+a.k+a,

(ii) for a > fl > -1 -2k+l,k+l 2k+l -2k+l,k

(iii) for a, fl > 0 ..,t) < S2k,) <-a’2k,k+ 2k,k

Proof In the interval ’n,i+ 1, (Xi+ 1, Xi) the polynomial p-.t)(x) has the
same sign as (-1) . Moreover applying Theorem 1.1 with /3>a we get that
(_1) k+lo(,t)t"2k+k+) is positive. Hence S2k+ belongs to one of the intervals

"’’, (Xk+4, Xk+3), (Xk+2, Xk+l), (Xk, Xk-1),’’’.

.(.) o(.)Letting/3- a we get Xk+-- .k+.k+ =0= 2k+, thus by continuity argumentation we
obtain the only possibility 2+’t k+zr"’t), g+""’)a which proves the first part of Theorem
3.1. The second part can be proved similarly.

For a>/3>-I we have (--1)ko’t)t’t) >0,--2k+Ok+ thus Sk+ belongs to one of the
intervals (Xk+3, Xk+2), (Xk+, Xk), (Xk-, Xk-), and again by continuity
argumentation we have the conclusion of part (ii) of Theorem 3.1.
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Finally when n is even we have from Theorem 1.1 (--1)kp(k’)(S2k)> 0 and s2k
belongs to one of the intervals

"’’, (X2k,k+3 X2k,k+2), (X2k,k+l, X2k,k), (X2k,k-1, X2k,k-2),

Now, letting/3 a we get s(2’) 0.
Moreover by symmetry properties of the ultraspherical polynomials we know that

2k,k 0 and -’2k,k+l ( 0. Therefore as before by continuity argumentation we obtain
t-’(’) --(’)a The proof of Theorem 3.1 is complete.S(2’/3)

( k-2k,k+l, .a’2k,k 1.

As an immediate consequence of Theorem 3.1 we have the following result.
COROLLARY 3.1. For ]a ] < X/k the following inequalities

., [3 ot
2k+1,k+1 4k+a+fl+2’

/3>a>-l,

(3.1)

X(O,,/3) < fl a
2k+l,k+l 4k + a +/3 + 2’

a >/3 > -1,

2k,k > 4k + a + fl
fl>a>0,

2k,k+l 4k + a +/3’
a >/3 > 0

hold.
Remark 3.1. The bounds given in Corollary 3.1 are more stringent than the ones

which we could obtain by applying the results of Stieltjes [3, p. 121]

0 x(.7,) > 0, 3_ x(7, < 0.

Remark 3.2. We do not believe that the inequalities (3.1) are the best ones. Indeed
in the particular case a =-1/2,/3 =1/2 the Jacobi polynomial P(-l/2’l/2)(x) has the form
[3, p. 60]

1/2,1/2) (COS O)

Thus for n 2k + 1 we get

1" 3 (2n 1) cos ((2n + 1)/2) 0

2" 4 2n cos 0/2

2k+l r1/2)
7Y sin2k+1,[+1 COS

4k + 3 2(4k + 3)’

while S2k+l--1/(4k+2). So we lead to the following question: Let -1 <a </3. For
which values of/zl,/x2 > 0 do the inequalities

ll 4k + a + fl + 2
"v’(a’l) < ]’1’2

4k + a + fl + 2-2k+l,k+l

hold? By Theorem 3.1 this is true with ’1--1. We suspect that /z2 zr/2. It is clear
that a similar question can be considered for even n.

Concerning the zeros of Jacobi polynomials P(,’)(x) under the condition
-1/2_-< a _-< 1/2,-1/2_-</3 _-<1/2 we have the inequalities [3, p. 125]

(3.2) 2i+a+B-1 2i
7r < 0(,,.’) < 7r, 1, 2, , n,

2n+a+ fl + l 2n+a+/3+l
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where, as usual

x7’ cos 07’) cos o,.
The results of Theorem 3.1 enable us to improve several bounds in (3.2). The

results are given in what follows.
T.EOREM 3.2. For -1/2 < a < < 1/2 thefunction -2g+l(’)(cos 0) has exactly k zeros such

that -- 02k+l,k+2 -.O’k+l k+3 -,.0"k+l 2k+l 7"1".
2

Moreover the inequalities

02k+ l,i < T -2

hold, where

2(i-k-1)

4k+a+fl+3
"rr, i= k+ 1,. ,2k+ 1,

r arc sin ((fl a)/(4+ c +fl +2)).

Proof. By the lower bound in (3.2) we obtain for n 2k + 1, k + 2

2k+a+/3+3
02k+ l,k+ 71"

4k+a+fl+3
and the right-hand side is larger than r/2, because a +/3 + 3 0. Therefore the values
02k+l,i(i-- k+2, k+3,""" ,2k+ 1) lie in (7r/2, 7r).

On the other hand by [3, p. 125, (6.3.3)] we have also the inequality

27/"
(3.3) O2g+l i+l--02k+l,i <- i= 1 2,... 2k,

-4k+a+fl+3’
:1where equality occurs only for [a[ , 1/31 =1/2.

For fl-a -< 1 <k we can apply Theorem 3.1 leading to the inequality

X2k+l,k+l COS 02k+l,k+l 4k+a+fl+2-cos -r

hence

0’,/3) <__ 7-.2k+1,k+1 2

We conclude that there are exactly k zeros in (7r/2, 7r).
By repeated applications of inequality (3.3) for k + 1, k + 2, , 2k we obtain

the desired inequality for 0k+l.i+l which completes the proof of Theorem 3.2.
In the case ->, similar results are established in the following theorem.
THEOREM 3.3. For Ice[_->1/2, I1=>- and -1 < a < fl < a +vk the function

’’O)(cos 0) has at least k + 1 zeros in (0, 7r/2) such that the inequalities2k/l

7r 2(k+l-i)
02k+l,i < 7"- 1 2, k + 1

2 4k+a+fl+3
7r,

hold, where 7" is the same as in Theorem 3.2.
Proof. The proof runs on the same lines as the proof of Theorem 3.2. We observe

that following the same arguments given in [3, p. 125] for the proof of inequality (3.3)
we obtain

27r
02k+,,+--O2k+,i >- i:1,2,’’- 2k, lcel>1/2, lfl[>1/2

-4k+a+fl+3’
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(where equality occurs if and only if la[- I/3[ 1/2) and the conclusion of Theorem 3.3
follows from these inequalities using Theorem 3.1.

Remark 3.3. For [a[, Ifl[ >-- 1/2, a >/3 a similar argumentation gives that the function
(,3)Pk+(COS O) has exactly k zeros Ok+l,i(i- k+2," 2k+ 1) in (r/2, r) which satisfy

7r 2(i-k-l)
02k+l > --+ z + 7r, k + 2, 2k +1 a--fl<X/k.

2 4k+a+fl+3
In the case n- 2k the following result can be established.
THEOREM 3.4. For 0 a fl <- 1/2 the last k + 1 zeros of the function P(’)(cos 0)

satisfy the inequalities

02k,k- 02k,k+l 02k,2k 71",

.a- 2(i-k)
02ki -- 174r" ’Tl’, k+ 1 2k

2 4k+a+fl+l
where

v arc sin ((fl a)(4k + a + fl)).

_Proof From (3.2) we obtain

2k+a+fl+l
02k,k+ 7r --.

4k+a+fl+l 2

Therefore the values O2k,i(i= k+ 1, k+2," 2k) lie in (7r/2, 7r).
On the other hand

2k 7r
02k,k 7"1" -4k+a+fl+l 2

and we conclude that in (7r/2, 7r) there are exactly k zeros of P(’)(cos 0). Now by
Corollary 3.1 with fl > a we obtain

X2k,k=COSO2k,k3--Ol (71")4k+a+fl=cos -v fl>c>O,

hence

Using this inequality in 13, (6.3.3)], by repeated applications, we get

7r 2(i- k)
02k,i<---- V + 7r, i= k + l 2k

2 4k+a+fl+l
which is the conclusion of the theorem.

Now we turn our attention to another interesting property of Jacobi polynomial
P(’3(x) which is also related to the centroid s, of its zeros.

THEOREM 3.5. Suppose a, fl > 1 and Ix >= 1. Denote by X ([d,), X2(/.l,) X ([d,) the
zeros of the Jacobi polynomial P"-l)"+"’("-l)"+")(x) in decreasing order. Then the
asymptotic relations

[3 Ol
(3.4) lim Xi(i S 2,. n

-,o 2n + a + fl

hold.
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Proof. Using (2.7) and (2.8) we have to consider the polynomial

Q.(x;/) 2"P-1)"+’ -l)"+’t)(x)

It is clear that Q,(x; x) is also a polynomial with respect to which can be
written in the form

Q.(x; /)= I"R..(a, b; x)+ i"-lR.,._,(a, b; x)+ + R.o(a, b; x),

where

R,n(a, b; x)=
,,=om!(n-m)!

(x 1)"-"(x + 1)"

1 (a+b)"
nV

[a(x+ 1)+ b(x- 1)]" -(x-s)".

Substituting x xi(/.,) in Q.(x; t-) and letting/ .oo, we find the desired result.
Remark 3.4. We observe that for a fl, Theorem 3.4 gives the known result

[1, p. 203, (6)] that the zeros of ultraspherical polynomial PT)(x) tend to zero if A -.
This result together with the classical Stieltjes’ theorem [3, p. 121]

x,i <0, i=1 2,’’’
0

gives that x tends to zero monotonically.
This property suggests the following question: Do the zeros x(x)(i= 1, 2,.-. n)

of the polynomial P"-"+"’("-+"(x) tend monotonically to zero if
We conjecture that this property is true.
Remark 3.5. Finally we observe that (3.4) can be thought of as complementing

the result of Moak, Satt and Varga proved in [2] where for n - oo the behavior of the
smallest and largest zeros of the Jacobi polynomials was studied.
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Abstract. A new connection between Jacobi and Hahn polynomials is given.
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The real linear space of all algebraic polynomials of degree not exceeding n is
denoted by II,. Clearly, dim II, n + 1.

The Bernstein polynomials

N,,,(x, =0, n
2

form a basis in
For a,/3 >-1 the Jacobi polynomials are defined by the Rodrigues formula

(-1)"
D"[ xp(#")(x)=2,,n!(l_x)O,(l+x) (1- (1-x)(l+x ], n=O, 1,...

where D ddx. The set (P(fl’))o is orthogonal with respect to the scalar product

f(x)g(x)(1 x) 1 + x) dx.

Since

H, span Po’’)," ", P’’)]
it follows that for eachj=O,..., n there is a unique vector (h#,,(O),..., hj,,(n)) such
that

p,.t)= h2.,.(i)Ni.,..
i=O

We denote by h2.. the polynomial h2..(.)II, interpolating the points
(O, hh,,(O)), (n, h,,,(n)).

Our aim is to show that (hj,,)j"_-o are proportional to the Hahn polynomials.
For given a,/3 >-1 and integer n > 0 the jth Hahn polynomial h .’’) is defined

by the Rodriques formula [3]

h.,t)(x) (-1)
"" j! (x)

where Vf(x f(x -f(x and

I’(a + + n x)F(/3 + + x)
o(x)

F(l+n-x)F(l+x)

F(a + 1 + n x)F(/3 + 1 + x +j)
pj(x)=

F(l+n-(x+j))F(l+x)
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For j 0,... n, we have h.’)j,n 6 IIj and these polynomials are orthogonal with
respect to the scalar product

f(i)g(i)p(i)
i=0

with the weight p.
THEOREM. Let a, >-1 and the integer n >-0 be given. Then

(n)jPJ’t)= h!’t),, (i)Ni,,,, j=0,.’-, n
i=0

where (n)j n(n- 1)... (n-j+ 1).
For the proof we introduce the following singular operators"

Lf)(x) 1 x2)(O:f)(x) + [fl ce a + fl + 2)x](Of)(x),

(l,f)(i) i(n + a + 1-i)(VAf)(i)+[( + 1)n-(a + + 2)i](Af)(i),

where (Af)(i) =f(i + 1) -f(i).
LEMMA. Let H II, and let

Then

H= h(i)Ni,..
i=0

LH= (l.h)(i)N,..
i=0

Proof One checks directly the identity (i= 0,..., n)

n
DNi, =-[Ni-l,n_l Ni,n_,],

where N-1,,-1 N,,,_I 0. It gives the formulas

Ah(i)Ni,._,DH
2 i=o

n(n- 1) "x7,2DZH /.., AZh(i)Ni,,-2..
This and the definition of N,, imply that

x(DH)(x) [ + l-x]
1

[i(Vh)(i)-(n -i)(Ah)(i)]Ni,(x)
2 i=o

and

Moreover, since

(1 -xZ)(D2H)(x)= i(n -i)(VA)h(i)Ni,,,(x).
i=0

i+1 n-i
Ni, Ni+l,n--- gi,
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we have

DH =- i0
i(V h )( i) + n -i)(Ah)(i)]Ni,..

Now, VA A-V and therefore

a 2+fl a+fl+2i(n-i)VA+ -aiV+; (n-i)A -a +iV+(n-i)A
2 2 2 2

i(n-i)VA+ (a + 1)i(VA- A) + (fl + 1)(n-i)A

i(n- i+a + 1)VA+[(fl + 1)n-(a +fl +2)i]A,

whence we infer the thesis of the lemma.
Proofof the theorem. It is known [3] thatj(j+ a +/3 + 1),j=0,..., n, are simple

eigenvalues for both operators L" II, I-I, and I, "l-I, 1-I,.
Their corresponding eigenvectors are PJ’’t), j 0, n, and hj,n ,j=0,...,n,

respectively. Applying the lemma to H PJ’t)we find

O=LH-j(j+a+fl+I)H= (l.h-j(j+a+fl+l)h)(i)Ni,.,
i=0

whence

and therefore h ChJ’t3) i.e.

l,h =j(j+ a + fl + l)h,

pJ,,t) C hJ,%" t)(i)Ni,,.
i=0

Using the Rodriques formulas defining PJ’t) and h!"’t)
j,, we find that C. (n) 1, and

this completes the proof.
The theorem in case of a =/3 =0 was established earlier in [1] by a different

method not extendable to the general case of a,/3 >-1.
Consequences and applications of the theorem will be discussed elsewhere.
Remark. After this note was submitted to this Journal, Richard Askey and George

Gasper kindly communicated to the author that the theorem can also be obtained with
the help of the hypergeometric representations of the Jacobi and Hahn polynomials.
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MULTILATERAL SUMMATION THEOREMS FOR ORDINARY AND BASIC
HYPERGEOMETRIC SERIES IN U(n)*
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Abstract. In this paper we prove generalizations of 2H2, 5H5, 1XI/’I, and 6XI/6 summation theorems for
hypergeometric series in U(n). This includes a further generalization of Milne’s 1 summation theorem
for basic hypergeometric series in U(n). These results are mostly obtained by use of contour integration
together with Milne’s U(n) generalizations of the Gauss, 5F4 and 6o summation theorems.

Key words, hypergeometric series in U(n), summation theorems, contour integrals, basic hypergeometric
series, bilateral series

AMS(MOS) subject classifications. 33A75, 33A30, 33A35

1. Introduction and statement of results. In 1976 Holman, Biedenharn and Louck
[12] and later Holman [11] defined interesting multivariable generalizations of the
classical hypergeometric series and well-poised hypergeometric series, which they
called hypergeometric series in U(n). These definitions arose out of a problem in
mathematical physics of finding analogues of the Wigner (3-j) and Racah (6-j)
coefficients of angular momentum theory for the higher dimensional unitary groups.
It was realized that many of the fundamental identities for the 3 -j and 6-j coefficients
were consequences of classical transformation and summation theorems for hyper-
geometric series. Holman [11] showed that, conversely, the corresponding identities
for higher dimensional multiplicity-free Wigner and Racah coefficients implied gen-
eralizations of classical summation theorems to the setting of hypergeometric series in
U(n).

There were several important summation and transformation theorems for classical
hypergeometric series for which Holman did not provide generalizations for hyper-
geometric series in U(n). For example, he did not prove generalizations of the
nonterminating Gauss summation theorem, nor a U(n) generalization of Whipple’s
well-poised 7F6 transformation. Furthermore, there remained the question of defining
a q-analogue of the hypergeometric series in U(n) whose properties would generalize
those of the classical basic hypergeometric series. The importance of doing so was
discussed by Andrews in [2].

Recently, Milne has proved a nonterminating U(n). Gauss summation theorem
[20] (see Theorem 2.7 below) and the present author gave a generalization of Whipple’s
transformation for hypergeometric series in U(n) [10]. Milne has also defined a basic
analogue of the hypergeometric series in U(n) and proved a number of important
properties for them [15]-[20]. Using a U(n) generalization of the q-binomial theorem
[15] that he found and an analytic continuation argument similar to that in Ismail
13 ], Milne 18] proved a U(n) generalization of Ramanujan’s 1, summation theorem

for bilateral basic hypergeometric series. A specialization of Milne’s 1- theorem gives
the Macdonald identities for affine root systems of type A1) [14], [15] in the same
way as a specialization of the classical 11 theorem gives the Jacobi triple product
identity. Milne also proved a U(n) generalization of a terminating version of the
well-poised 6P5 summation theorem [17] and used analytic continuation to obtain a
nonterminating U(n) 6tp5 summation theorem [19]. This theorem is also important in
that it clarifies the concept of "well-poised" hypergeometric series in the setting of
hypergeometric series in U(n).

* Received by the editors July 23, 1986; accepted for publication February 9, 1987.
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In this paper we prove U(n) generalizations of some of the classical summation
theorems for bilateral hypergeometric series and also for basic bilateral hypergeometric
series. The method of proof is to begin with a summation theorem for one-sided (basic)
hypergeometric series in U(n) and use contour integration to inductively prove their
multilateral generalizations. We also obtain a further generalization of Milne’s 11
summation theorem as a consequence of a U(n) generalization of the well-poised 6%I/’6
summation theorem.

In order to define hypergeometric series we must first define the rising factorial
(or Pochhammer symbol):

F(c+ n)
(c)

r(c)
(1.1)

for n7/, cC.
If n > 0, then

(1.2a) (c). =(c)(c+l)’’’ (c+n-1),

(-1)"
(1.2b) (c)_.

(1-c)(2-c)"" .(n-c)
and

(1.2c) (C)o 1.

For the q-analogue, let q be a complex number with Iq] < and for a C, n > 0,
define

[a], =(a; q), =(1-a)(1-aq)... (1-aq-1)(1.3a)
and

(1.3b)

For n Z, define

[a]= H (1--aqk).
k=O

[a]
(1.3c) [a], [aq"]o"

The definition (1.3c) agrees with (1.3a) for n > 0. It follows from (1.3c) that, for n > 0,
we have

[a]_,,=(a;q)_,=
1

(1-a/q)(1-a/q2) (1-a/q")

(_l)-q-(-+)/2
(1.4a)

[q/a],a"
and

(1.4b) [a]o 1.

An ordinary bilateral hypergeometric series with A numerator parameters, B
denominator parameters, and variable z is defined by

(15) AHB [ al’ a2’ aA’ ] (al)n(a2)n" (aA)n
bl,b2,,o ,,bB;

z (1:2): (bB)n
gn

where a, , aa, ba, , b, z e C. Similarly, the basic bilateral hypergeometric series
is defined by

(1.6) Axis’B[ al’ a2’ aA; ] [al]n[a2]n" [aA]n
bl, b2, bn;

q’ z [-i:i’2]; i-J- z"

where Iq] < 1 and al," ", aa, bl, ", bB, z C.
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If one of the denominator parameters, e.g., bl, equals one, then the terms in the
bilateral series (1.5) vanish for n <0 and the series (1.5) reduces to the ordinary
hypergeometric series

al,
aF-i b2, be;

z

Similarly, if bl equals q in (1.6), then the basic bilateral series (1.6) reduces to the
one-sided basic hypergeometric series

al,
AOB-1

b2 ", be;
z

Summation theorems for bilateral hypergeometric series date back to 1907, when
Dougall [9] discovered the following pair of identities. He proved

c,d,
1 =F

c-a,d-a,c-b,d-b

where Re(c + d a b 1) > 0 and

[a,...,a] r(al)r(a)...r(a)
F

b,,..., bk -=r(b,)r(b) r(b)

for a,. ., al, hi," ", bk C. He also proved

5H5 1
a, l+a-b, l+a-c, l+a-d, l+a-e;

=F rl-b, l-c, l-d, 1-e,l+a-b,l+a-c, l+a-d,
(1.8) l l + a, l-a, 1 +a-b-c, l + a-b-d, l +a-b-e,

l +a-e, l +2a-b-c-d-e

l/a-c-d,l+a-c-e,l+a-d-e

where, for convergence, we assume Re (3 / 4a 2b 2c 2d 2e) > 0. The 2H2 identity
(1.7) generalizes the classical Gauss summation theorem and the 5H5 identity generalizes
the well-poised 5F4 summation theorem.

For basic bilateral series there are two summation theorems which are particularly
important. They are Ramanujan’s 1 summation theorem and W. N. Bailey’s well-
poised 6/’6 summation theorem [8]. We have

(1.9) 1 [a; ] [b/a, az, q/az, q; ]b,
q’ z II

q/ a, b/ az, b, z;
q

where Ib/a < Izl < 1 and

[ a1, a,; ] [a,]oo[a]oo [a,]oo
II

b,, bk;
q -[bl][b2]" [bk]

for al,"" ", al, bl,’", bk C and Iql < 1. Similarly

[ qx/-,-qx/,b,c,d,e; ]66 v/-, _w/-, aq/ b, aq/ c, aq/ d, aq/ e;
q’ aq/ bcde

(1.10)

[ Jaq, aq/ bc, aq/ bd, aq/ be, aq/ cd, aq/ ce, aq/ de, q, q/ a
II q b, q c, q/d, q/e, aq/b, aq/c, aq/d, aq/e, a2q/bcde; q

where laq/ bcdel < 1.
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These basic bilateral summation theorems have many important applications. Both
the q-binomial theorem and Jacobi’s triple product formula can be obtained from (1.9)
by appropriate specializations and limits. Also the 11 theorem can be used to prove
some interesting integral identities (see Askey [4], [5]) which have applications to
orthogonal polynomials (e.g., the Rogers q-ultra spherical polynomials [6]). Some of
the applications of the 6I/6 identity to number theory and the theory of partitions are
discussed in Andrews’ article [1]. These include a proof of Ramanujan’s partition
function congruence p(5n+4)=-O mod 5 and also formulas for the number of rep-
resentations of an integer as a sum of 2, 4 or 8 squares. Both of the identities (1.9)
and (1.10) also play an important role in the analytic theory of partitions [3].

Generalizations of the 2H2, 5H5, 1XItl, and 6XI/6 identities for bilateral
hypergeometric series in U(n) will be stated below. It is hoped that these U(n)
generalizations might prove useful in higher dimensional analogues of the problems
just mentioned.

In 2 the following generalization of the 2H2 summation theorem is proved.
n+lTHEOREM 1.11. Let n >--1 be an integer and Re (i=1 (fli- ai))> n. Then

(1.12)
yl," ",yn z- z = =, (13 + z)y

r -n + Y (t,- ,) r(1 - z)r(t, + z)
i=1 i----1 k=l

n+l

II r(,-)
i,j=l

F(1 z, + zj)F(1 + z,- zj)

where z z2 for 1 <- <j <-_ n, and a + Zk and 1 fli zk are not positive integers for
1--<i_--<n+1 and l<-k<-n.

In 3 we prove a U(n) generalization of the 5H5 summation theorem for each
n _-> 2. The case n 2 is equivalent to the 5H5 identity (1.8).

THEOREM 1.13. With Re (Yi=l (b- a)) > n 1 we have

yl,...,yn=--o
yl+’"+yn =0

(z,+y,)-(z+y)) fi (a,--Z,+Zk)yk
(bi z + Zk)ykZi Zj ,k=

(1.14)
r(1-n+ (b,-a,)) r(1-a,+z,-z)r(b-z,+z)

i=l i,k=l

fi F(bi ak Zi + Zk H
i,k=l li<j<--n

F(1 + z- z2)r(1 zi + zj)

where zi # z for 1 < <j <-_ n, and ai Zi + Zj and 1 b + z z are not positive integers
for l <-i,j<-n.

In 4 we prove a U(n) generalization of the 66 summation theorem for each
n >-2. Again the case n 2 is equivalent to identity (1.10).
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THEOREM 1.15. With Iql<l and Iq-"I-l,= (b,/a,)l<l, we have

Z H
ziqY’ zvqyj aiZk/Zi]yk

yl,"’,yn=--<x9 l<=i<j<=n Zi--Zj / i,k=l [biZk/Zi]yk
Yi+’"+Yn =0

[q]-’ II [(b,z)/(az,)] 1-I [qz,/z][qz/z,]
(1.16) i,k= <_-i<_-<.

ql-n (bi/ai) H
i=1 i,k=l

where z zfor 1 <-_ <j<-_ n, and az/z q and q-lbz/z q- for a positive integer
and 1Ni, jNn.

In 5 we prove a U(n) generalization of the summation theorem for n 2.
The classical identity (1.9) corresponds to the case n 1 and is used, along with
Theorem 1.15, to prove the general result for n N2. The argument here is similar to
that in 18].
To 1.17. Let Iql< ad ql-n il (b/a)l<ll<. en

yl,’’’,yo=-- li<jo Zi--Z ] i,k=l [bizk/zi]y
(1.18)

where z z and 1N <j N n, and az/z q and q-1 bi2j/ zi q-I for a positive integer
land 1Ni, jNn.

The special cases ofTheorems 1.15 and 1.17 when b b b have previously
been obtained by Milne as Theorems 1.24 and 1.15 of [18].

We finally remark that the method of contour integration used to prove the
identities in the present paper has a long history, which is discussed in Slater [22].
Slater and Lakin [23] give a contour integration proof of the identity (1.10). The
major diculty in extending their method is to find the correct integrand which will
permit an inductive proof of a U(n) multilateral summation theorem, with induction
on the number of summation indices allowed to take on negative integral values. The
staing points for the induction are Milne’s generalizations of the Gauss, the sF4 and
the s summation theorems [20], [19]. There are also ceain trigonometric function
and theta function identities, Lemmas 2.14, 3.14 and 4.14, which are used in the proofs
of Theorems 1.13, 1.15 and 1.17 here.

(2.1)

2. A generalization of the 2H2 summation theorem. For 1 _-< _-< n, let

fl(s)=(-1) "-t sin 7rs nl r(1 -/3, s_)
sin --s)i=1 r(1-a,-s)

X (zi+Yi-S)
Yl,"’,YI-I =O Yl+,’",Yn i=

i#l

nIU ((zi+Yi)--(zj+Yj)) -I (Oli’+’Zk)Yk
<=i<<<_. i: : (+z)
i,jl k,#!
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where fl, 1 z, for 1, , 1-1, and s C, and we assume that the series converges
absolutely. We also assume that (/3, + Zk) is not a negative integer or zero for 1 <-- k <= n,
l<=i<-n+l, and (a,+Zk) is not a positive integer for l<-_k<-_n, l<-i=<n+l.

f(s) can also be written as

sin s nl 17(1
f’()o’’S"

sin 7r(z-s)i=l F(i 0 s) o.S yl,’",Yl_l=O Yl+l,’",yn=--oo

(2.2)
(c,)"-(’> II

where c,=z,+y, for l<=i<=n, i#l, and ct=-s and e(r) equals the sign of the
permutation r e S,. S, is the symmetric group on {1,..., n}.

We then obtain

sin (rrs) ’ F(1 -/3- s_)f’()’"s"
sin (rr(a,-s))i=1F(1-a,-s)

(2.3) L E(’)(--S) n-tr(i) (Oli "- Zk)yk (Zk + Yk) n-’r(k)

o’eSn k=l yk=0 i=1 (ji -1" Zk)y

Y (Zk +
=,+, =-o =, (/3 + z)

with assumptions as above (cf. Lemma 2.1 of [18]).
The series

-fi’ (, + z)eY (z +
=-oo ",=, (/, + z)r

for < k-< n and the similar series for 1 _-< k < converges absolutely whenever
n+lRe (r(k)- n+Y,= (/3,-ai))> 1. The proof of this fact is standard and is given for

the ordinary 2F hypergeometric series on p. 46 of [21].
It follows that the original series expression (2.1) for J}(s) converges absolutely

whenever

i=1

For 1 <l<n, we consider the contour integral (-1/2-i)Icf(s)ds, where C
C(w), e N, w > 0, is the sum of the directed line segments going from -iw-w to
-iw + w, from -iw + w to iw + w, from
We will let w-oo through the values wo, wo+ 1, wo+2,’", where wo is chosen so
that the contours C(w) avoid the poles of J(s).

We will need asymptotic estimates for the integrand f(s) when Re (s)_->0 and
when Re (s) <_- 0. We use the reflection formula [F(z)F(1 z)]-= r- sin (-z), as well
as Sterling’s formula

r(a+s)=,/s"/’-/e-(l+O())
as s-oo in So={s: larg sl< 0}, 0<0< m and the estimates

Isin rsl O(e
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in the entire plane, and

Isin r(a s)] -1 O( e-rllm sl)
in the whole plane excluding e-neighborhoods of the poles.

These formulas together with (2.3) imply that

(2.5) IjS(s)l O(s

as s with Re (s)->0 (or Re (s)<-0) excluding an e-neighborhood of the poles. If
n+lRe (Y i-- (fli ai)) > n, it follows that

1 I fl(s) ds=O.(2.6) lwirno 27ri c

Before going further we shall state Milne’s U(n) generalization of the Gauss
summation theorem [20], which is used to start the inductive proof of Theorem 1.11.

+THEOREM 2.7. Let Re (yn+l-b Zi=I (yi-zi))>O. Then

(2.8)
yl,’",Yn=O l<=i<j<=n

(zi+yi)-(z+y) fi (Zl Y,+l)y, fi (l+z, Zk)y,Zi-- Zj t=l (Zt-- b)y, k=l

F(y,,+,- b) ,=1 F(yl- b

where we assume that Z Zj and z b are not negative integers or zero for 1 <-i # j <-n.
Remark 2.9. Theorem 2.7 can also be obtained from a limit (by sending z, )

of a U(n) Dougall theorem ([10, Cor. 3.1]).
Proof of Theorem 1.11. We prove identity (1.12) by induction on l, 1 =< l-< n.

Suppose (1.12) is true for all satisfying n _-> > t, where is an integer, 1 _-< t_-< n. We
shall then prove (1.12) for t.

n+l
Setting and Re (Y’.i= (/3- ai)) > n and assumptions as in (1.12), we compute

the residues of the integral

(2.10)
2rri

fl(s) ds.

First consider the residues at s= 1--flm+Yl, where 1_--< m_--< n+ 1 and y is a
nonnegative integer. We then sum over y _-> O"

sin (rrflm) "+’ F(1-fl,-(1- ft.,))
sin (r(zl+ fl,,,-1)) i=l F(1-a,-(1-fl..))

im

(2.11)

H ((zi+yi)--(zj+yj)) fi ((zi+Yi)--(1--flm+Yl))
li<j<--n i=1
i,jl i#l

.i’[(Ogi-r-lm-t-1)ytifl (Ogi--Zk)ykfi(Oli"l-Zk)yk]
i=1 (i--m + 1)y, =, (1-zi+z), =t+, (i+Zk)yk

recalling that 1- z for 1 N i< and assuming temporarily that - is not an

integer for all 1 N i, m N n + 1.
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If n, then we can sum the series (2.11) by the U(n) Gauss summation Theorem
2.7. If < n, then we can sum the series (2.11) by the induction hypothesis for (1.12).
Expression (2.11) now becomes

r -n + y (,- ,) [r(, + z)r(1 z ,)]
i=1 i=1 k=l,k!

n+l

i,j i<j= n,i,j
It(1 z, + z)r(z,- z)]

(2.12)

n+l n+l

+ 1- ,)
i=l i=l,i#m

l--1

II [r(-z,-/.)r(z,+.-)] [r(.+z,)r(1-/.-z,)]
j=l j=l+l

sin "H"(m)
sin 7r(z +/3, 1 )"

When 1 -< rn < l, then expression (2.11) vanishes. This is because then z, 1-m
and (2.11) becomes both symmetric and skew-symmetric under the transposition
Ym Yl"

If we sum expression (2.12) over m, <-tn-<_ n + 1, we obtain

(2.13)

r -n+ (,-,)
i=1 i=1 k=l,k!

[r(, + z)r(1 Zk

n+l

II r(,-)
i,j= l<=i<j n,i,j

It(1 z, + z)r(z,- z)]

n+l

(-) E
sin r(fl,) fi sin r(/3 + z)

j=l+l

n+l
rn=!

sn r(, +) II sin r(. -)
i=l,im

To finish the proof of (1.12) we will need the following
LEMMA 2.14. With assumptions as above we have

n+l

(2.15) E
sin r(fl.) fi sin r(/3m + z2)

j=l+l
sin 7r(zl) fi sin 7r(z zj)

j=/+l

n+l n+l

sn r(fl + z) [-[ sin r(fl. fli) 1-[ sin r(fli + z)
i-----l,im i=l

Proof Using the identity sin 0 (ei e-i)/2i and setting ei gk and e

for -< k <= n + 1 and _<-j =< n, then we are reduced to verifying

(2.16)
(gm--g.--,l) fi (gmaj-gla;l)

n+l
j=l+l

n+l
m=l (gmat_gnla_l) H

i=l,im

(at-a-[ l) fi (atafl-a-fa)
j=/+l

n+l

(gmg;1-glg,) I-I (g,al-g;la-f1)
i=l

Identity (2.16) can be proved directly using the Louck and Biedenharn lemma (see
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[16, Thm. 1.20]). It can also be obtained by considering the residues of the contour
integral

1
(z-l) I (za-a]-’)

+ AZ
n+l

(2.17)
27ri

(zal--a-[ 1) H (zgC, l-gi)
i=!

where D is a sufficiently large circle containing the poles of the integrand and traversed
in the counterclockwise direction. Q.E.D.

Returning to the contour integral (2.10), we consider its residues at s Zl+Yl
where Yl is an integer. Summing these residues over yl, -oo < yl < oo, we obtain

Esin (Zl)
,=, r(1 a Zl) j yl,...,y/_l=O yl,...,yn=_

(2.18)
-+ (a, + z)H ((z,+y,)-(z+y)) H H

where fli 1 zi for 1 _-< </. By an argument similar to that for expressions (2.2) and
n+l(2.3), the series (2.18) converges absolutely whenever Re (i=l (fl-a))> n.

The limit (2.6) implies that the limit of the sum of the residues of (2.10), i.e., the
sum of (2.13) and (2.18), is zero; after substituting (2.15) into (2.13) and simplifying,
we prove the inductive step for (1.12). The assumption made in (2.11) that fli-/3,,
is not an integer for _-< i, rn -< n + 1 can be dropped by continuity. This completes the
proof of (1.12) by induction.

3. A generalization of the sHs summation theorem. For 1 <= <= n- 1, let

hl(S; yl, Yl-l, Yl+l, Yn-1)

hi(s; y)

(3.1)

(_l),,_l_ sin w(z.+zl-s)
sin rr(z S)

n--I

(s u) I-I [(zi + Yi s)(zi + Yi u)]
i=1
il

leI rr(_-b,/z, -s) r(l-bi-Jrzi-ul]/=1 Lr 1 ai + z, s) F 1 a, + z, -II
l<--i,j<-n--1

i,jl

n--1 (ai- zi + j).
z, + y, zj + yj ,I-I I]

j= (bi-zikZj)yj

where we assume that a- zi + zj for 1 _-< _-< n, l_-<j-< n, is not a positive integer and
b z + zj is not a negative integer or zero for 1 -< i, j -< n. We also assume y, ,
are nonnegative integers and Yl+l,""", Y,-1 integers and

(3.2) s+u+ yi--Znq-Zl.
i=l
i!

For 1 =< <= n- 1, we consider the contour integral

J-c hi(s; y) ds,
2 zri

where C C(w) is defined as in 2. As in 2 we will let w-> eo through values Wo,

Wo+ 1, Wo+ 2,-.., where Wo is chosen so that the contours C(w) avoid the poles of
hi(s; y) for all y.
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By an argument similar to 2 one shows that

(3.3) ]hi(s; y)]= O(S2n-3+2Re(’’=l (ai-bi))

as s-->m with Re (s)->0 (or Re (s)=<0) excluding an e-neighborhood of the poles.
It follows that if Re (i= (hi- a)) > n 1, then

I hl(s;y) ds=O.(3.4) lwirn- c

Proof of Theorem 1.13. We shall prove the absolute convergence of the series in
(1.14) for Re (= (b-ai))> n-1 in Lemma 3.19.

To prove (1.14) we make the induction hypothesis that b 1 for 1 <- <- l- 1. This
will reduce the summation in (1.14) to y,..., yl- =>0 and Yl,"" ", Y, 7/. The other
terms will vanish.

For n identity (1.14) is an immediate consequence of Theorem 7.30 of [19].
(Note that the proof of Theorem 7.30 is incomplete. However, the proof is correct in
the case of a terminating series. The general result follows by an application of Carlson’s
theorem [7, p. 39].) Now suppose (1.14) is true for all satisfying n => l> t, where is
an integer, _-< -< n. We shall then prove (1.14) for t.

Consider the residue of the integral (-1/27ri) c hi(s; y) ds at s 1- b, + z,, + Yl
for 1 <_- m _-< n and Yl 0, and sum over y, , Yl 0 and YI+I, Y. 7/, where
Yl /" + y. 0. Abbreviating (1 bi + z) c and b 1 z + Zl + z, d for 1 -< -< n,
we obtain

(_l)._l_ sin r(z.+zl-c,.) I F(ci-c,)
sin 7r(zl Cm ,=1

i#m

r(c,-dm)
llF(l= a+z cm)F(1 a+zi d,.)

(3.5) E E I-[ ((z,+y,)-(zj+yj))
yl,’",yl=O Yl+l,’",yn=--oo l<--i<j<-n--1

yl +’"+yn =0 i,j

n--1

I-I [((zid"Yi)-(CmqrYl))((zi-l-Yi)-(dmd-Yn))]((Cmq-Yl)-(dmqrYn))
i=l
il

-I [ (aid-zid-cm)y (ai-zi+dm)y" n-I1 (ai--Zid)YJ]
i=l (bi-zi-l-Cm)y, (bi-zi--dm)y,, j=l (bi-ziqr’Zj)yj.]"

j#l

We denote expression (3.5) by

(3.6)
sin 7r(zn-Zl-Zm-t-bm-1)

Rm.
sin 7r(zl z, + bm 1

Under the condition Re (= (b- a)) > n 1, it follows from Lemma 3.19 below that
R. is absolutely convergent.

If we consider the residue of (-1/27ri) c hi(s; y) ds at u 1 b,,, + z,,, + Yl where
u satisfies (3.2) and sum over yl, ",yl --> 0 and YI+I, ",Y. 7/with Yl /" "+ Y. 0
as above, we obtain

sin 7r(1 b + Zm)
R.(3.7)

sin 7r(1 -bm + z,. z.)
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Finally, observe that since bi 1 for 1 <- _-< I- 1, then R,, is both symmetric and
skew-symmetric upon interchange of y,, and yt for 1 _-< m -< l- 1. Hence

(3.8) R,,=0 for 1_<- tn_-</- 1.

Now consider the residue of (-1/27ri) Jc hi(s; y) ds at s Zl /yl, where yt Z,
and sum over Yl, Yl-1 0 and Yl, Yn 7/with yl +. + yn 0. We obtain

sin (Trz)I [r(1-b,+z-zl)r(1-bi+zi-z)]7r i= F(1- ai + zi zl F(1- ai + zi z.

(3.9) 2 ., I-I ((zi / yi)-(zj / yj))
yl,...,yl_=o yl,...,yn=--c

yl+’"+yn =0

i,= (bi- z + Z)y"
We denote expression (3.9) by

sin [F(1-b+zi-zl) F(1-b,+zi-z,l] Bl.(I
a,+zi Zl r<l a,+z, z.

(3.10)
7r i=1

Again, it follows from Lemma 3.19 that Bl is absolutely convergent under the condition
Re (Yi=, b ai > n 1.

Now the fact the series B! and R,. for 1 =< rn =< n are absolutely convergent and
that limw_.o-1/27ri c hi(s; y) ds =0 imply that

-1 I2 2 lim ht(s; y) ds
yl,...,Yl_l>=O yl+l,...,Yn_l=__c W-OO 27ri c

[sinr(z,,+z-z,+bm-1)+ sinr(1-b,+z) ]R(3.11)

+
r = F(1-ai+zi-z)F(1-ai+zi-z,) B=0

where R 0 for 1 N m < I.
We abbreviate 1 b + z c and b- z + z + z d for 1 N N n as above. By

the induction hypothesis and writing b-z as 1- c, then R for 1N m N n can be
summed. Using that [F(u)F(1- u)]-= -1 sin u, we obtain for lNm N n

r(c- c) lr(c- )r(b- z + c)r(b,- z +)
i=1 i=l

]F ai + zi z)F(b z + z)
k=l
kl

(3.12) - sin (z-z) -1 sin (z- c)
1Ni<jNn--1 i=1

i,jl

n--1 n--1

-1 sin (c-z) - sin (zi-d)
j=/+l i=1

sin (c d) i=

F(bi-a-zi+z)F(1- ai) F(1-n+ hi)i,k=l i=1 i=1
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where we have used that c,, + d, z,, + z to show that

and similarly for

From (3.12) it follows that

(3.13)

[sin 7r(zn + Zl- z,, + b,, 1)
m=l sin zr(zl Zm -[" b,,- I[sinTr(z’+z’-c’’),,,= sin "rr(zl- era)

sin r(1 b,. + z,.) "] R,,,
sin zr(1 b., + z,. z,,)

sin 7r(z,, + z d,,, ]
sin 7r( zl d.,

n-I

l-I sin 7r(zi c,,, sin 7r(z, dm
i=I+1

i=l,im
sin 7r( bi zi + C sin 7r(b zi + d,,

(--1) n-I-l"rr2 H
i=1 k=l,k!

F 1 ai + zi Zk)F(bi zi + Zk)

I’(1-- ai)[’(1--rt+ bi) I [’(bi-ak-zi+zk)
i=1 i=1 i,k=l

i----1 li<j<=n--1
i,jl

where we have used the induction hypothesis that bi 1 for 1-< i-< 1-1.
To finish the proof of (1.14) we need the following"
LEMMA 3.14. With assumptions as above we have

[sin zr(z,, +
sin zr(z,- c,.)

sin zr(z. + z d,,, ]
sin zr(zt d,,,

(3.15)

n-1

H sin 7r(zi c,,,) sin 7r(z, d
i=!+1

II sin 7r( b z + c,,, sin "rr(b zi + dm
i=l

n--I

H sin 7r(zi z) sin 7r(z, z,,)
i=1+1

fi sin 7r(zt- ci) sin 7r(d,- z,)
i=l

sin 7r(z,,- zt) sin 7r(z,,).
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Proof. The proof is very similar to that of Lemma 2.14. Setting e% %, eib =/3,
eZ %, e% z, and ed 8 for 1 =<j =< n, then we are reduced to verifying

(T.T T T-&.)(T, T-)

(3.16)

i,i

n-1

i=/+1

Identity (3.16) can be obtained by considering the residues of the contour integral

n--1

1 I i=+

o I [(sr,l-,)(,-;s)]
2 "a’i

i=!

(3.17)
n, 1,)/-1 $2)( "fnl- ,-1 ,-1S

(T- T[s)

where D is a sufficiently large circle containing the poles of the integrand and traversed
in the counterclockwise direction. Q.E.D.

Substituting identity (3.15) into (3.13) we obtain

[sin 7r(z, + z Zm + bm 1)
m=! sin 7r(z Z "at- bm 1)

sin 7r(1 bm "q" Zm 1
sin .rr(1 b,, + Zm Z,,)

(3.18)

-1 fi
n-1

-r sin 7r(zn) I-I
i=1 k=l,kl

r 1 a, + z, Zk F b, z "]" k)

fi r bi ak Zi + Zk I-I
i,k=l l<=i<j<=n-l,i,j!

F(z, z)F(1- z, + z.)

fi F(z/- c,)r(1 Zl + c,)F(d,- zl)F(1 -di-I- Zl)
i=1

F(1-,=I ai) F(1--n+k=l bi) F(zt-z,,)F(1-z,+z,,)

I-I F(z,-zi)F(1-Zl+Zi)F(z,-z,,)F(1-z,+z,,)
i=/+1

Now substituting identity (3.18) into (3.11) and using that b= 1, 1 =< i<=l-1, we
obtain identity (1.14). Q.E.D.
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LEMMA 3.19. With assumptions as in Theorem 1.13 the series

(3.20) Z lrI ((z,+y,)-(zj+yj))
(a, Z,+Zk)yk

yl,’",yn=--cx3 l<=i<j<=n i,k=l (bi Zi-- Zk)y
yl+"’+yn =0

converges absolutely whenever Re (Y. i= bi ai > n 1.

Proof. (cf. [18, Lemma 2.6].) The proof is similar to that for the convergence of
the series (2.1). With notation as above and as in (2.3), we write

(3.21)
((z,+ y,)-(zj+ y)) I (a,--Z,+Zk)yk. b z + z y

’. e(r) [(Z,(k)+Y(k))n-kS. k=l =1 (b zi + Zk))r.
Using the well-known identity

(n-1)!n
(3.22) F(z) lim

.o (z).

[21, p. 11 ], one shows that

(ai- zi-k- ztr(1))y,(l
(3.23) lim (z(1) + Y,(1))"-1

JY,)I i= (bi- zi-F z,r(1))y,,,)
-0

since Re (i= (bi- ai)) > n 1. Hence

(a- z + Z(1))y(1)
(3.24) (Za) +y))"- M

= (b- + z))r,
for some constant M >0 independent of y). It now follows that the series (3.20)
converges absolutely whenever the following series converges:

s. = r=- = (b- z + z))r
Since Re (= (b a)) > n 1, then each interior series of (3.25) for k 2,. ., n
converges absolutely by a standard argument (see [21, p. 46]). Q.E.D.

4. A generalization of the 6If6 summation theorem. In this section we consider
basic hypergeometric series in U(n), with base q such that Iql< 1. Similar to 3, let

k,(s; y,, y,_,, y,+l, y,_l)= kt(s; y)

(4.1)

(-1)"-’-’ [z.zt/s]oo[qs/(z.zl)][z,z,/u][qu/(z.z,)]o
z,/s ]oo[ qs/zt]oo[ z,/u ]oo[ qu/ Z]o

Zn (bi/ai) I-I (ziqY’-s)(ziqyi-u)
i=1 i=1

ii

I [qa;-z’s-’][qa;’z’--u--] II (z,qY’-zqyj) _11 [a,zj/z,]yj
,=1 [qb[lz,s-1]oo[qbC, lziu-1]oo 1-_<i<_-<,,-1 ,=1 j=l [bizj/Zi]y’

i,ji jl
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where we assume that aizj/z qk for 1 _-< i_-< n, l_-<j-< n, and q-lbizj/zi q-k for
1 -< i, j _-< n, where k is a positive integer. We also assume that Yl, , YI-1 are nonnega-
tive integers and Yl+l,""", Yn-1 are integers and

(4.2) suqET---,’’y’ ZnZ1.

As in 3 we consider the contour integral, for 1 -< _<- n 1, (-1/27ri) c kl(S; y) ds,
where C=CI(w)+C2(w), for w>0, and C(w) is the circle of radius w-1 traversed
in the clockwise direction and C2(w) is the circle of radius w traversed in the counter-
clockwise direction. We will let w c through values Wo, wolql-, wolql-=, where
Wo is chosen so that the contours C(w)+C2(w) avoid the poles of kl(S; y) for all
Y, ",Yl- >- 0; and yl+," , y, 7/. If for a, z C we define o-(a, z) [a/z][qz/a],
then

(4.3) o-(a, qz)-- -(a/qz)cr(a, z).

From identity (4.3) one shows that for fixed yl,..., Yl-1, Y/+,""", Y,-, we have

(4.4) Ik(s; Y)l= O ( Iq(2-n)lkl i=lI (bi/ai)l)
for Iql _-> Is] > Iql+’ as k or k -. It follows that if [ql-" 1-Ii=, (b/a) < 1, then

(4.5) w-lim -2zril fc kl(S’, y) ds O.

Proof of Theorem 1.15. The proof of the absolute convergence for
[q-" I]-_l (b/a)l< 1 of the series (1.16) is similar to the proof of Lemma 3.19 and
will be given in Lemma 4.22.

As in the proof of Theorem 1.13, we make the induction hypothesis that bi--q
for l<=i<=l-1. This reduces the summation in (1.16) to y,...,yl_>=O and
yl," , Yn Z. The other terms vanish. Also, we shall multiply both sides of identity
(1.16) by Uli<j. (Zi--Zj)" We are reduced to proving

-I aiZj/ Zi yj., ., [I ziqy’
zjqy

yl,’",y,_l-----O yt,"’,yn=-oo l<--i<j<--n i,k--1 [bizj/Zi]y
Yl +’" "+Yn =0

(4.6)

For n, identity (4.6) is an immediate consequence of Theorem 1.44 of [19].
Now suppose (4.6) is true for all satisfying n-> l> t, where is an integer, 1 _-< =< n.
We shall then prove (4.6) for t.

As in 3 we consider the residue of the integral

f k(s" y) ds at s z,,qY,+b-27ri c

for l=<rn-<n and Yt >-0, and sum over yl,...,y->0 and y+,...,y,7/, where
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yl+’" .+y. =0. Abbreviating qb--lzi=ci and biq-lzT, lzlzn =di, for 1 =< i<-n, we obtain

(- 1 ).-1-1 z,,zt/c., ][qc,./(z,,zt)][z,,zl/d.][qdm/(z,,zl)
Rm

q]oo[ z,/c,,,][qcm/ z,]o[Zl/am ]oo[ qdm/ z!

I [qz,/(a,c,,,)]o[qzi/(a,dm)]o 1

,=, [c,ld..] ,:, [c,lc.]
im

(4.7) Z E c,,,qy’ I-I z,qy’ z2qy
yl,..’,yl=O Yi+l,"’,yn=--oo li<jn--1

yl+"’+yn =0 i,j#

n--1

I-I [(z,qy’ CmqY’)(ziqy’ dmqY")]
i=1
il

-I [aiZj/Zi]YJ [’Cm/Zi]yl[idm/Zi]Yn

i=1 j=l [bizj/Zi]yy i=1 [biCm/Zi]yt[bidm/zi]y,"

Under the condition Iq’-" H,=, (b,/a,)l < 1, it follows as in Lemma 4.22 below that R
is absolutely convergent

If we consider the residue of (-1/2i) c k(s; y) ds at u Zmqy’+" b, where u
satisfies (4.2), and sum over y, , y 0 and y+, , y, m Z with y +. + y, 0,
we obtain a similar series R’m. The series R. is also absolutely convergent under the
condition [ql-. H,=, (b,/a,)[< 1. We have

Rm + R
1 "-’-[z.z/c][qCm/ (Z.Z)][Z.Zl/d][qd/ (Z.Zl)]

q][zt/c][qc/ zt][z,/ dm][qdm/
[qz,/(a,c)][qz,/(a,a)]

=, [c,/d] ,=, [c,/c]
im

(4.8) Z Y’. c,,qy’ d,,,qy" I] ziqy’ z2q’yl,...,Yl=O yl+,"’,yn=--cx <=i<j<-n--1

Y+"’+Yn =0 i,j

n--1

I-I (z,qy’ c,,qy’ )(z,qy’ d,,,qy"
i=1
i#l

fi -I’ [aiz2/Zi]Y fi [aic,,,/zi]y,[aid,,,/zi]y.
,=1 j=, [b,z2/z,]y i=,

jl

By a symmetry argument similar to that for identity (3.8) of 3, one shows that

(4.9) Rm+R’ =0 forl<m</-1

Now considering the residues of (-1/27ri) Jc k(s; y) ds at s zq’ and u ztqy,

for y e 7/and summing over Yl, ",Y- -> 0 and y, , y, e 7/with zl +" + y, 0,
we obtain

(4.10)

z,, ][q/ z,, ]o[ zt]o[ q/ zt] fi[q]Z[zt/z,,]o[qz./zt] i=1

E E II
yt,...,yl._=O yl,...,yn=--oo li<jn

Yl +’" "+Yn :=0

aizj/ zi y
z,q’ zjqY fi b,z2/i,j Zi ]yj

Bt is absolutely convergent under the condition ]qr-. I-I= (b/a)[< 1.
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As in 3 the fact that the series B! and Rm R’ for 1 <m < n are absolutely
convergent and that limw_. (-1/2ri) Jc kl(S; y) ds =0 imply that

(4.11) lim k,(s;y) ds=B+ (Rm + R’m) 0.
yl,...,Yl_l0 Yl+l,...,yn_l=_O w-cx3 27ri c m:l

By the induction hypothesis Rm / R’m for _-< m _-< n can be summed by (4.6)"

Rm +g---[q]-2[Z"Zl/Cm][qCm/Z"Zt] (Cm)-’

[Z.Zl/ dm][qdm/Z.Zl]o [qz,/ aiCm][qzi/ aidm]
[z,/dm][qdm/Zl] i=l [c,/dm]oll

im

(4.12)

I-I qz,/ zl][zj/ z,]o
l<--i<jn--l,i,j

i,k 1,k l,n
qz, / a,Zk ]o[ b,Zk/ Z,]

1--1 n--1

H [qz,/Cm]oo[Cm/Z,]oo I-I [qCm/Zj]o[Zj/Cm]
i=1 j=/+l

fi qzi/ aiCm)]oo[ qzi/ a,dm)]oo[ bicm/ Zi]oo[ bidm/ z,]o
i=l

n--1

i=l,i:!
[qzi/dm]oo[dm/zi]oo" [q/=lai]o[ql-" Hlb, ]

i=

ql-,, fi (bi/ai)]
[qcm/dm]oo[dm/cm]oo

l--1 n--1
n--ic ’(-d./c)(z,)’-’ II z, H ,

i=1 i=1

(4.13)

n-1

j=l+l
qCm/zl]oo[zl/Cm ]oo[ qzl/dm ]o[dm/z]oo

i=l,im
Ci/Cm]oo[ qCm/Ci]o[Ci/amid[ qdm/Ci]oo

[z,,z,/ Cm]oo[qCm/(Z,,Z,)]oo[Z,,Z,/ dm]oo[qdm/(Z,,Z,)]oo
[ZI/Cm][qm/Zl]oo[Zi/dm]oo[ qdm/Zl]o

fi (biz#)/ (a#z,) ]oo H qz,/zj ]oo[ zj/z,
i,k= <--i<j<=n-l,i,j

[q’-" fi (bi/ai)] fi n-I1 [(qgi)/(aigk)]oo[biZk/gi]oo
i=1 i=1 k=l,#l

.[q/__ltli] [ql-nfibi]
i=1

The following lemma will be used to compute the sum :=t (Rm + R’m).
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LEMMA 4.14. Assume that ci, di, z C, <-i <-_ n, are defined as above and define

(4.15a)

n-1

I] [qc,,,/z][z/c,]o[qz/d,,]o[d,./z]
Em

\ c,,,/ fi [c,/Cm][qcm/c,][c,/dm][qd,/ci]
i=l,i#m

for <-- m <--_ n, and

(4.15b)

Then

[z,I Cm]o[qCm/ Zl]o[Zl/ dm][qdm/ Zl]oo

[z,,][q/z,,][Zl]oo[q/zl]oo.

n+l

(4.16) E E,, 0,
m=!

where it is assumed that the denominators of the E,,,, <-_ m <-n + 1, do not vanish.

Proof. Consider E and E,,, _-< m _-< n + 1, as functions of the variables Cl, , c,,
Zl, , zn C* (where C* C -{0}). Observe that for l-< s -< n and l-<_ m -< n + 1, we
have

(4.17)
Em(Cl, ", Cs-1, qcs, Cs+l, ", Cn, Zl, ",

-()E,,(c,." C-l, c, /1,’", z,).

We first show that E(Cl,’’" Cn, Zl,’’" ,Zn) is holomorphic in the region
(C*) 2"-i+). The possible poles of E occur when cs qkc,, C qkd,, C qkzl or c qkz,
for =< s, t--<_ n, s t, and k an integer. It follows from (4.17) that if suffices to show
that E has no poles for k 0.

One now verifies that for l<=s, <- n and s # t, we have limc._.c, (E + Et) and
limc_d, (Es + Et) exist and are finite. Since E,,, for l-< m-< n + 1 and m # s, is con-
tinuous as c- c, and c- d,, it follows that E has no pole at c ct or at c dr.
Similarly for l<-s<-n we verify that limc._z, (Es+ E,/I) exist and are finite, while
is continuous as c zt and c- zn for l_-< m _-< n and m s. Hence E has no pole at

c zt or at c z, and E(Cl,’", z,) is holomorphic in the region (C*) -"-1+1).
Now choose an integer s, <- s -< n, and fix the variables Cl, , cs-1, c+, , c,,

zt, , zn C*. Let

(4.18) M= max IE(Cl,...,cn, z,,...,zn)l.
Iql<_-Icl_-<

An application of identity (4.17) yields

(4.19)
E(c,’’’, C_,qkc, C+,,""", C,,, Z,""", Z,)

=qk(k-1) c E(c," Cs_I, Cs, Cs+l," Zn)
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where k is an integer. By the maximum principle for holomorphic functions (in the
variable Cs), we find

(4.20) max IE(Cl,..., z,)l_--< M max
Iqlh+ <=lcsl<=lql-i

where j and h are nonnegative integers. It follows that for fixed (el,’’’, Cs_l,

cs/,’’’,c,,z,’’’,z,) we have limcs_oE=0 and limc._E=0. Hence by the
maximum principle E must be identically 0. This completes the proof of Lemma 4.14.

Putting together expressions (4.11), (4.13), and (4.16), we obtain

E (Rm+R) B,-z11 zi [q]
m=l Zl i=1 i=1 k Z/2 ]

(4.21)

n-1

I-I qz,l z][zlz,][qzlz,][z./z]o
j=/+l

fl ci/ Z,]o[ qz,/ ci]o[ ci/ z.][qz11/ ci]
i=l

fl [(b,Zk)/(akZi)] rI [qz,/zj][z;/zi]
i,k= i<j<=n-l,i,j

Equating expressions (4.10) and (4.21) for B,, we obtain after a little algebra
identity (4.6). Theorem 1.15 now follows by induction once we prove the previously
promised Lemma 4.22 for the absolute convergence of the series (4.6).

LEMMA 4.22. With assumptions as in Theorem 1.15, the series

(4.23)
Y,"’,Yn li<j<=n

Y+"’+Yn =0

(ziqy’ z;qyl)
aizg/zi]y

converges absolutely whenever Iq-" l-I,=, (b,/a,)l < 1.

Proof. The proof is similar to that of Lemma 3.19 with some modification. We write

(4.24)

We have

(4.25a)

and

lim
yo-(,,)

-I
i=l [biZo’(11)/ Zi]ycr(.

aizo.(11)/zi

(4.25b)
i=1 biz,(11)/

lim II
Yr( i=1

--Y(n) qz,/(b,z,(11))
qzi/(aiz,(,))

=0,
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since II-I,= (b,/a,)[ < Iq["-’. Hence

(4.26) fi [aiZr(n)/ Zi]Y(n>
i=l biztr(n)/ Z/]yo_,n

for some constant M > 0 independent of y(,). It follows that the series (4.24) converges
absolutely whenever the following series converges"

o’S i=1 yr(n)=--C

[aiz,(k)/
[(Z(k)qr’k’)"--k

i=H, biz,(,)/

Since II-[,=, (b,/a,)l<lql"-’, then each interior series for k=l,... n-1 converges
absolutely by an application of the ratio test to the sums for y()_->0 and
y() < 0. Q.E.D.

5. A generalization of the XII summation theorem.

ProofofTheorem 1.17. The notation and assumptions below are as in the statement
of Theorem 1.17.

First, by an argument virtually identical to that of Lemma 2.5 of [18], it follows
that the series (1.18) converges for

We rewrite the series in (1.18) as

(5.1) H (Zi--Zj)-I E tM I-[ (ziqY’--zjqy) [aiZk/Zi]yk"
li<j<-n M=--oo yl,".,yn=--oo ,<-_i<<-. i.=, [biz/z,]y

YI,’",Yn M

M, ’=blqt andy yl, z=zl, a=al, b=biforSety yl-M, zl=zqM, a aq b
2 <-l_-< n. Then expression (5.1) becomes

II (zi-)-’

(5.2) E tM
4=-o i=, [b,zl/zi]M

aiY’, H (zqY-zqy’)
yi,...y’=--c l<i<j--
y+-..+y=O

Applying Theorem 1.15 and some algebra we obtain

[q]-’ [(b,z,)/(at,z)]o H [qzi/z]oo[qz/z]o
i,k=l <i<j<=n

q- (b,/a,) H [(qz)/(az)][bz/zi]
i=l i,k=l

(5.3)

q a q-" b
i= .

i=1 M

Identity (1.18) and Theorem 1.17 now follow by an application of the classical
summation theorem (1.9). Q.E.D.



1596 R.A. GUSTAFSON

REFERENCES

[1] G. E. ANDREWS, Applications of basic hypergeometric functions, SIAM Rev., 16 (1974), pp. 441-484.
[2] ., Problems and prospects for basic hypergeometricfunctions, in Theory and Application of Special

Functions, R. Askey, ed., Academic Press, New York, 1975, pp. 191-224.
[3] The Theory of Partitions, Vol. 2, in Encyl. of Math. and its Appl., G.-C. Rota, ed., Addison-

Wesley, Reading, MA, 1976.
[4] R. ASKEY, Ramanujan’s extensions of the gamma and beta functions, Amer. Math. Monthly, 87 (1980),

pp. 346-359.
[5] ., An elementary evaluation of a beta type integral, Indian J. Pure Appl. Math., 14 (1983), pp.

892-895.
[6] R. ASKEY AND M. ISMAIL, A generalization of ultraspherical polynomials, in Studies in Pure Mathe-

matics, Birkhaiiser, Basel, 1983, pp. 55-78.
[7] W. N. BAILEY, Generalized Hypergeometric Series, Cambridge Math. Tract No. 32, Cambridge Univer-

sity Press, Cambridge, 1935. (Reprinted, Hafner, New York, 1964.)
[8] ., Series of hypergeometric type which are infinite in both directions, Quart. J. Math., 7 (1936), pp.

105-115.
[9] J. DOUGALL, On Vandermonde’s theorem and some more general expansions, Proc. Edinburgh Math.

Soc., 25 (1907), pp. 114-132.
10] R. GUSTAFSON, A Whipple’s transformation for hypergeometric series in U(n) and multivariable hyper-

geometric orthogonal polynomials, this Journal, 18 (1987), pp. 495-530.
[11] W. J. HOLMAN III, Summation theoremsfor hypergeometric series in U(n), this Journal, 11 (1980), pp.

523-532.
[12] W. J. HOLMAN III, L. C. BIEDENHARN AND J. D. LOUCK, On hypergeometric series well-poised in

SU(n), this Journal, 7 (1976), pp. 529-541.
[13] M. E. H. ISMAIL, A simple proof of Ramanujan’s 1 sum, Proc. Amer. Math. Soc., 63 (1977), pp.

185-186.
14] I.G. MACDONALD, Affine root systems and Dedekind’s rl-function, Invent. Math., 15 (1972), pp 91-143.
15] S.C. MILNE, An elementaryproofofthe Macdonald identitiesforA1), Adv. in Math., 57 (1985), pp. 34-70.

[16] ., A q-analog of hypergeometric series well-poised in SU(n) and invariant G-functions, Adv. in
Math., 58 (1985), pp. 1-60.

[17] A q-analog of the 5F4 (1) summation theorem for hypergeometric series well-poised in SU(n),
Adv. in Math., 57 (1985), pp. 14-33.

[18], A U(n) generalization of Ramanujan’s summation, J. Math. Anal. Appl., 118 (1986), pp.
263-277.

19], Basic hypergeometric series very well poised in U(n), J. Math. Anal. Appl., to appear.
[20] A q-analog of the Gauss summation theorem for hypergeometric seris in U(n), preprint.
[21] E. D. RAINVILLE, Special Functions, Macmillan, New York, 1960.
[22] L.J. SEATER, Generalized Hypergeometric Functions, Cambridge University Press, London-New York,

1966.
[23] L. J. SEATER AND A. LAKIN, Two proof of the 6I/6 summation theorem, Proc. Edinburgh Math. Soc.,

1956, pp. 116-121.



SIAM J. MATH. ANAL.
Vol. 18, No. 6, November 1987

() 1987 Society for Industrial and Applied Mathematics
008

ASYMPTOTIC BEHAVIOUR OF THE COEFFICIENTS OF
SOME SEQUENCES OF POLYNOMIALS*

W. VAN ASSCHE’, G. FANO$ AND F. ORTOLANI

Abstract. The asymptotic behaviour of the Taylor coefficients of a sequence of polynomials {pn(x)"
n 1, 2, 3, is given under the conditions that all the zeros are negative and that the limit pn (x)1/,(n )
exists for x>0. The result is then applied to orthogonal polynomials and to the iterations of a polynomial.

Key words, coefficients of polynomials, zeros of polynomials, orthogonal polynomials
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1. Introduction. Suppose we are given a sequence of monic polynomials {pn(x)=
x +. .; n 1, 2, 3, .}. Let us denote its Taylor series around x 0 by

(1) p,(x)= aj,,,x
"-j (ao.,, 1)

j=0

and its zeros by {xj, j 1, 2,. ., n}. The Taylor coefficients and the zeros are related
by the elementary symmetric relations of Vite

(-1)
E XOtl,n X2,l Xotj,naj’n

j

and if we suppose that all the zeros of pn are negative then

1

()

O1O2" "Oj

from which we easily deduce the positivity of the coefficients {a,,, j 0, 1, 2, , n}.
If one knows the asymptotic behaviour of the polynomials p when n increases

to infinity, then a natural question is to ask for the asymptotic behaviour of its Taylor
coefficients a,, for increasing n. To cover as many limits as possible we let j tend to
infinity together with n in such a way that j/n --> d (0, 1). This question is analogous
to a problem in physics when one wants to obtain the free energy per unit volume of
an infinite system from the grand partition function [7]. In particular the analysis of
the thermodynamic limit of the famous Bardeen-Cooper-Schrieffer superconductivity
state was studied in [5], [6] using standard techniques in statistical mechanics. The
general mathematical problem of "dense sums" (like a,, when j and n tend to infinity)
was investigated in [5]. Let us define the distribution of the zeros by the following:

(3) Fn(t) =l{number of zeros of p in (-, t]}
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then Fn makes a jump of size k n at a zero xj, of multiplicity k. From now on we
suppose that all the zeros are in (-A,-B] (0< B <A) so that Fn is an increasing
function with F,(-A)=0 and F,,(-B)= 1 (later on we will allow B to go to zero). We
will devote all our attention to those sequences of polynomials for which the sequence
{F,, n-- 1, 2,. .} converges weakly to a distribution function F, i.e.,

f(t) dF,(t) f(t) dF(t) (n-o)
A A

for every (bounded and) continuous function fon I-A,-B]. Since

llogp.(x)= 1-- log (x-x.,,), x>0
n n j=l

it follows that

B1
log p,(x) log (x y) dF(y) x > 0(4)

n A

and in fact (4) also implies the weak convergence of F to F, so that this weak
convergence is equivalent to the asymptotic behaviour

(5) lira {p,(x)} /" =exp log (x-y) dF(y) x>O.

2. The main result. This paper is devoted to the proof of the following theorem.
THEOREM 1. Let {p(x), n 1, 2, 3,...} be a sequence of polynomials for which

all the zeros are in I-A, 0], (0 < A) and for which the distribution functions Fn given in

(3) converge weakly to a distribution function F having nojump at zero. Then there exists

a concave and differentiable function g on (0, 1) such that

(6) -log aj,,- g(d),

(7) a,. eg,(do =f(d)

when n - oo and j/ n d (0, 1). The inverse function off is given by

(8) f-l(x) Y--Y--dF(y),
Ax--y

and

x>0

(9) g(d)=-(1-d) logf(d) + log [f(d)- y] dF(y), Odd <.1.
A

We will prove this theorem using the techniques of [5], [6], [7]. The result is not
true if one only assumes weak convergence. The condition that the zeros are negative
is needed to make all the aj, positive. Ifp,(x) is an even polynomial then the coefficients
of x2+1 are zero and the left-hand side in (6) and (7) is not defined for many j’s.
Roughly speaking, the proof consists of two steps. In a first step we will show that the
theorem holds for a special sequence of polynomials {q,(x), n 1, 2,..-} satisfying
the conditions. The second step consists in proving, by a perturbation argument, that



COEFFICIENTS OF POLYNOMIALS 1599

the theorem remains to be true for any sequence of polynomials satisfying the condi-
tions. We start by assuming that all the zeros lie in I-A,-B] (0< B <A). The inverse
F-1 of the distribution function F is defined as

F-l(y) inf {x lF(x) >- y}

making F-1 a left-continuous increasing function on (0, 1]. Define

(10) yj,,,= F-I(J-__), j--1, 2,"" ", n,
\n/

then every yj., is negative and belongs to (-A,-B]. We will consider the sequence of
polynomials {qn(x), n 1, 2, 3,...} given by

(11) q,,(x) fl (x-y,,) b,,,x"- (bo,,, 1).
j=l j=0

By construction we find that these polynomials satisfy the conditions of Theorem 1.
LEMMA 2. Let {b.,, 0 <-j <-_ n, n 1, 2, 3," "} be given by (11), then

(12) bk,,,+.,
i+j=k

Proof By (2) we have

1
bk,,+,,

kV F-’(n+ma’ )F-’(n+ma2 )...F_,(..nm)
For every integer a there exist integers a’ and fl’ such that

a’-I a a’ /3’-1 a /3’__<__<--, _<_--..
n n+m n m n+m m

Replace systematically every number a/(n + rn) by a’/n (when/3’/rn -> a’/n) or by
/3’/rn (when a’/n >/3’/rn). This gives a one-to-one mapping from (1/ (n + rn), 2/(n +
rn), (n + rn)/(n + rn)) to (1/n, 2/n, n/n, l/m, 2/rn, re and since F-1

is an increasing and negative function we find that IF-l[ is a decreasing function so
that by grouping together all the terms that have members from { 1/n, 2/n,. ., nn}
and k-i from {1/rn, 2/rn,..., mrn} we find that

bk-+-, >- Z F-
i=o aa-..a’

i+j=k a ""
from which we obtain (12).

Let us now introduce a sequence of continuous functions

(13) g(d,n)=

1
log

n

1
log

ifd =j (O<_j<-n),

+ nd -j)(l lg 1
log

n

ifJ<d< J___
n n+l

(0<_--j< n).
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These functions are bounded from below since every [yj,,[-> B so that

1
inf g(d, n) min log bj,,

0----d=<l O<--J n

_-> min-1log (n)BJO<--J <-n n j

_>-- min log +jlogB
n o<=j <--n j

_->- min log +- min j log B
n o<=J<=n j n o<-j

and because ()=> 1, we then have

(14) inf g(d, n)>_-min (log B, 0).

LEMMA 3. The sequence offunctions {g(d, n); n 1, 2, 3,. ., d [0, 1]} converges
uniformly on every compact set of (0, 1) to a concave continuous function g.

Proof First consider d e Do {j/2"; 0 =<j =< 2", n e N}, then there exists an N e N
so that deDN={j/2v, 0-<j-<2N}, say d=K2-. By Lemma 2 (m=n=2M+’, k=
K24+1) we have

b K2M+l,2M+N+I bc2t,2+s

so that by taking logarithms, we obtain

g(d, 24++’) _-> g(d, 2+).

The sequence {g(d, 2"), n N, N+ 1,. .} with d ON is therefore increasing. We
always have ly;,.l A so that

1
sup g(d, n) max log b;,.
0dl Ojn

N max log A

N- max log +- max j log A.
ONjNn ONjNn

Now (])<= 2" from which

sup g(d, n)-<log2+max (0,1ogA)
0_<dl

so that the sequence {g(d, n); n=1,2,3,..., d[0, 1]} is bounded from above.
Together with (14) we may then conclude that there exists a function g(d) on Dc
such that

lim g(d, 2")= g(d), d Doo.

Take d and d2 in Doo, say d K2
-rq and d2-" K22-N, then by Lemma 2 (n m 2t+N,

k (K, + K2)2

b(K,+K2)2 ,2
> bK,2,2+NbK22,2+N
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and by taking logarithms

( ) 1X 1 24/dl + dE 2+s+ > )+g(d2, ).
2 =zg(d’ 2+g

Let M go to infinity to obtain the important inequality

(dl+d2) 1

2 z z
1

(15) g >=-2g(dl)+2g(d2), dl, d2 Do.

Now Do is dense in [0, 1], and by means of (15) and the boundedness of g we therefore
can extend g to be a continuous concave function on (0, 1) (see for example [8] or
[13]), and since the functions g(d, n) are all continuous we have

(16) lim g(d, 2")= g(d), O< d <

and this will hold uniformly on every compact subset of (0, 1) because the convergence
is monotonic ([14, Thm. 7.13]).

In order to show that the whole sequence {g(d, n), n 1, 2,...} converges to g
uniformly on every compact interval in (0, 1) we need some extra results. Denote by
d, a number in {j/n;j=O, 1,-.. ,n} such that Id-d,l<-l/n. Since g(d, n) is linear
between any two numbers 1/n log bj,, and 1/n log bj_l,

Ig(d,, n) g(d, n)[=<- max [log b,.- log b_,,,,
l"l O<j<=n

1
max

Yl O<j-<-

We will see later (Lemma 5) that the sequence {bj.,,/b_l,.;j 1, 2, , n} is decreasing,
hence

log =< max ( Ilog

where

bl,. I/I dF(x),
j-----1 A

b,,, ly,..""" y.,.I

This means that

O<d<l

If K is a closed interval in (0, 1) and e > 0, then we can choose N t such that

sup Ig(d, 2k)--g(d)l<e, k> N
dK
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(which is possible because of the uniform convergence on K) and

sup lg(d")-g(d)[<e, k> N
deK

(which can be done since y is uniformly continuous on K). Then for k > N

Ig(d, 2k) g(d)l <- Ig(d:’,, 2k) g(d:z’,)l+ Ig(d)- g(d)]

and if every dk K, then

sup Ig(d,,,2")-g(d)l<-_sup Ig(d, 2)-g(d)l+ sup Ig(d:)-g(d)l
dK deK deK

If we decompose n into its binary decomposition

n=2k

ken*

where the definition of n* is obvious, then

1 1 k[ 2ksup-- 2klg(d2,2k)--g(d)l<=--sup 2 g(d2, )-g(d)l
deK FI ken* FI deK ken*

k<=N

1
+-sup 2klg(d,2k)--g(d)l

FI deK ken*
k>N

2N+l
max 2klg(d, 2k) --g(d)l+ 2e

which means that

1
sup 2klg(d, 2k) g(d)l - 0
deK t’l ken*

Now use Lemma 2 to find that

g(d, n)-g(d)= g(d, n)-g(d,,, n)+ g(d., n)-g(d)

1
>-g(d,n)-g(d,,,n)+- E 2k{g(d2,2k)--g(d)}

H ke n*

and with the results above

lim inf inf {g(d, n) g(d)} >- O.
d K

In a similar way we may put k =[log2 n]+ 1 and decompose 2k-n into its binary
decomposition

2k- n 2l"
len**

then from Lemma 2

n
g(d, 2k) >- -fi g( d., n +

2kmtI
2k g(d2’,_,,, 2k- n).



COEFFICIENTS OF POLYNOMIALS 1603

As in the previous estimation we find that

g(d, n)-g(d)= g(d, n)-g(d,, n)+ g(d,, n)-g(d)

2k
<- g(d, n)-g(d,, n)+--{g(d2k, 2k) g(d)}

2k

n{g(d2k_,, 2k n)- g(d)}
n

2k
<-- g(d, n)- g(d,, n)+--{g(d, 2k) g(d)}

from which

1 ., 21{g(d2,, 21)-g(d)}
n I n**

lim sup sup {g(d, n)-g(d)} <-0.
n-oo d K

Hence g(d, n) converges uniformly to g(d) on every compact subset of (0, 1). []

(17)

then

(18)

and

(19)

Let us now relate the function g to the weak limit F.
LEMMA 4. The limit g of Lemma 3 is differentiable on (0, 1) and if

h(x) Y dF(y), x> O,
Ax--y

B

g(h(x))+(1-h(x)) logx= log (x-y) dF(y)
A

g’(h(x))=logx.

Proof. Since g is a concave function, it will be ditterentiable except for possibly
a denumerable set at points A c (0, 1). The derivative of g will be a decreasing function
and the left-hand and right-hand derivatives at points in A exist, call then g’(d) and
g’+(d), and satisfy g’(d) > g’+(d). Define

f(d) eg’(d), d (0, 1)\A
then f is a decreasing function with jumps at A. The inverse function f-1 then exists,
and we call this function h. The function h is increasing and therefore differentiable
except for a denumerable set of points A*. If y A* then h(y) (0, 1)\A, so that g is
diiterentiable at h(y). The function g’(d)-log x (with x fixed) clearly vanishes for
d h(x) (by the definition of h and f), hence

sup {g(d)+(1-d) logx}=g(h(x))+(1-h(x)) logx
0<d<l

(20)

whenever xA* (this follows since g(d)+(1-d)logx can have at most one
maximum).

On the other hand, it is clear that for every j <_-n

bj,,, x" -J <- q,, x

so that

1 n-j 1
log bj,. + log x _<-- log q. (x).
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Now let n- c and j/n d, then from the uniform convergence of g(d, n) to g(d) we
obtain

sup {g(d)+(1-d)logx}<-_ log(x-y) dF(y).
0<d<l A

We also find that

q.(x) <- n max bj,.x
O<=j

so that

1
log q. (x) <_--- log n + log bj,.+log x

Let n - o and j n d, then

log (x y) dF(y) <- sup {g(d)+(1-d)logx}.
A 0<d<l

Combination of these inequalities and (20) obviously leads to (18). Differentiate (18)
with respect to x, then (remember that (19) holds)

1- h(x)
x

dF(y)
AX--y

so that h is differentiable for every x>-B and (17) holds. The relations (18) and (19)
then hold for all x >-B. [3

Up until now we have proved Theorem 1(6) for the special sequence {q,(x),
n 1, 2, 3, .}. For (7) of the theorem for this sequence we need the following lemma.

LEMMA 5 ([3 Thm. 2.82]) Let p,(x) " a,,x be a polynomial ofdegree n with
j=0

only real zeros (a_l,. a.+l,. 0), then

2(j + 1)a+,.a_.. =jaj,., j 1, 2,. ., n.

Applied to our case, we have bj.. a._.., so that

,-jj+ l,n < ,n

bj,. n -j + 1 bj_,,.

From this inequality one easily finds that

(j=l,’’ .,n).

Hence

Take k=[en] (e>0) and let nc (j/nd), then

_-->exp [g(d+e)-g(d)]lim inf
b_,,,
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In a similar way, using b,.Ib_..>-(b,.Ib_,,.), (j=k,"’, n) we obtain

_-<exp [g(d)-g(d-e)]lim sup

Taking e 0 we obtain (7). This proves Theorem 1 for the sequence of polynomials
{q,,(x), n 1, 2,...}.

In a second step we will prove that the same limits (6) and (7) hold for any
sequence of polynomials { p. (x), n 1, 2, } that satisfy the conditions ofthe theorem.
Set

p.(x)= a..x"-= (x-x..)
j=o j=l

then we want to compare the coefficients a,. with the coefficients b., with m close
to n. Let N(n; a, ) be the number of zeros ofp. in the interval (a,
the number of zeros of q. in (a, fl], then

N(n; a, fl) n{F(fl)- F(a)}+ c.(a, fl),
(21)

N(n; , fl) n{F(fl)- F(a)}+ c.(,
owhere (1/n)c.(,)O and by construction [c.(a, fl)[ 1. Hence

N(n; a, fl)
=1.(22) i NO(n; a, fl)

Now let 6k=-Bek (e>0 arbitrary), then {(6,6_a], i=l,..-, N=
[(l/e) log (A/B)]+ 1} covers the interval [-A, -B]. From this sequence we delete all
the intervals for which F(6_)-F(6)=0, so that we have a finite number of intervals
{(6, 6_,], i= 1,..., M}. Define

m 1--1NiNmax n

where as usual [] denotes the integer pa of . Clearly we find that

max
n{F(_)- F()}

so that as n the ratio m/n tends to 1. Also, by (21),

o=(n--m){F(L1)--F()}+c(, L1)-c(,

IjNM F(L1 F()

and if (, -1] is such that f(i_l)-F(i) =0 then obviously N(m; ,._) =0 so
that the number of zeros of p in each interval (, _] (i 1, , N) is greater than
or equal to the number of zeros of q in that interval.

Define { t.., 1 <j < n} {y,, 1 j < m} U { .., 1 n m} where t,. are points
such that the number of points of { tj,.} in every interval (6, 6_] is equal to the number
of zeros of p. in that inteal. If we order the zeros x,.
t,. . t.,. then x,. and t,. will belong to the same interval (, 6_] and

e- ]6i-l < Itj,n < I6i[
e.
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Let {c-i,., 0 _-<j _-< n} be the coefficients of the polynomial with { t-i,., 1-<j-<_ n} as zeros,

c,,,x"- I (x- t,,,)
j=0 j=l

then

and similarly cj,,,/ a.i,,, >- e -j, hence

-de _<-lim inf{ log c-i,. --n
l
lg a-i,. }

(23)

----< lim sup { 1-n log c-i,. --nllga-i’") <-de

where n- oo and j/n- d. Denote the polynomial with zeros (t,,} by

E n--m--j
c),,,x H (x- tS,’,)

j----0 j----1

then, since j=o c-i,’,x’,--i is the product of the polynomials qm and Y-i=o c),,,x "-J their
coefficients are related by

(24)
i=0

For the coefficients {cj,’,, 0_-<j-< n- m} we have the obvious inequality

1
c’. It’

{(n- m)A}-i

so that from (24) we have on one hand (for j-<_ m)

and on the other hand

Cj, <__ bj_i,m {(rt m)A}
bj,m- i=o bj,

(bj-m) i{(n-m)A}i
i=o b-i, it

}=exp b-i, (n-m)A
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so that when n --> and j n --> d

0_-< lim sup {-ln log c,.
ml

logbj,,, _-<lim n. bj,
from which

lim
1

log cj,. lim
1

log bj,., g(d).
n rn

This means that the limit of (l/n) log cj,. is independent of e and since (23) is valid
for every e > 0 we then obtain

lim log a,. g(d), 0< d < 1
n

which proves (6) of Theorem 1. (7) now follows from Lemma 5 in exactly the same
way as for the polynomials {q.(x), n 1, 2,...}.

We now only have to remove the condition that B> 0. Define the functions f,
fl and g by (8) and (9), where the integration is over [-A,-e] (e >0). It is clear
(since F has no jump at 0) that f(x) converges to f-(x) for x > 0 and f-(x).is a
positive, continuous and decreasing function that maps (0, ) into (0, 1). Its inverse
mapping fis then a positive, continuous and increasing function that maps (0, 1) into
(0, ), and by (9) we conclude that g converges to g, being a continuous function on
(0, 1). Define the polynomials

p+.(x) H (x- x,,,) 2 a.x’’-,
Ix,.l_-> j=o

p-(x) I-I (x xj,.) a,.x"-’,-.

The degree n of p+.(x) is N(n; -A, -e) nF(-e) + c.(e) where c.(e)/n - 0 for every
e > 0. Since p.(x) is the product of p.+ and p we have the relation

aj, aj_k, a k,n
k=0

so that (j _-< n)

j, - aj-k,n
1<< L a+ + k,n

aj, k =0 aj,

< (af_l,,,kl=kO as,+ ] ".I

=exp a+ (n-n,)e
j,

where we have used Lemma 5 and a straightforward inequality for a k-,n. When we take
logarithms and let n -) , j/n --) d (0, 1) this leads to

0 <_- lim sup { log a,.
l
log a.+ < {1 F(- )}/f(d).

n j,n

J " 17,
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Now if n->oo and j/n-->d (0, 1)

so that

1
log a+j,nn

n_A1 1 log a+j,nn l’l- F(-e)g(d)

1 1
0<-lim sUP--n log a,, F(-e)g(d) <-_ e{1 F(-e)}

f(d

Letting e tend to zero we obtain the result for the general case.

3. Applications. Let us apply Theorem 1 to some relevant cases.
Example 1 (Degenerate case). Consider the sequence of polynomials given by

p,,(x)=(x+a)" (a > 0).

Clearly we have

(25) {p,,(x)}l/"-->x+a=exp{f
-A

so that the weak limit F is given by

F(t) 1,

0,

By (8) we easily find that

log (x-y) dF(y) },
>= -a,
t<-a.

a
f-l(x) x>0

x+a

from which, by inversion, we obtain

1-d
(26) f(d)=a, 0<d<l.

d

Formula (9) becomes, using (25) and (26),

g(d)=d log a-d log d-(1-d) log (1- d).

Applying Theorem 1 to this case we obtain

1
-log a,n - d log a- d log d- (1- d) log (1- d ),

(27)

x>O

aj,,, 1 -d

aj_l, d

where nc and j/n d (0, 1). This result could also be obtained by a direct
calculation. We have

p(x) (n)._JaJx
j=0 j

from which aj,, (.)a follows. Stirling’s formula then leads to the result in (27).
Example 2 (Orthogonal polynomials on a compact set). Consider the sequence

of monic polynomials { p, (x), n 0, 1, 2, .} that satisfies

(28) f p,(x)p,,(x) dtx(x)= 0, n m
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where E is a compact set on the negative real axis with positive capacity C(E)> 0
[16], and tz is a positive measure on E. Let tz be the equilibrium measure on E
(Frostman measure) 16]. This is the probability measure that minimizes the logarithmic
energy

1
dlx(x) dlx(y)= log

1
log Ix-el nf. Ix-el dtx(x) d(y)

where e is the set of all probability measures on E. Then from a result of Widom
[19, Thm. 1] (see also Van Assche [18]) we can obtain the following lemma.

LEMMA 6. Suppose 1 +, where 1 is absolutely continuous with respect to

(1 << ) and is singular with respect to (Z). Denote the Radon-Nikodym
derivative d/d by w, then ({w(x)> 0})= 1 implies the weak convergence ofF,(t)
to F( t) ((-, d).

(This follows because is an "admissible" measure, in Widom’s terminology.)
If E is a compact set on the negative real axis, we then have

llogp.(x)- f log(x-y) dl(y) (x>0)

so that Theorem 1 holds with

(29)

f
f-l(x) =-| Y dlxe(y), x > O,

dx-y

g(d)=-(1-d) logf(d)+ I log [f(d)- y] dtx.(y),
E

Let us, for example, take E [-1, 0], then

and

1
,u,E (A)= /

" .IA x/t(1 + t)’
Ac (0, 1)

0<d<l.

(30) I log(x-y) dl(y)=-21og2+log{2x+l+2/x+x}, x>0.
E

Simple calculations then yield

f-’(x)=l-x
x-y

X
-, x>Od/xe(y)= 1
x/x+x

from which

(l-d)2

(31) f(d)=l_(l_d), 0<d <1.

By means of (30) and (31) one then computes

g(d)=-21og2-d log d +(2-d)log (2-d)-2(1-d)log(l-d),

We therefore obtain the limits

0<d<l.

(32)

1
log aj,. - -2 log 2 d log d + (2 d) log (2 d) 2(1 d) log (1 d),

a,,, (l-d)2

aj_l, 1-(l-d)2
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when n and ff n d (0, 1). These results could again have been obtained from a
direct computation. We may, for example, take the sequence of polynomials {P’)(1 +
2x), n 0, 1, 2,. .}, where P’) is a Jacobi polynomial [15]. This sequence contains
orthogonal polynomials with weight function

w(x; a,)=(-x)(l+x)t (a>-l; fl>-l)

and the monic polynomials are given by

/3,t)(l+2x) F(a+n+l) (n)r(o++n+j+l)xn!F(a+fl+2n+l)j=o j F(a +j+ 1)
so that

F(a+n+l) ( n )F(a+fl+2n-j+l)a’"=F(a+fl+2n+l) n-j F(a+fl+n-j+l)

and applying Stirling’s formula leads to (32). In Figs. 1 and 2 we have plotted the
functions g and f of (32).

Example 3 (Orthogonal polynomials with exponential weights). Let us take a
sequence of monic polynomials {pn(x), n 0, 1, 2,...} for which

dx=O, n m

where w(x)> 0 almost everywhere on (-c, 0) and

log w(x)
(33) x-lim- ixlV

--1, y>0.

Rakhmanov [12] showed that for 3’ > 1/2

I(34)
1

log -, log Ix- ln -1

uniformly on compact subsets of C\(-oo, 0], where

( 2n )1/A(3’) F(23’)
(35) k,,= A( T) 22/_1{F( y)}2

and the distribution function F() is given by

F(() b.(s) ds, 0 < <-_
-1

(36)
du

b,(s) Isl "-1 J _l__<s__<O.U-v-l/2
7r sl x/l- u’

Mhaskar and Satt [10] have analysed the weight functions w(x)= e-Ixl and they
obtained the same result for these functions, however, also for 0 < 3’ =< 1/2. The function
bv(s) can be written in terms of hypergeometric functions [10], [12], [17] and is
sometimes called an Ullman weight (on [-1, 0]). Applying the theorem to this sequence
yields the following: If

p,(x)= ai,,,x "-,
j=O

then

k"p,,(k,,x)= a,,,k-Jx "-j
j=O
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FIG. 1. Thefunction gfor: I--Orthogonal polynomials on [-1, 0]; II--Laguerre polynomials on (-, 0];
III--lterations of z + 6z + 1.

FIG. 2. Thefunction ffor: lmOrthogonal polynomials on [-1, 0]; II--Laguerre polynomials on (-, 0];
IIImlterations of z + 6z + 1.
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so that

(37)

1
log aj.. d log k. g(d),

1 ,n--f(d),
k. aj_,,,

where k. is given by (35) and

(38)

o

f-l(x) Y b,(y) dy, x > O,
_x-y

g(d)=-(1-d) logf(d) + log[f(d)-y]bv(y dy,

Let us take y 1, then

bl(S)=2F-+.,s-
,Tr --S

-l__<s=<O

J- d e (0, 1)

0<d<l.

and

bl(y) log (x- y) dy 21og [x +x/xZ+ x]-log x

+ 2[-x + x/x + x] 2 log 2 1,

Straightforward calculus leads to

f-(x)=l-x
x +/x2 + x

2x + 1 2x/X2 + X

x>O.

and by inversion

f(d)
(l-d)2

The concave function g is then given by

g(d) -2( 1 d) log 1 d d log d 2d log 2 d.

Moreover (35) becomes k. =4n, so that we find

1
log a,. d log n -2(1 d) log (1 d) d log d d,

(39)
1 a.,, (l-a)
4n a_,. 4d

where n - and j/n - d (0, 1). These results for Y 1 could also have been obtained
by analyzing the sequence of polynomials {L.)(-x), n =0, 1,2,...}, where L.) is a
Laguerre polynomial [15] for which (33) is valid with y 1. The Laguerre polynomial
is given by

L(,,,)(x) n

=o n -j j!

and its asymptotic properties are given in [15], [9].
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The coefficients of the monic polynomial are given by

aj,.= n’( n +ce)j (n -j)!’

and by means of Stirling’s formula one can then easily obtain (39). The limit functions
of (39) are plotted in Figs. 1 and 2.

Example 4 (Iterations ofpolynomials). As a last example we consider a polynomial
T of degree k_-> 2"

T(z) zk + ak_l Zk-1 "-Jl-. -[- a0

and its iterations {T((z), n=0,1,2,...}, where T((z)=z and T((z)
T("-(T(z)). The Julia set J for this polynomial T is the set of complex numbers for
which the sequence {T((z), n-0, 1,2,...} is not normal (in Montel’s sense) [1],
[2], [4]. It is known [4] that the set J is compact and has capacity one. We suppose
that the set J is real and on the negative real axis. The orthogonal polynomials with
respect to the equilibrium measure /z on the Julia set are denoted by {p(x; J),
n-0,1,2,...} and are related to the iterated polynomial sequence {T((z), n-
O, 1,2,...} by ([1], [11])

1
pl(x; J) x +- ak-1,

p.k(X; J)=p.(r(x); J), n =0, 1, 2, .
1

pk.(x; J) T(")(x) +-
If we write

T(")(x) Z tj,. xk"-J
j=O

then we may apply (29) to obtain

1 t,,,-f(a)
k"

log t,,, - g(d),
t_..

where n and j/k d (0, 1) and f and g are given by

f-l(x)=-f Y dlzj(y), x > O,
x-y

g(d)=-(1-d) logf(d)+ fjlog[f(d)-y] dlzj(y), 0<d<l.

As an example one may consider the polynomial

(40) T(z) z2 + 2bz + c.

By the M6bius transformation L(z)= z-b, we find that

"(z) L-1 T L(z) z2-p (p b:z- b c).
It is well known that for p_-> 2 the Julia set J for T is real and contained in I-q, q],
(q =1/2+x/+p) ([4, Thm. 12.1]) and for p > 2 the Julia set is a Cantor set. The Julia
set for the polynomial T is given by L(J), so that J is contained in [-q-b, q-b]
whenever b2- b-c-> 2. If we choose the parameters b and c in (40) such that

b > -1/2 b :zc>=O, -b-c>-2
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then J will be a Cantor set on the negative real axis, contained in [-b 1/2- x/1/4 + b2- b c,
-b+1/2+x/+ b2-b-c]. In Figs. 1 and 2 we have plotted the functions f and g for
T(z)= z-+ 6z + 1.

Theorem is not valid for the iterations of the polynomial T(z) z-p (p >-_ 2)
since every function T(n)(x) is an even function and the coefficients of odd powers of
x vanish. If {p,(x; J), n =0, 1, 2,...} are the monic orthogonal polynomials with
respect to the equilibrium measure on the Julia set J of z-p (p >= 2), then {p(x); n
0, 1,...} with

p-(-x) (-1)"pz,(V/-; J)

will be orthogonal on a set J+ in [-q, 0] (q =1/2+/-+p). If we put

then

2n--1
T")(x) Z (-1)Jtj,.x2"-2j

j=0

2n--I

p.-,(x) T<")( ix/-) tj,,x"-’-
j=0

and since Theorem 1 is valid for {p(x); n 1, 2,...} we have

1 tj,______. -.f(d)
2
n-llgt,"-g(d)’

tj_l,n

whenever n- and j2-n+-d (0, 1), with

f-l(x) f Y dlj+(y), x > O,

g(d)=-(1-d) logf(d)+ fj+log[f(d)-y] dtzj+(y), 0<d<l.

The case where p 2 gives essentially the Chebyshev polynomials of the first kind on
[-2, 2] and, up to some constant, the formula (32) holds.

Acknowledgments. G. Fano is indebted to Dr. M. F. Barnsley for stimulating
discussions and to Dr. S. Turrini for his help in the use ofthe algebraic SCHOONSCHIP
language, which allowed numerical computations on the iterated maps.
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ON A SIMPLIFIED ASYMPTOTIC FORMULA FOR THE
MATHIEU FUNCTION OF THE THIRD KIND*

D. NAYLOR

Abstract. This paper considers the asymptotic form of solutions ofthe equation Yx,, (u2 2h- cosh 2x)y
for fixed real values of x and h and large complex values of u. Attention is focused on that solution known
as the Mathieu function of the third kind, M(,.3)(x), and for values of u in the half plane Re (u)->0. The
basic asymptotic formulas require the determination of an elliptic integral but, when u is large, it is shown
how this integral can be approximated by elementary functions.
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1. Introduction. The solution of wave propagation problems involving infinite
domains bounded internally by cylinders of elliptic cross section requires the consider-
ation of the functions M)(x)j 1, 2, 3, 4, which satisfy the modified form of Mathieu’s
differential equation:

(1.1) w,,,,=(u2-2h2cosh2x)w, a<-x<oo.

The constants h, a are supposed real and positive but the parameter u may take both
real and complex values. The quantity v (the characteristic exponent) used in the
standard notation of the Mathieu functions is connected with the parameter u by a
complicated relation which for large values of u can be approximated by the following
equation [2, p. 125]:

u’-=

In this paper attention is focussed on the solution of (1) that is associated with outgoing
waves. This solution is the function M)(x) which behaves [2, p. 170] for fixed v and
large x according to the formula

(1.3) (3)M,, (x)= H()(2h cosh x)[1 + O(sech x)]
as x +o0, where H(’) denotes the Hankel function of the first kind. The object is to
obtain an asymptotic formula describing the behaviour of M)(x) for large values of
u in the half plane Re (u) -> 0. It is clear that, if x is confined to some bounded interval
of values, solutions w( and w(2 of (1.1) exist possessing the asymptotic forms

w(1) e ux, W(2) e-UX

as u oo. Since any solution of (1.1) is expressible as a linear combination of w(1 and
w2 it follows that

(1.4) M(,,3}(x)--- cl e + c2 e

where the coefficients c, c2 may depend on u but not on x. The precise-form of the
relation (1.4), which will be determined by following a procedure developed by Olver
[4], is given by the following equation:

(1.5) M)(x)= /uu ’(u-)(’/2)e[eUX-Ulg(2u/he) --ie-UX+Ulg(2u/he)][l+O()].
Received by the editors June 23, 1986; accepted for publication (in revised form) December 11, 1986.

) Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada
N6A 5B9.
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Olver’s method requires the consideration of basic solutions of (1.1) for complex values
of the independent variable and matching combinations of these solutions in different
domains. We therefore replace x by the complex variable z and consider the differential
equation

(1.6) Wzz (u2-2h cosh 2z)w.

A standard discussion of the asymptotic form of solutions of this equation when both
z and u are large may be affected by means of a Liouville transformation. The asymptotic
expressions for the solutions of (1.6) obtained by this method involve a variable (z, u)
defined by an integral of the form

(1.7) (z, u)= (u2-2h2 cosh 2t) 1/2 dt

in which c is independent of z. Since (1.7) is an elliptic integral it is desirable to obtain
an asymptotic expression for it in terms of simpler functions. This problem was
considered, for real values of z, in [3] where it was shown how to approximate the
value of such an integral for large values of u by means of elementary functions. In
the next section of this paper it is shown how similar asymptotic expressions may be
obtained for the value of the relevant elliptic integral when the variable z is complex.
The actual construction of the formula (1.5) is carried out in 3.

2. Asymptotic formulas for ’(z, u). In this section asymptotic formulas are con-
structed for the function st(z, u) defined by the elliptic integral

(2.1) st(z, u)= (uZ-2h2 cosh 2t) 1/2 dt

where Zo--Xo+ iyo is that solution of the equation 2h2 cosh 2Zo u2 that is given for
large values of u by the approximate formula Zo"- log (u! h) the principal value of the
logarithm being taken. Because attention is confined to values of u such that larg
r/2, the point Zo is located in the strip IIm Zol <- r/2. Since the modified Mathieu
functions are periodic in z we could consider the effect of the mapping (2.1) on the
strip 0-< Im z -< 7r but in applying Olver’s technique it is helpful to consider the larger
strip IIm zl =< 7r. Branch cuts parallel to the real axis are introduced from Zo to Zo
and from -Zo to -Zo-OO and the branch of the radical chosen is that which is
asymptotically equal to ihe as z - oo on the lower side of the first such cut. With this
choice the function " is also asymptotically equal to ihe as z - oo in the stated manner.

In order to obtain approximate formulas for sr in terms of elementary functions
it will be necessary to consider separately three different parts of the strip IIm
as defined by the inequalities"

(i) Re (z) ->_ 1/2Xo,
(ii) [Re (z)[ =< 1/2Xo, and
(iii) Re (z)_-< -1/2Xo.
Case (i). To extract the dominant contribution to the integral in (2.1) when u is

large, the integrand is decomposed as the sum of four parts as specified by the following
equation"

2h2 sinh 2t u2 tanh 2t
(uZ-2h2 cosh 2t) 1/2= (u2-2h2 cosh 2t) 1/2 (u2-2h cosh 2t) 1/2

2h2e-2t u2e -2t

(u2-2h2 cosh 2t) 1/2 cosh 2t(u2-2h2 cosh 2t) 1/2"
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Upon integrating the terms on the right-hand side of the preceding equation along a
path in the complex t-plane connecting the points Zo and z we find that

(2.2)

where

-2h2
sinh 2t dt

(z, u) [zo u2- 2h- cosh 2t)/

u2 f sinh 2tdt
+

cosh 2t(u2-2h2 cosh 2t) /2 2hZI q- u212

fz" e -2t dt f e -2t dt
(2.3) I1 2 2 cosh 2t(tt2-- 2h 2 cosh 2t) 1/2"o(U -2h cosh2t) 1/2’ 12=

zo

It will be shown shortly that I O(u-2) and 12 O(u-3). Since the first two integrals
present on the right-hand side of (2.2) may be evaluated explicitly, we find the equation

(z, u)=(u2-2h2 cosh2z)/2-u log[u+(u2-2h2 cosh 2z) 1/2]

(2.4)
u

+-log (2h2 cosh 2z)+ O(u -1)
2

which applies for sufficiently large u and Re (z) -> 1/2 log [u/hi.
To obtain the stated bounds on I1 and I2 the path of integration connecting Zo

and z is taken to consist of the straight line from Zo Xo + iyo to Xo + iy together with
the straight line from Xo+ iy to z x+ iy. On writing r+ iT we find, since u2=

2h cosh 2Zo, that

lu2-2h2 cosh 2t[ 2h2lcosh 2Zo- cosh 2t

4h2[sinh (Zo+ t) sinh (Zo- t)[

(2.5) 4h2[sinh2 (Xo+ r) +sin2 (yo+ r/)] /2

[sinh2 (Xo- r) +sin2 (yo- rt)] /2

_>-2x/ h2 sinh (Xo+ r)[sinh [Xo-r[ + [sin (yo- rt)[]

after using the inequality (a2+b2)l/2>-(a+b)/x/ which holds for any two positive
numbers a and b. On the line joining Zo and Xo + iy we have Xo+ Jr/ so that, by
(2.5), the contribution of this part of the path of integration to the value of 11 does
not exceed the quantity

Ce-2x lye dq
(2.6)

(sinh 2Xo) /2 Isin (Yo- r/)l ’/2

where C is a constant. This expression is O(e-axo)= O(u-3), since Xo--.loglu/hl, the
integral in (2.6) being bounded independently of u because lYi < rr and 0< yo< rr/2.
On the part of the path of integration that connects z with (Xo + iy) we use the following
simplified form of the inequality (2.5):

lu2-2h2 cosh 2t[ _>- 2x/ h2 sinh (Xo+ r)sinh [Xo- r[.

The contribution to I of this part of the path is bounded by the quantity

co e-2 dr
(2.7) C

[sinh (Xo + r) sinh [Xo- r[] 1/2
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If x0-<-x < this expression is less than the integral

C e-2x f d’r

(sinh 2Xo) 1/2 Jxo [sinh (-- Xo)] /2"

This expression is O(e -3xo) which is again O(u-3). If Xo/2<-x<=xo we note that
sinh (Xo+ -)->_ sinh (3Xo/2) so that the expression (2.7) does not exceed the quantity

C e-2 dr C e-2x xo-x e2d
[sinh (3xo/2)] /2 [sinl i--’)]/2 [sinh (3Xo/2)]/ o (sinh

(.a
2Ce-x-x i’- cosh :d 4C e-o-[sinh (xo-x)]

[sinh (3xo/2)]/2 .o (sinh :) [sinh (3xo/2)]/2

after setting xo-" and using the fact that e2e_-<2e e cosh =<2eo- cosh . Since
x >=xo/2 the final expression in (2.8) is O(e-2) which is O(u-). On combining the
above bounds we can see that I O(u-2), as stated.

The treatment of I2 is similar, except that since Icosh 2(- / ir)l --> sinh 2r _-> sinh xo
on the entire path of integration, the extra factor cosh 2t present in the integrand of
I2 gives rise to an additional factor of cosech xo O(e-) O(u-) in the final result
so that I2 O(u-3). This establishes the validity of (2.4).

If e is large compared with u2, the formula (2.4) can be simplified by expanding
the terms on the right-hand side of this equation in powers of u2 sech2 z and this leads
to the formula

(2.9) (z, u)= iheZ ,,,iu..+ O(u2e_Z)+ O(u_l)"
2

Case (ii). The bounds on 11 and 12 stated in the preceding section do not apply
when Re (z) is large and negative or when [Re (z)l <1/2Xo. To obtain an approximate
formula for st(z, u) in the latter case we introduce the quantity zl =1/2 log (u/h), whose
real part is intermediate between 0 and Xo, and write

’(z, u)= (u2-2h cosh 2t) /2 dt+ (u2-2h2 cosh 2t) /2 dt.

The first integral appearing on the right-hand side of the preceding equation equals
sr(z, u) and can be estimated for large values of u by applying the formula (2.4) just
proved. On setting z z in (2.4) and simplifying the resulting expression, we find that

(2.10) st(z, u) u---log + (u2-2h cosh 2t)/ dt+O(u-).
4

The integral remaining in this equation may be estimated by expanding the integrand
in powers of u-Zcosh2t and integrating term by term, since ]u_-Zcosh2t
]u- cosh 2 [u-2 cosh 2x O(u-) therein. This leads to the formula

(2.11)
Zl

(u2-2h2cosh2t)/ dt=uz u sinh 2z--log2 ++O(u-)
which holds whenever u is large and IRe (z)[Re (z), where z= log (u/h). Upon
inseing the result (2.11) into (2.10), we obtain the formula

h
(2.12) (z, u) uz- sinh 2z- u log (2u/he)+ O(u-)

2u
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for IRe(z)[ _-< Re(z1). This formula applies in particular for z a when it reduces to the
following formula, which we record for future use,

(2.13) (a, u)=-u log
he+

+ O(u

Case (iii). The formula (2.4) ceases to apply in the domain Re(z)<-1/2xo where
however ’(z, u) may be calculated from the equation:

(z, u)=-go(u)-’(-z, u)(2.14)

where

(2.15) 2u) 1).go(U) 2u log e + O(u-

If Re(z) < -1/2Xo then Re (-z) > 1/2Xo and the second term on the right-hand side of (2.14)
may be estimated from the formula (2.4) already established. Therefore, for such values
of z, equation (2.14) can be employed to determine st(z, u). To verify (2.14) we note
from the definition (2.1) that

’(z, u)+ ’(-z, u) (u--2h cosh 2t) 1/2 dt + (u2-2h cosh 2t)1/ dt.

On reversing the sign of the integration variable in the second integral it becomes one
along a path connecting z to -Zo and on combining the two integrals we find the formula

(Z, U)+ ’(--Z, U)-- (u2-2h2 cosh 2t) 1/2 dt

cosh 2t) dt 2(0, u).-2 (u2_2h2 1/2

On calculating st(O, u) from (2.12) by inserting the value z 0 therein we deduce the
relation (2.14) stated above.

3. Determination of the asymptotic form of M)(x). The determination of the
coefficients Cl, c2 in the relation (1.4) is regarded as a connection formula problem
which will be solved by applying the method used by Olver [4]. This method requires
a consideration of the mapping of the z-plane onto the r-plane defined by the equation
(2.1). Properties of this mapping have been investigated by Sharples [6]. For real values
of u, Sharples reduces (2.1) to a Schwarz-Christoffel transformation by means of a
change of the variable of integration, but this approach is not effective if u is complex.
Alternatively, when u is large, a discussion of the mapping may be carried out with
the aid of equations (2.4) and (2.12) and the intermediate variable z u-lw1/2 where
w 2h cosh 2z. In terms of this variable, equation (2.4) reduces to

(3.1) u-l (1 ,/.2)1/2 log[ 1+(1-z2)1/] +O(u-2).
1...J7"

This decomposition of the mapping is applicable to large values of u, both real and
complex, but like Sharpies, it is helpful to consider real values of u first. Properties
of the mapping of the ‘/’-plane onto the plane of the function of z appearing on the
right-hand side of (3.1) are considered on p. 420 of [5]. Cuts are placed in the z-plane
along the segments (Xo, o) and (-c, -Xo) of the real axis, where Xo denotes the positive
root of the equation 2h2 cosh 2Xo u 2. In Figs. 1 and 2 corresponding points are
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FG. 2(b). u--Plane, O.

indicated by the same letters. The distant points G1, F1 of the z-plane have ordinates
r/2, r, respectively. The right-hand side of Fig. 2(a) illustrates the u-l’-map of the
strip Re (z)> 0, 0< Im (z)< zr. The point B1 denotes sr -0 and the point E is situated
at sr --iur. The left-hand side of Fig. 2(a) is constructed from the right-hand side of
the same figure by appealing to formula (2.14) together with the reflection principle,
which, since u-sr is real when z is real and between the points +/-Xo, implies that
u-l(x iy) is the conjugate of u-(x + iy). On setting z=-x + iy in (2.14) we find,
for positive values of u, the necessary formula

u-’(-x + iy) -u-(x- iy)- u-lgo(U)

--U--I(x "- iy)- u-go(u).

This equation relates the value of r at the point x + iy with its value at the image point
-x+ iy so that, for instance, (A2)=-(F)-go(u), and similarly for the values of "at other points on the left-hand side of Fig. 1. In this way the left-hand side of Fig.
2(a) is obtained. The points K, L, Q, L’, K’ lie outside the domain of validity of (2.4)
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and their r-values are given instead by (2.12) which after division by u reduces to the
formula

(3.2) u-isr z logl2_z_zl/u\ +O(u-’).
\he/

The strip -Tr < y < zr is divided into domains D1, D2, D by the curves C1, C2, C
which emanate from the point B and along each of which Re sr =0. The curve C
coincides with the segment (Xo, ) of the real axis and corresponds to the part BA
of the imaginary axis of the u-’-plane, whilst C2 corresponds to the segment BE1
of that axis. Figure 2(a) gives the u-l’-map of the strip 0< Im (z) < or, for real values
of u. For such values of u the ’-map of the adjoining strip -Tr < Im (z) < 0, Fig. 2(b),
is readily constructed from Fig. 2(a) by means of the reflection principle.

If u is complex we set u= Rei where 0_-< 0-< 7r/2 and regard the points Ai, G,
F, for i= 1, 4 as being fixed in the u -sr-plane, that is they correspond to values of "
independent of u as shown in Figs. 3(a) and 3(b).

Since u2-= 2h cosh 2z hZe2z the corresponding (distant) points A, G1, F of
the z-plane will now have ordinates 0, 0 + 7r/2, 0 + 7r, respectively. The remote points
A2, G2, F2 on the left-hand side of the z-plane will be displaced a distance 0 in the
downwards direction. The points Q, L, L’, K, K’ are taken to be fixed in the z-plane,
and their associated st-values are given by (3.2), which for complex values of u, can
be written in the form

iO+O(R-’).
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FIG. 3(a). u--plane, 0< 0< 7r/2.
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F2 X
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FIG. 3(b). u--plane, 0< 0< 7r/2.
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This equation shows that the points Q, L, L’, K, K’ of the u-l’-plane move downwards
through a distance equal to 0. The turning point B is given for large values of u by
the equation Zo--log (u/h) and the curves C, C2, C3 through B1 correspond to rays
for which arg (u-") +/-r/2- 0 in the u-sr-plane. The images of these curves in the
z-plane are depicted in Fig. 4. For complex values of u the cut emanating from B is
taken to coincide with the curve C and that emanating from E1 is taken to be the
curve Co congruent to C and orientated as shown in Fig. 4. In constructing the curves
C1, C2, C appearing in Figs. 1, 4 and 5 it is helpful to set r sech tr, tr a + ifl,
u Re’ in the formula (3.1) which then yields the equation

(3.3) R-1Re"= cosh2a+cos2fl-a cos0-cosh-a-os2/3- fl sin0.

Since 2h2 cosh 2z u2q"2--//2 sech2 o" we also find, for large positive values of x, the
relations

(3.4) 1 + cosh 2a cos 2/3 e2(‘-’) cos 2(0- y),

(3.5) sinh 2a sin 2/3 e2(x-x) sin 2(0 y),

(3.6) cosh 2a cos 2/3 e2(x-x)

where Xo"-log (R/h). The curves C, C2, C3 leave Zo in directions making angles equal
to -0, (Tr-0) and (2r-0) with the positive real axis, respectively. When 0 0 the
equation (3.3) shows that the curves along which Re " vanishes are given by either
a 0 or cosh 2a + cos 2/3 a- sinh 2a. The equation a 0 gives the curve C1 which
coincides with the part of the x-axis to the right of the branch point B(Fig. 1). The
other condition, when used in conjunction with (3.4) and (3.5) to eliminate the variable
/3, leads to the following equations:

cos 2y cosh 2a a sinh 2a, e2(x-x) a -1 sinh 2a.

FIG. 4. z-plane, 0< 0< r/2.

K
H2=-"_ |!IL C2

FIG. 5. z-plane, 0 r/2.

Hi
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These are the parametric equations of the two remaining curves C_ and C3 (for the
value 0 =0), which are shown along with C1 in Fig. 1. The corresponding curves
associated with the value 0 7r/2 are shown in Fig. 5. In this case it follows from (3.3)
that Re " vanishes when either/3 =0 or cosh 2a +cos 2/3 =/3 -1 sin 2/3. The curve C3
now comprises the line joining the points +Xo+ izr/2 and the condition/3 0 gives the
part of this line for which (3.3) holds, viz: x ->_ 1/2Xo. The alternative condition cosh 2a +
cos 2/3 =/3 -1 sin 2/3, when combined with (3.4) and (3.6) to eliminate the variable a,
yields the parametric equations of the curves C2 and C1 in the following form:

cos 2y -cos 2/3 -/3 sin 2/3, e2(’-’) =/3 -1 sin 2/3.

It should be noted that, for large values of R, the curves C1, C2, C3 originating
at Zo can only extend into the left-hand side of the fundamental strip of the z-plane
if the angle 0 is sufficiently close to +zr/2, so that cos 0 O[(log R)-]. To verify this
result we note that to reach the left-hand region such a curve must traverse the domain
(ii) of 2 in which the formula (2.12) applies. Upon setting z x + iy, u Rei in this
formula we find that

(3.7) R-’Re" Ix log(2e-eR)] cos O-(y-O)sin O+O(R-).

This formula applies for Ix[ =<1/2 log (R/h). Since y, 0 are bounded it follows that a

Re r=0 curve cannot enter or traverse this domain unless cos 0= O[(log R)-] as

stipulated.
If 0 # 0, zr/2 explicit parametric equations for C, C2, C3 in terms of one or other

of the variables a, /3 are not obtainable, for then the condition Re r 0 retains the
more intricate form

(a cos O-fl sin 0)(cosh 2a +cos 2fl)= sinh 2a cos P-sin 2/3 sin 0.

In this case the curves may best be sketched by following the variation of the slope
dy/dx as the point z, starting at Zo, moves along such a curve. For this purpose appeal
is made to the differential equation of the curves. If we write tan & dy/dx and use
the equation (2.1), it can be shown that this differential equation can be written in the
following form:

cot 2( 0 + b) [cos 2( 0 -y) e(x-’)] cosec 2( 0 -y).

The connection formula, in the form stated by Olver, will now be outlined. This
formula relates three solutions w, w, w3 of the differential equation (1.5). Let D be
the domain -Tr < Im z < 7r, then the solution wj is defined in D cut along the correspond-
ing curve C and along the branch line Co through -z0 and possesses .the property
such that

(3.8) wj(z) cj(z)e-CJ(z)[1 + ej(z)]

where ’(z) denotes the branch of ’(z) that is continuous in D cut along Co and C
and is such that Re ’ > 0 in D whilst Re ’ <= 0 elsewhere. The function b3(z) may be
defined to be that branch of (u-2h2 cosh 2z) -1/4 that is continuous in D cut along
C1 and Co, except at +Zo, and which is asymptotically equal to h -/2 exp (-x/2+ i,rr/4)
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as x- +. The remaining functions bl and b2 are defined by the equations bj
ei/6dpj_ for z Dj w D_I. The quantity e(z) appearing in (3.8) is subject to the bound

(3.9) le(z)l _-< exp{
where

(3.10) R(z) 2h2 cosh 2z(u:Z-2h :z cosh 2Z) -3/2 + 5h4 sinhz 2z(u:-2h2 cosh 2Z) -5/2.

The integral appearing in (3.9) is taken along a path connecting z and an arbitrary
reference point a, the path being one along which Re ’j(z) is nondecreasing and tends
to +o as z- a. It follows that

(3.11) [e(ai)l_--<exp [R(z)[. Idzl -1

where the integral is taken along a path connecting ai and a along which Re sr is
monotone. It is assumed that such a path exists for each pair of reference points. The
connection formula is then

(3.12) -[1 + e2(a3)]Wl +[1 + el(a3)]eir/3w2+[1 + e(a2)]e-ir/3w3--O.
To fix the solutions w, w2, w3 we let a -+ i7r/2, a_ oo- izr/2 and a oO-1- i7r/2.
The resulting domains of definitions of Wl, w2, w3 are adequate for the intended
applications. The function ’l(z) is the branch of st(z) that has positive real part in D
and Re Srl-o as Re (z)- -oo in D1 whilst Re sr--c as Re (z)-+ in DE and D3.
On referring to (2.9) we see that, for large z in D2 and D3,

iuer
+/-[iheX(cos y+ sin y)---2-+ O(u2e-X)+ O(u-)].

The stipulated asymptotic behaviour of sr requires that the positive sign be chosen for
2, D and the negative sign chosen for z D. This leads to the relations

(3.13) sr iheZ iu,a-+ O( u2e-) + O( u-i)
2

for Re (z)- +c in D3, and

(3.14) 1-’’-[ iheZ iu’a’+ O(u2e-x) + O(u-a)

for Re (z) +c in D2. The corresponding equations giving the behaviour of st1 as
Re (z)- (in D) are obtained by applying the relation (2.14) to (3.12) or (3.13),
as the case may be. Thus we obtain the equations

15) st1 -2u log (2_) iu’rr+ O(u2eX)+ O(u_)(3 + ihe ---for Re (z)- in the part of D above the cut Co, and

(3.16) ’=-2u log -ihe-+ O(ue)+O(u
2

as Re (z)--oe in the part of D below Co. The asymptotic forms of the functions ’and "3 can be obtained from the appropriate formulae (3.13)-(3.16) by using the
relations (i) "2-- ’3 --’1 for z e D (ii) 2-- -’3 -’1 for z e D2, and (iii) 2-- --"3-- ’1
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for z D3. It will be shown that the quantities ei(aj) appearing in the formula (3.12)
are such that e2(a3)--0 whilst e2(al) and e3(al) are each O(u-). We consider e3(a)
first and apply the inequality (3.11) in which the path of integration connecting a and
a is the straight line Im z- r/2. On this line we set z x + ir/2 and obtain

(3.17)
(U2- 2h cosh 2Z) /2 (R2e2i + 2h cosh 2x)/

(R cos 20 + 2h2 cosh 2x + iR2 sin 20) /2.

Since Re if3 -’) "3t-O0 as x +o it is necessary to select the branch of (3.17) whose real
part is positive as x +o. It is then readily verified that Re (u2-2h2 cosh 2z)1/2>0
for all real values of x.

Since dsr3=(u2-2h2 cosh2z)I/2dx, along the chosen path, it also follows that
(d/dx)(Re3)>O so that Re’3 is nondecreasing along this path. Fuhermore it is
proved in the Appendix that

(3.18) I(u2+2h2cosh2x)/l(R+2h2cosh2x)/2sin(R2+h2el2l)/2sin
for u in the sector 0 0 /2-6. On using this inequality in the definition (3.10) of
the function R(x) it is seen that this function is O[ell(R2+ h2el2Xl) -3/2] on the line
joining a and a and that the integral present in (3.11) is O(u-) so that e3 is itself
O(U--1).

To prove that e(a3)= 0 we connect a and a3 by means of the three straight lines
from a to - i/2, then to + i/2 and finally to a3, where is an arbitrarily large
positive number. It follows from (2.9) that, on all three pas of the chosen path,
3 -iheZ + iu/2, the signs of (2.9) being reversed since Re if3 + as x + in D3.
Therefore Re if3 he sin y + constant, which verifies that Re if3 increases steadily from- at a to + at a3. In addition since l(u-2h eosh2z)/lhe we see that
R(x) O(e-) and that

Iel" [dzl 2C e dx + Ce dy 2re + Ce-.
-/2

It follows that [e3(a)lNexp[(+2)Ce-=] 1 where is arbitrarily large, so that, on
letting + we see that e3(a) is actually zero.

To show that ez(a)= O(u-1) we again apply the inequality (3.11) in which the
path of integration connecting a and a2 consists of the three straight lines from a to

i/2, then to -i/2 and finally to a - i/2. On the line joining the points i/2
the formula (2.12) applies, with all signs on the right-hand side reversed, since the
dominant term is the logarithmic one and we require Re ff > 0 in D. Therefore, on
this segment

-uz + u log + 0(1)

(2u)=-iuy+u log e + O(1)

so that Re ’ =yR sin 0+Re[u log (2u/he)] which decreases when the segment is
described in the stated direction, and on this segment,

(u2- 2h2 cosh 2z) /2 (R2e2i 2h 2 cos 2y) 1/2 -Rei + O(R-)
uniformly for lyl_< zr/2. On the infinite parts of the path the formula (3.17) applies,
except that it is now necessary to choose the value whose real part is negative as
x +c, since then we require that Re ’1 -. It follows that Re (u-2h2 cosh2z) 1/2 < O,
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and that Re st1 is decreasing, on the whole path. In addition the inequality (3.18)
applies on the infinite parts so that R(x)= O[el2Xl(R2+ hZelZXl) -3/2] on the entire path
and therefore

IRI. lazl O(u-’).

Finally we see that ]e2(al)[ =< exp[0(u-)] and this implies that e2(al) is itself O(U -1)
as claimed. Since e2(a3) =0 and el(a3) and e(a2) are O(u-), (3.12) reduces to

(3.19) w(z) [e=/3wz(z)+ e-=/3w3(z)][1 + O(u-)].

To relate M(x) to the solutions w, w, w3 we appeal to the propey (1.3) and the
Hankel asymptotic formula [1]

1
exp 2ih cosh x- + [1+ O(e-)](3.20) H)(2h cosh x) =(h cosh x

as x +. It follows on combining (1.3) and (3.20) that

(3.21) M)(x) =dh cosh x

as x ---> +oo.
Since 3"--iheZ-b iu,rr/2 as Re (z)- +o in D2 and D the formula (3.8) applied

to w3 shows that

(3.22) w3(z qb3(z)eiheZ-iu/:z[1 + e3(z)].

The above formula for w3 applies for all points z that can be connected to a3 by a

path along which Re st3 is nondecreasing. If z cr is positive, and large compared with
u2, a suitable path can be composed of the straight line from r to (o’+ i’n’/2) together
with the straight line from r + i’n’/2 to a3. This path is the upper half of that introduced
in the preceding proof that e2(a3) 0 and on it R O(e-’) and Re st3 is nondecreasing
so that

IRI. Idzl O(e-’).

Therefore e3(r) - 0 as r -. Hence, since b3"" h-/2e-X/2+i/4 as x o0, it follows
from (3.21) that

(3.23) w3(x) h-1/2e-X/2+iheX-iu’/2+irr/4[1 q- E3(X)]

where e3(X -> 0 as x - +c.
Upon comparing (3.21) with (3.23) we see that

(3.24) M)(x) i(u--v)(’rr/2)--i’n’/21423e (x)

(3.25) e i(u-v)(’rr/2)[ e-irr/6WI(X ei,n-/6 W2(X)] 1 + O(u-’)]

by (3.19).
We now obtain the desired formula for M)(x). Since this is to be applicable to

sufficiently large values of u but bounded values of x, the latter variable will be located
in the domain D1. In this domain Re (st1)> 0 so that ’ is given by (2.12) with the
signs of the terms on the right-hand side of this equation reversed. For the values of
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x in question, the second term on the right-hand side of the same equation is O(u -1)
and can be absorbed into the last term so that ’l(X, u)=-ux +go(u) and

Wl(X ffpl(X)euX-(1/2)go(u)[1 + El(X)]

where go(u) is defined by equation (2.15). Since sre -st1 in D1 we also have the equation

we(x) dpe(x)e-"X+(1/e)g(")[1 + ez(X)].

It is clear from the reasoning followed in discussing el(ae) that el(x) and ee(x) are
O(u-1). On inserting the above expressions for wl and we into (3.25) and using the
facts that ble-i/6 dpee-i=/3 dp3 u -1/2 in D1, we find the formula (1.5) already stated.

If -7r/2 < 0 < 0 the desired formula for M(,3)(x) is obtainable at once from (3.24)
where w3(z) is given by (3.22), the connection formula (3.19) being now unnecessary.
The formula (3.22) itself now applies for fixed real values of z and, for such values,
e3(z) O(u-). To establish this result it is first verified that points representing fixed
real values of z can be connected to a3 by a path satisfying the monotonic property.
If x is positive and small compared with log (2u/he), a suitable path consists of the
straight line from x to x + iTr/2 followed by the line from x + iTr/2 to a3. In the domain
D1, Re ’3 is negative and equal to the expression on the right-hand side of (3.7) which,
since sin 0 is negative, confirms that Re st3 increases along the first part of the stated
path. The remainder of the path is positioned on the line Im z r/2 on which (3.17)
holds. Since Re st3--> +oo as z--> a3 along this line it follows as before that Re st3 is
nondecreasing on this section of the path as well. Since R(z)= O(u-1) on the first
part of the path and R(z)= O[eZ([ul2+ hZe2)-3/2] on the second part it follows, as
in the earlier discussion of ee(a), that e3(x)= O(u -1) for positive values of x small
compared with log (2u/he). On combining (3.24) and (3.22) we find since b3"-u -lIe

in D1 that

M(3)(x)’ u e’"-")=/e-’=/e-c[ 1 + O(u-1)]

2 ei(U_.)/e_ux+uiog(2u/he)[1 + O(u-1)]

for -r/2< 0 <0.

Appendix. It remains to establish the inequality (3.18). We write

(A.1) (U2" 2h cosh 2X) 1/2-- A + iB.

On setting u + is, squaring both sides and equating real and imaginary parts, we
find the equations

(A.2) 2- se + 2he cosh 2x A2- Be, st AB.

Upon eliminating s from the last two equations and rearranging the result we find that

2he cosh 2x1(A.3) ae=te 1+ 3-? 3.
It follows from this equation that IAI_-> It], and therefore from (A.2) that IBI-<lsl. On
using the latter inequality in (A.3), we find that

[ 2hecosh2x]A=>- 1 + se + te
so that, since u + is Re,

IAI--> (Re + 2h 2 cosh 2x)/21 cos 01.
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Since

lu 2 + 2h2 cosh 2xl /2 (A:’ + B2)/2 >-IAI >- (R + 2h2 cosh 2x)/2lcos 01
the result (3.18) follows for all values of u in the sector

0<=O<_--6.
2
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ASYMPTOTIC EXPANSION OF A MULTIPLE INTEGRAL*

J. P. McCLURE" AND R. WONG’

Abstract. An alternative derivation is given for the asymptotic expansion, as s 0+, of the multiple
integral

J(s): f g(x’/s)xl3f(x) dx,
0,1]

where g (R) and f C(n). The integral J(s) is first expressed as a contour integral, in which the
integrand is a meromorphic function in the complex plane. The asymptotic expansion is then obtained by
moving the contour to the left, the terms of the expansion being the residues of the integrand.

Key words, asymptotic expansion, multiple integral, Mellin transform

AMS (MOS) subject classification. Primary 41A60

1. Let g 6e(), the Schwarz space,f C(") and K, [0, 1] . Recently, Brfining
[4] has derived an asymptotic expansion, as s - 0/, for the multi-dimensional integral

(1) J(s): I g(X-)x31ogVxf(x)dx,
Kn

where x R", a and/3 It, 3/ Z, x xl’ x.- and

logv x log’ X logV- x..

Here, + [0, oo). To avoid triviality, we assume that the components-am," ", a, of
a are all positive. According to Briining, integrals of this type play an important role
in the asymptotic expansion of the trace of the equivariant heat kernel [3]. A related
integral has been treated by Barlet [1] in the analysis of complex spaces. The main
result of Briining is the following.

THEOREM. As s 0+, we have that

(2) J(s)---E Ijkl(f) S(3’+j+1)/% log s,

where the summation is over all j >-_ O, 0 <- k _-<[3/I + n and 1 <- <= n. The Ikl are
distributions with support in the set {x K, x 0}.

Briining uses an inductive argument, and bases his analysis on real-variable
techniques. However, his proof is difficult to follow; in particular, we believe that the
argument of 5, 6 and 7, which involves passing back and forth between one- and
two-variable expansions, is more subtle than is indicated. Moreover, the combination
ofthe inductive method and the reduction to various special cases makes the calculation
of the coefficients of the expansion (2) impossible in any practical sense.
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In the present note, we give a quite different and more straightforward method
for deriving the expansion (2). A discussion of this method, but in the case of
one-dimensional integrals, is given in [2]. This method involves some elementary
complex-variable techniques and has two major advantages over Briining’s argument.
First, the method remains the same, whatever the number of dimensions, so that no
induction is necessary on the dimension of the integral. Second, our method leads to
explicit formulas for the coefficients in (2).

2. For simplicity of presentation, we shall consider only the case n 2, and assume
that 3’ 0 in (1). The logarithmic factors can always be introduced subsequently by
differentiating both sides of the resulting expansion for J(s) with respect to the
exponents of x; see the last statement in 4. The formulas, of course, become more
complicated as the dimension increases. However, the method itselfremains unchanged.
Thus we are concerned with only the integral

(3) J(s) g(xayb/s)xytf(x, y) dx dy,

where a and b are positive, a and fl are nonnegative, g e () andf C(I2).
Our approach is based on some properties of Mellin transforms. We recall that

the Mellin transform of a locally integrable function h on (0, ) is defined by the integral

(4) M[h; z]= tZ-lh(t) dt

when it exists. If (4) holds, then the inverse Mellin transform is given by

f t-M[h; z] dz,(5) h(t)
27ri c-i

where the path of integration is a suitably chosen vertical line in the domain of
analyticity of M[h; z]. For conditions and proofs of (4) and (5), see [5, p. 46, 1.29].

Since g 5e, it is straightforward to show that the Mellin transform M[J; z] exists
and is analytic in the strip -dl < Re z < 0, where

(6) d11= min {1 +ca b

Furthermore, in this strip,

M[J; z] sZ-lJ(s) ds

(7) ]xyt3f(x, y) sZ-lg(xayb/s) ds dx dy

M[g; -z] X+aZy+bzf(x, y) dx dy.

Put

(8) F(z) x+Zyt3+bZf(x, y) dx dy.
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Then, by the inversion formula, we have

(9) | s-ZF(z)M[g; -z] dz,J(s)
27ri c-io

where -dll <c<0; cf. [5, Thm. 28]. Note that the Mellin transform M[g;-z] is
analytic in the half-plane Re z < 0 and is bounded in Re z-< c for any c < 0. Also, the
double integral F(z) is analytic in the half-plane -dll < Re z. In the following section,
we shall show that F(z) can be analytically continued to a meromorphic function in
the entire z-plane.

3. For -dll Re z < 0, integration by parts gives

F() a+az+
y+ 1, y) dy- X+aZ+lyt3+bZfl,o(X y) dx dy

(10)
(a+az+l)(fl+bz+l)

f(1 1)- y+bz+,,-jo,(1, y) dy

o+az+,ex j,oX, 1) dx

..}_ Xt+az+l, +b+Ir (x, y) dx dyy dl,1

The double integral on the extreme right is analytic for Re z >-d22, where

d22=min {a +2 fl+2}a b

Thus, through (10), F(z) is extended to a meromorphic function in the half-plane
Re z>-d22 with at least one pole at z---dll and possibly two poles, one at

z=-(a+l)/a and one at z=-(/3+l)/b, depending on whether d22>
max {(a + 1)/a, (fl + 1)/b}. Equation (10) also shows that F(z)= O((Im z)-2) as z-o
along vertical lines in Re z >-d22. Now observe that the last double integral in (10)
is in exactly the same form as F(z). Hence, the procedure in (10) can be repeated,
and n-applications of this give

F(z) (a + az +j)(fl + bz +j)
k=l j=l

fk-,.k-l(1, 1) y+bz+kfk_l.k(1, y) dy ,,+,,z+k,. (X, 1) dxX Jk,k-1

+ (a + az +j)(fl + bz +j) X,+,,z+,,yt+bz+,,j,,.,,(X,,- y) dx dy.
j=l
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Further integration by parts shows that for any positive integer n,

F(z)= (--1)k+lfk_l,l_l(1,1) (a+az+j) (fl+bz+i)
k,l=l j=l i=1

+ (-1)+’- (a+az+j) (+bz+i)
k=l j=l i=1

(11) + (-1)’+- (+az+j) (+bz+i)
/=1 j=l i=1

x+z+f,_(x, 1) dx+ (+az+j)
j=l i=1

From (11) it is evident that F(z) is meromorphic for Re z>-d.+l,.+l, where

d..=min{a+n /3+n}a b

Since d.. c as n co, we have proved the following result
LEMMA. The function F(z), defined by (8), can be analytically continued to a

meromorphic function in the entire z-plane, with poles at -(a + n)/a, -( + n)/b (n
1, 2,...). Furthermore, F(z)= O((Im z)-2), as [z[, uniformly in any strip -c< d <-_

Re z<-c<O.
To facilitate the calculation of the residues of F(z), we state the following variant

of (11), which is obtained by varying the number of integrations by parts. For any
positive integers n and m, we have

F(z) Y’. (--1)k+fk_l,,_l(1, 1) (az + a +j) (bz + fl + i)
k=l /=1 j=l i=1

+ (-1)+’-1 (az+a+j) 1-I (bz++i)
k=l j=l

Y+b+mfk_,m(1, y) dy
0

(12) + 2 (-1)’+-1 (az++j) (bz++i)

-++"" (x, 1) dxx J.,l-

+(-1)+ (az++j) (bz++i)
j=l i=1

fO frO xa+az+n fl+bz+my j,,,,,(x,y) dxdy.
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Note that each integral on the right-hand side of (12) is analytic in Re z >
where

d,,m min { a + n [3 + m}a b

and that the sequence d,,, is monotonically increasing with respect to each of n and
m. Moreover, dnm (x3 as r/, m .

Now let w be a pole of F(z), and let n and m be the smallest positive integers
such that w>-d,++. To be more specific, we suppose that w=-(a+n)/a, and
that -(+ n)/a -(+ m)/b for all positive integers m. Thus w is a simple pole.
From (12) we have

a+n
Res F;

a a(n-1)

2 (--1)’-lfn-,,-l(1, 1) +i-b+n
/=1 i=1 a

+(-1)= +i-b+na
+m-b(n+)/afn_l,m(1 ) d

(3
+2 (-1) +i-b+n

/=1 i=1 a

ba n
L,,_(x, 1)dx+(-)- +i-

i=

+-(+/L,(x, ) x

Performing the obvious integration with respect to x in the second sum and the last
term on the right simplifies (13) to

es " (-’* +i
a a(n-1) ai=1

(14) +(-1)= +i-bn+a
j.1 }
0

Similarly, if w =-( + m)/b is a simple pole, and if n, m are chosen as before, then
we have

Res[F; fl+m] 1 { 1)+ (+j +m)b =b(m 1)
(- a -a A-,m-,(1 0)

= = b

(15) +(-1)" (a+j-a+m)
-1

= b

x+"-"(+’)/f..,._ (x, o) clx
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Finally, suppose that for some integers n and m, we have (a + n)/a (/3 + m)/b. Then
F(z) has a double pole at -(a + n)/a. The principal part of F(z) can be calculated
from (12), and is given by

ab(n- 1)!(m- 1)! f.-1,,-l(1, 1)- f.-1,,(1, 3’) dy

f,,,.,_l(X, 1) dx+ f,,.,(x,y) dxdy z+
0 a

+ab(n f-1,,-1(1, 1)- f-l,,(1, y) dy

Io Io IoL,-(x, 1) dx+ L.m(X,Y) dxdy (aH._+bH_)

b log fn_l,m(1, ) d

a log xf,_(x, 1) &

+ (a log x + b log y)f,(x, y) & dy

n-1

-a E (n-k-1)!fk_l,._,(1,1)
k--1

m-1

-b E (m-l-1)!f_l,l_l(1,1)
/=1

n-1 fO+a (n-k-l)! fk-l,m(1, y) dy
k=l

+b 2 (m-l-l)! f.,l--l(X, 1) dx z+
/=1

where H k=l (l/k)" Upon simplification, the above expression reduces to

Prin F;-
a ab(n 1)V(m. 1 )v,f,_ 1,m_ (0,0). Z+a

1
+
ab(n-1)!(m-1)!

{f-,,m-l(O, O)(aH,_l + brim_l)

(16) b log yf.-l,,(O, y) dy- a log xf,,,,_l(x, O) dx

n--1

-a 2 (n--k--1)!fk_l,,,,_l(1, O)
k=l

-b , (m--l--1)!fn-l,l-l(O, 1) z+ -Jvn--1.
!=1 a
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Observe that the right-hand side of (14) can be regarded as the result of a distribution
acting on the C-function f(x, y) and supported on the coordinate axes. The same
remark applies to (15) and (16).

4. We are now ready to derive the asymptotic expansion of J(s). First we return
to the contour integral representation in (9). For any positive number d >-c we can
choose an arbitrarily small e such that F(z) has no pole in the strip -d < Re z <- -d + e.
Since M[g; -z] is analytic and bounded for Re z -< c < 0, by the lemma above we can
shift the contour in (9) to the left and obtain

J(s) E Res {s-ZF(z)M[g;-z]}
-d+e<Rez<c

(17)
1 [ -d+e+ioo

+ s-F(z)M[g; -z] dz.
2ri d-d+e-ioo

The last integral is clearly bounded by a constant multiple of sd-. Thus we have

(18) J(s) E Res {s-F(z)M[g; -z])+ O(sd-),
--dRezc

as s- 0+. Each simple pole w =-(a + n)/a of F(z) contributes a term of the form

(19) s(+")/M g; Res F;-
a a

to the asymptotic expansion of J(s). Similarly, each simple pole w=-(+m)/b
contributes a term of the form

(20) S([3+m)/bM g;
b b

If w=-(a +n)/a=-(fl+ m)/b is a double pole of F(2), then the residue of

s-ZF(z)M[g; -z] exp (-z log s)F(z)M[g; -z]

at w can be calculated from (16), and to the expansion of J(s) the point contributes
the term

an(f)s(’+n)/a log s + bn(f)s(+n)/’,(21)

where

(22)

and

bn(f)

(23)

L-l,n,-,(O,O) M g;an(f)=
ab(n-1)!(m-1)! a
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Inserting (19), (20) and (21) into (18), we obtain an asymptotic expansion for J(s) in
terms of powers and logarithms of s. In view of the statement following (16), the
theorem in 1 is proved for the case n 2 and 3’ 0.

As remarked before, the above method can easily be extended to integrals of
higher dimensions. The formulas for the coefficients in the expansion, however, will
become overwhelmingly complicated, and hence will not be given. The case 3’ # 0 in
(1) can be included by employing a frequently used device in asymptotics, namely,
we first replace each term in the sum in (17) by its corresponding value given in (19),
(20) or (21), and then differentiate both sides of (17) with respect to c and /3 an
appropriate number of times.
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INCOMPLETE LAPLACE INTEGRALS: UNIFORM ASYMPTOTIC EXPANSION
WITH APPLICATION TO THE INCOMPLETE BETA FUNCTION*

N. M. TEMME

Abstract. The incomplete Laplace integral

- e-f(t) dt
r()

is considered for large values of z. Both A and a are uniformity parameters in [0, ). The basic approximant
is an incomplete gamma function, that is, the above integral with f 1. Also, a loop integral in the complex
plane is considered with the same asymptotic features. The asymptotic expansions are furnished with error
bounds for the remainders in the expansions. The results of the paper combine four kinds of asymptotic
problems considered earlier. An application is given for the incomplete beta function. The present investiga-
tions are a continuation of earlier works of the author for the above integral with a 0. The new results
are significantly based on the previous case.

Key words, uniform asymptotic expansion of integrals, incomplete gamma function, incomplete beta

function, incomplete Laplace integral, construction of error bounds

AMS(MOS) subject classification. 41 A60, 30 F15, 33 A15, 44 A10

1. Introduction. This paper is the third in a set dealing with uniform asymptotic
expansions of Laplace type integrals. The previous papers are [11] and [12]. In the
present paper, we consider the integral

1
t-i(1.1) F(z, a) F(A e-Ztf(t) dt,

where z is a large parameter and f is holomorphic in a domain fI that contains the
nonnegative reals; A, a and z are real variables for which the integral is properly
defined. Say, a >-O, A-> 0 and z > O. An interpretation of Fo(z, O) follows from

limFx(z,a):{O ifa >0,
x o f(0) if a=0.

The second case follows from integration by parts.
We are interested in the asymptotic expansion of (1.1) for z --> which is uniformly

valid with respect to both A and a in [0, ). The parameters A and a may be coupled
with the large parameter z, or they may range independently through the uniformity
interval. For a description of the various asymptotic features, four different cases with
their own asymptotic phenomena can be distinguished.

(i) a fixed, A fixed. For this classical case Watson’s lemma gives an expansion.
When a =0, f(t) is expanded in powers of t, when c >0, tx-f(t) is expanded in
powers of t-a. See [6, p. 113].

(ii) a >- 0, A fixed. An incomplete gamma function (i.e., (1.1) withf 1) is needed
to describe the uniform transition of a 0 to a > 0; [4], [8], [9] and 14] are appropriate
references. The asymptotic feature is the possible coalescence of two critical points:

0 (an algebraic singularity) and a (end-point of integration).

* Received by the editors November 11, 1985; accepted for publication (in revised form) May 13, 1986.
f Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.
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(iii) a =0, A _->0. The saddle point of ’ e -z’, which occurs at =/z := A/z, may
coalesce with =0, the end-point of integration. In that event (i.e., when/x->0) the
saddle point disappears, since e -zt does not have a saddle point. No extra special
function is needed to describe this feature; in fact the (complete) gamma function,
which is incorporated in (1.1) for normalization, can handle this case. See 11] and 12].

(iv) c > 0 (fixed), A => 0. When/x := A / z is larger than a, the saddle point is inside
the interval of integration; otherwise it is outside. This transition can be described by
using an error function. A transformation gives an integral of the form

,
e-ZU2g u du,

and here the transition occurs at r/=0. See [10]; similar cases are considered in [2]
and 13].

These four cases are combined in our approach, where a >-0, A >-0. As in case
(ii), the basic approximant is the incomplete gamma function. However, in case (ii)
the full ranges of both parameters of this approximant are not completely exploited.
As discussed in [7], it is expected that a two-variable approximant is needed to handle
a three-variable case as in (1.1).

Apart from combining four existing methods, our results are interesting in view
of applications. We consider the well-known incomplete beta function /(p, q), and
we give an expansion for large values of p, valid uniformly with respect to both x and
q; x[0, 1], q_->0. Since Ix(p,q)=l-Ii_x(q,p), the parameters p and q are inter-
changeable. So we solve an open problem mentioned in [10], where the incomplete
beta function is considered as belonging to case (ii), as well as to case (iv). A transition
from one case to another was not available at that moment.

The plan of the paper is as follows. In 2 we give the formal expansion of (1.1).
It appears that an essential part of the expansion is that of the complete integral (1.1)
with a 0. Subsequent sections give representations of the remainders, conditions on
f, the asymptotic nature of the expansions and the construction of error-bounds. In

8 we consider analogous results for loop integrals in the complex plane. A loop
integral with essentially the same asymptotic features as (1.1) has the form

t-Xeztf(t) dt.

For a 0 it reduces, just as (1.1), to a form that we considered earlier. Section 9 gives
two new expansions for the incomplete beta function

Terminology. We call a variable fixed when it is independent of z, A and a. A
sequence of functions {$s} is called an asymptotic scale when, for s =0, 1,..., Ss+l
o(,) as z->oo. The formal series ,of(z) is said to be an asymptotic expansion of
F(z) with respect to the scale {$,}, if for n =0, 1, 2,...

(1.2) F(z)- fn(z)=o(q’n) as z.
s=0

In this case we write

(1.3) F(z)’-. Y f(z), {qs} as z-c.
s=0

In uniform expansions it is required that the "o" symbols in (1.2) and in the definition
of the scale hold uniformly (with respect to a, A or/x A/z in certain domains, say).
See [3].



1640 N.M. TEMME

2. Uniform expansions: construction of the formal series. Before considering the
general case (1.1), we repeat the procedure for F(z, 0), which will be denoted by

tA_ _f((2.1) F (z)
F(A)

e t) at.

This function and its expansion play an essential role in the expansion of (1.1). The
following integration by parts procedure takes into account the role of the critical
point" the saddle point of e -=t, i.e., the point t-/, where

(2.2)

We write

(2.3)

and we obtain

i a/z.

f( t) f(tz + tz )g( t),

1 "x-1 e-=t(t--l.t)g(t dtFa(z)=f(tz)z-a +F(A)
z- 1 In ta e_Z,f(g -r(a---_ g(t) d(

1 f A--1=f(k)z- +zF(A) e-Z(t) dt,

where we assume that integrated terms at 0, vanish, and

d d f(t) -f()
f(t)=tg(t)=t

Repeating this process, we obtain the formal expansion

(.4 ,(z-" 2 f(.lz-’, z,

where fo(t) f(t) and

a f(l -f(
(.5 f,.l( -- s=0,,....

dt t-
For the general case (1.1) we again take (2.3) as the first step. Now we have an

integrated term at . It is not dicult to see that we obtain the formal expansion

.=o zF() =o

where f,() are the same as in (2.4), B(a) are defined by

f,()-f,()
(2.7) ,.() ,=0,1,...,

and Q(a, x) is the incomplete gamma function ratio

1 "- e- dr.(.a) (a, x)
r()

We obsee that the first series in (2.6) does not depend on ; in fact we recognize
the expansion given in (2.4). Fuhermore, the integrated terms at , which generate
the second series, all vanish when 0.
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These observations lead us to the representation, including the definition of a new
function Ba,

(2.9) Fa(z,a)=Q(A, az)Fa(z)+ zF(A) Ba(z,a),

which should not be interpreted as an asymptotic relation, but as an exact identity.
We consider the incomplete gamma ratio as a known function, of which the asymptotic
features are well known (see 10]). For numerical aspects concerning this function see
[5]. As mentioned above, the asymptotic expansion of Fa(z), i.e., (2.4), is also settled
earlier. More details on this point will be given below. So we are left with the function
Ba (z, a), of which the asymptotic expansion formally follows from the second series
in (2.6).

A somewhat different method used to obtain the expansion for Bx (z, a) is based
on a differential equation for this function. By differentiating (2.9) with respect to a,
we easily obtain

(2.10) -B’(z, a)+(tz-a)Bx(z, a)= zXFx(z)-f(a).
Z

Substitution of (2.4) and of the formal series

(2.11) Bx(z, a)--- E
B(a)

=0 Z

into (2.10) shows that this equation is formally satisfied if

(2.12)
(/z a)Bs(a) =f(/x) aB,_,(a),

Bo(a [f(a -f(/x )]/(a -/x ).

s= 1,2,.

Here, and in (2.10), the prime denotes differentiation with respect to a. It easily follows
that (2.12) generates the same coefficients Bs(c) as those defined in (2.7). Therefore,
by using (2.9), we again arrive at (2.6).

The following integral

1 t;-I -zf((2.13) Ex(z, a)
F(A)

e t) at

is strongly related to (1.1). It has a similar representation as (2.9). When we use the
following complementary relations

(2.14) Ex(z, a)+ Fa(z, a)= Fa(z), Q(A, az)+ P(A, az)= 1,

we obtain

t
x e

(2.15) Ex(z, a)= P(A, az)Fx(z)-Ba(z, t).
zr(x)

Consequently, when we give expansions for Fx (a) and B (z, a), the results can be
used for both integrals (1.1) and (2.13). The function P(a, x) again is an incomplete
gamma function, with representation

(2.16)
1 ta-1P(a, x) F(a) e dr.
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3. Representations for the remainders. We introduce remainders for (2.4) and
(2.11) by writing

n--1

(3.1) z’F,(z) f(lX)Z-+z-nfn,
s=O

n--1

(3.2) Bx (z, a) Z B(a)z- + z-"B,,,
s=O

where n 0, 1, 2,.... When n 0 the sums are empty and they have to be replaced
by0.

The procedure leading to (2.4) yields for fn the representation

Z
x I0 x --1 -ZTn(3.3) fn F(A)

e (t) dt.

To obtain a representation for Bn, we write (2.9) in the form

(3.4)

Writing

Bx(z,a)=ze,,Zoz- -’ e-Z’[f(t)_zaFx(z)]dt.

B(z, a)= Bo(a) + z-’/l,

and using integration by parts in the form

we obtain

-1-’ e-z’ dt d (t e-Z’),
z(t-)

B ZOI-h e,,Z

Repeating this, and using the recursions

B Bn(ce)+ Z-’n+,,
we finally have

(3.5)

x-’ e-Zt[fl(t) -f] dt.

L=T.()+z-’L+,,

(3.6) On =-za- e -’ e-Zt[f(t)-fn] dr,

which easily follows by writing =o -o and using (3.3).
The availability of both forms (3.5) and (3.6) is important in the analysis to be

given below. Namely, for bounding Bn we always have an integral in which the saddle
point is not an interior point of the interval of integration.

The above representations for fn and Bn are formally obtained. In the next section
we give the conditions on f to justify the above results, and to discuss the asymptotic
nature of the expansions.

where n--0, 1,2,...
representation is

B- za- e x-’ e-t[fn(t)-L] dt,

For n =0 this equals the starting point (3.4). An equivalent
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4. Assumptions on f. We consider real values of a, A and z, with a, A _-> 0, z > 0.
We accept that f depends on the uniformity parameter/x defined in (2.2). The reason
is that in applications usually a transformation to the standard form is needed, which
yields a function f depending on/x. In 12] a detailed discussion of such a transforma-
tion is given. By means of several examples, it is shown that the assumption f depends
on / may be relevant and quite acceptable. The parameter a plays a completely
different role, and we do not suppose thatf depends on it. The example in 9 on the
incomplete beta function shows more details on the transformation to the standard
form (1.1), and on the role of a and/.

The analysis is based on the assumption that f is holomorphic in a domain of the
complex plane. Again, for applications in the theory of special functions, this condition
is quite natural. Another point is that part of the analysis runs rather elegantly when
using complex function theory. However, the construction of the expansions, the
representations of the remainders in (3.3), (3.5), and the construction of error bounds
can also be given for functions f belonging to continuity classes ck([0, )). When
k < c we cannot, of course, define the complete expansions (2.4), (2.11).

We assume that f is holomorphic in a simply connected domain ll of the complex
plane; l-I may depend on/ and fl should contain R+. We suppose that the distance
d(t) from tR+ to the boundary 01l of [l is increasing according to the following
requirement:

(4.1) d(t)>-do(tS+t) K, t>-O.

where 5, do and K are fixed, 5, do > 0, and 1/2-<_ K _-< 1.
It follows that, for large/z, the singularities of f are rather far from the saddle

point t-/z, this distance being G(/zK). This condition is important for investigating
the asymptotic nature of the expansion (2.4). The requirement that (4.1) holds for any
positive t, and not only for =/z, is important for expansion (2.11).

A geometrical interpretation of (4.1) is as follows. Let Dt be the disc around R+
with radius do(5 + t). Then the above condition implies that fl contains the subset

(4.2) rio [.J Dr.
t_>0

When 1/2 the boundary 0rio of rio is a parabola; that is,

(4.3) 0Ilo= {t u + i,[ u= d(u + , +d)}.
When 1 we have two possibilities depending on do:

(i) 0<do -<1, rio is a sector with vertex at t=-5 such that larg(t/5)[ -<
arcsin (do); when do 1 this sector is the half-plane Re >_--/5.

(ii) do> 1, flo=C.
It is clear that for 1/2 < r < 1 the set rio is something "between" a parabola-shaped

domain and a sector. Geometrically, values of larger than unity make no sense,
although the analysis will accept such values.

We also need a growth condition on f in Ilo. We assume that, when/z is fixed, f
is of algebraic growth at infinity. That is,

(4.4) M(/x) sup (1 +ltl-P)lf(t)l
ta

should exist for all finite values of/z in [0, oo). Condition (4.4) will not exclude functions
in (1.1) that can be written as

f(t)- e’tf(t), cr fixed in C.

When in such a decompositionf meets the above conditions, we absorb the exponential
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part of this splitting into exp (-zt) of (1.1), just by a shift in the large parameter z.
Afterwards, we proceed with f.

5. Estimates for f(t), f() and Bs(a). The conditions on f yield estimates for the
functions fs(t) defined in (2.5) and for the coefficients fs(/z). With the help of these
estimates, the asymptotic scales for the expansions (3.1), (3.2) are chosen.

Let Ir be the subset of f/o defined by

(5.1) f/r= L.,I D,,

where /, is a disc around with radius r(g+ t), with 0 < g< fi, 0 < r < do, g and r
fixed. Then the derivatives off at can be written as

(5.2) f(’)(t)= s" f2"rri c (’r-

where Cr is the boundary of D,.
It follows that we can assign numbers Ks, not depending on and/z, such that

If()(t)l<=g,M(lz)(l+lti)P-% s=0, 1,2,...,

for all Ir, and all/z [0, oo). That is,

(5.3) f(s)(t) M(z)(1 / Itl)-(1), s--0, 1, 2, ,
with fr, uniformly with respect to/z in [0, oo).

The functions fs(t) defined in (2.5) are analytic in f/. They can be expressed in
terms of the derivatives of f, as follows from their definition. For t-values near/z, the
functions cannot be estimated by repeated application of (2.5), owing to the factors
1/(t-/x) and powers of it. Another approach is using the mean value theorem on

d Io’fs(t) t- f’_,[/x + 7"(t-/z)] dr

rfL,[Iz + r(t- IX)] dr,

which gives fs(t)=1/2tfs"_(rs), where rs is a value between and/x. By repeating this,
we obtain

s-1

(5.4) f(t) E pfs++,)(.q), s>= 1,
j=0

where ’ are between and/z, and p is a homogeneous polynomial of degree j of j
variables, all between and /z. The coefficients of p do not depend on /z and t.
Therefore, we have

pj--(1 +/x + t)(1),

f(s+j+)() M()(1 + + t)P-(s+J+)(1),

with 0, 0. It follows that (5.4) can be written as

(5.5) f,(t)=tM()(l++t)P--(1), =2-1, s=l,2,--.,

for all Or, uniformly with respect to [0, ).
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The values fs(/x), which are the coefficients of the expansion (2.4), can be
written as

s--1

f( E q#f’//(), s 1, ,
j=0

where q are fixed numbers. An estimate as in (5.5) reads

(5.6) f()=M()(l+)P-l-(1), ff=2r-1, s=l,2,.-., 0.
The coecients B(a) defined in (2.7) can be estimated by means of

B(a) f;[ + r(a-)] dr =f;(r),

where r is between and a. erefore,

1 fB,(a)= c, (r-n)2 dr,

where C, is a circle in , around r with radius (1 + r)’= (1 + + a) ". By using
(5.5), it follows that

(5.7) B() M()( + + )"--(), s=0,,...,

with a; 0.
Example 5.1. When f(t)= 1/(1 + t), we have p 1, and M slightly larger than

1. The first coecients Bo, B are

Bo() -/[( + )( + )], B,() ( )/[( +)(+ )],

which confirms (5.7).
To conclude this section we consider limiting values of B at

For a 0 we write ar in (3.6). We obtain

f-f(0)
(5.8) B at a 0.

This expression is regular at 0. To see this, replace (5.8) by

B =f()-/(0)

From (2.5) we see that f(t)/t is regular at t=0, when nN 1. Hence, using (3.3), we
obtain

(5.9) +(t)t- dt at=0,=0, andn=0,1,..-.

For the limiting value of B at m, consider (3.5) in the following form:

Using (5.5), and considering >> , we can easily estimate B as m. For instance,
when p-nff 1 and limf(t)/t exists (and is L), we have

(5.11) B L at m, finite.
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6. The asymptotic nature of the expansions. First we discuss the expansions (2.4),
(3.1), although the complete integral (2.1) is considered in the previous paper [12].
However, there we mainly investigated an expansion somewhat different from (2.4)
and, therefore, it is appropriate to consider (2.4), (3.1) in the present set-up once again.

6.1. The asymptotic nature of (3.1). We introduce the asymptotic scale {$sz-S} by
writing

(6.1)
M(/x)(I+/x)P’

@s =/zM(/z)(1 +/z)P-- s 1 2,...

which is suggested by (5.6). Since we allow f to depend on/z, we have to use a scale
that reflects the possible growth of f when/z ranges in the domain [0, ). With the
above scale we are able to control the behaviour of the remainder f defined in (3.3).

It is easily verified that {qz-} is a uniform asymptotic scale with z as large
parameter and/z as uniformity parameter in [0, oo). Moreover, when r > 1/2 (i.e., , > 0)
it also is an asymptotic scale for/z --> oo, uniformity with respect to z Zo, oo), Zo being
a fixed positive number. Observe that for ,( < 1/2 the scale fails to be uniform with respect
to/z on [0, oo), but it still is on compact subsets of [0, oo).

THEOREM 6.1. For the expansions (2.4), (3.1) we can write

(6.2) z*F,(z) Z f(tz)z-, {bsz-} aszoo,
s-O

uniformly with respect to Iz A/z in [0, oo).
Proof It is sufficient to show that f, 6(q,), where f, is defined in (3.3). The

interval of integration in (3.3) is split up as follows"

(6.3)

where

[0, o) zx_ tO It_, t+]U A+,

A_ [0, t_], A+=[t+, ), t g + (, + ),

with e fixed, and small enough such that [t_, t+] lies inside r of (5.1). When t_

happens to be negative, we replace it by 0. For t_, t+] we have 6(/z). Therefore,
(5.5) yields

f(t)=M()(l+)P-’-(1), s=l,2,....

Hence, (3.3) can be written as

(6.4) f,=I_+I++(@,) as z-,

where I are the contributions to (3.3) from A. They are of order 6(,), also. It is
possible to show more" they are asymptotically equal to 0 with respect to the scale
{ @}. That is, 1 (@) for any m as z -, uniformly with respect to [0, ).

Again, the proof can be based on the estimates given in (5.5). In [12, 3.4] a
detailed analysis is given for proving that contributions from A for similar integrals
are asymptotically negligible. This analysis will not be repeated here.

6.2. Two lemmas for (3.2). The next step is to consider (3.2), and to estimate the
remainder defined in (3.5), (3.6). The analysis boils down to the following two lemmas,
the results of which are formulated in terms of strict inequalities. So we are able to
use them once again in 7 for deriving strict error bounds.
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LEMMA 6.1. Consider the function

(6.5) g(a, A, z) a -x e e-z’ dt,

where 0 <-_ a <= Ix, Ix A / z. Let be defined by 1/22 a Ix + Ix log (Ix / a ), >- O. Then for
z>0

(6.6) g(a’h’z)<=min
(Ix-ot)z’Ix-a

Proof. Write g in the form

g(a,h,z)= e-e(t) dt, b(t)=t-Ix log t-a+Ix log a.

Integrating with respect to b, we have for 0_-< a < Ix

g(a, h, z)= e_Z t dqb
Ix

which gives the first possibility in (6.6). To obtain the second one we write

b( t) 1/2w- + w, w >- -,
with the corresponding relations

0-- w +, t=a-w=0,

where " is defined above. Now we obtain

g(a, h, z) e-ZtW2/+cw]f(w) dw, f(w)
t(w+)

We have O <-f( w) <=f(O), w>=O. To verify the upper bound, we write

1 x + x log x Ixf(w) 2t
(x 1)2 x=--.t

The x-part of this is monotonically decreasing on the x-interval [1, o);
corresponds to w=0. Hence we obtain f(w)<= al.;/(Ix-a). It follows that

g(a, A, z) <-- a e-zw2/ dw,

which gives the second possibility in (6.6). This proves the lemma.
LEMMA 6.2. Consider the function

(6.7) Gq(a, A, z)= a -x eZ(1 + a)-q x-1 e-Zt(1 + t) q dt,

where a >= O, Ix <= a, Ix h / z, q fixed, q R. Let be defined by

+, Ix < O,
st= + 2 a-Ix+Ix log

(6.8) G(a’ A’ z) <= min
(a-Ix)z’ a IX

Then for z > 0



1648 N.M. TEMME

Furthermore, when 0 <- Ix <- a,

(6.9) Go(a,
uniformly with respect to a, Ix.

Proof. We first consider Go, for which we obtain

Go(a, A, z) e-z’(t) --=dt e-Z" ddp
<_

1

t-Ix--(a-Ix)z’
where 4)(t) is the same as in Lemma 6.1. Observe that this result also holds for negative
values of Ix. For the second possibility in (6.8), we proceed with Ix -> O. We again write
1/2w2 + rw 4)(t), w ->_ _r, now with the correspondences

oo- w oo, a -- w O, Ix -- w -.
It follows that

Go(a, A, z) e-Ztw2/2+wlf(w) dw,

with f(w)=(w+ )/(t-Ix). Using

,, 2 x log x 1
w)J[

Ix (X 1)2
--<f2(O)’ X= _-->1

Ix

we obtain the second choice in (6.8).
When q-< 0 the proposition (6.9) is trivial. Writing

a (1 + a)-q-I+Ix Gq+ (l+ t)qd(e-Ztt*),Gq+-
1 + a -z

we Obtain by performing integration by parts

l+Ix 1 q q
Gq+l

l + a
Gq 4

z(l+a) z(l + a)2 Go-’ +z(l + a)
Gq"

Since q is fixed and 0-< Ix -< a, the result (6.9) follows by recursion, say from negative
q-values.

Remark 6.1. The first alternatives in both (6.6) and (6.8) grow indefinitely when
a Ix, whereas the other ones remain finite. We have

’/(a IX)- 1,

for (6.6), (6.8), respectively. Therefore, the second alternatives give a bound for g and
Go valid for the whole range of parameters given in the lemmas. The first bound is
given since it is sharp when z is large and a and Ix are bounded away from each other.
A more uniform description, which includes both alternatives in (6.6), (6.8), is possible,
by using a bound in terms of an error function. That is, in fact, g and Go can be
estimated by

f(O) e -z[w2/2+l;w] dw =f(0)
7r eZ2/2 erf c(x/z/2).

We take " 0 because it gives a very simple and manageable result.

6.3. The asymptotic nature of (3.2). We proceed with (3.2), and we estimate the
remainder B, defined in (3.5), (3.6). We use the asymptotic scale {X,z-s} defined by

(6.10) Xs M(Ix)(1 + Ix + a)p-a- s =0, 1 2,.-.
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z is the large parameter, a and/x are uniformity parameters. The choice of scale is
suggested by (5.7).

THEOREM 6.2. For the expansions (2.11) and (3.2) we can write

(6.11) Bx(z, a)--- E Bs(a)z-S, {XsZ-} as z-->o,
S=0

uniformly with respect to tz, a in [0, ).
Proof. All 9-symbols in the proof hold uniformly with respect to /z and a in

[0, c); the large parameter is not needed in some results.
It is sufficient to show that B, of (3.5) or (3.6) is (X,). Write

(6.12) B-,=B,(a)+z-’,+,, n=0, 1,2,..-.

Since B,(a)= 6(X,), we proceed with B,+. That is, we consider (3.5), (3.6) for n _-> 1.
We have two cases.

(i) 0 -< a _<-/x. In (3.6) we use

f, (q,,)=/xM(/x)(1 +/x + a)P-’-"ff(1),

f,(t) tM(/z)(1 +/x + a)P-’-"(1),

where the first line follows from Theorem 6.1 and the second one from (5.5). The
estimate for f,(t) gives in (3.6) a contribution

(6.13) zM(/z)(1 +/z + a)P--"g(a, A, z)6(1),

where g is defined in (6.5). The above estimate for f, gives in (3.6) a contribution

zM()(1 + x + c)’-l-" -. eff(1) "- e-’ dt

(6.14) M(/z)(1 +/x + a)P-’-"a -" e"Ztg(1) e-z’ dtx

zM(/x)(1 +/. + a)P--"[g(a, A, z)(1)+ if(z-l)].

From Lemma 6.1 it follows that

g(c, , z) (4-dTz) [(1 + + )/v].

Neglecting the term 6(z-) in the last line of (6.14), we conclude that both (6.13) and
(6.14) are estimated by

/M(/x)(1 +/x + a)P-’-"+(1).

Taking into account that in (6.12) z-/,+ has to be considered, we obtain

B-, 7(X,) + M(/z)(1 +/z + a)"-’-("+’)+ ’(z-’/) 6(X,)-

This finishes the first part of the proof.
(ii) 0 =</z-_< a. In this case the starting point for B, is (3.5). For f, we take the

representation as in the previous case, for f,(t) we consider (5.5). We integrate by
parts in the contribution from f,. Starting with (6.12) and using Lemma 6.2 twice, with
q=0 and with q=p-l-(n+l)Y, we obtain the required estimate B, 6(X,). l-1

As remarked after the introduction of the scale functions q in (6.1), the large
parameter z and the uniformity parameter tx are interchangeable, only if > 1/2. It is
important enough to formulate this property as a theorem.



1650 N.M. "rEMME

THEOREM 6.3. Let 1/2< K <--_ 1. Then in (6.2) IX may act as the large parameter and
z as the uniformity parameter. In (6.9), a (or Ix) may act as large parameter, Ix (or )
and z as uniformity parameters. The uniformity domain for tx and t is [0, o), for z it is

[Zo, o), Zo being a fixed positive number.
Proofi The proof follows easily from the properties of the asymptotic scales used

in (6.2) and (6.11), and from the proofs of the earlier theorems.
Remark 6.2. The above theorems are formulated and proved for real values of

the parameters. By slight adaptation of the scales they hold for complex values of a
and Ix, as long as these values are restricted to r introduced in (5.1). Some care in
the interpretation of (1.1) is needed when a assumes complex values around the origin,
since a is not single valued. However, the many-valuedness of Fa (z, a) is completely
described in (2.9) by the known functions Q(A, az) and a. From (3.6) it easily follows
that Ba (z, a) Bo is regular at a 0, and in fact in fr. See also (5.8). Another problem
is" How do we handle complex values of z ? The holomorphic functionf in. (1.1) allows
the contour of integration to be deformed. When doing so, we can extend the domains
for the parameters z, a and Ix considerably. We will not go into further details here
for this complicated technical problem.

Remark 6.3. It is tempting to take {fs(ix)z-S} and {Bs(a)z-} as asymptotic scales
in (6.2) and (6.1.1). However, the conditions on f do not imply that they have this
property. When they do not the theorems may still be applicable; however, rather
useless expansions may arise. It is instructive to consider what is happening in the
case f(t)= 1 +exp (-t).

7. Error bounds for the remainders. The theorems of the previous section are based
on the concept of generalized asymptotic expansions. The estimates for proving the
asymptotic properties are given in terms of 6-symbols. So far, no information is
available on the sharpness of these estimates, say in terms of exact error bounds. That
is, it would be interesting to have available an estimate in the form

(7.1) ILI<-KIf()I, ->o, z-> Zo> 0,

instead of f, 7(,), used in Theorem 6.1. When f,(ix) happens to vanish, (7.1) can
be modified. K, in (7.1) may depend on z and Ix.

The required form of the bound (7.1) reflects the expectation that f, will not
deviate too much from f,(ix). For slowly varying functions f, say for f(t)= 1/(14- t),
this surely will be true, especially when z is large. However, the scale functions g,, X,
are constructed in terms ofthe global estimate M(Ix), introduced in (4.4). Consequently,
the asymptotic scales used in the theorems may be too rough to describe what is really
happening in the asymptotic expansions.

To show this by way of a simple example, we consider f(t) =exp [ix/(1 + t)]. It
is easily verified that is satisfies the conditions of 4; f C\{-1}, 12o is the half-plane
Re t->-8, where 0<<1. In (4.4), p=0 and M(ix)=exp[ix/(1-8)], which is
exponentially large, when Ix is large. However, we expect that the remainder f, in the
expansion (3.1) is comparable with f,(ix), which is only algebraic in Ix. Therefore, the
theorems of the previous section are applicable, but the chosen asymptotic scales are
not able to control the remainders of the expansion in a realistic way. This is especially
true for expansion (6.2); for (6.9), which is more global in character due to the second
uniformity parameter, the chosen scale may be more suitable. We want to emphasize
that in this example only the scales default, whereas the expansions themselves are
appropriate and may be of interest. The above noticed imperfections (see also Remark
6.3) are inherent in the definition of generalized asymptotic expansions. We have
chosen this framework in order to be able to describe precisely the propositions and
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what we want to prove. We consider this important in asymptotics, especially when
one or more uniformity parameters are involved. On the other hand, we have the need
of constructing sharp error bounds for the remainders in the expansions, so that we
can interpret the expansions in a realistic way. An ideal procedure would be a
combination of both approaches, but in this stage, for lack of a unified approach, we
prefer to discuss them separately.

7.1. Error bounds for (3.1). As remarked earlier, the quantities fs(ix) and Bs(a)
may be grossly overestimated by the global upper bound M(IX) introduced in (4.4).
A better approach, say for arriving at (7.1), seems to be to give a sharp estimate for
f,(t) near IX, whereas the estimate "far away" of this saddle point may be rather
crude. To be more explicit, we need a comparison function w(t, Ix), w :[+ x I+- 1, c),
that satisfies the condition w(Ix, Ix)= 1, and that may be large outside an interval
around Ix. We suppose that we can assign quantities M,, which may depend on Ix
and which are strictly larger than unity:

(7.2) fixed and positive,

such that for all => 0 we have

(7.3) IL(t)l MlL()lw(t, ).
Furthermore, we suppose that it is easy to calculate or estimate the integral

(7.4) If, l=<
MIL()Iz

r()
-1 e-Z’w(t, Ix) dt,

obtained from (3.3) by bounding f, (t) in this way. When f, (Ix) happens to have zeros
on (0, ), (7.3) and (7.4) have to be modified, say by replacing IL()I by 6, /IL()I,
6,>0.

Since f, and hence all f,, have algebraic growth on [0, c) (see (4.4)), it will be
sufficient that w(t, Ix)= 6[exp (rt)] for some positive r. This suggests as a possible
choice w(t, Ix) cosh [r(t Ix)], which meets all requirements formulated thus far.
Substituting this into (7.4), we obtain

Z
A fx /A-1 --zt

F(A) ao
e cosh[o’(t-Ix)]dt=1/2[(1-o’/z)Xe-"+(l+o’/z)Xe]

(7.5)
7[cosh (1/2Act2/z2)],

as z. When r 7(1)(Ix => 0), this contribution to the right-hand side of (7.4) is
quite acceptable, so long as A =o(z2). But for a uniformity domain [0,) it is
unacceptable.

This brings us to a further requirement that

Z
a f ztW((7.6) F-() 30

-1 e- t, Ix) dt 6(1),

as z-, uniformly with respect to Ix [0, c).
For several reasons the following comparison function is very convenient:

(7.7) w(t, Ix) [(t/ix)-" et-’], r_->0,

where r may depend on Ix, but not on t. For Ix 0 we define w(t, 0)= exp (rt). This
choice fits better in the dominant part e -z’ of (7.4) than the cosh-function tried before.

For (7.3) we write

(7.8) If.(t)l <= M, lf,(Ix)l w, (t, Ix),
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and (7.4) becomes

(7.9) If.I<-_M.Q.If.()I,
where

(7.10)

Q, (1 trn/z)-l/2F*(A IXrn)/F*(A ),

r*(z)=[zl(2cr)]/ eZz-ZF(z) 1 +6(z-’),

as z --> oo. Compared with (7.5), this result is much more acceptable, since now we have

(7.11) Q,=l+7(z-1) asz->,

uniformly with respect to h or IX in [0, ). Especially, large values of h are in favor
in (7.11). The only condition is that or, in (7.8) is fixed or a bounded function of Ix
on [0, c). In this event z or, can be viewed as large parameter in Q,, although z > or,
is enough.

For the construction of error bounds it is sufficient that f,(t) is continuous on
[0, ), i.e., that f belongs to the continuity class C2"([0, )) (see (5.4)). A different
point is that, as remarked earlier, a slight modification is needed when f,(ix)= 0. A
special case is IX 0, where f, f, vanish for n => 1. In that case we can define or, 0.
When we construct error bounds, the assumption (4.4) on the algebraic growth is only
needed for t>-0. Another assumption on f may be that or, of (7.8) is a bounded
function of Ix. A proper choice of M,, for instance by making M, a function of IX,
will yield a wide class of admissible functions f. The construction of error bounds is
not enough to investigate the nature of the asymptotic expansion. However, when
o’,,, M,,f,,(IX)/f(IX) (f(IX) 0) are bounded functions of tx on [0, ) for each n _-> 0,
then we can use the Poincar6-type scale {z-}, and the uniformity with respect to Ix
in [0, ) easily follows.

A possible approach to compute M, and or, of (7.8) is to start with trial values
of M, satisfying (7.2). Then we compute

(7.12) o’,, sup f,,(t), IX fixed in [0, ),
t___-O

where

(7.13) --f,(t) =lglfn(t)/[Mnf"(Ix)]l t Ix, fn(ix)O.
t-ix-ix log (t/tx)

For two examples we have computed it-values. A third example is considered in
9 for the incomplete beta function.

Example 7.1. f(t) 1/ (1 + ). We have

IX(IX -2) t(ixt-ix -2)
A(IX) A(t)

(1 + IX)5, (1 + IX)a(1 + t)3"

Since f2(ix) vanishes at Ix 2, we replace it by

-21)f,()
z(1 + Iz

)

We consider three choices of M2 and we obtain tr2 via (7.12) for several values of Ix.
We also show corresponding values of Q2 of (7.9) for z 5. For larger values of z, Q2
is closer to unity. The results are shown in Table 7.1. It follows that the remainder
Z-22 of (3.3) is rather close to the first neglected term z-2f2(ix) for the values of Ix
and z used in the table. Larger values of Ix and z confirm this tendency even better.
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TABLE 7.1

0

5
10
25
5O
100

0-

0
-0.64
0.02
0.04
0.11
0.08
0.05

Q2

0.9397
1.0023
1.0038
1.0108
1.0079
1.0047

0-2

0
-0.87
-0.01
0.00
0.03
0.02
0.01

M 1.5

Q2 0-2

0
-0.98
-0.04
-0.01
0.01
0.01
0.00

0.9210
0.9989
1.0004
1.0031
1.0024
1.0014

Q2

0.9120
0.9960
0.9993
1.0014
1.0014
1.0001

Example 7.2. f(t)=exp[tz/(l+ t)]. We use (7.3), (7.7) with n--0, which gives a
bound (7.8) for fo of (3.3), i.e., for zaFa(z) of (2.1). The results are shown in Table
7.2, again with z 5.

TABLE 7.2

0

5
10
25
50

100

0
0.38
0.66
0.46
0.21
0.18
0.16

Qo

1.0417
1.0737
1.0501
1.0221
1.0187
1.0162

0
0.03
0.31
0.26
0.21
0.18
0.16

1.0027
1.0329
1.0276
1.0216
1.0185
1.0161

0
-0.02
0.26
0.25
0.21
0.18
0.16

Qo

0.9976
1.0270
1.0259
1.0213
1.0184
1.0161

7.2. Error bounds for (3.2). For the construction of error bounds for the remainder
of expansion (3.2), we use as comparison function w(t, a), with w defined in (7.7).
The comparison function w(t, tz) may yield unrealistic bounds, when a and /z are
not of the same size. In Theorem 6.2 we used (6.10) in order to get rid of the factor
z in (3.5), (3.6). However, this factor is neutralized by the expression fn(t)-fn in the
integral (the minus-sign is important here). In the following error analysis this
expression will not be replaced by If,(t)l + If,].

We write

(7.14) gn(t)=f(t)-f, n=0,1,.-..

When g, (a) # 0, we estimate g, as follows:

(7.15) Ig,(t)lM, lg,()lw.(t, ),
where M, satisfies (7.2) and w is defined in (7.7). We consider two cases.

(i) 0a. Staing point is (3.6); (7.15) has to be considered for t[0, a].
We obtain

I .1 zM.a"-x e(Z-")lg.()l x-"- e-(z-’.)’ dt.

Integration by pas gives

zM
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where g is defined in (6.5). In Lemma 6..1 it is supposed that in g(a, h, z) the parameters
satisfy 0 <- a <-h/z. In the present g-function this relation holds as well. The only
condition is z > rn. For a better representation of the above bound for Bn we write

z h [g(c)l

The first factor at the right equals 1/(1 az,/z) which is 1 + 6(z-1) as z , uniformly
with respect to a and , 0 a . The second factor [g,(a)]/ is properly defined
in the limit 0, as follows from a similar argument as used for (5.8). By using Lemma
6.1 we obtain for z >

(7.16)

where/2 and " are defined by

(7.17) 1/2(2 a -/2 +/2 log (fi/a ), (>- 0,

The conditions 0-<_ a -<_/z and z > r, imply 0-<_ a <_-/2.
(ii) 0<_-p _<-a. We consider (7.15) for _-> a. Representation (3.5) gives for z> z,

I.l <- zM.lg.()lao(, a ., -.).

Using Lemma 6.2, we obtain

(7.18) [/,[ __<
M,[g,(a)[

min {1,
(a -/2)(1 -z,/z)

When A-at, <0 we define " +o, otherwise it is defined by (7.17), with 0-< fi-<_ a.
Remark 7.1. The numbers sr, M, and r, in (7.16) and (7.18) need not be the same.

When a -*/2, sr has to be combined with the factor 1/(/2-a), as explained in Remark
6.1.

Remark 7.2. We can write g,(t) of (7.14) in the form

(7.19) g.(t)=g.(t)-!f.+l,
Z

, (t) =f, (t) -f, (/z).

Bounds for fn+l follow from (7.8). Contributions owing to ft,(t) are as in (7.16), (7.18)
with g,(a) replaced by g,(a). Observe that (see (2.7))

which shows up in (7.18) when we use (7.19). There is something to recommend about
the approach based on (7.19). The point is that g, of (7.14) may be difficult to evaluate
without the splitting in (7.19). Furthermore, M, and z, of (7.15) may depend on z.
However, this dependence will be very weak when z is large.

8. A loop integral with analogue asymptotic features. In previous papers 11 ], 12]
we stated the analogy between the following integrals:

(8.1)
1 taF(z) r(,i

-i e-tf(t)dt,

(8.2) Ga(z)
F(h + l) f+)

t-a-l eztf(t)
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where (8.1) is the complete integral given in (2.1). The contour in (8.2) starts and ends
at -oo (respectively, with arg -Tr, arg 7r), and encircles the origin in positive
direction. The analogy, from an asymptotic point of view, is that of their asymptotic
expansions:

(8.3) zF(z) E fs(tx) z-,
s-----0

(8.4) z-G(z) , (-1)f(/x)z-,
s=0

as z - oo; (8.3) is considered in the present paper, for instance in (2.4). The construction
of (8.4) is based on the same integration by parts procedure, by using Hankel’s integral
for the reciprocal gamma function. That is, (8.2) reduces to zx, when f is the identity.
Conditions on f, especially the domain of holomorphy, have to be modified, before
we can state that (8.2) has (8.4) as a uniform expansion with z as the large parameter
and/x A / z as uniformity parameter.

It seems that the following integral

(8.5) G(z,a)
r(h+l) [(’ dt- eg(t)

27ri J t- a

is the relative of F (z, a) defined in (1.1). That is, (8.5) has four asymptotic phenomena
that are in some sense equivalent to the four discussed in for (1.1). However, the
asymptotic expansions show an interesting difference, although the characteristics of
both are exactly the same.

8.1. Uniform approximation for loop integrals. We suppose that the contour in
(8.5) cuts the positive real axis at the point to. We first give (8.5) for g 1. Multiplying
by exp (-az) and differentiating with respect to z, we obtain (8.2) withf= 1. Integrating
with respect to z, and taking into account some limiting values, we obtain two forms
for (8.5) with g 1:

z’y(A, az), to> a,
(8.6) Gx(z,a)=ha-he

[(-1)F(h, az), 0<to<a,

where y(a, x), F(a, x) are incomplete gamma functions. The transition from one form
to the other in (8.6) also follows from (8.5), by shifting the contour across the pole at
t=a, and using y(a,x)+F(a,x)=F(a).

Suppose now that 0<to<a. Writing g(t)=g(a)+[g(t)-g(a)], we obtain
for (8.5)

(8.7)

where

(8.8)

Gx(z, a)= Ga(z)-Ag(a)a -x ezr(x, az)

G(z)
r( + 1) I(+ Z’h-x- e t) dt,

27ri

h(t):t
g(t)-g(a)

Therefore, assuming appropriate conditions on g, and hence on h, the asymptotic
expansion of Ga(z) is given in (8.4) with fs(/x) replaced by h(/x). The latter are
generated as f(/x) in (2.5), with fo replaced by h and f by h.
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We conclude that, apart from normalization, (8.7) has with (8.4) a similar
expansion as F,(z, a) in (2.6). An interesting difference is that now the incomplete
gamma function does not multiply a full asymptotic expansion but just one term
involving g(a). This gives a simpler asymptotic problem. For instance, the construction
of error bounds only applies to G (z), i.e., for the complete integral (8.2), where f is
replaced by h of (8.8).

A representation for the remainders in the expansion of G(z) in (8.7) follows
by writing

(8.9) z-G,(z) (-1)Shs(/z)z +(-1)nz-n-h,
s=0

where h(t) is generated by the recursion (2.5), with starting function ho h defined
in (8.8).

8.2. Error Imunds for loop integrals. For the construction of error bounds, we
select a special contour in (8.10). Writing

eZ[Pe -tz p e iOt-x eZt log p-itzo]

we see that the imaginary part of the phase function will vanish, when we take

p p(O) =/z0/sin 0, -r < 0 < r.

This defines the path of steepest descent through the saddle point =/z. Integrating
(8.10) with respect to the parameter 0 along this contour, we use

l dt l dp
dO p dO

giving

F(A + 1)h
(8.1 1

where

p e tz[ 0 cotg 0 + iO],

1 dt
(8.12) h,,( t) i- -d h’( t)’

o
4(0)=-0cotg0+log +1.

sn 0

A bound for/, is obtained by writing as in (7.8)

(8.13) Ig.( t)l <- M,]h,(I. )l e"’),
where M, satisfies (7.2), , < z, and where it is assumed that h,(/z) 0. We obtain as
in (7.9)

(8.14)

where Q, 1/[(1 ,/z)Q,]. We have used that (8.10) reduces to unity when h, equals
unity.
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Observe that to compute error bounds for the expansion (8.9), exactly the same
comparison function is used as in (7.8); the forms are different owing to the mapping

Remark 8.1. Representation (8.7) is obtained under the condition 0 < to < a, where
to is the point where the contour of (8.5) cuts the real positive axis. When (8.5) is
presented with to> a, G(z, a) has representation (8.7), with F(A, az) replaced by
-y(A, tz). This complementary relation is of the same kind as for the real integrals
described in (2.14), (2.15).

9. The incomplete beta function. We use the incomplete beta function in the
notation

1 ’TP-I(1 ’)q-’ d’,(9.1) Ix(p,q)=B(p,q)
where B(p, q)= F(p)F(q)/F(p+ q) is the complete beta function. The asymptotic
problem is to give an expansion of Ix(p, q) with p as large parameter and x [0, 1]
and/z- q/p [0, c) as uniformity parameters. We can use

(9.2) Ix(p, q)= 1 I-x(q, P)
to interchange the role of p and q. For information on Ix(p, q) we refer to 1, p. 944].
In [10] we considered the asymptotic problem for Ix(p, q) for more restricted ranges
of the parameters. We believe that the expansions of this section are new in the sense
that the uniformity domain of/ or q is the complete interval [0, oo). Earlier results
prescribed q to belong to a compact subset of (0, ) (case (ii) of 1), or p/q to a
compact subset of (0, ) (case (iv)). Extension to complex values of the parameters
is possible, but will not be considered here.

To describe the asymptotic features of (9.1) in more detail, we compute the saddle
point of "/’P(1--’/’)q. It occurs at

P(9.3) ’o- p+q"
When p + q is large, the value Ix(p, q) is very small when x < ’o, and it is close to
unity when x > ’o. When ’o is restricted to a compact subset of (0, 1), this transition
can properly be described by an error function (normal distribution function); when
’o -> 1 the basic approximant is an incomplete gamma function. We will show that this
function can handle the complete uniformity domain for q, i.e., [0, o). It is essential
to transform (9.1) to the standard form (1.1), by means of a rather complicated
transformation.

9.1. Transformation to standard form. A first transformation ’--> e gives

f_ (1 8-’)q-1(9.4) Ix(p, q)=
B(p, q)

e-p- dr.

Comparing this with (1.1), we observe that it has the standard form when A =q, z =p
and f(t)= [(1- e-)/-]-. However, for several reasons this choice off will not give
a uniform expansion for the q-interval [0, ). One reason is that large values of q will
have much influence on coefficients f(/x), B(a). Observe that for f dependence only
on/z is assumed in 4, and not on A.

A better way for transforming (9.4) in (1.1) is to use the mapping ’-> t(-)
defined by

(9.5) - -/z log 1 e-) -/ log / A(/z ),
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where/x q/p. The left-hand side has a saddle point at

(9.6) ’1 log (/x + 1) -log %,

the right-hand side at t-/z. To make the mapping properly defined we require the
correspondences

(9.7)

The middle one gives

(9.8) A(/z) (1 +/2.) log (1 +/x)-/x.

The point
which is defined by the implicit relation

(9.9) -log x -/x log (1 x) c -/.t log c + A(/z),
with corresponding points

(9.10) x 0- a +0o, x -o-- c =/x, x 1 --a 0.

Observe that the middle one satisfies (9.9) due to the choice (9.8). In fact, the mappings
(9.5) and (9.9) are the same, up to parametrization.

The transformed version of (9.4) is

e-PA(tZ)q) f,o tq-(9.11) Ix(p, q)=B(p, e-ptf(t) dt,

where

(9.12) f(t)
dr t-Ix

1-e dt 1-(l+/x) e-"

The regularity of the transformation (9.5), and that of f, is extensively discussed
in 12, 4]. From that analysis it follows that f satisfies the conditions of 4. In (4.1)
we have to take K 1/2, and do and 6 both somewhat less than. fo is a parabola-
shaped domain, and for the number p in (4.4) we take p 1 (whichfollows easily
from (9.12)). The function f is positive on [0, 0o); f(0)= 1, f(/x)= x/1 +/x. We verified
numerically that

Therefore, M(/z) of (4.4) will not deviate very much from unity, especially when
and do are small.

9.2. Uniform expansion of incomplete beta function. In the notation of (1.1), (2.1),
(2.9), we can write

(9.13)

e-PA()F(p + q)
Ix(P’ q)=

F(p)
Fq(p, a),

Fq(p, a)= Q(q, cep)Fq(p)+
ot

q e-P
pF(q)

Bq(p, a).

However, the "complete" integral Fq(p) can be written in this case in terms of known
functions. Since I(p, q) 1, we have

(9.14) Fq(p) epA(")F(p)/F(p + q) (P + q)P+q e-Or(p)/r(p + q).
P
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Although it is possible to give for Fq(p) an expansion as in (2.4) (see [12, 4] for a
related expansion), it is more attractive now to write (9.13) in the form

(9.15) Bq(p, a ).I)(p, q)= Q(q, ap)+ -p-B-(p, q) p+ q

By using (9.9), and (2.11) we can write

xP(1-x)qBq(p, a), Bq(p, a)
B(a)

as poo.(9.16) Ix(p, q)= Q(q, ap)+
pB(p, q) s=o p

It follows that we have only to consider the asymptotic expansion for Bq(p, ce), which,
however, is not the simpler one of (2.4), (2.11). The first coefficient is

f(a)-f(tz)
(9.17) Bo(a)

with

f(a)
1-(l+/x)x’

f(/x) x/1

Special values are

/1 +/z-1
(9.18) Bo(0) Bo(/X lim f’(a =/x 1 + 41 +/x

Bo(OO) 1,

and they satisfy 0 =< Bo(0) _-< Bo(/X) =< Bo(), for/z -> 0.
In fact, all Bs(a) can be expressed in terms of a, x and /x, and those three are

related by (9.9). When a #/x, an explicit representation of B(a) in terms of say x
and/x q/p is not possible, since (9.9) cannot be solved explicitly for a. When/x 0,
(9.5) reduces to the identity mapping and f of (9.12) becomes t/[1-exp (-t)]. The
latter has singularities at +27ri, +47ri, . When/x > 0,;singular points off originate
from these points, of which +27ri are most important. The singular points off starting
from +2ri (/x 0) are located in the half-plane Re > 0. For large values of/z they
are approximately near/x +2x/Tr/x exp (+ir/4). The value K=1/2 in (4.1) comes from

in this asymptotic value. The coefficients B(a) have the same domain of regularity
as f(a). Since M(/x) 6(1), p 1, K 1/2, ff 0, we have for (5.7)

(9.19) B(a)=(l+tx+a)1/, s=O, 1,2,..., /x>O,= a>O.=

This estimate gives a good impression of the asymptotic nature of the expansion in
(9.16), although the estimate for s =0 seems to be too large (cf. (9.18)).

9.3. Uniform exiansion based on a 1oo1 integral. An interesting variant of (9.16)
is obtained by using a contour integral for Ix(p, q) in the complex plane, and by
applying the method of 8. Consider the integral

1 f c+ioo dt
I t-P(1-- t)-q O<c<lI

2ri -oo x’
with p+ q > 0 and 0<x < c. When (0, 1) the phases of t, (1- t) and of the multi-
valued functions are zero. By deforming the contour around the negative axis, we
obtain for p < 1

I x-p (1 x) -q
sin 7rp

z-p (1 + r)-q
dz

r ’+ x

=x-P(1-x)-qI(p,q),



1660 N.M. TEMME

where we used formulas 6.1.17, 15.3.1, 15.3.3, 15.3.4, 26.5.23 and 26.5.2 of [1]. It follows
that

xP(1 __x)q fc+ioo dr
I 7"-P (1 "/’)-q 0<C<1,(9.20) /x(P, q)

27ri c-,oo -- X’
with 0< x < c. The restriction p < 1, which is needed to evaluate the contour integral
for I, can be dropped by using the principle of analytic continuation. We still need
the condition p + q > 0 for convergence at infinity.

Representation (9.20) is the analogue of (9.1). To obtain standard form (8.5), we
use the transformation r- exp (-z). This gives

xp(1-x)Of    27ri dr
--7,(9.21) Ix(p, q)- ePt(1-e-)ql_xe

which is the analogue of (9.4). The contour cuts the positive real r-axis at a point ro
such that ro <-log x. A final transformation

(9.22) z-/z log 1 e-y) -/x log + A(/x),

where/z q/p and A(/x) is given in (9.8), gives

(9.23) Ix(p,q) xP(1 x)qe-q(l+q/P)p+q-1 foT,__l ePtt_q g(t)
dr,

27ri 3 t- t

where a is defined in (9.9), and

d
(9.24) g(t)

1-xe dt"

A relation for dr/dt is given in (9.12). The contour in (9.23) cuts the positive t-axis
at a point to satisfying to < a. Splitting of[ the pole, we obtain for (9.23)

(9.25) Ix(p,q)-Q(q, ap)+xP(1-x)qe-q(l+q/p)P+qGq(p)/F(q+l),
with Gq(p) as in (8.8). Here we used g(c) -1, which follows from (9.24) by l’Hpital’s
rule (observe that a corresponds with r=-log x in (9.22)).

Observe that the transformations (9.5) and (9.22) are exactly the same. The real
corresponding points in (9.7) determine the mapping in the complex plane. Therefore,
no new correspondences have to be defined for (9.22). In fact, the mapping has a very
global character. As remarked earlier, we have investigated the mapping (9.5) in 12],
with emphasis on what is happening in a neighbourhood of R+. However, the domain
of regularity extends to the full half-plane Re t-< 0. To understand the mapping in the
complex plane, it is instructive to see that the contours of steepest descent in (9.21),
(9.23) are mapped onto each other. On these contours the imaginary parts in the left-
and right-hand side of (9.22) vanish.

Comparing (9.15) and (9.25), we conclude that the function Bq(p, ) has (in the
special case of this section) an asymptotic expansion which corresponds to that of a
"complete" integral (8.2). We have

F(p+ 1) e-q(1 + q/p)P+q
(9.26) Bq(p, a)= Go(p)

qF(p+q)

where Gq(p) is given in (8.8), with expansion as in (8.9); g is defined in (9.24).
By using (7.10) and (8.9) we can write (9.26) in the form

(9.27) Bq(p,a) x/I.,.+l F*(p)
/.,. F*(p+q)P-qGq(P)’ p-qGq(p).--.=oy (-1)h(/z)P
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Therefore, the approach based on a complex contour gives for Ix(p, q) a simpler
asymptotic expansion and simpler error bounds than the approach based on, say,
(9.11). The computation of the coefficients hs(/z) is not a simple problem. Also, the
bound for Ih(t)l in (8.13) has to be computed on a contour in the complex plane. But
the form of the error bound (8.14) is much simpler than those obtained in 7.

To show some of the steps needed to evaluate the coefficients hs(/x) in (9.27), we
compute ho(/Z) and its limiting form for ct -->/z. We have, using h of (8.8) and g of (9.24),

t.’, -ct d’r
(9.28) g(/x)

1- (1 +/x)x d--’
where the derivative is evaluated at =/x. From (9.12), we have

dr 1 tx 1 dt
lim lim
t-> dt /x+l t-,, 1--(l+/x) e /z+l d"

by using l’H6pital’s rule. Hence

dr 1
dt-x/tx + l

at tx.

The square root has a + sign, since z is an increasing function of on [0, ). Earlier
we computed g(ct)=-1. So we have

I ](9.29) ho(/X) /x ( : a_ )_/._x/’_ _+ 1

/x-ct[ 1-(/x+l)x
+1 /xct.

To evaluate this at ct -/x, we have to investigate the relation between x and ct in more
detail. From (9.9) it follows that

ct [(/x + 1)x- 1] --7 x(1 -x)(ct -I).
act

Substituting the expansion

1
x=+c,(,- g)+ c=(,- g)+...

/x+l

we obtain

J1 1-/z
Cl -(1 +/x)-a/z, cc2 3/x’ll, +/z)

1

When ct -->/x, ho(/X) of (9.28) has the expansion

ho(tZ -t.,,c2/ Cl + (Y(I-’, ct ).

Hence

limho(/X)= 1.
x/+i

It follows that Bo(ct) of (9.17) and ho(/Z) of (9.29) are related by

Bo() ho().
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A relation between the higher coefficients is obtained as follows. Comparing (9.16)
with (9.27), we arrive at the formal identity

Z B(re)p__x//z+ 1 F*(p)
=o tz F*(p+q) =oZ (-1)h(/z)P-.

We can expand

r*(p) y. a()e ao() 1,F*(p+q)

by dividing the two expansions for F*(p) and F*(p(1 +/z)) (see also [12, 4]). Thus
we obtain

/+1
B(a)- Z (-1)rhr(/z)d-r(/z),

which is (9.30) for s 0.

9.4. Some numerical results. We used the method of 7.2 to compute an upper
bound for Bq(p, a). That is, we computed Mo and ’o for (7.16), (7.18), and we evaluated
the expression at the right-hand sides of these inequalities. For z=p= 10 (10) 100
these expressions were evaluated at the x,/z-grid with x =0.05 (0.05) 0.95,/z 1 (1)
10. For each z the maximal value occurred at x =0.05, /z-1. The corresponding
a-value for this x,/z-pair is 4.06254 . The upper bounds show an interesting feature.
For z 10 it is 0.97111 and it steadily increases to 0.97371 for z 100. The ratio of
this last upper bound and Bo(re) of (9.17) (=0.64933...) equals 1.500. ., which is
the number Mo that we used in (7.15), (7.16) and (7.18). We observe that the computed
upper bounds are slightly less than MoBo(re), and tend to this value when z increases.
The choice Mo- 1.1 showed the same features: the upper bound of Bq(p, re) is slightly
less than MoBo(re).

The numerical experiments yield the following conclusion:

sup Bq(p, re)= 1, p fixed,

where the supremum is taken over x[0, 1] (or a_->0) and /z q/pc[O, oo). The
maximum is assumed at x=0 (re =oo) and/z =0. See also (5.11); for n =0 this limit
L equals 1. Incidentally, (5.9) gives for n 0

(9.30) Bq(p, re) p[log P- O(P)]
at re =0,/z =0, where 0(P) is the logarithmic derivative of the gamma function. This
follows from well-known representations of this function, and from the fact that f of
(9.12) equals t/(1-exp (-t)) at/z =0. From (9.13) and the asymptotic expansion of
the q-function, it follows that

Bo(p,O)=1/2+6(p-1) aspoo.

We conjecture that 1/2 =< Bq(p, re) -< 1 for re e [0, oo) (or x e [0, 1 ]), and/z q/p [0, ),
and for all p sufficiently large (say p => 10).
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Abstract. In this paper certain equalities holding for the zeros of a polynomial satisfying a linear
differential equation of the second order are obtained in terms of the coefficients of this equation using an
elementary approach. They are applied to the polynomial solutions of a Sturm-Liouville equation. As an
example, a new expression for the zeros of the classical polynomials is presented.
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1. Introduction. In the past few years, a number of remarkable properties of the
zeros of the classical polynomials have been obtained mainly as byproducts of the
study of certain integrable many-body problems (Ahmed et al. [2] and Calogero [3]).
The purpose of this paper is to present certain results of this kind obtained also as a
spin-off, but in this case of the developing of a technique to compute the eigenvalues
of the Schr6dinger Equation (Campos [5]).

The algebraic relations between the zeros of a polynomial that satisfies an ordinary
differential equation (ODE) of the second order and the coefficients of this equation
are obtained through an elementary method in 2. These results are applied to a
Sturm-Liouville (SL) equation to illustrate some interesting features of its polynomial
solutions. An example is given in 3 and some final remarks are made in 4.

2. Properties of the zeros. There are various methods for studying the zeros of
polynomials. The method that will be followed in this section is based on an approach
due to Laguerre (see Szigo [9, p. 117]).

We begin by defining
N

Y’.’ (x,- Xk) -! =-- S(x,), 1= 1, 2,’’’
k=l

where the prime appended to the sum indicates the omission of the singular term and
the points Xk, k 1, 2,’’’, N, are the N (complex) zeros of a polynomial f(x) of
degree N that satisfies the ODE

(1) f"(x) 4- p(x)f’(x) + q(x)f(x) O.

Then we have the following proposition.
PROPOSITION 1. Ifp(x) and q(x) are analytic at Xk, k 1, 2,’’’, N, then

(2) Sv(x,) -1/2p(x,),
(3) S2u(x,) 1/2p’(x,) +lq(x,) 2[ p(x,)]:z,
(4) S%(x,) -p(x,)p’(x,)--p"(x,)- 1/4q’(x,)

{1/2[p(x)]2-p’(x,) 2q(x)}’,
(5) Sv(x,) 2o[ p(x,)]4 +p’(x,)[p(x,)] -q(x)[p(x)]2

-[p’(x)]2 +4[q(x,)]2-p’(x,)q(x)
-p"(xi)p(xi) +op’"(xi) +13-6q"(xi).

Proof The idea that we will follow is very simple and it requires only some algebra.
A derivative in this proof will be denoted by primes or numbers enclosed by parentheses

* Received by the editors June 18, 1986; accepted for publication (in revised form) December 15, 1986.
t Escuela de Fisica y Matemiticas, Universidad Michoacana, 58000 Morelia, Michoacin, M6xico.
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appended to the function. For the sake of simplicity we will prove only (3). Equations
(2), (4) and (5) can be proved along these lines.

N (x- Xk) be a solution of (1). Let us defineLet f(x) I-Ik=l

Thus,

g(x)-’(X--Xl)(X--X2) (X--Xi_l)(X--Xi+l) (X--XN).

(6) E (X--Xk)-2= g’(x)]2 g"(X)
k=l g(x) _[ g(x)"
k#i

Since p(x) and q(x) are analytic at xi for all xi, these points are all distinct and
gt)(x)=(l+ 1)-lft+l)(x) for/=0, 1,.... Therefore, (6) becomes

,
S(x’)=Lf’(x,)J 3 f’(x,)"

Now, using (1), we get (3).
It should be noted that (4) can be interpreted as an extremal property of these

zeros" the function of the N continuous variables zl, z2,’", zN,

N 1 N

H(z,,z_,...,z)=-H(z)= E+E u(z)
i,j=l (Zi- Zj)2 j=l
i#j

where

u(z) 1/4[p(z)]2 -1/2p’(z) q(z) + A’,

and A’ is an arbitrary constant, takes a stationary value at z xi, 1,2,..., N,
whenever z is in the domain in which the polynomial f(x) satisfies (1). Furthermore,
it is not difficult to see that if u"(x,)> 0 for all x,, the function H(z) has an absolute
minimum. On the other hand, if u(x) is a symmetric function, the zeros are symmetri-
cally located about the origin.

If an SL equation, like Schr6dinger’s, is considered, the function H(x) can be
interpreted in some cases as the trace of certain finite representation ofthe Hamiltonian
operator with potential u(x) (Campos [5]).

Some interesting features of relations (2)-(5) can be made apparent if we consider
zeros of polynomial solutions of an SL equation. The following corollary is an
immediate application of Proposition 1.

COROLLARY 1. Consider the normal SL equation

,"(x) + [;- V(x)],(x)=O

with a solution in the form (x)= F(x)f(x), where f(x) is a polynomial of degree N
with zeros x, 1, 2, , N, and F(xi) # 0 for all x. Then, the relation

s’(x,) F’(x,)
F(xi)

holds for all x and the eigenvalues are related with the zeros through

F"(xi) [F’(xi)]
z

(7) h 3Sv(x,)- 3
F(x,)

+ 3 F(x,)’J + V(x,), i= 1, 2,’" ", N.

The general SL differential equation can be considered along the same lines.
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Moreover, the function

(8) H(z)= E+E u(z,),, (z,- z) ,=
i#j

with

F"(x) [F’(x)]u(x)=V(x)-2F(xi+2 F(x)_] +(’-)’

where h’ is an arbitrary constant, takes a stationary value in zi xi, 1, 2, , N. This
value is an absolute minimum if u"(xi) > 0 for all xi. If u(x) is a symmetric function, the
zeros are symmetrically located about the origin. Furthermore, they satisfy

F(’V)(x,) 7 F’"(x,)F’(x) 9 F"(x)[F’(x,)]2

S(x’)-15 F(x,-l- [F(x,)]2 +-
5 IF(x,)]

2[F"(xi)]
2

7[F’(xi)]
4 4- F(x,)_] - F(x,)J --[h- V(x,)]

L F(xi)J
+ Ix V(x,)].

3. Examples. In this section we consider the zeros of the Hermite, Laguerre and
Jacobi polynomials; we use the definitions of these functions given in [7]. The relations
obtained through (2)-(4) ((2)-(5)) for Laguerre and Jacobi (Hermite) zeros are already
known (see [1] and [2]). Of these equations, only (3) and (4) will be rewritten in this
section using the expressions of Corollary 1 for the three cases. The relations corre-
sponding to (5) is given only for Laguerre and Jacobi zeros.

A. Hermite zeros. The differential equation for the Hermite functions q(x)=
exp (-x2/2)HN(x), is the Schr6dinger equation for the harmonic potential V(x)=
(1/2)x2:

q/’(x) + ( x)q,(x) 0, h =2N+l.

If Xk, k 1, 2,’’’, N, are the N zeros of Hv(x), then (7) becomes

2(N- 1)=3S(x,)+x, i= 1, 2,..., N,

and the function given by (8), with u(z)=(1/2)z, and -oo< z <oo for all z, has an
absolute minimum H(x) N(N- 1)/2 at these points (Campos [6]) and, additionally,
they are symmetrically located about the origin, as is well known.

B. Laguerre zeros. The differential equation for the Laguerre functions

p(x) exp (-x/e)x(+l)/Lr(x),

where a>-l, x>0 and Lv(x) is the associated Laguerre polynomial, is the
Schr6dinger-type equation for the potential V(a, x) -(2N + a + 1)/2x + (a2-1)/4x2:

d/"(x) + (2N + a 1 -a2 \ 1
+ +) q,(x) 0, --.

4x2 4

Let Xk, k 1, 2,’’’, N, be the N zeros of L(x). Then (7) becomes

(a +5)(ce + 1) 2N+c+l_1 3S%(x,)+ i=1,2,..., N.
4 4x 2x
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The function H(z) given by (8) with zi > 0 for all zi has a stationary value at these
points if u(z)= V(a +2, z)+(1/z)+A’, where A’ is an arbitrary constant. There also
holds

S4Iq(xi) 7756 x74- 180
(9)

[3az+4(2N+l)a+(SNZ+SN+l)]xC,2_[a+2N+l] 7’
1

+
360 180

x q
720"

C. Jacobi zeros. The SL form of the differential equation for the Jacobi poly-
nomials f(x) P’)(x), a > -1,/3 > -1, is

[(1-x)+l(l+x)t+lf’(x)]’+A(1-x)(l+x)tf(x)=O, A=N(N+a+fl+I).

Let Xk, k 1, 2, , N be the zeros of Pr’)(x). The corresponding form of (7) is"

(a + 5)(a + 1) (1 + x,)
-x,)S(x,)+N(N+a++I) 3(1 2 2

4 (1 -xi)

(/3+5)(fl+1) (l-x,) (a+1)(/3+1)+ i=1,2,. ., N.
4 (1 +x) 2

The function H(z) defined by (8) where -1 < z < 1 for all zi has a stationary
value at these points if

(a+l)(a+3) (/3+1)(/3+3) 2A+(a+l)(fl+l)
u(z)=

4(1 z)2 +
4(1 +z)2 2(1_ z2 t-A’,

where A’ is an arbitrary constant. Defining a a -/3 and b a +/3 + 2, there also holds

(10) S4(x)=(l_x)4+ (1 _x2)3+ (1 _x2)2 - (1 _x2

where

C4(X)--
720 90 45 "6] 180 30 45 5

a2b 7ab a2b 2 a4

+ + 26a xz_a (b-2)x+
120 18 45 45 / 180 720’

c3(x)=-(b3q-q8b2 48b 2Ab 4A )_

\180 45 30 45 )x
(ab:’_43ab 3b2 12a 2Aa (a2b a2_--_ab+ F x- +
\ 90 90 10 15 45 / 180 10 2’

-k-X-+- --(a 2c2(x) + 2b 18)-6-
2b2

Cl(X ----.
45

4. Final remarks. The method used in this paper to obtain the sums S(x) for
zeros ofpolynomials satisfying a second order linear ODE is quite elementary. However,
it is applicable to any polynomial (belonging to certain family or not, with complex
or real zeros) whenever the coefficients of the ODE are analytic functions at its zeros.
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It makes it possible to relate the sums S(xi) to the coefficients evaluated at xi. An
interesting feature of these relations is that S(x) turns out to be the value of the
derivative of a certain function evaluated at x. This can be interpreted as an extremal
property of the zeros.

In the case of a polynomial solution of an SL equation, these expressions give a
direct relation between the zeros and the eigenvalue of the equation and it is interesting
to note that in the Hermite and Laguerre cases, the function whose derivative is related
to S3(x) is the "potential function" appearing when the differential equation is written
in its normal form.

The sums S(xi) can be related to the coefficients of the ODE just through (6),
the expression that follows for gl(x) in terms off*/l(xi), and the differential equation
for f(x). An alternative technique to obtain these relationships has been used by
S. Ahmed (see [1]); however, some interesting aspects of these relations, like the
minimal property of the zeros, are not shown in that work.

The extremal property of the zeros of the classical polynomials can also be
interpreted as the equilibrium condition for certain classical one-dimensional many-
body problems (Calogero [4]) and, closely related to this, it is found their electrostatic
interpretation (Szigo [9, 6.7]; Forrester and Rogers [8]).

All of the equations reported in this paper in 3 concerning the sums S(x) are
already known (Ahmed et al. [2]), with the exception of (9) and (10), which are
presumably new.
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ON AN EXPANSION THEOREM OF F. V. ATKINSON AND P. BINDING*

HANS VOLKMER-

Abstract. We study an expansion theorem of F. V. Atkinson and P. Binding for the right definite
multiparameter eigenvalue problem

X.,= T.,X.,+ Y’. A,,V,..x.,, m=l,...,k

where A1,’’’, Ak are real, x,, is a nonzero element of some separable Hilbert space and Tin, Vm,, are

compact symmetric. We present a new version of the theorem which is easier to use in order to prove
completeness of eigenvectors under some additional assumptions. In particular, we prove completeness of
eigenvectors (i) under Minkowski’s definiteness condition and (ii) for arbitrary two parameter problems.

Key words, multiparameter problem, completeness of eigenfunctions, Minkowski matrices, integral
equations

AMOS(MOS) subject classifications. 47A70, 45C05

1. Introduction. This paper is devoted to an open question in the theory of right
definite multiparameter eigenvalue problems that is the fundamental question of the
completeness of eigenvectors. We know the expansion theorem of Atkinson 1, Thms.
11.8.1, 11.10.1] which has been generalized and improved by several authors. Binding,
KS.llstr/Sm and Sleeman [5, Thm. 4.2] derived an expansion theorem under a definiteness
condition weaker than that used by Atkinson. Binding [3, Thm. 4.1] gave another
version of the expansion theorem for right definite problems on the basis of his
oscillation theorem. However, it turns out that it is often difficult to decide on the
completeness of eigenvectors by means of these expansion theorems (see [14]).

In this paper we modify known proofs of the theorem in order to obtain simpler
sufficient conditions for the completeness of eigenvectors. There are two main results.
In 2 we prove the completeness of eigenvectors under Minkowski’s definiteness
condition. In 3 we demonstrate the completeness of eigenvectors for the general two
parameter right definite problem. Thus some progress is achieved in the question of
completeness but, for instance, the question remains open for the general three para-
meter problem.

We now formulate the multiparameter eigenvalue problem under consideration
and give a short survey on its theory. The notation and the results are mainly taken
from Binding [3].

Let T,,, V,,, be compact symmetric operators on separable Hilbert spaces Hm for
m, n 1,. ., k. Then define the compact symmetric operators

k

w.(x 7,. + E X.Vm.

for m= 1,..-, k, A =(/1,’’’ ,k) ERk and consider the k-parameter eigenvalue
problem

(1.1) Xm Wm(A )Xm, 0 Xm Hm, tn 1,. ., k.

A is called an eigenvalue of (1.1) if there exist nonzero vectors x,, in H,, such that
x,, W,,(A)Xm for all m 1,..., k. The tensor Xl(R)’" "(R)Xk in the Hilbert space tensor

Received by the editors July 15, 1985" accepted for publication (in revised form) December 1, 1986.
t Fachbereich 6, Mathematik, Universit/it, GHS Essen, Universititsstr. 3, D-4300 Essen 1, West Germany.

1669



1670 HANS VOLKMER

product H Hi(R)’" "(R)Hg is called an eigenvector of (1.1) corresponding to the
eigenvalue . The tensor product setting is necessary in order to give any sense to the
question of the completeness of the eigenvectors. The eigenvalue problem (1.1) has
been studied mostly under the "right definiteness" condition

(1.2) det (Vm,,X,,,X,,)>O for all 0 X Hm.
l<--_m,n<=k

We shall assume (1.2) throughout this paper.
In 4, the theory of (1.1) will be applied to eigenvalue problems for integral

operators

(1.3) Xm(m)-- trn(m, T]m)Xm(’F]m) drlm q- An Vmn(m, T]m)Xm(T]m) drlm
rl--1

where tm and v.. are real symmetric functions continuous on [a.., b,.] x [am, bm]. The
corresponding Hilbert spaces are

Hm L2(am, bm) and n gl(" "(nk t2(m=lI (am, bin)).
The eigenvalue problems (1.1) and (1.3) have also been discussed by Anna Pell

11 in the special case oftwo parameters. Pell assumes that H1 H2 12 and T1 T2 0.
The operators V,, are defined by real symmetric Hilbert-Schmidt matrices. The
eigenvalue problem is assumed to be left-definite, i.e., V12 and V22 are positive definite.
I intend to generalize the results of Pell in the left-definite case to more than two
parameters in another paper.

The theory of (1.1) can also be applied to multiparameter problems involving
Emilunbounded operators Let T’,, and V’m, be selfadjoint operators on H,, with

bounded and T’,, bounded above with compact resolvent.
Then the multiparameter eigenvalue problem

k

(1.4) T’x,,+E ,x,v’,.,,x,,=o, Ox,,D(T’,,), m=l,...,k,
n=l

can be transformed into a problem of the form (1.1) (see [3, 1]).
A special case of (1.4) is the k-parameter Sturm-Liouville eigenvalue problem

d 2x_______. k

(1.5) d2,
q- q,,x,,, + A,,V,,,,Xm O, m 1,..., k,

with the boundary conditions

dxm.
a,lX,(a,)+a,-(am)=O, (0, 0) (a,l, a) N

dxm
,lX,(b,)+,2-(bm)=O, (0, 0) (,l, m) e It

This problem appears when we solve boundary value problems for partial differential
equations by the method of separation of variables. For example, if we consider the
vibration problem of an elliptic membrane with clamped boundary then we obtain a
two-parameter eigenvalue problem of the form (1.5) where the ordinary differential
equations are Mathieu equations (see [10, 4.3]).
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The eigenvalue problems (1.4) and (1.5) have been investigated by many authors.
Cordes [7] proved the completeness of eigenfunctions in the two-parameter case if
VI, V2, -VI, V2 are positive definite and VI + V2--Ida, -V+ V2-Id2 where
Ida, denotes the identity operator on H,,. This result has been generalized by Volkmer
[14] to more than two parameters.

Faierman [8] proved the completeness of eigenfunctions of problem (1.5) under
the assumption of continuous v,n satisfying

det v,, (,,) > 0 for all ,,, [a,,,, bm ].
lm,n<=k

More generally, the combined results of Browne [6], K/illstrBm and Sleeman [9]
and Volkmer 15] establish the completeness of eigenvectors if the eigenvalue problem
(1.4) is strongly definite. By a result of Binding [2] this means that

k

(1.6) det V’,,,,x,,, x,,,) >- e I-I (x,,,, x,,) for all x,, Hm.
lm, n<=k m=l

It should be noted that the eigenvalue problem (1.1) cannot be strongly definite (i.e.,
(1.6) holds with V,,, in place of V’,) unless H has finite dimensions because the
operators V,, are compact.

The following oscillation theorem of Binding [3, Cor. 3.3] proves the existence
of eigenvalues of (1.1).

THEOREM 1.1. Let (il, , ik) be a multi-index where 1 <- i,, <-_ dim H,for each
m. Then there exists a unique eigenvalue of (1.1), denoted by A i, such that the i,th greatest
eigenvalue of W,(A is equal to 1 for each m. Of course, the eigenvalues of W,,(A are
counted according to multiplicity.

In order to formulate the expansion theorem we need some further notation. The
operator determinant Ao is defined by

V,," "V,
(1.7) Ao= (R)

V,’’’V

where (R) indicates that the tensor product of operators is used in the expansion of
the determinant. For n 1,..., k, the operator determinantA, is defined as in (1.7)
with the nth column of the determinant replaced by Idm- T,, m 1,..., k. Then
Ao,’" ", Ak are bounded symmetric operators on the tensor product H. We write

(1.8) z,, z2] (Aoz,, z)

for Z1, Z2 H. It follows from (1.2) that the form is positive semi-definite (see [1,
p. 194]).

We can choose eigenvectors e of (1.1) corresponding to the eigenvalues h such
that the e form an orthonormal system in (H, ]). If all the spaces H,, have finite
dimensions then the completeness of the e follows easily from the oscillation theorem
by counting the number of the indices i. This completeness result was shown earlier
by Atkinson [1, Thm. 7.9.1]. If at least one of the spaces H,, has infinite dimensions
then the e form an infinite orthonormal system in (H, ]). The expansion theorem
of Binding [3, Thm. 4.1] which is closely related to a theorem of Atkinson [1, Thm.
1.10.1] now reads as follows.

THEOREM 1.2. Let y Yl (" "(Yk be a decomposable tensor in H and assume that

(1.9) Any 6 Ao(H)
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for all n 1,. ., k. Then there holds the Parseval’s equality

[Y, Y] [[Y, e’]l.
In general, it is difficult to check condition (1.9) which guarantees that y can be

expanded in a series of eigenvectors. In the next section we shall reprove Theorem 1.2
in order to point out the modifications we need to obtain conditions which are simpler
to check than (1.9).

2. Expansion theorems for k-parameter eigenvalue problems. Consider the eigen-
value problem (1.1) under the definiteness condition (1.2) and let y yl() "()Yk be
a decomposable tensor in H. We shall discuss the question of whether y can be
expanded in a series of eigenvectors of (1.1). As for the expansion theorems of Atkinson
and Binding our results will be based on sequences of orthoprojectors P on Hm
strongly convergent to Idm as j + for all m 1,. ., k. We choose these projectors
so that the range spaces

H:-P(Hm)
have finite dimensions, contain Ym and are montone increasing

ymHHH" ".

Then we consider the approximating eigenvalue problems

(2.1) xm=PJmWm(A)xm, Oxmen, m=l,...,k.

We denote the eigenvalues of (2.1) by A 0 according to Theorem 1.1 where

e/ := {(il ,’’’, ik)" 1 <-- im <- dim nJ}.
Choose corresponding unit vectors u SO that

uiJm pJm Wm(A iJ)uiJ
and the tensors u 0 u (R). (R) u, e/j, form an ]-orthogonal system of eigenvec-
tors of (2.1).

Binding [3, Cor. 3.3] has shown that the sequences A converge to the unique
eigenvalue A of Theorem 1.1 as j- and that the weak limit points of the sequences
u are also strong limit points and furnish corresponding eigenvectors. Therefore, by
taking subsequences, we may assume that

A/j ._> h /j
Urn+Urn asj+ for iI’.-UI.

Condition (1.2) allows us to renormalize the eigenvectors

e ui/[u il/2u where u u(R).. "(R)Uk

SO that the e form an orthonormal basis in the finite dimensional space (H (R). (R) H,
]) and the e form a possibly incomplete orthonormal system in (H, ]). Hence

there holds the expansion

(2.2) Y E oliJeiJ, aiS [Y, eiJ]

and Parseval’s equality

(2.3) {Y,Y]= Z I, I
ilj
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for every j. We see that c ij [y, e i] as j o. Hence (2.3) will give the desired Parseval’s
equality

(2.4) [Y, Y] I[y, e’][=
iI

provided that (empty sum 0)

(2.5) Y IsiJl2 0 as jo oo uniformly in j.
iIj\1j

The next lemma yields a convenient method in order to verify this condition. We
denote by Q the set of all A Rk such that

(2.6) l Wm(A )tlm, ttm), m=l,...,k

for some unit vectors u,,, in Hm. Obviously, all eigenvalues A j and A belong to Q.
LEMMA 2.1. Assume that there exists a functionalf:Q- R boundedfrom below so

that
the set

{X e Q If(A) -<_ c}
is bounded for all real c and

(ii) the sequence

X la’l’-f(a’), j 1, 2,’’"

is bounded.
Then (2.5) is satisfied and hence Parseval’s equality (2.4) holds.
Proof. Conditions (i) and (ii) remain valid if we replace f(A) by f(A)+ Co where

Co is a constant. Hence we may assume that f(A)->0 on Q. It follows from (ii) that
there is a real number Cl independent of j and jo so that

o_<- E I,l"f(a) -< E I,l=f(a’)<-c,.
iljXlJo ielj

We know from 13, Thin. 2.5] that the sequence A "m, j 1, 2, 3,-.., is unbounded
whenever the sequence of indices i(j) is unbounded. Hence (i) implies that, for any
given c 0, there is a jo such that

f(A)-c ifj jo, /\/o.
It follows that

which proves (2.5).
If we choose

lj\ ljo lj\ ljo

(2.7) f(A) A2 + "+A,
then we obtain the following expansion theorem which slightly improves Theorem 1.2.

TI-I.OREM 2.2. (i) If
(2.8) A,y 6 A/2(H)
for some n, then the sequence

X s121AI2, j=1,2,3,...

is bounded.
(ii) Assume that (2.8) holds for all 1 n k. en Parseval’s equality (2.4) is

satisfied hence y can be expanded in a series of eigenvectors of (1.1).
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Proof. Condition (ii) is a consequence of (i) and Lemma 2.1 applied to the
functional (2.7). Hence it suffices to prove (i).

Since the e iJ’s are eigenvectors of (2.1) we know from 1, Thm. 6.8.1] that

(2.9) (P(R). .(R) P)Ao e A ,,tc"..(R) p)Ao ei.

We multiply (2.9) from the left by y and obtain

(A,y, e) h ij, a 0

from (2.2) and (P(R)...(R)Wk)y=y. Hence

By assumption, we can write Ay A/x.
Without loss of generality, we may assume that x is ohogonal to the kernel of

A/. Then there exists a sequence x in H such that A/x x as q . Consequently,
Aox A/x Ay. It follows from Bessel’s inequality that

1[Xq, eiJ]]2 IXq, xq].
ieI

This inequality gives

(2.11) Y I(A.y, eV)l(x, x)

as q-->c. Now (2.10) and (2.11) imply (i). l-i

The condition (2.8) of Theorem 2.2 is weaker than the corresponding condition
(1.9) of Theorem 1.2 because the range of Ao is contained in the range of A/2. This
weakening will be important in the next section in connection with Lemma 3.4.

However, the main idea of this paper is to replace the functional (2.7) by some
other functionals.

THEOREM 2.3. Let f be a linear functional on k.
(i) Then condition (ii) of Lemma 2.1 is automatically satisfied.
(ii) Iff satisfies condition (i) of that lemma then there exists an orthonormal basis

of eigenvectors of (1.1) in (H, ]).
Proof. (i) Multiply (2.9) from the right by eo. It follows that

(A,,e, e)= h (Ao eij, eioJ)={OAg if # io,
if i=io.

Now (2.2) gives

(A,y, y)= 1 i 12 ff.
iIj

Therefore, the numbers Y.,Ij I ’ I=T(A ) are independent ofj and hence bounded.
(ii) Since f is linear and satisfies (i) of Lemma 2.1, it follows that f is bounded

from below on Q. Therefore, we can use Lemma 2.1 to prove Parseval’s equality (2.4)
for the given decomposable tensor y. Now the decomposable tensors form a total
subset of H, i.e., their linear hull is dense in H. Since y can be chosen arbitrarily in
this total subset of H we see that (2.4) holds for all y in H and every choice of the

]-orthonormalsystem e (i I)ofeigenvectorsof(1.1).Thisprovesthetheorem. 73
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Let us apply this theorem to an eigenvalue problem (1.1) which satisfies Mink-
owski’s definiteness condition, i.e.,

(i) V,,n is negative definite for all m # n, and
(ii) k Vmn is positive definite for all m.

This condition has been introduced in multiparameter theory by Binding and Browne
[4]. They showed that, under Minkowski’s condition, the operator determinant Ao and
all the cofactors Aomn of Vmn in the expansion of Ao are positive definite. These results
and Theorem 2.3 lead to the following theorem.

THEOREM 2.4. If the eigenvalue problem (1.1) satisfies Minkowski’s definiteness
condition then there exists an orthonormal basis of eigenvectors of (1.1) in (H, ]).

Proof. Let A Q. Then Cramer’s rule applied to the linear system (2.6) yields

(Au, u)
(2.12) An n=l,’’ .,k

(AoU, u)’

where u- Ul()...()uk. In addition to the hypothesis of the theorem let us assume
that Idm- Tm is positive semi-definite for all m. Then

k

An
m=l

shows that (Anu, u) is nonnegative for all n. Hence, by (2.12), Q
_

[0, oo[ k and, therefore,
condition (i) of Lemma 2 1 is satisfied if we choose f(A) k__ An. By Theorem 2.3(ii),
this completes the proof under our additional assumption If the operator Tm has
eigenvalues greater than 1 for some m then we apply the following simple lemma to
transform the eigenvalue problem in such a way that our additional assumption is
satisfied

LEMMA 25. There exists a translation A + tz in the parameter space Rk which

transforms (1.1) into

k

x= Tx,,,+ Z .,,V,,,.x, m=l,.. ",k

such that all eigenvalues of T are smaller than 1.

Proof. Let/z be the eigenvalue of the problem

x,,=2W,,(A)Xm, O#xmHm, m=l,...,k

corresponding to the multiindex (1, , 1). Then the greatest eigenvalue of 2 W(/)
is equal to one. Hence the greatest eigenvalue of Wm(tZ)= m is equal to 1/2.

3. Two-parameter eigenvalue problems. In this section we want to prove the com-
pleteness of eigenvectors for the eigenvalue problem (1.1) in the special case of two
parameters

Xl TIX1 -[- , 1VllX1 -’[- ,2 V12x1 0 # X1G H1,
(3.1)

x2- T2x2+ A1V2x + A2 V_2x2,

under the definiteness condition

(3.2) VllXl Xl) V12Xl, Xl)
V21x2, x2) V22x2, x2)

>0 for all O# x e H, O# x2e H2.

As a first step we reduce (3.1) to an appropriate canonical form by an affine transforma-
tion of the eigenvalues

(3.3) /1 ’}/10 "+" ’)/11’1 -- Y12’2, A2-- 0/20-t- ’}/21’1 "- ’)/22’2
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where

(3.4) )’11 ’)/22 ’)/12’)/21 1.

Such a transformation takes (3.1) into

(3.5) Xl TXl + . VllXl + ,2 V12xl, X2 T2x2 ,1V21x2 -[" ,2 V22x2,

where

:= 7% + rov+ov . := .v+ :.v.
It follows from (3.4) that the operator determinant Zo for (3.5) is equal to Ao:

Ao= Vl(R) v- Vl(R) v

Moreover, (3.1) and (3.5) have the same eigenvectors. Hence it will be sufficient to
prove the completeness of eigenvectors for (3.5). The reduction to canonical form will
be achieved by the next lemma.

LEMMA 3.1. There exists an affine transformation (3.3), (3.4) such that the transfor-
med eigenvalue problem (3.5) satisfies (i) and (ii).

(i) There holds one of the following six sets of sign conditions:
(1) V,,>0, VI=0, 2>0;
(2) V.,,=0, V.2,<0, V,2>0;
() v,,>o, v,_-<o, v,__->o, v>o;
(4) v,,_->o, ,<0, ,>0, 0;
() ,,>0, ,=0, ,>0, 0, :v,+v>o;
(6) v,,9, v,<o, v,o, y>, v,,+e,>o.
(ii) = V,(Id- )-(Id,- T), is positive definite.
Proof First we construct , 2, 2, Yz2 such that (i) holds. By [1, Thm. 9.2.2]

there exist nonzero =(a, a2), =(,)2 such that

Suppose that a =/#3 for some real/z. Then

o11Vll--og2V12-[31Vll--[32V12--O if/x <0,

O1V21 -F o2 V22 l V21 + f12 V22 0 if/z > 0.

Set ykl al, )’21 =^ a2 and choose )’21, )’22 such^ that^ (3.4) holds. If/>0 then it follows^
that Vll ->- 0 and V21 0. Hence Ao o Vll(R) V22 and (3.2) yield Vll > 0 and V22 > 0.
Therefore, (i) (1) is satisfied. Similarly, if/z < 0 then-(i) (2) holds.

Now suppose that a,/3 are linearly independent. Then we set 711 al, Y21 a2,

)’12 1, )’22 2 where we may assume (3.4). We obtain

>0, V21 < O, V12 > O, V22 > O.1--
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Since (lrllX1, X1) lr22X2, X2)-- irl2X1, X1) r21X2, X2) > 0 for every 0s x1E H1, 0 x2E
H2, we conclude that

Vii>0 or V21<0
and

Further, we see that

72>0 or Q22>0.

QI,+ QI>0 and -J’21-4- 22>0.
Hence, there holds one of the last four sets of sign conditions.

Now we construct 2,1o, 3’20 such that (ii) holds. By Lemma 2.5, we can choose 3’1o
and Y_o such that Idl- T1 > 0 and Id2- 52 > 0. By (i), we know that I’1 >= 0 and 1’1 =< 0
where at least one of these two operators is definite.

Now we use the easily established facts that

and

A1 => 0, A >= 0 imply A1()A2 => 0

A1 > 0, A2 > 0 imply A ()A2 > 0

whenever A,, are bounded symmetric operators on H,. Hence 1’11(R)(Id2-’2)=> 0,
-(Idl-T1)(R) V21 >=0 and one of these operators is positive definite. Therefore, (ii) is
true. 1-]

The following definiteness result shows that, for k 2, the form (1.5) is not only
positive semi-definite but positive definite on H. Hence (H, ]) is a pre-Hilbert space
under the assumptions of this section. A similar result for general k greater than two
is not known.

THEOREM 3.2. Condition (3.2) implies that Ao is positive definite on H.
Proof. We may assume that (3.1) is already reduced to one of the six canonical

forms of Lemma 3.1. In case (1) we have Ao VI (R) V2 and Vll and V22 are positive
definite. Hence Ao is positive definite. Case (2) is similar. If (3) holds then Ao -> Vl1(R)
V22> 0. Case (4) is similar. Suppose that (5) holds. Since Ao=> 0 it suffices to show that
(AoZ, z) 0 implies z 0. Hence assume that (Aoz, z) 0 for some z H. Then

(VII@ V22z z) (VI2@ V21 Z, Z)--O,

consequently Vii @ V22z V12@ V21z O.
Since (V11()Id2)(Idl( V22)z Vl1() V22Z and Vii > 0 it follows that Idl( V22z 0.

Similarly, Ida(R) VzlZ 0. By assumption, -V21 + V=2> 0, hence Idl@(-V21 + V22)z 0
implies z 0. Finally, ease (6) is similar to ease (5).

We need some further lemmas.
LEMMA 3.3. Let T and V be compact symmetric operators on a separable Hilbert

space H. Let V be positive definite. Then there is a sequence of eigenpairs A P, xp) of the
eigenvalue problem

(3.6) x= Tx + A Vx, OrS x e H

such that x p is total in H.
Proof. By Lemma 2.5, we may assume, without loss of generality, that Id- T is

boundedly invertible. By Theorem 2.4 with k 1, there exists a sequence of eigenpairs
(AP, x p) of (3.6) such that x p forms an orthonormal basis in the pre-Hilbert space
(H, ]) where [x, y] Vx, y) and denotes the original inner product in H. The
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sequence x p is total in (H, ]) and it remains to show that x p is total in H, also.
Since x p is total in (H,[, ]) and V1/2 is an isometry from (H,[, ]) onto
(VI/2(H), )) the sequence V1/2xP is total in (V/2(H), )). Now, V1/2 is con-
tinuous on H and hence Vxp- v1/E(v1/xp) is total in (V(H), )). It follows that
Vxp is total in H because the range V(H) of the positive definite operator V is dense
in H. By assumption, the operator Id- T is boundedly invertible, in particular, the
eigenvalues Ap are different from zero. It follows that xp= AP(Id- T)-1Vx p is total
in H.

LEMMA 3.4. Let A and B be bounded symmetric operators on a Hilbert space H
such that 0 <-_ A <--B. Then the range of A is contained in the range of the square root
B/ of B.

For the proof see [12, Hilfssatz 8].
LEMMA 3.5. Assume that the eigenvalue problem (3.1) has the canonical form

described in Lemma 3.1.
Then there is a total subset of decomposable tensors y (R) y_ in H which satisfy

(3.7) A(Yl (R) Y) A/2(H).

Proof. We give the proof in the cases (1), (3) and (5). In the other three cases the
proof is similar and will be omitted. Under our assumptions, the operator -V=I + V
is positive definite. Hence, by Lemma 3.3, there are sequences A’ and x’ such that

(3.8) xp TxP2 + AP( V., + V22)x

and the xp are total in H2. Now consider the one-parameter eigenvalue problem

X, T + h 2
p V12)X -- ’1 V1 lXl

where p is fixed. Since VI is positive definite we can apply Lemma 3.3 to this problem.
We obtain sequences A1p and x’ such that

(3.9) xfq r + A V,2)XPl q + APlq VllXfq

and the vectors xPq, q 1, 2,.-., are total in H1 for every p. Now (3.8), (3.9) and

a, (tall- r,)(R) V- V,(R)(Id- r)

give

A Xq(x) ,. fq Vl Xfq@ V22x- V12Xq( V21x
e Vii (R) V2)(H) + V2(R) V2,)(H).

Since 0 <_- Vll() V22 A0 and 0 <_-- V12() V21 A0 it follows from Lemma 3.4 that

(Vl(R) V.)(H)_A/(H), (V(R) V)(H)_Ag(H).

This proves that AI(X pq () Xp is in the range ofA/2 for all p and q. Since x2p, p 1 2,21

is total in H2 and x’q, q 1, 2, , is total in H for every p the set of tensors Xl
pq (R) x’,

p, q 1, 2,. ., is total in H HI(R)H. The proof of the last statement is easy and
similar to the proof of [ 13, Thm. 2.3]. This completes the proof.

Now we are in a position to prove the main result of this section.
THEOREM 3.6. There exists an orthonormal basis in the pre-Hilbert-space (H1 (R) H2,
]) consisting ofeigenvectors of the two-parameter problem (3.1) provided the definite-

ness condition (3.2) holds.
Proof. Without loss of generality, we shall assume that (3.1) is reduced to one of

the six canonical forms of Lemma 3.1. Let Yl(R)Y2 be a tensor in H which satisfies
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(3.7). Now we choose sequences of orthoprojectors P as at the beginning of the
second section. Then we apply Lemma 2.1 to the functional

(3.10) f(A) A]+A2.

Since A2>0 it follows from (2.12) that A2>0 whenever (A1, A2) Q. Hence the func-
tional (3.10) satisfies (i) of Lemma 2.1. Now Theorem 2.3 (i) shows that the sequence

X 2, j=1,2,3,"

is bounded. Theorem 2.2 (i) and (3.7) show that

01X aillAl,, j= 1, 2, 3,’’"
iet

is bounded. Hence the hypothesis of Lemma 2.1 is satisfied and, therefore, Parseval’s
equality (2.4) holds for the given y@y. This completes the proof because the set of
these y@y2 is total in H by Lemma 3.5.

4. An expansion theorem for k-parameter integral equations. In this section we
consider the eigenvalue problem (1.3) under the assumption of right definiteness (1.2).
The operator determinant Ao is now an integral operator

(4.1) (aoX)() do(C,

where = (,..., ), (,..., k)e =H= [a, b] and

do(, )= det v(, ).
lNm,nNk

The sesquilinear form

(4.2) [x, y]= | | do(, rl)x(rl)y() dd’o
d

is positive semidefinite on L2(Tr). Therefore, there holds Bessel’s inequality

(4.3) Y I[x p, y]12-<_ [y, y]
p

for every y L2(Tr) and ever,y finite system x p which is orthonormal with respect to ].
Now we fix a point : in r and choose a sequence yl, y2, of continuous

nonnegative functions on r such that

yq(r)dn=l and yq()=0 ifll-ll ->--
q

where denotes Euclidean norm. Then the representations (4.1) and (4.2) and some
elementary analysis show that

[x, yq]--> (AoX)() for x e L:’(,rr),
[yq, yq]--> do(, s),

as q--> c. We substitute yq for y in (4.3) and let q--> . Then we obtain

(4.4) X I(aoX")(T)l=--< do(T, ’).
p

This inequality can be used to prove the following expansion theorem.
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THEOREM 4.1. Let ei, I, be a system of eigenfunctions of (1.3) corresponding to
the eigenvalues A such that e is orthonormal with respect to ]. Assume that the
function y in L2(Tr) can be expanded in a Fourier series

(4.5) y Y’, [y, e’le i.
iI

Then the expansion

(4.6) Aoy E[Y, el]Aoe’
il

holds where the series converges absolutely and uniformly on

Proof. The Cauchy-Schwarz inequality and (4.4) show that

(4.7) 2 I[Y, e’](aoe)(’)l -<-do(’, ’)
i.J

for every finite subset J of I and every in r. Now do is bounded on - and

N I[y, e’]l< oo by Bessel’s inequality. Hence it follows from (4.7) that, for every
positive e, there is a finite subset K of I such that

Y I[Y, e](Aoe)()l --< e

for every : in 7r and every finite subset J of I disjoint from K. This means that the
series in (4.6) is absolutely and uniformly convergent. It is clear from (4.5) that the
uniform limit of this series is Aoy.

By Theorem 2.4 and Theorem 3.6 the condition (4.5) is satisfied for all y in L2(/-)
provided that Minkowski’s definiteness condition holds or that k 2.

We remark that Pell 11, Thin. 4] proved a theorem similar to Theorem 4.1 for a
left-definite two-parameter integral equation.
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A PERIODIC WAVE AND ITS STABILITY TO A CIRCULAR CHAIN
OF WEAKLY COUPLED OSCILLATORS*

YOSHIHISA MORITAf

Abstract. A circular chain of weakly coupled oscillators with nearest neighbor and isotropic coupling
is considered. The identical oscillator is represented by an ordinary differential equation which has a stable
limit cycle bifurcating from a steady state. This equation of coupled oscillators has two parameter and a
high degenerate singularity for a parameter value. Studying a bifurcation problem around the singularity
shows that periodic traveling wave solutions, together with a homogeneous periodic one, bifurcate from the
steady state for suitable parameter values. Furthermore, in a certain parameter region, a classification of
stability for those solutions is presented. These results can also be extended to a class of retarded functional
differential equations.

Key words, periodic wave, weakly coupled oscillators, bifurcation, center manifold, linearized stability
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1. Introduction. We are able to observe a variety of oscillatory phenomena in
models of coupled oscillators arising in the fields of biology, biochemical, electric
circuits, etc. For instance, synchronization (or entrainment), phase-locking, periodic
wave, chaos and so forth are found in many works including [3], [10], [11], [15]-[19].

In this paper, as a model of coupled oscillators, we shall study a circular chain
of n weakly coupled equation which is represented by

d
d--uk(t)=F(tz, uk)+v{N(uk_-uk)+N(uk+l-uk)}, k=0, 1,’..,n-l,

(1.1)
U_ Un_l Un UO

where uk Rm(m >- 2), t, is nonnegative parameter. We assume that F: IoX R --> Rm(Io:
an interval containing the origin) and N" Rm--> R are sufficiently smooth mappings
satisfying F(/x, 0)=0 and N(0)=0, respectively. The coupling of (1.1) is nearest
neighbor and isotropic. Moreover it is assumed that in the absence of the coupling
each component of (1.1), that is,

d
(1.2) d-- u(t) F(/z, u(t)),

represents an oscillator; more precisely we assume that there exists a family of periodic
solutions for small/x > 0, such that they bifurcate from the steady state, u 0, at/x 0.
This bifurcation (called Hopfbifurcation) occurs under the condition that the linearized
equation of (1.2) around u 0 has a pair of simple conjugate eigenvalues, Ao(/Z) and
Ao(/), satisfying Ao(0)= itoo and Re (dAo/dl)(O)>0.

Here we shall approach (1.1) along the lines of studying a bifurcation problem
associated with (1.1) under the above conditions. We first see that at (/, v)= (0, 0) the
equation (1.1) has high degenerate singularity, that is, the linearized equation around
Uk 0, k 0," , n- 1, has a pair of conjugate pure imaginary eigenvalues, +/-itoo, with
multiplicity n. A structure of bifurcation around such a singularity may be complicated
and it is not easy to make clear the complete bifurcation picture. Therefore, in this
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article, as the first step of the investigation, we shall study the primary bifurcation
from the steady state and the stability of the bifurcating solution in a neighborhood
of (,, )= (0, 0).

It is clear that for any v and small/ > 0 (1.1) has a homogeneous (or synchronized)
periodic solution whose components are given by the periodic solution of (1.2).
Moreover we will show the existence of open n- 1 periodic solutions bifurcating from
the steady state. Those n-1 periodic solutions, u1= (Uo, u._1),/=1, ...,n-l,
can be expressed as follows:

(1.3) ulk(t)=l(t+lTl’-), k=0,’’’, n-1

where cl(t) is a periodic function with period T!, and satisfies c"-l( t) ch l( t). This
expression is due to symmetry associated with (1.1), that is, covariance of the vector
field of (1.1) with respect to the transformations Uk--> Uk+l(k =0,""", n--1) and Uk-->
U,-k(k 0," ", n- 1); for the details see 3 and 4. By (1.3) we have

(1.4) Uc+I (t) u, t+ Uk+(t) Unk-1 t-- k 0,’’’, n- 1,

so these solutions are called periodic (traveling) wave solutions to (1.1). Note that the
homogeneous periodic solution satisfies (1.3) (or (1.4)) for /=0; we may call it a
solution of (1.3) for 0.

Next we shall state the stability of the above solutions. Let us consider the situation
that all the periodic wave solutions are unstable sufficiently near the corresponding
bifurcation points except for the homogeneous one. This implies that for fixed v > 0,
in/ increasing, the first bifurcation from the steady state occurs for the homogeneous
solution (at /z =0). Then there are two typical cases classifying the stability of the
solution in a domain of (/.,, v) satisfying v/l << 1. One case is that the solutions of
(1.3) for and n-l, O<=l<-n/4 (resp. n/4<l<-n/2) are unstable (resp. stable) in the
domain. The other is that those for and n-l,O<=l<n/4 (resp. n/4<-l<=n/2) are
stable (resp. unstable) (see Theorem 5.2 in 5). Hence we can see the stability change
of periodic waves. In fact, as we vary or v, we might observe several (or a few)
times of secondary bifurcation along each branch of the periodic solution. In spite of
the complex feature of bifurcation, as mentioned above, we can classify the stability
of the primary bifurcating periodic solutions in the domain satisfying v/ << 1.

Our program to obtain these results is along the following lines. In 2 we reduce
the equation (1.1) on a center manifold constructed around the singularity of (, v, u)
(0, 0, 0), and then we transform this equation into a simpler one (called the reduced
equation) by a nonlinear transformation. Considering the symmetry of this equation,
we can obtain the periodic solutions satisfying (1.3) by the standard Lyapunov-Schmidt
method (see 4). In 5 we shall discuss the linearized stability of (1.3). By virtue of
the reduced equation, it is possible to do this. The reader will see an application to a
specific equation in 6. As a further application, we can extend our results to some
class of retarded functional differential equations, which is described in 7.

We remark that several kinds of coupled oscillators involve abundant phenomena
as first described, while there are many unsolved mathematical problems. For the
equation (1.1) a further step in itsstudy is expected in the future.

We also find in [3], [15], [17], [18] that another approach to a class of the equation
(1.1) is possible by investigating an equation on an invariant n-dimensional torus
associated with the original one. This method has an advantage in that we can apply
a large amplitude periodic solution of (1.2) to (1.1), while difficulty for an analytic
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expression of the periodic solution restricts its application to specific examples.
Moreover it is difficult to apply it to the retardedfunctional differential equation as
in 7. (We also refer to [4] as a related work.)

This study was motivated by the book [11]. The reduced equation (4.19) in 4 is
proposed as a discrete space version of the Ginzburg-Landau equation which is
obtained by a formal perturbation method in the book.

2. The reduced equation on a center manifold. Let A(/)---(OF/Ou)(/, 0) and D--
(dN/du)(O). As described in 1, we assume that A() has a pair of simple eigenvalues,
Ao(/) and Ao(/), satisfying Ao(0)= ioo and that all the remaining eigenvalues have
negative real parts for/ =0. We denote an eigenvector of A(/) (resp. ’A(/)) corre-
sponding to Ao(/) (resp.)o(/)) by sro(/) (resp. sro*(/)), where A(/) is the transpose
of A(/). Let (.,.) be the hermite product in Cm. We simply write ’o--sro(0) and
sro* ’o*(0); moreover we may assume that (’o, o*)= 1 by normalizing it.

The equation (1.1) can be written as follows:

fit, A(O)u, + G(/., u,)+ v,(u), k 0, 1, , n- 1,

(2.1) / =0,

where, denotes d/dt, and

G(tx, u)=- F(tx, u)- A(O)u,
(2.2)

1Qk(u)=N(u,_I--U,)+N(u,+I--Uk), k=0,...,n-1.

Note that (O/Ou)G(O, 0)=0 and (O/O)G(,O)=O,j= 1,2,.... It is always under-
stood that u_ u,_ and u, Uo, even if they are not written explicitly.

Using the projections, P and Q, defined by

u=Pu(u,)o+(U,()(o, u=Ouu-u,
we have the decomposition of (2.1) as follows:

fir= A(O)u+ PG(, u+u)+ P(uP +uQ),

(2.$a) =0,

=A(O)u+ QG(, u+ u)+ ,Q(ue +uQ)(2.3b)

where

U
Q

U --UP.

All the eigenvalues of the linear part of (2.3a) (resp. (2.3b)) have zero real parts (resp.
negative real parts) by the above assumption. Therefore we easily see that the center
manifold theorem can apply to (2.3) (refer to [1]). This theorem implies that there
exists a local invariant manifold in a neighborhood of (/z, v, u)= (0, 0, 0), and it is
tangent to the space of (/x, v, uP) (0, 0, 0). Moreover we see from the attractivity of
the center manifold that asymptotic behaviors of all solutions of (2.3) with small
amplitudes are determined by an equation which is reduced on this manifold.



1684 Y. MORITA

NOW we adopt complex variables, Zk=(Uk,*o),k=0,1, "’’,n-1 (or z-

t(Zo,’’’, Z,_l)). Then the center manifold is represented by a sufficiently smooth
mapping, Uk hk(lZ, u, z, .), k 0," , n 1, defined in a neighborhood of (/x, u, z)
(0, 0, 0), and the equation on the manifold is given by

.k kooZk + O(i, Zko+ Zko+ hk(p,, U, Z, ,)), *0
(2.4) + u(]Qk(zsro+z’o+h(, u, z, .)), ’o*),

Z_ Zn- Zn ZO

where h(/x, ,, z, .) =’(ho(/X, ,, z, .),..-, h,_l(/Z, u, z, )) and Z’o denotes
’(Zo’o, ", z,-sro). We note that hk(lZ, ’, z, .) hk(tZ, u, ., z), h_(. h,_(. ), h,("
ho(’) and hk(O, O, O, O) O; moreover the first derivatives, together with
(O/O’lxOv)hk,j=j +j2 -> 1, vanish for (/x, v, z)= (0, 0,0).

We let

(2.5) C (Do, ro*), C2 (D(o, sro*),

and we can define

(2.6) h(l, Zk, k) =- hk(, O, Z, ,)

for any k, 0-< k_<- n -1; virtually, h(/z,., .) represents a center manifold of (1.2) con-
structed around (g, u)= (0, 0). Then (2.4) is written as

.k kOoZk + (G(/x, Zko+ Zko+ h(tx, Zk, Zk)), sro*)
(2.7) + ’C,(z,_ 2Zk + z,+) + uCz(ek-l 2ek + ek+) + Rk(lZ, u, z, .),

R O( {l(z, ,)1 + I/x (z, -)1}).
The Taylor expansion of (2.7) is as follows:

i kOoZk + g(/z, Zk, k)+ l,’C(Zk-l--2Zk +
(2.8)

+ ’C2(’k-1 --2ek + ’k+,) + R(/, p, z, i),

g(/, Zk, ek) Id,(alOZk "b aOlek) -- a:zoZ2k + alllZkl2+ ao2e
(2.9)

+a30z + a21[Zk12Zk + al21Zk[2k + ao33k,

(2.10) R2k(tZ,
where the coefficients, a(i,j=O, 1,2,3) are given by (a4) in Appendix A.

Now we shall transform equation (2.8) into a simpler one. Since the coefficients
of g depend only on F(.,. (independent of u and N(. )), we can use the nonlinear
transformation found in [8], that is,

(2.11) Zk Wk + bol ffk -k- b20wzk + blllWklZ + b02, + bo3W3k + b,21wl=, + b3o,,

whose coefficients are determined by aij, i, j 0, 1, 2, 3, in an appropriate manner. By
(2.11), the equation (2.8) is transformed into

(2.12)

where

k itOoWk + I.A1Wk + B11Wk :wk + llC1 Wk-1 2Wk + Wk+,)

%" ltC2(lk-1--2k + lk+l) -1- R(/x, u, w, if)

do(2.13) A1 -= alo /z (0) (by (al) and (a4) in Appendix A),
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i
2i

(2.14) Jl--= a/-- aoa la laol,
Wo o 3o

and R is of the same order as R in (2.10).
Fuher calculation in Appendix A shows a formula about the coecient, B1, i.e.,

(2.15) Bl=(Fuu(O)(o ), )+(Fuu(O)(o, 2), )+(Fuuu(O)(o, o, ), )
where and are defined by

(2.16) (2io- A(0))-’ F(0)(o, o), :=-A(0)-’F(0)(o, (o)

(note that F(O)/Ou2F(O, 0) and F(O)3/u3F(O, 0)).
Applying the following transformation to (2.12)"

C2(2.7) w z, -2i (e_, 2e + e+,),

we obtain the equation with a simpler form"

ioz + A,z, + B,Izlz + C,(z_, 2++,)+R(, , ,, ),
(2.8)

Z_ Zn_l Zn Z0

where R also has the same order as R. (Note that R(, , z, )= R(, v, , z).) The
equation (2.18) is expressed in vector form as

i ioz+ gAz+ BV(z, )z+ CAaz+R(g, , z, )
(2.19)

(2.20) Ad=

V(z, .)-= "..

[-2 1 0 0

1 -2 1 0

0 1

1 0 0 1

0

1

-2

R!.) IR(.)

\R4-l(’)

Hence we obtain the next lemma.
LEMMA 2.1. Consider the equation (1.1). The asymptotic behavior of any solution

to (1.1) having small amplitude in a neighborhood of (tx, ’, u)= (0, 0, 0) is determined
by the 2n-dimensional system of (2.18 or (2.19 ). This reduced equation has the symmetry
such that

(2.21) Sjf(,tt, u, z, ) f(/z, t,, Sjz, Sjz), j 1, 2

where

0 1 0 0 1 0 0

0 1 0 0 0 1

(2.22) S1 -= 0 $2= ..
0 0 1

1 0 0 0 1 0
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The latter part of the lemma about the symmetry will be shown in the next section.
Remark 2.1. In the case of m 2, it is clear that the center manifold is not necessary

to get the above reduced equation (2.19). For the case of m-> 3, we also see from
(2.13) and (2.15) that the leading terms of (2.19) can be obtained by no explicit
computation about the center manifold.

Remark 2.2. In 7 the above argument will be extended to a case of coupled
oscillators represented by a functional differential equation. Then an equation quite
similar to (2.18) will be obtained together with a formula for its coefficients correspond-
ing to A, B and C in (2.18) (see (7.10)).

3. Symmetry of the reduced equation. We show (2.21) in Lemma 2.1. Let

Uo)+
F(/, :, u) -=

F(/z, u._,)+

where N is defined in (2.2). By this definition of F,

(3.1) F(/x, u, u) F(/z, ,, E:u), j 1, 2

where

u 1UO U2 UO
Un --2

/’/ --1 /’/n /’/n

Ul

Uniqueness of the solution to (1.1) and (3.1) imply that the center manifold constructed
in 2 satisfies

Nh(/x, ,, z, 2) h(/x, ,, Sjz, Sjz), j 1, 2.

Hence it is easily seen that the right-hand side of (2.8), say fg(, ,,, z, ), is covariant
for S,j 1, 2, that is,

S(/z, ,, z, 2)= (/x, , Sz, Sz), j 1, 2.

This property is invariant under the transformation of (2.11). Moreover since S
commutes with Ad defined in (2.20), it is also invariant under the transformation of
(2.17) which is expressed in vector form as w=z+ aAd2, a -uC/2iwo. This implies
the completion of the proof of Lemma 2.1.

Next we shall define some matrices and observe how they change by a certain
transformation. This observation will be useful for the later argument in 5.

Let

(3.2) P= (Pk,m)k,m=O,...,n-1, Pk.m =- e’k 2mrr/n/x/
be a matrix whose kth row and ruth column is Pk, and let

(3.3) Pl----- "’.

Pn-l,/
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It is easily seen that

(3.4) P-1AdP=--A=--

where

0

O’n_

kr
(3.5) O"k ----4 sin2 k 0,. n- 1

n

Moreover since P-l= P*-= ’P and PP= (1/V/-ff)(pk,+m)k,m=O,...,n_, we have

o’ 0

(3.6) (P/P)-Ad(P,P) -At -= 0"/+1

"’.

0 O’l+

(3.7) (p/p)_p--p 1p_ 1__ $2

($2 is as in (2.22)). Note that Pk+n,m--Pk,n+m--Pk, and O’k On+k, SO we understand
that Pk,,,, Pk-,,,,,, Ok-, O’k (resp. Pk,,, Pk,,,,-,,) for k _-> n (resp. rn -> n).

4. Existence of the periodic wave solutions. We shall consider (2.19). If we truncate
R,, and if Re A1 0, Re B 0, then there exists a solution for z =/x such as

(4.1) ztk=eeiwzt e ik’21r/n (k=0,.’’, n-l)

where/z and w are defined as

b e2 D10"
P,2--= + v,

a a
(4.2)

to2 =-- too + la,2a2 + b2e vo’D2,

and

a Re A1, a2 Im A2, bl -= Re B, b2-= Im B2,
(4.3)

D Re C1, D2-- Im C_

(trl is as in (3.5)). We, however, have to discuss more precisely the existence of periodic
solutions whose leading terms are given by (4.1), because we may never neglect the
terms included in R.

To seek a periodic solution of (2.19), we shall consider

(4.4) W-sY(S)=f(tx v,y(s),y(s)), y(s)-= z

on the space,

P2,I {Y-’(Y0, , Y,-); yo(s) is a 27r-periodic continuous
function with values in C" and yk(s)=yo(S+ k" 21r/n)}.

A solution of (4.4) in PEtal(/>- 1) gives a traveling periodic wave solution to (1.1)
mentioned in the Introduction. By virtue of the symmetry of f in (2.21), the equation
(4.4) is well defined on the space, PEr,l; this yields that (4.4) can be reduced to the
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following 2-dimensional equation with respect to yo(s) on a space of 2r-periodic
functions:

(4.5) tossY(s)=f /,v, yo(s),’’’,Yo s+(n-1).2 ,yo(s),’’"

Applying the standard Lyapunov-Schmidt method to (4.5), we obtain the following
theorem.

THEOREM 4.1. Consider (2.19) under the assumption,

d,o
(A1) Re (0) Re A, > 0.

Then for sufficiently small positive numbers, g and , there exist smooth functions,
I Il e, ) and w e, ) (1 0,. ., n 1), defined in I. (0, x (- , ), such
that

(4.6 ’(, :(, )+(, ), (, o+(, )+1(, ,
where (e, ) and w(e, ) satisfy (4.2), and l(e, )= O([(e, )[l(e, )l)= l(e, ).
For each l E, P) and e, ) I., there exists a periodic solution of (2.19) bifurcating
from the origin with period, T (e, ) 2/l E, P).

is bifurcating periodic solution is expressed as follows:

z(t)
z/(t) :eeil(,v)t +w/(t),

(4.7) _,(t)
e

WI( )--"

zlk( t) zlo(tot(e, u)t + k" 2hr/ n), k= 1,..., n- 1.and satisfies, Furthermore
n--!

I -I(e, v)=ll(e, v), to -l(e, v)=tot(e, v) and zk (t)=zn_k(t), k=O, n--1 (by a
suitable phase shift) hold for l, 1 <- <-_ n/ 2.

We shall omit the proof of the theorem, since it will be easily shown by the
standard Hopf bifurcation theory. For example, we refer to the works [5], [8], [9]. We

n-l(only note that Zk t) Z,-k(t), k 0, , n- 1, is shown by the symmetry of f with
respect to $2.

The next corollary follows immediately from the above theorem.
COROLLARY 4.2. Consider (1.1) under the same condition of Theorem 4.1. Then,

for I [,1 e, 1,’), e, 12) I, and 1 <= <-- n / 2, there exist traveling periodic wave solutions,
n--l. n--l v) andul--(U/0,""" UI_I), and u I--(U0 U, satisfying (1.4), where i (e,

Tt(e, v) are as in Theorem 4.1. Moreover for each l= 1,..., n/2, ulo(t) u-l(t+p),
where p is a suitable shift in phase.

Hereafter we will assume that

(A2) Re B,= b < 0,

in addition to (A1). The assumption (A2) implies that bifurcation occurs supercritically
with respect to/z, that is, each periodic solution exists for/z >/zl(0, v). In Figs. 1-3,
we find bifurcation diagrams of this case with an additional condition Re C D> 0.

5. Stability of the periodic wave solutions. We shall discuss the stability of the
periodic solutions to (1.1) obtained in the previous section. By virtue of the attractivity
of the center manifold, it is enough to investigate the solution of (4.7) to (2.19). The
reduced form of (2.19) will play a central role in the argument below.
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0

F(3. 1. Bifurcation lines, (,) x(O, ,), are figured for the case, D Re C >0. The periodic wave
solutions, u and u"-l, in Corollary 4.2 bifurcate at

\

l1

U

FIG. 2. A bifurcation diagram for fixed , > 0, under the same condition as in Fig. 1. Vertical direction
indicates a function space schematically. The branches of u and u"- are drawn symmetric with respect to the
horizontal axis, which symbolizes that u and u "- are symmetric each other in the sense of Corollary 4.2.

(5.1)

The linearized equation around the solution (4.7) is given by:

)k (itoo+/ tA + 2BIzlk(t)I2)Yk + B{Zk(t)}2)k

+’C(yk---2yk + yk+)+ 0-- g4k(l 1, u, z/(t) /(t))y
c3Z

0
Z ,1+-- g4k(/ l, 9, (t), (t))
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FIG. 3. A bifurcation diagram for fixed /z>0, say t2. The value, v l, is determined by/z/(v/) =/2. This
picture is illustrated in the similar manner as in Fig. 2.

where, Y-1 Y,-1, Y, Yo and/x= (e, u). Let

(5.2) a = iool(e, v)+ e2B + 17o’lC1, Cez(t) eZB eZi,o,(, )t.

Then, considering the expression of (4.7), we can rewrite (5.1) in the following vector
form:

(5.3) ’: a,y+ nce_(t)(pl)2/+ vC,Aay+w’(e, v, t)y+WZ(e, v, t)
where P is defined by (3.3) and WJ, j 1, 2, are matrices whose elements are periodic
with period, T(e, v)= 27r/w’(e, v), and are O(el(e Using (3.6), (3.7)
and

(5.4) y P/Pv,

we transform (5.3) into

= c,v+ (t)s.-,C,A/v+qC’(e, , t)v+ff(e, ,,
(5.5)

ffJ ------ (PtP)-’W (PIP), j 1, 2

where $2 and Al are as in (2.22) and (3.6), respectively.
In general, let (t) be a fundamental matrix solution (with (0)=/, the identity

matrix) of a linear periodic system such as (5.5). Then Floquet theory (for example,
see [6]) implies that (t) can be expressed as (t) X(t) eM’, where X(t) is periodic
with the same period as the original system, and M is a certain matrix. By virtue of
this expression, the real part of an eigenvalue of M gives a criteria for stability of the
zero solution. The eigenvalue of M is called a Floquet exponent.

In the case of (5.5), after the change of variables, Dk Wk e i’(e’v)t, k =0, n 1,
(5.5) is written in the form,

(5.6) (wW_.) (Mo+m(e, v, t)) ()
where Mo is a constant matrix with O(e2+ v) and M= O(vl(e v)l+ el(e v)12). This
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fundamental matrix solution, (t), satisfies

(t) eMot I+ e-MoSMl(e,,,s)(s)ds,
from which we see that

e’ (’= e’o’ + o((, 1+ 1(, ll.
This implies that an eigenvalue of Mo gives the principal pa of the one corresponding
to M, if e and are suNciently small. Since in the absence ofM the components of
the equation (5.6) are given by:

k {e2B1 + Cl(l--l+k)}Wk + e2Bl#n-k,
(5.7) k=0,-.., n-1._={,+ 0,(, ,_)}._+,w,
(note t+,_ t_), the next lemma immediately follows.
LMM 5.1. e linearized equation of (2.19) around the periodic solution, z(t),

given by (4.7) has the Floquet exponent such that

= (, )+ (, )

we (, )= o((, )]+ J(, )) and (, ) i a roo ofe eq.aaon.

(.8) -+n=0, =0,... ,n-l,

whose coecients are defined by

2e b uD,
_

2++)+ iuD(
_

+),

(.9) n (D+ D)(,- ,+)(,-
ue(D,b, + Db)(,_-2, + ,+)

-i(D, Db,)(,_ ,+)

(b, D, j 1, 2 are defined in (4.3)). Furthermore,

(.o) ’._ , ’ -’ "-’ -’,_= , - and ,
hold.

Now consider the equation (5.8). For k=0, (5.8) is y-2sZby=0, which has
roots 0, 2s2b(<O by (A2)). A zero Floquet exponent always exists for the linearized
equation around a periodic solution. The above zero corresponds to this.

Next consider the case k 1. In the specific cases =0 and n/2 (for n" even), the
coefficients of (5.7) are real valued such as:

2(b, D,),

/=2{ebl + D(n/-/_)},

where, Ea Db + D2b2. Note that ,/-,/_ ,/2-,/+> 0, k 1. We let D >
0, Ea > 0. Then both roots for 0 exist in the left half of the complex plane for e
near the zero, and one of them crosses the origin from left to right as e increases,
while for n/2, the pair of roots in the right for small e cross the imaginary axis
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from right to left as e increases. If D1 > 0 and E1 < 0, then for 0, both roots remain
in the left half plane, while for l= n/2, there are two cases. For DIEI+D2E2<O
(E2 Dlb2-D2bl), one of them always has positive real part. In the case of DIEI+
D_E2 > 0, the roots in the right half for e small cross the imaginary axis from right to
left, moreover thereafter one of them crosses the origin from left to right.

We can also check the change of roots in a similar manner for the case D1 < 0.
For general l, the movement ofthe root of (5.8) in the complex plane is more complicated
when e increases (or v decreases). In a specific region of the parameter space (/x, v),
however, we can see from Appendix B the stability of all the periodic solutions in
(4.7) as follows.

THEOREM 5.2. Consider the periodic solutions of (1.1) which bifurcate from the
origin, under the assumptions, (A1), (A2) and

(A3) D1 Re(D’o, sro*) > 0.

If Re ((D’o, sro*)/l) Dlbl + D2b2 is positive (i.e., D2b2> -Dlbl > O) and fixed, there
exists a sufficiently small O1 > 0 such that for (tx, ’), 0 < , < Ollx, the periodic solution in
1.3) with indices, and n l, 0 <- <= n/4 (resp. n/4 < <- n/2) are unstable resp. stable);

ifDlbl + D_b2 < O, then in a region satisfying, 0< , < 02/x and 0< 02<< 1, those solutions
with and n l, 0 <-_ < n/4 resp. n /4 <-_ <-_ n / 2) are stable resp. unstable). The numbers,
Oj, j 1, 2, depend on l, 0 <= <- n/2 and the values of D1 bl + D2b

Remark 5.1. The assumptions (A1) and (A3) imply that the steady state is stable
(resp. unstable) for/ < 0 (resp./z > 0). The above discussion for the Floquet exponents
of (5.1) (or (5.5)) with l-0 yields that the homogeneous periodic solution is always
stable for E1 < 0 and that for E1 > 0 it becomes unstable in a region, if (A1)-(A3) hold.
On the other hand, under (A1)-(A3) the bifurcation of all the periodic wave solutions
occurs in the unstable region of the steady state (see Fig. 1), which implies that these
solutions are unstable fairly near the bifurcation points. Theorem 5.2 says that recovery
of stability occurs for several of the periodic solutions and that they have the stable
region as described in the statement.

Remark 5.2. For the case D Re (D’o, ro*) < 0, we can also discuss the stability.
To avoid repeating a similar statement, we omit the case in the above theorem. The
condition D1 < 0 is supposed to be a more specific case than D1 > 0 (see the examples
in 6 and 7), which is another reason to omit it here. We also note that Dl > 0 implies
Re (C3Al/C3p)(O, 0) < 0, 1= 1,- ., n 1, by (a3) in Appendix A.

Remark 5.3. When the eigenvalue of (5.1) crosses the imaginary axis, a secondary
bifurcation occurs and an invariant torus or a new periodic solution might appear.
For the specific case n 2 (i.e., two coupled oscillators) the structure of a secondary
bifurcation of a periodic solution to a class of equation (1.1) has already been studied
in [14].

To recover the stability, some kinds of secondary bifurcation occur along the
branch of the periodic solution. Therefore the complicated structure of (1.1) for a large
system (having many oscillators) is imagined. In spite of this, Theorem 5.2 states that
the stability ofthe primary bifurcating solution is clearly classified in a parameter region.

6. An example. The following equation which is called the Brusselator is known
as a simple biochemical reaction model"

(6.1) :(t)=A-(B+l)x+x2y, (t)=Bx-x2y

where A and B are positive parameters. The equation (6.1) has a steady state, (x, y)
(A, B/A), and at B A2/ 1 a Hopf bifurcation occurs; a family of stable limit cycles
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bifurcate from the steady state (see [19]). Hence F(/x,- in (1.1) (or (1.2)) is given by

( A2 q-/z A2)()(A2q- 1-+-/z 2 20)(1)F(/z, u, v)= _(A2_+ 1 + t* -A2
"1-

A
u + 2Auv + u

where B A2 + 1 +/x, x A+ u and y B/A+ v.
After a calculation (referring to [11, Appendix]), we have

and if

then

l+Ai

2

4A4-7A2+4)3A2

D=(dO d20)’ dl,d2O, d+d2>O,

1
(D’o, sro*) = {(d, + d2)+ iA(d2-d,)},

Re (/(Dsro, ’o*)) 12A----5 {3(d, + &)(A + 2)+ (d- d)(4A4- 7A2 + 4)}.

Since Re (Dsro, ’o*) > 0, we can apply Theorem 5.2 to this case. According to the choice
of d, d2 and A, Re (/(D’o, ’o*)) takes negative or positive value.

7. Application to a retarded functional differential equation. One may encounter
a model of an oscillator represented by a differential equation with time delay. As a

specific example, we shall take the following equation"

(7.1) ti(t) +tx (l+u(t))u(t-1).

This equation has a periodic solution which bifurcates from the origin at/z 0 (for
example, see [8]). Using this equation, we get to a chain of weakly coupled equations
such as

tik(t) +tx (l+Uk(t))uk(t--1)+V(Uk_l(t)--2Uk(t)+Uk+l(t)),

(7.2) k=O,... ,n-l,

tl_l Un_l Un riO.

The equations (7.1) and (7.2) are included in a class of retarded functional differential
equations. In this section, first we shall state the formulation for a functional differential
equation of general form (by following [6]), and then we shall show that the results
obtained in the preceding sections can be extended to this case. Finally we shall give
the values corresponding to A, B, and C in (2.19) for the above equation (7.2). (We
refer to [8] about the formulation below.)

Let C C([-r, 0]; R") be a set of all continuous functions defined on I-r, 0]
with the values in R’; C is a Banach space equipped with supremum norm. We define
u,C,t[a,b] by u,(O)=u(t+O),-r<=O<=O, for a continuous function u(t)
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C([a r, b]; R"). Let F( .,. )’IoX C --> R" be a sufficiently smooth operator satisfying
F(/z, 0) 0,/z Io. Using this operator, we consider the equation,

(7.3) ft(t) F(tz, u,)= L(iz)u, + M(tz, u,)

where L(/x) and M(/z, .) are the linear and nonlinear parts of F(/z, .), respectively.
Riesz’s representation theorem implies that there is an rn x rn matrix function

r/(0;/x) whose elements have bounded variation in 0 such that

L() [d,(0; )](0), C.

The generator A(/z) of a semigroup {T(t)}t-__o, associated with the equation

is defined by
ft( t) L(tz )ut

d4
(7.4) A(/z)b= dO’

-r<=O<O
forb@(A(k)).

L()6, 0 =0

Then the eigenvalue is given by a root of the characteristic equation

(7.5) det ,I- e"[dn(0;)] =0.

We assume that A() has a pair of simple eigenvalues, Io() and Io(), satisfying
Io(0) io, Re (dlo/d)(O)> 0. The function, 1(0), -rN 0 N0, denotes an eigenfunc-
tion corresponding to io. Define G(,-) by:

d(#, b)(0) {0, -rO<O,
G(, 6) F(, 6)- L(0)6, 0=0.

By this and (7.4) the equation (7.3) can be written as

d

d t A(O)ut + (, ut)

(7.6) du(t+O)dO
-rNO<O,

We shall introduce a bilinear form:

(, ((o, (o ’(-o[an(o; o](
(7.7)

for 4 e C([-r, 0]; C) and e C* C([0, r];C).
The adjoint operator A* of A(0) is defined by

-(s), O<sr,
[*](s)

0 [n(o; o](-o, s=O,

that is, A* satisfies (A(0), }=(, A*). We let (s), 0NsN r, be an eigenfunction
of A* corresponding to -io, and let (, ) 1 (note (, ) 0). We can decompose
(7. as
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ieooZ + ((tz, z, + z--+ u o), .)
(7.8) =ioooz+(G(l,z,+z---+u),*o) (’o* ’*(0)),

d
d u? A(O)u + O(, z, + z, +

where z( t) (ut, ), u u uP u -(Zl + Zl ). The existence of a center manifold
of (7.8) was shown in [2], by which we are able to reduce (7.8) to an equation on the
manifold. This calculation is similar to the case of an ordinary differential equation
(see [8]).

We shall consider the following coupled equations of (7.3)"

=F(, u) + {N(u-’ +

(7.9)
-u,)+N(u, -u,)},

--1 u n--1 0
where N(.) is a smooth operator of C into R with N(0)=0 and D=(dN/du)(O).
By (7.8) the equation (7.9) can be decomposed as seen in (2.3), and the center manifold
theorem yields an equation on the manifold. After computations quite similar to those
described in 2 and Appendix A, we have a slightly modified formula of the reduced
equation; that is, in this case, A1, B and C in (2.19) are given by"

(7.o =(F(o(,,+(F(o(, 9, +(F(o(l, ,,,
where

C,-- (Dsrl, ’o*)

’ (2iwo-A(0))-"=-- -Fuu(O)(l, l)

(2 A(0)-’ ft,, (0) (’,, sty),

[/,u(0)(" )](0)--= {0, -r=< 0 <0,
..(o)(., .), o=o.

Now consider (7.2). Then we have

F(/x, b)=-(+)(l+th(-1))th(0), Dth=th(0), the C[-1,0].

In this case, A1, B1 and C1 in (7.10) are easily calculated as follows:

A1 +i 1+ Bl=]-(1-3i) 1-i 1+

C1= 1 --- 1+

(refer to [12]). Hence we obtain Re (/C)= r/10/(1 + r/4)> 0.

ppemtx . Clelfifeettdets fr eqfis (Z$)-(ZI0). First we note that

d’(O) (A(O)sro ’o*)(al)
d/x

which is derived from A(/x) ’o(/Z) Ao()’o(/Z). The linearized equation of (1.1) around
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Uk 0, k 0, , n 1, is given by

fik=A(IX)Uk/UD(Uk_I--2Uk+Uk/I), k=0,"" .,n-l,
(a2)

U_ Un--1, Un U0"

It is easily checked that (a2) has the eigenvalues At(/z, v), l-1,..., n-1 satisfying
At(/x, 0)= Ao(/Z) in a neighborhood of (/x, v)=(0, 0). Furthermore a corresponding
eigenvector to Al(/z, v) is given by

k elk" 21/nl(l,, /), k 0, ", n 1

where ’t(/z, u) satisfies

(A(/z)- utrtD)srt(/, u)= X(/z, ,)’,(/z, ,)

(trt is as in (3.5)). Hence, in addition to (al), we obtain the relation

Oh1 (0, 0)=-trt(O’o ’o*),(a3) 0--
by differentiating it with respect to u.

The coefficients of (2.9) which are necessary for the later calculation are as follows"

alo (F..(0)sro, sro*), a2o 1/2(F..(0)(sro, ’o), ’o*),

al (Fu.(0)(’o, ’o), ’o*), ao2 (Fu.(0)(’o, ’o), sro*).
(a4)

a21 (F,,(0)(sro, hze(0)), sro*)+ 1/2(F,,(0)(o, hzz(O)), *o)

+(F...(0)(’o, ’o, (o), sro*)
where F,.,(O)=- (O2/Ol Ou)F(O, 0), F.,.,(O)=- (O/OuZ)F(O, 0), hzz(O)=- (O2/czZ)h(O, O, O)
and so forth. We can also check that

hz(0) (Z/too- a(0))-’ QF,,(O)(o, o),

(aS) hze(0) =-A(O)-QF,,(O)(o, (o),
hee(O)=hzz(O).

We shall consider (2.14). By the relations (a4),

B1 a2 +-- (2aoall azoal) alkali
too too

2i

too
ao2ao2

a +-- all(Fu (0)(sro, sro), sro*) al(F (0)(sro, ), ro*
0)o too

azo(F,.,(O)(o, o), *o )-U--- aoz(F.,(0)(’o, sro), sro*)
(a6)

too -too

F.,(0) ’o, he(0)+-- a,.sro a.sro sro*
too too

+1/2(Fuuu(O)(o, o, o), *o ).

On the other hand, by (a5), ’z defined in (2.16) is written as:

(a7)
2= hz(O) +1/2(Zitoo- A(O))-lpFu,,(O)(o, o)

1/2hz(O) + (2 itoo- a(0))-l(a2osro + a---2o1.
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Similarly,

(a8)

We easily check that

2 hze(O) A(O)-’PF..(O)(o, o)

hze(O)-A(O)-l(a,lO+ a,,o).

(2itoo- A(0))-l’o ’o, (2itoo- A(0))-’o sro,
too 3a,o

-A(O)-l’o ’o, -A(O)-lo ’o
(.o0 (.o0

Combining (c6), (a7), (a8) and (9), we obtain (2.15).

Appendix B. Proof of Theorem 5.2: Stabili of periodic solutions. Let y Yl + i2
and y Y3 + i4 be the roots of (5.8). Then,

Yl + Y3 2e2b- vDA,

(fl 1
Y2 + Y VDE(t_k t+k),

YlY3 2Y4 2(D+ D2)Sk- e2E1A,

Yl Y4+ YY3 eE(-k +k)

where E1 -= D1 bl + D2b2, E2 =- Db2 D2bl and

At-- trt_k 2tr + tr+k 8 sin2
kvr 2hr

COS,
n n

Sktr =-- (o’ O’+k)(O’!- O’s-k) 16 sin
kr
n

k+21 k-21
sin 7r sin 7r.

n r/

We are only interested in the signs of y and 3/3, SO by (5.10) it is enough to consider
the cases 1 -<_ < n/2, 1 _-< k _<- n/2.

First we note that

(/32)

>0,

=o,

<0,

n
1__<1<

4’
n

n n
-</<-
4 2’

(/33)

<0,

=0,

>0,

1-<_k<2/,

k=21,

n
2/<k <-

=2’

n
for l, 1=<1<

4’

<0,

=0,

>0,

l<-k<n-21,

k=n-21,

n-21<k<_
2’

n n
for/,< 1<-2’
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and [’=0, k =_n
2’

(,84) S/40" -(0"./4- 0"./+/-)2

<0,

(1) Assume that Ar # 0: Let e vanish in (fl 1). A little consideration reveals that

3,13/3 > 0 (resp. <0) holds for 3,13’3 3’23’4 > 0 (resp. <0), and that 3’13’3 0 for 3’13’3
3’_3’4 0 (i.e., Scr 0). Next let v/e2 << 1 in (/31). Putting v 0 in (/31), we have

3’2 3’4 0. Therefore, 3’2 O() 3’4, which implies that

sign (3’1 + 3’3) =sign (2ble2),
(5)

sign 3’13’3 3’23’4) sign {- ve-E1Alktr} sign (3’13’3)"
Hence (/32) and (/35) show the stability result in Theorem 5.2 for n/4.

(2) Assume that Atr =0 (i.e., l= n/4)" We see from (f14) that 3’2 3’4 =0, 3’3’3 0
and 3’ + 3’3 0 for k n/2. Next let k # n/2. If 3’1 0, then

3"2 + 3"4"-- vD2( O’l-k O’t+ k 2vD2(tr,_g- r,),

3’2 3’4 v2(D+ D)Str,
which yields a contradiction: (3’_-3,4)2= (3’2+ 3’4)2-43’23’4<0. Thus the roots 3’4 and

3’8 never cross the imaginary axis in this case. This concludes the proof of Theorem 5.2.

Acknowledgment. The author expresses thanks to Professor Masaya Yamaguti for
his suggestion which proved to be fruitful.
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MELNIKOV’S METHOD AT A SADDLE-NODE AND THE
DYNAMICS OF THE FORCED JOSEPHSON JUNCTION*

STEPHEN SCHECTER

Abstract. A version of Melnikov’s method is developed for time-periodic perturbations of a planar
vector field having a separatrix loop at a saddle-node. The method is applied to the forced pendulum, or

Josephson junction, equation/3 + + sin b t9 + e sin ot.

Key words. Melnikov’s method, saddle-node separatrix-loop bifurcation, pendulum, Josephson junction

AMS(MOS) subject classification. 58F14

1. Introduction. Melnikov’s method [6], [3] is an analytic technique for showing
the existence of transverse homoclinic orbits, which imply the complicated dynamics
associated with horseshoes. The method applies to time-periodic perturbations of an
autonomous planar vector field having a separatrix loop at a saddle point. In this work
we shall extend Melnikov’s method to the case in which the unperturbed vector field
has a separatrix loop at a saddle-node.

Planar vector fields having a saddle-node separatrix loop occur generically in
two-parameter families. It therefore seems natural to study three-parameter problems"

=f(x, vl, v2)+ g(x, vl, v2, /23, t),
(1)

with f(x, v, v2, 0, t) 0 and f T-periodic in t. Here =(& 0, 0) has a saddle-node
separatrix loop, and f(x, Vl, v) is a generic unfolding. The analytic condition for
such a generic unfolding was derived in [9]. There we studied the analogue of
Melnikov’s method for autonomous peurbations of a saddle-node separatrix loop.

(Similarly, saddle separatrix loops occur generically in one-parameter families of
autonomous planar vector fields. Therefore, in the study of the usual Melnikov method
it is natural to consider two-parameter problems in which the second parameter
corresponds to a small time-periodic peurbation. This point of view is taken, for
example, in [2] and [7].)

The motivating problem for this work is the pendulum equation with linear

damping, a constant applied torque, and a small sinusoidal applied torque:

+ + sin + e sin wt.

The same differential equation describes the AC-DC current-driven point Josephson
junction. Setting y , we have the system

1
) (-y sin + p + e sin wt).

There is a number o>0 such that the system (2) with p 1, fl flo, e =0 has a
saddle-node separatrix loop. It is shown in [9] that the two-parameter autonomous
unfolding obtained from (2) by setting e 0 is generic. Thus (2) has the form (1) with

Pl 1, P2 0, P3 E. It follows from [5] and the calculations of [9] that there
is a curve B B (p), 0 < p 1, having a quadratic tangency with the line p at (1, o),

* Received by the editors September 23, 1985" accepted for publication (in revised form) December

10, 1986.
t Mathematics Department, North Carolina State University, Raleigh, North Carolina 27695-8205.
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such that (2) with/3 =/3 (p), 0 < p < 1, e 0, has a saddle separatrix loop. In [8] Salam
and Sastry applied Melnikov’s method to (2) at these saddle separatrix loops. For
fixed p, 0< p < 1, they found that for most w (all but a discrete set), there is an
6(e)-sized /3-interval containing /3(p) such that for /3 in this interval, (2) has a
transverse homoclinic orbit. A consequence of the present work is that, roughly
speaking, the size of this interval remains uniformly ’(e) as p--> 1. This conclusion is
consistent with Fig. 12 of [8]. Salam and Sastry speculate [8, p. 794] that for fixed e,
the size of the interval decreases as p--> 1. Whether or not this is so can presumably
be decided by computing a second-order Melnikov function, but we do not pursue
this point in the present paper.

The usual Melnikov method requires the evaluation of an integral around the
separatrix loop; the integral involves the first-order approximation of the time-periodic
perturbation. The present case is basically the same, except that one perturbation
parameter must be rescaled as in [9], and certain boundary terms that go to zero in
the saddle case must be retained.

In most applications of Melnikov’s method the separatrix loop is known explicitly,
and the required integral is explicitly calculated. The saddle separatrix loops of (2),
however, are not known explicitly. Nevertheless Salam and Sastry succeed in [8] in
determining enough about the integral to derive their results. Here also the saddle-node
separatrix loop of (2) with p 1,/3 =/3o, e 0 is not known explicitly, but enough can
be calculated to derive the results.

This paper is organized as follows. In 2 the results about equation (1) are
described. The functions in terms of which the results are stated are specified more
precisely in 3. Proofs are given in 4 through 7. In 8 the results are applied to (2).

2. Melnikov’s method at a saddle-node. We shall consider the three-parameter
problem (1) with if(x, v, v2, 0, t)--0, ff T-periodic in t. We assume:

(i) f and are Ck+, k_-> 5,
(ii) f(p, O, O)= O,
(iii) Dxf(p, 0, 0) has eigenvalues 0 and -A, where A > 0.

Let u be a right eigenvector and w a left eigenvector of the eigenvalue 0, with w chosen
so that wu > O.

(iv) wOi(p, O, O)(u, u) > O,
(v) =f(x, 0, 0) has a separatrix loop F at p,
(vi) wD,f(p, O, O) > O.

As in [9], these assumptions imply that =iT(x, 0, 0) has a saddle-node at p with one
negative eigenvalue. The vector u is one tangent vector to F at p. As in [9] we let v
denote a right eigenvector of D,f(p, 0, 0) for the eigenvalue -h, chosen so that v is
also tangent to F at p. See [9, Fig. 1 ]. Perturbation in the positive 12-direction eliminates
the equilibrium p, while perturbation in the negative u-direction splits the equilibrium
in two.

For fixed 12 (12, 122, /3), let /5 .2._)2 be the time (0, T) advance map of (2).
Then Po has a fixed point of saddle-node type at p. In fact, assumptions (i) to (iv) and
(vi) imply that there is a Ck function a(122,123), with a(0, 0)-0, such that/5 has a
fixed point of saddle-node type near p if and only if 12 a(122,123). A fixed point of
P corresponds to a T-periodic solution of (1).

Let f(x, Iz,/z:)=f(x, 121,122), where /z= 12-a(122, 0) and /x2 122. Let
g x, Ix IX2, tx t) x, 121, 122, 123, where /Xl 121- if(122,123), ib[,2 =/22, -/3 123- We
consider

(3) f(x, tx, I) + g(x, IXl, Ix2, tx3, t).
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Notice f and g are C k. For fixed/x (/xl,/x2,/x3), let Pp.:R2-> R2 be the time (0, T)
advance map of (3). Then P, has a fixed point of saddle-node type near p if and only
if/xl =0. If/x < 0, then P, has two fixed points, one a saddle and one a sink, near p.
If/Xl > 0 there are no fixed points of P, near p.

We shall show in 3 that the fixed points of the maps P, can be parameterized
as follows There is a Ck-2 mapping p(6,/x2,/z3), from a neighborhood of (0, 0, 0) in
3 to 2, such that p(0, 0, 0) p; p(0,/x2,/x3) is the fixed point of saddle-node type of
P(o.,2.,3) near p; p(6, Ix2,/.1,3) is the fixed point of saddle-type of P(_2.,.,3) near p if
6 > 0, and is the sink of P(-:.,.,3) near p if 6 < 0.

We define p(6, tx2, tx3, t) to be the T-periodic solution of

(4) f(x, -62, /x2) + g(x, -62, tx2, Iz3, t)

that passes through p(6, tz2,/-/’3) at t--0. Thus for 6 >-0 there might exist solutions of
(4) homoclinic to p(6,/z2,/x3, t). For 6 > 0, a homoclinic orbit is of course an orbit in
the intersection of the stable and unstable manifolds of p(6,/z2,/x3, t); for 6 =0, we
consider only homoclinic orbits in the intersection of the stable and center manifolds
of p(0, 2,/x3, t). We shall define in 3 a Ck-2 function d(6, 2, 3, to), T-periodic
in to, such that (4) has such a homoclinic orbit if and only if for 6-> 0 and for some
to, d (6,/z2,/z3, to) 0. Moreover, d (6,/-2, 0, to) is independent of to, and d (0, 0, 0, to)
0. The homoclinic orbit is transverse if, in addition, (Od/Oto)(6, 12, 3, to) O.

If w (w, w2) and z (z, z2), we define w ^ z wz2- w2z. The following theorem
gives formulas for the partial derivatives of d at (0, 0, 0, to).

THEOREM 1.

Od(o,o,O, to)
Op [ Io0- =- (0, 0, 0)^ lim f(q(tl), 0, 0) exp divf(q(s), O, O) ds

a negative multiple of u ^ v that is independent of to.

Od ](0, 0, 0, to)=2 (0, 0, 0) ^ lim f(q(t,), 0, 0) exp divf(q(s), O, O) ds

+ exp divf(q(s), O, O) ds f(q(t), O, O)

of^(q(t),O,O)dt

independent of to, where the limit is a negative multiple of v and the integral converges.
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The limit is finite. Each summand is asymptotically periodic ofperiod T in as
In particular, (Op/Otx3) (0, 0, 0, tl) has period T in tl, and

f(q(tl-- to), O, O) exp divf(q(s- to), O, 0) ds
o

approaches a finite negative multiple of v as t-, independent of
If the constant (Od/O) (0,0,0, co)e 0, then there is a C- function ()

such that for and small, d(,,O, to)=O if and only if =(). If
(od/O)(O, O, O, to) O, we define the Melnikov function

O (0, O, O, to)/ (0, O, O, to).M(to)

THEOREM 2. Assume (1) (Od/Og2)(O,O,O, to), a constant independent of to by
eorem 1, is not zero; (2) M(to) attains its maximum (resp. minimum) value on
0 to < T at a unique t (resp. ti), and M(to) has a nondegenerate extremum at t
(resp. tin); (3) if 0t0< T, to#tin, tax, then M’(to)#O. en there are functions
Y.(8, 3) and *(, 3), with 7.(, 0) y*(, 0)0 and (7./3)(0, 0)= M(tin),
(O*/Og3)(0, 0) M(tax), such that,for( 8, , g3) small, the equation d 8, 2, 3, to)=
0 has a solution if and only if either

(a) 30 and 7.(,3)2-2(8)7"(8,3), or
(b) g0 and V*(8, g)g-g=(a)V,(8, g).

erefore, there is a homoclinic orbit of (3) asymptotic to the periodic solution
P(,, 2, 3, t) if and only if either

(a) g o and v,(-g,, g) g-g(,) V*(g,, g), or
(b) g 0 and V*(g,, g) g-g(,) V,(g,, g).

ere is a transverse homoclinic orbit of (3) asymptotic to this periodic solution if and
only if (a) or (b) holds with all inequalities replaced by strict inequalities.

See Fig. 1. The upper and lower curves in Fig. 1 meet the 2-axis at
tming3M(ta) and g2 T,(0, g3) g3M(o . In drawing Fig. 1 we have assumed g3 > 0

and M(tin) < 0 < M(tax).

FIG.

Theorem 2 remains true if (2) and (3) are replaced by the assumption that M(to)
is a Morse function (all critical pOints nondegenerate, no two have the same value of
M). Slightly weaker assumptions also suffice. A similar approach to the usual saddle
case is in [2] and [7].

3. Functions used in the statements of Theorems I and 2. In this section we describe
more precisely the functions p(8,/x2,/x3), p(,/x2,/x3, t), and d(8,/x2,/x3, to) used in
the statements of Theorems 1 and 2.
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We first note that the system

(5)
9 f(x, IXl, IX2)+ g(x, Ix,, Ix2, Ix3, t),

/2,=0 (i= 1,2,3)

has the constant solution

(6) (x(t), Ixl(t), Ix2(t), Ix3(t))--- (p, 0, 0, 0).

This T-periodic solution of (5) has a five-dimensional Ck local center manifold
Noc c 2x3x; the last variable is time t. (Note that a solution of (5) is a curve in
xIx-space, but an invariant manifold of (5) is a submanifold of xIxt-space.) Nloc meets
each space 2x {(Ixl, Ix2, Ix3)} X , (Ixl, Ix2, Ix3) small, in a two-dimensional surface.
For (Ix1, Ix2, Ix3)= (0, 0, 0), this surface contains

(a portion of F tangent at p to u x {(0, 0, 0)}) x .
Nloo is T-periodic in [1, 9.4].

We shall now give a useful parameterization of the center manifold. Let q(t) be
a solution of :/=f(x, 0, 0) with q(0) F. Let N denote the "global" center manifold that
contains No, i.e., the invariant manifold of (5) obtained from Nlo by completing
solution curves. N meets each space R2x {(Ix1,/1’2, IX3) X, (IXl, /-/’2, IX3) small, in a
two-dimensional surface, which we identify with a surface N(IXl, IX2, IX3) in R2x
(xt-space). Let L be a line segment in 2 perpendicular to F at q(0). Then the surface
N(0, 0, 0) meets Lx transversally in 2xR along the line {q(0)} x. Therefore for
(Ix1, Ix2, Ix3) small there is a C k function x(Ixl, Ix2, Ix3, to), T-periodic in to, such that
x(0, 0, 0, to) q(0), and x(Ixl, //’2, /1’3, to) N(IXl, Ix2, Ix3) (’] L x { to}. Since a Ck vector
field has a Ck flow, there is a C k family of solutions of (3):

qC(Ixl, Ix2, Ix3, to, t), (Ix1, Ix2, Ix3) small,

such that qC(Ixl, Ix2, 3, to, to) x(l, Ix2,/-*3, to). Thus

qC(ixl, Ix:, IX3, to+ T, + T) q(Ixl, Ix2, Ix3, to, t).

Notice q(0, 0, 0, to, t) q(t- to), and the curve

(7) {(q(Ixl,/z, Ix3, to, t), t): [}

lies in N(Ix,/x, Ix3). For Ix1 <0, the curve (7) lies in the unstable manifold of a
T-periodic solution of saddle-type of (3); for Ix1 =0, it lies in the center manifold of
a T-periodic solution of saddle-node type of (3). (Similar terminology is used in [9],
except that the problem studied there is autonomous. See Fig. 3 of [9].)

We next describe coordinates that simplify the differential equation. According
to [1, 9.4] there is a C k change of coordinates

(8) y(x, Ixl,/-1,2, Ix3, t)-- (yl(x, Ixl, Ix2, Ix3, t), y(x, Ixl, Ix2, Ix3, t)),

T-periodic in t, defined for IIx-pll, , 2, small, such that (1) y(p, O, O, O, t)=0;
(2) Nlocf-lN2x {(Ixl, Ix2, Ix3, t)} is transformed into the line y=0; (3) the lines y=
constant in N2 x {(Ixl,/z2, Ix3)} are mapped into each other by the (tl, t2)-advance maps.
In other words, in the new coordinates (3) becomes the C k differential equation

))1 a(yl, Ix, Ix)q-/x3b(yl, Ixl, Ix2, Ix3, t),

f= y[c(yl, y, Ixl, tze) + Ix3 e(yl, y2, Ixl, Ix, Ix3, t)].
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Since the stable manifold of the constant solution (6) necessarily is transformed into
the plane Yl 0 in R2x {(0, 0, 0)} x g, it is easy to arrange that

D,y(p, 0, 0, 0, t)u =- (1, 0), Dxy(p, O, O, O, t)v =- (0, 1).

We may also assume the coordinates are chosen so that for each (/z2,/x3), the fixed
point of Po,2,3 near p corresponds to Yl--Y2--0.

Consider the system

1 a(yl, /-1,1, /3,2)-"/z3b(yl, /-/’1, /-2, ]"/’3, t),

(9) 3)2 Y2[c(Yl, Y2, tzl,/x2)+ 3 e(yl, Y2,/Xl,/x2,/x3, t)],

/2i 0, i= 1,2,3.

As in [9] it can be shown that the fixed points of the time (0, T) advance map of (9)
near ((0, 0), 0, 0, 0) comprise a set of the form

{((/31(3,/x2,/x3), 0),-32,/x2,/x3)" (3,/x2,/x3) small},

with/31 of class Ck-2,
Opl

/31(0,/z2,/x3) 0 and -- (0,/z2,/z3) > 0.

Let (/31(3,/z_,/x3, t), 0) denote the T-periodic solution of

.Pl- a(yl, -32,/x2) +/xab(yl -32,/x2,/x3, t),
(10)

.9_=Y2[C(yl, Y2,-32, 2)+/x3 e(yl, Y2,-32,/x2,/x3, t)]

that has/31(3,/x2,/x3,0)=/31(3,/x2,/x3).
Let x x(y,/Zl,/x2,/z3, t) be the change of coordinates inverse to (8). Define

p(3, I./,2, [’3)-- X((/’l(3, /-’2, jlZ3), 0),--32, ]-/’2, /-/’3, 0).

Then p(8,/z2,/x3) is Ck-2, p(O, O, O) p, and p(8,/x2,/x3) is a fixed point of saddle-node
type of P(o,.2,.3) if 3 0; a fixed point of saddle type of P(-:,.:,.3) if 3 > 0; a sink of
P(_..,.) if 3 < 0. Let p(3, tz2, tz3, t) x((1(3, tz2, tx3, t), 0), -82, tx2, 1*3, t), the T-
periodic solution of (4) with p(3,/z2,

System (10) has at the T-periodic solution (/1(8,/x2,/x3, t), 0) the invariant mani-
fold {(Yl, Y2, t)’yl=l(8,/x2,/x3, t)}. For 3 =0, this surface is the stable manifold of
the saddle-node T-periodic solution (/Jl(0,/z2,/z3, t), 0) of (10); for 3 > 0 it is the stable
manifold of the saddle T-periodic solution (/1(8,/z2,/x3, t), 0) of (10); and for 8 <0,
it is the strong stable manifold of the attracting T-periodic solution (/1(8,/z2,/z3, t), 0)
of (10). Returning to x-coordinates, we find that (4) has at the T-periodic solution
p(3, la,2, [d,3, t) the local invariant manifold {(x((yl, Y2), -32,/-*,2,/-/’3, t), t)’yl=

For each (3,/z2,/x3) the local invariant manifold of (4) constructed above extends
to a "global" invariant manifold Q(3,/x_,/z3) by completing solution curves.
Q(3,/x,/x3) is a two-dimensional submanifold of 2 that depends C-2 on
(3,/x2,/x3). Notice that Q(0, 0, 0) contains F. Now a construction similar to that
of q(/xl,/z,/z3, t) yields a C- family

q(3,/z2,/x3, to, t), (3,/x2,/x3) small,

each a solution of (4), such that q(3,
Q(3,/.t,2,//3) qS(O,O,O, to, t)=q(t-to), and q(3,1x2,1z3, to+T,t+T)=
qS (3,/x2,/z3, to, t).
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We can now discuss homoclinic solution of (1). For any vector w (wl, w2) R2

recall that w-=(-w2,wl). If z=(zl, z), let w^z=wlzE-wz=w-.z. Define
dC(/Xl,/z,/x3, to) and dS(8,/z2,/z3, to) by

qC(/Zl,/x2,/x3, to, to)- q(0)/ [d(/x,/z2,/x3, to)/[[f(q(O), o, 0)ll]f-(q(0), 0, 0),

qS(8,/x_,/x3, to, to)- q(0)+ [dS(8,/x,/z3, to)/[[f(q(O), o, o)[[]f(q(O), o, o).

Then d is Ck and d is Ck-. We have

d(/x,/z2,/z3, to)-f+/-(q(0), 0, 0). [qC(/x,/x2,/z3, to, to)-q(0)]

-f(q(0), 0, 0) ^ [q(/xl,/.t_,/x3, to, to)- q(0)].

Similarly,

d(8,/X.2,/x3, to) =f(q(0), 0, 0) ^ [q(8,//,2,/d.3, to, to)- q(0)].

There is a homoclinic orbit of (4) asymptotic to the T-periodic solution p(8,/x2, 3, t)
if and only if 8-> 0 and for some to,

d(8,/x,/x3, to) de(-82,/x2,/x3, to)-d(8,/z2,/x3, to) 0.
def

Here d(8,/x2, 3, to) is C k-2. The homoclinic orbit is transverse if, in addition,
(Od/Oto)(8, p,2,/3, to) 0.

4. Proof of Theorem 1. Since for /3 =0 the perturbation is autonomous, the
formulas for Od/08 and Od/Ol follow immediately from [9]. We shall derive the
formula for Od/Ol3. To simplify the notation, we set

f(x, /3)=f(x, O, O, /3),

g(x, tz3, t)= g(x, O, O,/x3, t),

P(/3) p(O, 0, ]d,3)

p(/z3, t)= p(0, 0,/x3, t),

q’(/x3, to, t)= qC’S(0, 0,/x3, to, t),

dC’S(ld,3, to)= dC’S(O, 0, -3, to).

For qC’S(l3, to, t), we have the variational equations

d Oq’ Oqc. Og
--(0, to, t)= Dxf(q(t- to) 0) (0, to, t)+(q(t-Oix3 to), O, t).
dt 0,3 0,

Define

qC,

11’ A o, =fq- o, 0^0, o, .
/3

For dC’S(3, to) we have the derivative formulas

(0, to) A c,(to to).303

Using the variational equations for q and q, we compute as in [3]"

d Og
d A(to, t) div f(q( t- to), 0) A(to, t) +f(q( t- to), O) (q( to), O, t).

03
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Solving these linear differential equations, we obtain, for any

AC’S(to,3 to)= A,3(to, tl) exp div f(q(t- to), O) dt
to

(12o’s) exp divf(q(s- o), O) ds
to to

og
f(q(t-to) O)^(q(t-to),O,t)dt.

O[i.i,

We define new Ck coordinates y(x, tx3, t), T-periodic in t, on RE near p, such that

(13) Y(P(/3, t), k3, t)--= O,

the local stable manifold of the T-periodic solution P(3, t) becomes the plane yl 0
in yt-space, and the local center manifold of P(P’3, t) becomes the plane y2=0 in
yt-space. (This coordinate change is a little different from that used in 2.)

We shall first study (12s) in the limit tl-> oo. Define

(14)
to, t): y(q(/z3, to, t),/z3, t)

(0, Y2(b3, to, t)).

Since q(/x3, to, t)->p(/x3, t) as t->m, for each /x3 near 0, t(/z3, to, t) and hence
Y2(3, to, t) are defined for sufficiently large t.

LEMMA 1. (Oy2/Otx3)(O to, t)-> 0 as t-> oo.
We shall postpone the proof of Lemma 1 to 5. From Lemma 1 and (14) it follows

immediately that

OqS
(0, to, t)->O as t->o.(15)

0b3
By (14),

(16)

By (13),

Oq
(0, to, t): D,y(q(t- to) O, t) Oq-- (0, to, t)+ O__y (q(t- to), O, t).

O].Z 0[.1,3 O ]l,

(17) Dxy(p, O, t) O___p (0, t)+ O___y (p, O, t)=0.
0ff, 0]2,

Let -> oe in (16). Then q(t to) -> p, so (15), (16), (17), and the invertibility of Dxy imply

(18) lira
Oq

(0, to, t)- O (0, t)l =0.
t k03

Since (Op/O3)(O, t) is T-periodic in t, (OqS/O3)(O, to, t) is asymptotically T-periodic
in as .

Using (11) we rewrite (12) as

-A;(to, t)= Oq (0, to, tl) Af(q(tl- to), 0) exp divf(q(t- to), 0) dt
03

(19) + exp divf(q(s- to), 0) ds
to to

og
f(q(t-to), O) (q(t-to), O, t) dt.

o3
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Now,

lim f(q(tl- to), 0) exp div f(q(t- to), O) dt
tl->O to

lim f(q(tl-to), 0) exp divf(q(s), O) ds

is a negative multiple of v by [9]. Therefore (18) implies that the first summand of
(19) is asymptotically periodic in tl as 1-oO with period T. Therefore the second
summand of (19), the integral, is asymptotically periodic in t as t m with period T.

Next we shall study (12c) in the limit t-. Define

c(g3, to, t)= y(qC(3, to, t), 3, t)
(20)

(y,(g3, to, t), 0).

Since qC(g3, to, t)-p(g3, t) as t-, for each g3 near 0, (g3, to, t) and hence
Y(g3, to, t) are defined for suciently negative t.

LEMMA 2. (Oy/O3)(0, t0, t) 0 aS t--.
We postpone the proof of Lemma 2 to } 6. Given Lemma 2, we prove as in [9]

that the first summand of (12c) approaches zero as t - -, so that the second summand
of (12c), the integral, approaches a limit as tl --. Therefore,

h(q, to)= exp divf(q(s- to), O) ds f(q(t- to), O)
to

og
(t-to, O, t) dt.

The formula for Od/O3 in Theorem now follows by adding (21) to (19) and using (18).

5. Proof of Lemma 1. To simplify notation, we fix to and let z(3, t) =Y(3, to, t).
Then z(3, t) satisfies a differential equation of the form

(22) = -a(3, t)z(1 + zG(z, ,3, t)),

where a(0, t) a >0, G(z, 0, t) is independent of t, a(3, t) and G(z, 3, t) are
T-periodic in t. When 3 =0 we can solve (22) by separation of variables as in [9] to
obtain

(23) z(O, t)= G(e

Using (23), we find that the variational equation for (22) along z(0, t) is

0 (0, t) A(t) 0 (0, t) + B(t),
dt

where A(t) -A + G(e-x’) as -, B(t) (e-’) as -. Therefore

03
(0, t)= B(s) exp A(r) dr ds

ff(e-") exp -I + ff(e-") dr ds

ff(e-"’)e-"(’- exp ff(e-") dr ds

<= Kte-at -> 0 as -> oo.
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6. Proof of Lemma 2. The function y1(/3, to, t) satisfies a differential equation of
the form

(24) . h(z, tx3, t),

with h T-periodic in and h(0,/x3, t)=0. We have

h(z, 0, t)= r/z2(1 + zn(z))

with r/> 0. Moreover, for/x3 small the time (to, to + T) advance map of (24) has the form

(25) z z + A(3, to)Z2(1 + B(z,/z3, to)),

with A(/x3, to)= A1 +/zaA2(/x3, to), B(z, tz3, to)= Z[Bl(Z)+ i3B2(z,/x3, to)], A2 and B2
T-periodic in to.

Let st(z,/z3, to, t) be the solution of (24) that has the value z at to. Then

(26) (z,O, to, to+t)=(z,O,O,t)=z+rltz2(l+zC(z,t)).

Comparing (25) and (26), we see that

(27) 31 r/T and B(z)- C(z, t).

Choose numbers m and n such that mT < AE(/.t3, to) nT for d, small and all to.
Let r/.(/x3) r// m/z3, /*(/,t,3) "17 / n/z Then for /[-3 0 small and any to,

(28) r/.(/x3) T < A(3, to) < ’0g(/./,3) T.

Consider, in addition to (25), the autonomous differential equations

= /,(3)Z2(1 + zn(z)),

e= ’q*(/.z3)Z:z(1 + zH(z)).

(29)

(30)

The flows are

(31)

(32)

Therefore

(33)

’,(z,/x3, t)= z + r/,(/z3) tz2(1 + z[C(z, t)+/x3C,(z, ]’/’3, 1)]),

g(Z, /’’3, t) z + r/*(/x3)tz2(1 + z[C(z, t)+ [.ll,3Cg(z,/2,3, t)]).

’*(z, 0, t)= st(z, 0, to, to+ t)= ’.(z, 0, t)

for z small and any to, t. From (25), (27), (28), (31), (32), and r/>0, it follows that
for z > 0 and/z3 > 0 small, any to, and any integer N < 0,

(34) ’*(z,/x3, NT) < (z, Ix3, to, to+ NT) < ,(z, tz3, NT).

Now fix to and consider s 6 to- T, to]. Let z(/x3, s)= y(/z3, to, S), SO that

(35) y(/.r3, to, s + NT) (z(/.J,3, s), [ui,3, s, s / NT).

Then (34) and (35) imply for/z3 > 0 small and any integer N < 0,

(36) ’*(z(/x3, s),/x3, NT) < y(/z3, to, s + NT) < .(z(/x3, s), tz3, NT).

Also, (33) and (35) imply, for any integer N,

(37) *(z(0, s), O, NT) y(O, to, s + NT) .(z(0, s), O, NT).
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Let 0*(/z3, s, t)= ’*(z(/z3, s),/z3, t), 0,(/x3, s, t)= sr.(z(/x3, s),/z3, t). For each
fixed (/x3, s), 0*(/z3, s, t) (resp. 0,(/z3, s, t)) is a solution of (30) (resp. (29)). Then
(36) and (37) imply, for any integer N < 0,

(38)
(90* Oy (90.(0, s, NT)<- (0, to, s + NT) <-_ (0, s, NT).

The proof of Lemma 3 in [9] can easily be adapted to show that

lim 00__* (0, s, t) lim 00___. (0, s, t) 0,(39)

and the limit is uniform in s [to-T, to]. On the other hand, every < to can be
expressed as s + NT, s to- T, to], N a negative integer. Lemma 2 therefore follows
from (38) and (39).

7. Proof of Theorem 2. Since d(,/x(), 0, to) 0, we have

Od
d($,/x, t,l,3, tO) 2 8, /-g2( ), 0, t0) (/.1,2 --//’2( ))

Od
(40) +(8, p,2(8), 0, to)p,

4- o(I/z2 -/z2(8)1 / I/x3l)
Since (Od/Otx2)(O, 0, 0, to) is a nonzero constant, by the implicit function theorem there
is a Ck-2 function y(8,/x3, to), T-periodic in to, such that for 8, /x2-/z2(8), and br3
small, d (8,/x2,/x3, to)= 0 if and only if

(41) /x2-/x2(8) y(8, P.3, to) y,(8, to)P.3 +o(p.3).

For fixed (8,/x2,/z3) there is a solution to of (41) if and only if

min y(8,/z3, to) =</x2 -/z2(8) =< max y(8,/z2, to).
to to

If /’/’3 0, an extremum with respect to to of 3,(8,/z3, to) is also an extremum with
respect to to of

(42) so(8, P.3 to)
1

y(8,/.63, to)= Tl(8, to) + G(g,3),

is T-periodic in to. At an extremum with respect to to of : we have

07
8, }!2,3, to) 0y---’2 (8, to) + G(}I./,3) 0.

Oto Oto
If we substitute (41) into (40), set d =0, and solve to order/-3, we obtain

(43) yl(8, to)= 0[l,30d (8, ]./.2(8), 0, to)/2 (8, p.2(8), O, to).

(Of course this formula is also a consequence of the implicit function theorem.) Thus
yl(0, tO)’-" M(to). By assumption, at to tnin we have M’(to)=0 and M"(to)>0. By
the implicit function theorem there is a function t.(8, 3), defined for (8,/z3) near
(0, 0), with t.(0, 0)=/nin, such that (O/Oto)(8,/x3, t.(8, 3))=0. Since M(to) attains

,min it follows easily from (42) that forits minimum on 0_-< < T uniquely at to -o
(8,/x3) small, :(8,/z3, to) attains its minimum on 0_-< to < T uniquely at t.(8,/x3). Let
"y,(8, p,3) )’( 8, /./,3 t,(8,/./,3) ). A similar argument at t=t allows us to define
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For a transverse homoclinic orbit we need d(8,/2,/z3, to)--0 and (ad/ato)
(8,/2,/3, to)# 0. We shall now show that for 8,/2-2(8), and/3 # 0 all small, the
only simultaneous solutions of d 0 and (Od/Oto) 0 occur when/2 2(8) 3’,(8, 3)
or -(8) 7*(8,/3). By (41) it suffices to consider

od

Oto
(44)

(8,/z2(8) + y(8,/z3, to),/z3, to)

alOto
t)(8’0’ t)+(8’/2(8)’0’ to)

013 Ol30 to

But (Oy/Otz3)(8, O, to)= yl(8, to). We substitute (43) into (44) and rearrange to obtain

(45)
Od

(8,/z2(8) + y(8,/z3, to) /z3, to)
Oto

_odor2 (8,12(8), O, to).o[Oto0-L/,d3 (t’ [’[’2(8)’ 0’ t)/0d2 (t’/2(t)’ 0’ /)]
[0d (0, 0, 0, to)+ (?(8)] "[M’(to)+(8)]l,3+o(i3).

For/3 0, (45) is zero if and only if 1//3" (45) is zero. Since M’(to) =0 if and only
tmin max and m"if to -o or to ,o #0 at these points, we may use the implicit function

theorem to show that for 8, -/.(8), and 3 # 0 small, (45) is zero if and only if
to t.(8,/3) or to t*(8,/3). This implies the result.

8. Dynamics of the Josephson junction. We shall study the family of differential
equations (2) using Theorems 1 and 2. The variable b is taken rood 2r, so that (2) is
a family of differential equations on the cylinder. We first set e 0 in (2), yielding a
family of autonomous equations. If p 1, there is a saddle-node at (r/2, 0). According
to [5], there is a unique/3o> 0 such that there is a saddle-node separatrix loop F at
p 1, fl flo. We let u (1, 0), v (-flo, 1); these are eigenvectors at (r/2, 0) for the
eigenvalues 0, -1/flo, and they are tangent to F at (r/2,0). If we put x-(b,y),
Vl P 1, v2 fl flo, v3 e, then assumptions (i)-(vi) are satisfied at p (r/2, 0) [9].

There is a C function p R(fl, e), defined near (flo, 0), with R(fl, 0)--1, such
that for (p, fl, e) near (1, flo, 0), (2) has a period 2r/to solution of saddle-node type
near the constant solution (b, y)--(r/2, 0) if and only if p= R(fl, e). In order to use
Theorem 1, we must calculate R to first order at (flo, 0).

LEMMA 3. (OR/Oe)(flo, 0)=0.
Let p(e)= R(/o, e). Then

(46) /o + +sin b p(e)+ e sin tot

has a smooth family of 2r/w periodic solutions b(e, t), one of whose Floquet
multipliers is one. Of course, b(0, t)-= r/2. We shall need to calculate b to order e

at e=O.
LEPTA 4. 4(e, t)= r/2-- e(COS tot+oW sin tot)/to(1 +/3w)+ (e2).
Proof of Lemmas 3 and 4. Write

p(e) l + ple + r(e),

2 ao+ Y a, cos nwt + Y b, sin mot e + 6(e2).
n=l n=l
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Then

sin b(e, t)=cos ao+ 2 a, cos not+ 2 b, sin not e+(e2)
n=l n=l

1 + tg(e2).

Substituting into (46) and collecting terms of order e, we find that

-o na cos nt+ nb sin
=1 n=l

na, sinnt+ nb, cosnt=pl+sint.
n=l n=l

Therefore, Pl 0, which proves Lemma 3. Also,

-1
(47) al (l+fl), b (l+fl),
and, for n > 1, a, b, 0. Thus

(48) b(e, t) 7r+
2

(a+acswt+blsint)e+(e2)

where a and bl are given by (47) and ao is yet to be determined. To complete the
proof of Lemma 4, we must show that ao 0.

Let y(e, t)=(ock/ot)(e, t). We linearize (2) about (ok(e, t), y(e, t)) to obtain the
variational equation

(49) O z(e, t) -(1/flo) cos (e, t) -1/flo k z(e, t)
Since ((e, t), y(e, t)) has exactly one Floquet multiplier that is one, there is a smooth
family of solutions ((e, t), z(e, t)) of (49) such that ((e, t), z(e, t)) has period 2/w
in t. We may choose

(50) ((0, t), z(0, t)) (1, 0),
since u (1, 0).

Differentiating (49) with respect to e we obtain

0A 0 0 0 0
0 0e 11 0e

We set e =0 and use 4(0, t) /2 and (50) to obtain

o (o, (o,
0e

This constant coecient nonhomogeneous linear differential equation has the solution

(5 o =o (O,sas,
oz

(0, t)= e-/. oz (0, 0)+ (0, s) e(52)
Oe kOe

as.
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(53)

We substitute (48) into (52) and integrate to obtain

0e
0-z (0’ t)=e-’/t3[tge(O’O)-a-(a-tflbl)/(l+t2fl)]

+ ao+[(a-toflob) cos tot +(bl + tofloa) sin tot]/(1 + toEflo).

Now we set 27r/to in (53) and require (Oz/Oe)(O, 2r/to) (OzlOe)(O, 0). This yields---- (0, O) ao + a, toflob,)/ (1 + to2fl).
0e

Therefore,

(54)
Zcv_.. (0, t) ao+ [(al to/3ob) cos tot + (b + tofloa) sin tot]/(1 + to2fl).
0e

We substitute (54) into (51) and integrate to obtain

(55)

0---- (0, t) -(0, O) + aot + [(a, toflob,) sin tot (b, + tofloa,) cos tot]/to(1 + to2).
Oe oe

Now we set 2r/to in (55) and require (Oo/Oe) (0, 27r/to)= (0o/Oe)(0, 0). We find
that ao 0. This completes the proof of Lemma 4.

In order to use Theorem 1, we must change to the new parameters

/z p R (/3, e), /.t2 =/3 flo’ /’3 E.

Since R(fl, 0)-- 1, and (OR/Oe)(flo, 0)-0 by Lemma 3, we have

t9(/2,1, /’2, /’/’3)
(1,/30, 0) Identity.

(,/, )

Thus instead of calculating derivatives with respect to/x,/z2,/.3 at (0, 0, 0), we may
calculate derivatives with respect to p,/3, e, at (1, 13o, 0).

Let

(1 )f(ck, y,p, fl) y,(-y-sin b+p)

g(b, y, p,/3, e, t) (0, e sin tot),

q(t)=(ck(t),y(t))=a solution of (, y)=f(b, y, 1, flo) that lies in F,

y(e, t) e(to sin tot-floto 2 cos tot)/to(1 +flto2)+(82)
From [9], we know that (Od/Ofl)(1, flo, O, to)>O. We now turn to (Od/oe)

(1, flo, 0, to).
LEMMA 5. (Od/Oe)(1,/30, 0, t) A(to) cos tot + B(to) sin tot, where

A(to) lim [ cos tos + I’oo eS/ Y(S)
sin tos ds ],

0

B(to) lim
k
sin tos! + e/O y(s)

cos tos ds
seo to 0
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Proof. We have

0e0---P (0, t) cos ot
o2fl + sin ot / o(1 +g).

According to Theorem 1,

(56) limf(q(t- to), 1, o) exp divf(q(s- to), 1, o) ds -kv= -k o

t to

where is a positive constant. Therefore, as tl ,
O.O,t.f.q.t-o.,l( o) exp divf(q(s-to),l o) ds --costl(57)
0e

independent of
To study the second summand of the expression for (Od/Oe)(1, o, 0, to) given by

Theorem 1, the integral, we note that

divf(4, y, 1, o)

O , y, 1 flo, O, to)= [ 0 ]Oe 1/flo sin t

Og
f(q(t-to) 1 o)--(q(t-to) 1 o,0, t)=

0 (-t.lJ

[O]ll/flosint= 1
A (t-to) sin t=fl y(t- to) sin t.

Therefore the integral becomes

(58) I’ e’-’/ 1
y(t to) sin t dt.

Let s t- to, s t- to in (58). We obtain

(54) []’e/y(s)" ] [;]’e/oy(s)sn s ds cos to+ cos s ds sino o
We now combine (57) and (59) and rewrite cos t=coss costo-

sin s sin to:

Od ([ I’ sin s ds] cos to
Oe

(1’ flo, O, to) lim cos s+ e/ y(s)
Sl 0

+ ---sin s+ e/" y(s)
cos s ds sin to

where the limit exists by Theorem 1. Setting to 0 and to /2 we show that each
term in square brackets approaches a limit as Sl m. Let A() and B() equal these
limits.
La 6. A() 0 for all but a discrete set of ’s.
oo Let

h(s)={O, -ruNs<0,
-k, 0Ns<m.
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Then

I’ [eS/ooY(S)[0

e,/,oY(S)
0

We claim that

+ h(s)] cos tos ds B(to)

+ h(s)] sin tos ds -> A(to)
k

[e/oY(S---) + h(s)]e/oO as S --- o0.
From formula (29) in [9], for example, we have that

[b(t)] C[-lfl] e_t/o+ (e_t/o)2
y(t)

for a positive constant c. Therefore,

as S o0,

(60) et/oy(t c
+ e(e-’/o).

/o /30

as s1 ---) oo.

e,/ y(t____) + h(t) e L2(-oo, oo).

On the other hand, the Fourier transform of e’/(y(t)/[3o)+ h(t) is

F(to)= ;oo [e’/oy(S,,,)+h(s)] ei’ dso
B(to)+ i(A(to)-).

If A(to)= 0, then F(to) L2 (-oo, oo), which contradicts a well-known fact about the
Fourier transform. Since A(to) is analytic (because e’/o(y(t)/o)+h(t) is also
absolutely integrable on (-oo, oo)), A(to)# 0 except on a discrete set of o’s.

The idea of relating Melnikov functions to Fourier transforms comes from [4].
From Lemmas 5 and 6 and 5 of [9] we have immediately the following theorem.
THEOREM 3. If to does not belong to the discrete set of Lemma 6, then the family

(2) satisfies the hypotheses of Theorem 2 at (b, y, p,/3, e) (7r/2, 0, 1,/30, 0).
In fact, it only remains to remark that since M(to) is a constant multiple of A(to)

cos toto+ B(to) sin toto, we have M(tnax) > 0 and M(tnin)< 0. It follows that for fixed
small e 0, the set of (p,/3), near (1,/30) for which (2) has a homoclinic orbit is given
by Fig. 1. In interpreting Fig. 1, the reader should recall that /Xl =p- R(, e) and
/x =/3-/30. This result is consistent with [8], where it is shown that at every positive
parameter pair (p,/3) at which the autonomous equation (,)))=f(qb, y, p, fl) has a
saddle separatrix loop, homoclinic orbits occur when one perturbs in the e-direction.

Therefore,

et/Oo y(t) ,+h(t):(e-
/3o

But (56) can be rewritten as

(61) lim[b(t)] t/3 I-illO],-.o f(t)
e =-k

Since (t)= y(t), (60) and (61) imply that C/o k. Therefore (60) implies that as
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ON STOCHASTIC FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH
UNBOUNDED DELAY*

CONSTANTIN TUDOR’

Abstract. In this paper we examine the existence and the pathwise uniqueness of solutions to infinite
delay stochastic differential equations with general initial conditions and the Lipschitz conditions replaced
by some less restrictive ones. Similar questions have been considered by Hale and Kato [3], Kappel and
Schappacher [7], Schumacher 13] for deterministic equations and by Rodkina 11] for stochastic equations.
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1. Introduction. Suppose we are given (12, , P, (t),>_-o) a filtered probability
space satisfying the usual assumptions, Z {Z(t)}t__>o a continuous Rm-valued semimar-
tingale with Z(0)=0 and Q {Q(t)}t_>o a continuous control process for z, i.e.,

(E sup f(u) dE(u) <-E Q If(u)l dQ(u)
cr

for every stopping time cr and bounded predictable process f. Y is the linear space of
all Rd-valued processes {b(s)}so with (b(s);
Rd and >=0 the history up to is the map ft" R_-- Rd defined by f(s)--f(t + s).

We shall denote by R the set of all (Xo, x, .), xi R d, and by the product
Borel field on R. We shall denote by C the set of all continuous functions defined
on R/ and with values in Rd (C is endowed with the compact convergence), by
the Borel field on C and by (cgt),o the canonical filtration on C. Also, we shall denote
II=12xC, =(R)c, t=fqs>t(ff(R)c) and by {)(t)}t__>0 the canonical process
defined by (t, to, f) =f(t).

The topic of our study is the Cauchy problem (I) for the stochastic functional
equation of Doleans-Dade-Protter type

(I) dx( t) a( t, xt) dZ( t), Xo dp Y

where a"

Following Jacod and Memin [6] we consider two possible definitions of "a
solution" to equation (I).

DEFINrrlON 1. Let ((l, ,/5, (,)) be an extension of (12, , P, (t)), i.e.:
(1) l’l 12 x 12’, 12’ an auxiliary space;
(2) c55, tct for every t;
(3) ’/= P.

A process = {(t)}t=>o is a solution, pr.oc.ess .(or strong solution) of (I) if:
(i) Z is a semimartingale on (12, , P, ());
(i2) is continuous and radapted;
(i3) a(t, t) is ,-predictable and Z-integrable (here is extended onto R_ by

(s) (s));
(i4) P-a.s. and for all _-> 0

:(t) (0)+ a(s, ) dZ(s).

* Received by the editors August 26, 1985; accepted for publication (in revised form) February 9, 1987.
f Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania.
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DEFINITION 2. A probability measure P on is a solution measure (or weak
solution) of (I) if (f, , P, (t)) is an extension of (, , P, (,t)) on which the
canonical process is a solution process of (I).

DEFINITION 3. A solution process on (1, , P, (t)) (resp. a solution measure
P) is very good (or regular) if every martingale on (I, ;, P, (t)) is also a martingale
on (fi, ,/3, (,)) (resp. (, ,/3, (,)).

We introduce the following two families of functions"

LS= ’R+--R+; concave, nondecreasing and dt/a(t)=oe
-t-

and for a measurable function h’R+R+ and a < b,

K(a,b,h)={Z(t,x)’[a,b]xR+R+; Z is measurable in (t,x), Z(,.) is con-
tinuous, concave and nondecreasing such that for each a < c_-< b
u =0 is the unique nonnegative nondecreasing solution of u(t)-<_
C It, Z(s, u(h(s))) ds, aN t<-c, for a constant C large enough}.

In 2, problem (I) is considered for initial histories which have paths in a general
space of functions. The existence of weak (resp. strong) solutions of (I) is established
for bounded (this assumption can be relaxed) coefficients a(t,f) that are continuous
in f (resp. a is xllog xl--H61der-continuous in f). Also the convergence of successive
approximations to the solution is obtained.

In 3 we consider the equation (I) with Z(t) (t, w(t))’ (w is a standard Wiener
process) and with general histories. Existence and uniqueness of strong solutions are
proved under less restrictive conditions (the Lipschitz functions are replaced by those
of Osgood or H61der).

Finally a stochastic version of the dangling spider equation is considered.

2. Stochastic functional-differential equations of Doleans-Dade and Protter type
with unbounded delay. In this section the initial histories are taken with paths in a
semi-normed linear space. More precisely, let X denote a linear real vector space of"
functions mapping R_ into Rd endowed with a semi-norm Ix. We require that X
satisfies the following general qualitative properties" If f" R-Rd is continuous on
r, oo) and f e X then:

(jl) f X for every
(j2) (The fundamental inequality)" there exist K1, K2 locally bounded such that

Iftlx --< K,(t- tr) max If(s)l + K2(t- tr)lf,lx;

(j3) The map t-->ft is continuous.
Remark 2.1. Such a space X has been considered as phase space in the theory

of retarded functional equat.ions (see [1], [3], [7], [12]).
THEORE 2.1. Let p Ybe an initial history with thepaths in X and a(t, Do, f)" R+ x

fl x X Rd (R) R be a functional such that
(1) a(t, o,. is continuous for every t, Do and a is bounded;
(2) The process a(t, ft)}t is t-predictable for every process {f(t)}tR with fo

and {f( t)}t_>_o continuous and t-adapted. Then there exists a regular weak solution of (I).
THEORE 2.2. Assume the hypotheses ofTheorem 2.1 are satisfied. Moreoversuppose

that there is a LS such that

[a(t, o,f)-a(t, o, g)[2<= y(t, co)c(If- g[c)
for every R+, o fl, f, g X and for a Q-integrable and predictable process 3’. Then
there exists a pathwise unique strong solution of (I).
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Proofof Theorems 2.1 and 2.2. It follows from the following two lemmas and the
corresponding results for the Doleans-Dade and Protter equation (see [6], [8], [10])
for weak solutions and [15] for strong solutions.

LEMMA 1. Let a be as in Theorem 2.1. Define the functional a" R+
Rd (R) R by a’ t, oJ, f a t, o), ), where

f(t) f(O)A (_,o)(t) +f( t)AR+( t).
Then
(kl) a’( t, to, is continuous with respect to the compact convergence and a’ is bounded,
k) a’ is (R) ,-predictable.

Proof. (kl). It is a consequence of the fundamental inequality and of hypothesis
(1) of Theorem 2.1.

(k). By the monotone class theorem it is sufficient to consider the case a’(t, o, f)
a(t, w)a(ft) with a rpredictable and a2 X-continuous. Since t->a(f,) is con-
tinuous it remains to prove that a(f,) is ,-adapted. Iff, g C are such thatf(s) g(s)
for s _-< then f, g,, where from a:(f,)= a(g,).

LEMMA 2. Assume the hypotheses of Theorem 2.1 are satisfied. Then, for every
coefficient a, the following three assertions are equivalent:
(k) For every initial process ck there exists a strong (resp. a regular weak) solution

of (I).
(k’) There exists a strong (resp. a regular weak) solution of (I) with dp =0.
(k") There exists a strong (resp. a regular weak) solution for the Doleans-Dade and

Protter equation

(II) dy( t) a’( t, y) dZ( t), y(O) 0

(here a’ is defined as in Lemma 1).
Proof The implications (k)= (k’)= (k") are immediate. (k")=(k). Let y be a

strong solution of (II) associated with the functional a(t, w,f+(ck)o), where b(t)
b(t)A(_o,o)(t) + b(0)Ag+(t). It is easy to check that x(t) y(t) + 4(0), -> 0, is a strong
solution of (I) with b as the initial process.

We now consider the case of regular weak solutions. Define the mapping tit.

by qt(oJ, f)=(oa, f-qb(O)). is bijective, bimeasurable and xlt(t)=-l(,) t.
Denote d a -1 and let/3 be a regular solution of

y(t) d’(s, y) dZ(s)

or equivalently of

z(t) (s, zs) dZ(s), zo=O.

Then the probability measure fi =/3 is a regular weak solution of (I).
COROLLARY. Let F(s, to, x): R+ x x R->Rd (R be such that
(1) F is (R) oo-measurable and bounded is the Borel field ofpredictable sets

on R+ x ).
(2) There exists a LS such that

[F(t’ t’x)-F(t’ t’Y)[2- T(t’ t)a( oCi[xi-Yi[2
for every R+, to 1, x, y R and for some Q-integrable and predictable process %
where c >-O, >=o ci 1. Then the stochastic equation

dx( t) F( t, ;t) dZ( t), Xo dp
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has a pathwise unique strong solution for every initial process dp with paths in X, where
Y, (x(t), x(t- Sl), "), si >= O.

THEOREM 2.3. Suppose the hypotheses of Theorem 2.2 are satisfied and let x be the
strong solution of (I). Define the successive approximations

x( t) dp( t), t<0,

(0), t->0,

X+(t)=(t), t<O,

=4,(0)+ a(s,x’2) dZ(s), >-0.

Then x converges to x with respect to the compact convergence in probability.
Proof. It is sucient to prove the assertion for the Doleans-Dade and Protter

equation (II) associated by Lemma 2.
Denote y the successive approximations associated to (II). Choose a stopping

time 0 such that 0(0)+ (y" Q)(0)_-< c. All we need to show is that

E (sup ly"( t)- y( t)’2) "->0"

By standard arguments we see that there exists a constant K such as

supE(suply(t)I2)+E(suply(t)]2),
t<=o t<=o

<-_K.

By using the time change theorem with O- inf (t _-< O; (y. Q)(t)> s) and the Jensen
inequality we get

lim E suply"(t)-y(t)l <= a 1- E sup ly"(u)- y(u)l2 dt
t<_Os \ n--,oo L u<=Ot

where from

lim E (sup ly"(t)-y(t)12 =0 for every s < c.
noo \ t<--Os /

Taking s =c, we obtain the conclusion.
Remark 2.2. The result of Theorem 2.3 for Ito equations and for non-Lipschitz

conditions has been proved in [16].
Remark 2.3. If the semi-norm [. Ix satisfies If(0)l-<-clfl for all f and for some

constant c and the initial process b is such that E(14,1)< oo, then the boundedness
hypothesis on a can be replaced by the following" There is a Q-integrable and
predictable process y such that

la(t, w,f)l2-< y(t, o)(1 + Ifl:)
for every >= o, w II, f x.

3. Stochastic functional-differential equations of Ito type with unbounded delay. For
every > 0 let (,, I" I,) be a Banach space of continuous adapted Ra-valued processes
{r/(S)}o_<_s_<., with r/(0) 0 such that if r/ t and s < then r/ s and I1 --<

Let w be an R"-valued Wiener process. For I and a process {r/(t)},_>o we
define the process , v r/ by

( v n)(s) (s)_.o(S) + [,(0) + n(s)]x+(s).
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We consider the operators/(t)" t L2([0, t] x , ds x dP), 1, 2, defined by

(I,(t)q)(s)= ,l(u) dw(u); (h(t)’0)(s) n(u) du.

We introduce the following^assum.ptions.
ASSUMPTION 1. A subset Y of Y is given such that for t/, E , r/E (, we have

(,/, v n), ’?.
ASSUMPTION 2. There exist Bl(t), B2(t) locally bounded such that for every r/ C,

and 0<s< we have

ASSUMPTION 3. There exist Cl(t), C2(t) locally bounded such that

II,(t)nl,<=C,(t)llil.ll(to.,x.) i= 1,2.

Remark 3.1. Concrete Banach spaces (, can be found in 11 and typical examples
of spaces are given by L2(O, , P, X), where X is as shown in the beginning of 2.

Consider the stochastic functional-differential equation of neutral type:

(III) d[x(t) -f(t, xt)] F(t, xt) dt+ G(t, xt) dw(t), Xo

where

F(t, ),f(t, O)" R+xL2(O, , P, Rd), G(t, )" R+x LE(a, , P, Rd @ Rm).

THEOREM 3.1. Suppose Assumptions 1 and 2 are satisfied. Moreover assume that
(i) ere existsH Lo(g+) such that [F(t, O)l+G(t, O)H(t) for all
(ii) For every Y and process { (t)}to such that Ct for every t, the

processes s F(s, ( v ), s G(s, ( v )) are measurable and adapted.
(iii) For every Y and > 0 the operators

n F(s, (O v n),) ds, n a(s, ( v n),) dw(s)" dt L2(O, t, P, Rd),

are continuous.

(iv) There exists a measurable function h’R+- R+ with h(s)<= s for all s and for
every.to >= 0 there exist J to, to -t- e and Z K (J, h) such that for all J, 0 Y, l,

r E C

(3.1)

(3.2)

satisfies

f’ f’E[IF(s, (0 v n))- F(s, (p v n’),)l] a <-_ Z(s, In n’l,) a,
to to

E[IG(s, (q,v n))-G(s, (ev n’))l2] ds<= Z(s, ln-n’l,) as.
tO

(v) For every E and t> 0 the operator " t-> t defined by

(F)(s)=f(s, (tp v n)s)-f(O, d/)

-" <kin k<l.
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For dp " define the successive approximations by

(yn+l)o

y"+’(t)=(y"+l)(t)+ F(s, ( v y")s) ds+ a(s, ( v y")s) dw(s),

for O, where the initial approximation is y= v f, f rfor all T. en there exists
a continuous process {y(t)},o such that

lY"-Ylr0 for every TO.

In particular the process Xo , x( t) y( t) + (0), O, is a solution of (III), i.e., x is
continuous for 0 and satisfies

x(l=f(,x,-f(o, +4(o+ (s,x s+ a(s, x, a(sl.

Proo Step 1. Assume that lim,ly-y=0 and choose y={y(s)}e
such that y YI 0.

Denote

.( [(s,(v,-(s,(v,]as,

L(t= [a(s, (4 v y-a(s, ( v] (s,

o.(t)=lli.(t)ll2 2

By hypothesis (iii) we have limm 0(t)= 0. By Assumption 1, (3.1), (3.2), and Doob
and Schwaz’s inequalities we get for T-t small enough and for a constant C(T):

(3.3) ly+-y+llNC(r) 0(t)+0()+ H(s) ds (-k),
(3.4)

Step 2. Define T sup (t 0; lim, ly YI, 0). We have T 0 and we want
to prove that T m. Assume T < m. From (3.3) we have that

(3.5) lira

It is easily seen that

su C(t) <.sup, a__A,,ly"l-<

Denote 6p(t)=sup,,.,>_,[ym-y"12t; 6(t) =limp_ 8p(t) and let J=[T, T+e] and Z
K(J, H) be given by hypothesis (iv).

From (3.4) and for J we deduce

_(t) -< c( r+ e) supO,(r)+supO(r)+ Z(s,(s))ds (-k);
m>--P n>-P T

hence

6(t)<=C Z(s, 6(s)) ds
T
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where from 6(t) 0. In particular we obtain lim,,n_ lym -YnlT+ 0 which contradicts
the definition of T.

THEOREM 3.2. Suppose Assumptions 1 and 3 and hypothesis (v) of Theorem 3.1
are satisfied. Moreover assume that

(1) For every d/ " and > 0 the operators

F(., ( v .).), G,(.,(bv.).)’C,-->C,,i=l,...,d

are continuous.
(2) ere is a measurablefunction h" R+ R+ with h (s) sfor each s adfor every

to 0 there exists J to, to + e and Z K L h) such thatfor each L Y, , C,

IF(., (v ).)-F(., (v ’).)l+la(., (v ).)-G(., (v ’).)] Z(t, I- ’1,).
en we have the same conclusion as in eorem 3.1.

Proo It is easily seen that

ly+l<= c(t, k, ) 1 + lyl du

where from by induction we obtain

(3.6) sp lyT[ C(t) <.
Now we fix a positive constant T and assume that lim,, ]y y"lt 0 for every < Z

Let {y(t)}o,<r be a continuous adapted process such that y"-yl,O for every
< Then we have

IF(’, ( v y).) F(. ( v y).), dr<2= If(" ( v y).)

-F(-, (& v y).)l 2, dt+2 IF(" (& v y).) F( (& v y).)l , dtO
as m, n by the continuity of F, (3.6) and the dominated convergence theorem.

An analogue computation holds for G. Therefore if we put

,(rl [1(’, ( v.-F(., ( v.
+a(., ( v m.- a(., (4 v .1]

(3.7) lim 6,,,,,(T) 0.

Let T be as in step 2 ofTheorem 2.1. Ifwe assume T < oo then a little computation yields

ly"+-y"+12,<=C(k, T, b) 6,,,,(T)+ Z(s, ly-y"12h) ds
T

Now the proof continues as in Theorem 2.1.
COROLLARY. Suppose Assumptions 1 and 2 and hypotheses (i), (ii) and (v) of

eorem 3.1 are satisfied. Moreover assume there exist a measurablefunction h" R+ R+
with h s s for each s and Z K R+ h) such that (3.1) and (3.2) hoMfor every O,, , ’ ,. en the equation (III) has a pathwise unique strong solution.

then we have



STOCHASTIC EQUATIONS WITH UNBOUNDED DELAYS 1723

Remark 3.2. The results of Theorems 3.1 and 3.2 and of the corollary cover those
from [5], [11], [14].

Remark 3.3. An abstract deterministic case closely related to our setting has been
considered in [13].

Remark 3.4. Another general approach for Ito integrodifferential equations can
be found in [9].

THEOREM 3.3. For j 1, 2, let Aj R+ x Rd -Rd, Bj R+ x Rd Rd () R
aj, b R+ R+ be measurablefunctions and let Z" R2+

_
R+ be such that Z is measurable,

Z(t,. is continuous, concave and nondecreasing. Assume the following:
(i) There exists a sequence 0_, 0 < 0 Oo < O1 <" , On/ oo such as:

(il) For each j, k >= 1, a, b map [0k_l, Ok] into [Or_i, Or] with r <-_ k;
(i2) Ifa, bj map Ok-l, Ok] into Ok-,, Ok], then a( t) <-- t, b( t) <- for Ok-1 <- <=
Ok,
(i3) If we define for k >= 0

Jl(k) {j; aj([Ok-1, 0k]) c [Ok-l, Ok]},

J2(k) {j; b([ Ok-,, Ok]) c Ok-,, Ok]},

then u 0 is the unique nondecreasing solution of

u 0, 0k_ 1,

<= c Z Z(s, u(a(s)))+ Z Z(s, u(b(s))) cls,
Ok_ jJl(k) jJ2(k)

tOk-1,

for a constant C large enough.
(ii) There is a locally integrable function 3/such that

IA(t,x)l2+ IBj(t,x)l2<-3,(t) for allt>-O, xRd.
j=>l j-->l

(iii) For every j >- 1, >- O, x, y Rd

lAb(t, x) A(t, y)l 2 + iBm(t, x) B(t, y)l2 <_- Z(t, Ix y12).

Let w)j_>_l be an infinite number of independent d-dimensional Wiener processes.
Then the stochastic equation

Xo= 4 e Y,

(IV) x(t) th(0) + }-’. A(s, x(a2(s))) ds
j>-i

+ 2 (,x(b(s gw(s, >-o

has a pathwise unique strong solution (.for definition and properties of stochastic integral

Y, Io Bj(. dwj(. ); see [4]).
Proof. We proceed by induction on the intervals 0_,, 0]. Assume that a unique

solution exists on [0, 0]. We shall prove the existence of a unique solution on 0, 0+1].
On the interval [0, 0+1] the equation (IV) becomes

x( t) z( t) + Sx( t)
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where

z(t)=X(Ok)+ , A(s,x(a(s))) ds
jJl(k) O

Sx(t)

+ y ,(s, x(b())) dw(s),
j J2( k O

E A(s, x(a(s))) as
jJl(k) O

2 n(s, x(b(s))) dw().
jJ2(k) O

Remark that z(t) depends only on the known values of x on [-0, Ok]. Now the
conclusion of the theorem is a consequence of Theorem 3.1 (the fact that Sx is an
infinite sum of integrals does not change the proof and the validity of Theorem 3.1).

Remark 3.5. Theorem 3.3 represents a stochastic version of a result of Datko [2,
Thm. 2.6].

4. An example. We conclude by briefly outlining a stochastic version of the
dangling spider equation (see 11], 12] for the deterministic case). The initial histories
have the paths in X= {f-(fl,f2)" R_,->R2"f, continuous}. The semi-norm in X is
given by

Ifl If(0)l + If=(0)l + k(s)lfl(s)lp ds

where p _-> 1, k Lloo(R_, R+) and k(t) ess sup k(s + t)/k(s) <. The stochastic func-
tional equation which we consider is

(v)
dv(t)=[F(t, x(t), v(t))-r(t, xt)] dt+o’(t, x(t), v(t)) dM(t),

dx( t) v( t) dt

where F" R2+ x R R+, r" R2+ x X R+, o-" R2+ x R R and {M(t)}t__>o is a continuous
square integrable martingale.

The equation (V) can describe the evolution in time of the length of an extensible,
massless, viscoelastic filament which has one end fixed while the other supports a ball
(or spider) of unit mass. It is assumed that the ball moves "up and down" with velocity
v(t) and x(t) denotes the length of the filament at t. The number F(t, x(t), v(t)) is an
applied force pulling the ball downward, z(t, xt) is the tension in the filament and
or(t, x(t), v(t)) dM(t) is a random perturbation.

The equation (V) can be written in the form (I) with

[ F( t, fl(O),f2(O)) ’( t, fl)
a( t,f)

f2(0)
tr(t,f(0), f2(0)))0

Z(t)=(t,M(t))’.

By using Theorem 2.2 we can state Theorem 4.1:
THEOREM 4.1. Suppose the following:
(1) a t, O) is locally bounded.
(2) There exist a LS and 3(t) locally bounded such that

IF( t, x, y) F( t, x’, y’)l 2 + [or( t, x, y) o’( t, x’, y’)l2 <- "y( t)a(lx x’[2 + lY Y’I2),
I’( t, f r( t, g)l2< 3,( t)o(If gl2x)
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for every >- 0, f, g X, x, x’, y, y’ R. Then (V) has a pathwise unique strong solution
for all initial history b which is continuous and E(II)<.
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STABILITY OF SINGULARLY PERTURBED SOLUTIONS TO SYSTEMS OF
REACTION-DIFFUSION EQUATIONS*

YASUMASA NISHIURA? AND HIROSHI FUJII?

Abstract. Stability theorem is presented for large amplitude singularly perturbed solutions (SPS) of
reaction-diffusion systems on a finite interval. Spectral analysis shows that there exists a unique real critical
eigenvalue At(e) which behaves like Ac(e)- ’e as e0, where e is a small parameter contained in the system.
All the other noncritical eigenvalues have strictly negative real parts independent of e. The singular limit

eigenvalue problem in 2 plays a key role to judge the sign of z, which determines the stability of SPS for
small e. Under a natural framework of nonlinearities, " becomes negative, namely, SPS is asymptotically
stable. Instability result is also shown in 4.

Key words, stability, singularly perturbed solutions, reaction-diffusion equations, asymptotic behaviors

AMS(MOS) subject classifications. 35B25, 35B40, 35K57

Introduction. In this paper, we present a stability theorem of singularly perturbed
(and large amplitude) stationary solutions with an interior transition layer (SPS1) to
systems of reaction-diffusion equations of the form:

(P)

u, eeuxx +f(u, v),
t, x) (O, ) x I, I=(0,1),

vt Dvx + g(u, v),

ux =0= v, (t,x)6(O,o)xOI, OI {0, 1},

where e is a small parameter and D > 0.
The system (P) appears in a number of fields such as eco-systems, morphogenesis

in developing biology, chemical reactions, and so on. For some classes off and g, (P)
exhibits as its stationary solutions large amplitude patterns with interior transition
layers when one ofthe diffusion coefficients e is small. Singular perturbation approaches
have been one of the most established methods to construct such spatially
inhomogeneous large amplitude patterns. See Fife [4] and the survey by Conway [3].
There have been many works concerning the construction of such singularly perturbed
solutions (SPS), e.g., Fife [4], Mimura, Tabata and Hosono [15], Ito [11], Mimura,
Nishiura, Tesei and Tsujikawa [13], Fujii and Hosono [5] and so on, in which not
only solutions of interior transition layer type but also boundary layer type and mixture
of both types are treated. On the other hand, concerning the stability properties of
SPS, very few works have been known at least to the authors’ best knowledge. (See
the survey [3].) The difficulty may lie in the largeness of amplitude of SPS and subtle
behaviors of the spectra of the linearized operators as e tends to zero. The work for
the degenerate case e 0 of a simple density-dependent diffusion system, by Aronson,
Tesei and Weinberger 1 ], appears to be an exception. However, there is a gap between
the degenerate and nondegenerate cases, as will become clear in 2. Recent works of
the authors 17], 19] show the stability of SPS1, i.e., SPS ofmode 1, for the nondegener-
ate case (e > 0) with large D > 0. The basic method there is a perturbation from the
limit of D’+c. Nevertheless, for a general D, the stability problem of SPS has remained
open up to the present time.

* Received by the editors January 29, 1986; accepted for publication October 15, 1986.

" Institute of Computer Sciences, Kyoto Sangyo University, Kyoto 603, Japan.
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The goal of this paper is to give a stability theorem to SPS1 for a general D, which
provides a framework of global assumptions to be imposed on the nonlinearities to
obtain a stable SPS1. A violation of our stability assumptions may cause instability.
In fact, we shall show an instability theorem at the final section.

A key role in our theory will be played by the singular limit eigenvalue problem
introduced in 2, which preserves information on the interior transition layer in the
form of Dirac’s &function, even though it is a limit equation of e 0.

In order to treat the limiting case as D ]’ oo equally, we set D 1/or. The stationary
problem of (P) becomes

(SP) eZUxx+f(u, v)=0, --Vx,+g(u, v)=0, u,=0=v, onOL

When tr $ 0, (P) is replaced by

(P)o u, e2U,x +f(u, ), ’ ft g(u, ) dx, u, O,

where v : is a constant function of x and the associated stationary problem is given
by the following:

e u +f(u, )=0, g(u, ) dx=O in I,

(SP)o
u, =0 on0L

(SP)o is called the shadow system (see Nishiura [16] for details).
Since (P) is a system of semilinear parabolic equations with diagonal diffusion

matrix, the stability of SPS1 is determined by the spectra of the linearized eigenvalue
problem:

(LP)

w, 0 z, on0/,

=A

where all partial derivatives are evaluated at SPS1, U’’ (see Theorem 1.1 in 1),
namely, f,’=fu(u(x; e, tr), v(x; e, tr)) and so on. For the limiting case as tr$0, (LP)
is replaced by

(LP)o

2 d2
f.oe +fT,’.o( w) a__f dx ( w)n f,g:,Of, gZ,O 

=A (w),
wx=0 onOI,

where z =r/ is a constant function. Hereafter, (LP) automatically means (LP)o when
o-= 0. If Re A < 0 for all eigenvalues of (LP), then, U’’ is an asymptotically stable
solution of (P). It will be convenient to divide the spectra into two classes: one is the
class of critical eigenvalues which tend to zero as e $ 0, and the other noncritical ones
which are bounded away from zero for small e. We will see in 2 that noncritical
eigenvalues are not dangerous to the stability of SPS1 (Proposition 2.1). Therefore,
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the stability wholely depends on the asymptotic behavior of critical eigenvalues as
e $ 0. Our conclusion is the following.

MAIN THEOREM. Under (A.5), and (A.0)-(A.4) as well, there exists only one critical
eigenvalue A Ac(e, tr) for (e, or) fo.o (see Theorem 1.1), and which is real and simple.
Furthermore, the principal part of Ac(e, or) as e , 0 is given by

(0.1) At(e, or) *’ *’’ ( <0)’/’N

namely, Ac approaches to zero from the negative side with O( e) when e $ O.
Apparently, this theorem implies the asymptotic stability of SPS1 for any small

e. The Main Theorem has been announced in Nishiura and Fujii [18].
Now we state the assumptions for f and g (see Fig. 1).

g 0

FIG. 1. Functional forms off and g.

Existence Assumptions.
(A.0) f and g are smooth functions of u and v defined on some open set in I2.
(A.1) The nullcline of f is sigmoidal and consists of three continuous curves

u h_(v), ho(v) and h/(v) defined on the intervals I_, Io and /+, respectively. Let
min I_ =_v and max I+ , then the inequality h_(v)< ho(v) < h+(v) holds for

def
vI*= (v_, ), and h+(v)(h_(v)) coincides with ho(v) at only one point v=(_v),
respectively.

(A.2) J(v) has an isolated zero at v v* I* such that dJ/dv < 0 at v v*, where
h+(v)J(v):_of(s, v) ds.

(A.3) f= <0 on R+U R_, where R+(R_) denotes the part of the curve u= h+(v)
(h_(v)) defined by R+(R_) {(u, v)lu h+(v) (h_(v)) for v* -< v < (_v < v =< v*)} (solid
parts of f 0 in Fig. 1), respectively.

(A.4) (a) glR_ < 0 < gl,+-
(b) det (a(f, g)/a(u, V))IR+UR_> 0.

Stability Assumption.
(A.5) gvlR+UR_<=O, der

Remark 0.1. Let G+/-(v) g(h+(v), v) for v I+/-. Then, the assumption (A.4b) is
equivalent to

d
(0.2)

v ’dG:(v)l<O’ respectively,
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since it follows from f(h+/-(v), v)= 0 and (A.3) that

d Ago -fogu

R+/- fu R+

Note that in [15] the condition (0.2) is assumed in place of (A.4b).
Remark 0.2. It holds thatfu =0 at (h+(), 3) and (h_(_v), _v). Moreover, in general,

g and det (0(f, g)/O(u, v)) in (A.4) may become zero at these end points.
The outline of this paper is the following. In 1, first, the existence theorem of

SPS1 and the asymptotic form of the stretched SPS1 are presented. Second, the spectral
behavior of the Sturm-Liouville operator L’ with respect to the parameters (e, ) is
studied in detail, which is a basic result for later spectral analysis. In 2, we introduce
the singular limit eigenvalue problem (SLEP), which characterizes the asymptotic
behavior of the critical eigenvalues of (LP) as e $ 0. A geometric consideration of the
solution of SLEP implies that the critical eigenvalue really behaves as in Main Theorem.
It is also proved that all the other noncritical eigenvalues have strictly negative real
pas independent of e. A justification of SLEP is given in 3, namely, it is shown
that the critical eigenvalue is real, unique and simple, and the asymptotic behavior of
it as e 0 is just the same as is given by SLEP in 2. Finally, in 4, the instability of
SPS1 is discussed when some of the assumptions for nonlinearities are violated.

We show several examples which fall into our framework.
Example 1 (Diffusive prey-predator model [14]. See Fig. 2).

ut e2Ux +fo( u u kuv, v, Dv + go( v v + kuv,

where k is a positive constant; fo(u) is a smooth function such that

)I >0’ O<=u<c’
fo(O) -->-- O, ,,.,..fo(U =0, u c,

<0, tt > C,

for some positive constant c, and go(v) Co+ clv" (Co, cl, m>0). We assume that

go(v*) + go(v*) v* > kh+(v*),

which guarantees the stability assumption (A.5), where u h+(v) is the right branch
of the nullcline f(u, v) 0.

FIG. 2. Functionalforms ofprey-predator model.
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FIG. 3. Functionalforms of Gierer-Meinhardt model with saturation.

Example 2 (Gierer-Meinhardt model with saturation [9]. See Fig. 3).

2 CPu2
ut e u,, + PPo+ v(1 + Ku2) -/./,U,

Vt Dvxx + c’p’u2- or,
where p, p’, Po, c, c’, K, and v are all positive constants.

Example 3 (Seelig’s model with diffusion [12]. See Fig. 4).
Ut-- e2Uxx+jl--U--flr(u, )), vt:D)xx+j2-’yr(u, v),

where r(u, v)=uv/(1 +u+v+Ku) and jl,j2, fl, "Y and K are all positive constants.

g(u,v) 0

V)

FIG. 4. Functional forms of Seelig’s model.

We use the following notation and acronym (with page reference) throughout the
paper:

CP(I)- the space of p-times continuous differentiable functions on I with usual
norm,

C[(I)--the space of p-times continuous differentiable functions on I with the
norm

Ilull<= max u(x)
k=O
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HP(I) the usual Sobolev space,

HP(I) the space of closure of {cos (nTrx)},__o in HP(I).

(., .) the inner product in L2(I)-space.

Cck.u.(l) the compact uniform convergence in Ck-sense in f, namely, the uniform
convergence on any compact subset of f in Ck-sense.

Display designator Page number
(P) 1726
(SP) 1727
(P)o 1727
(SP)o 1727
(LP) 1727
(LP)o 1727
(RP.1) 1731
(RP.2) 1731
(RSP) 1732

(SL) 1736
(SL) 1736
(SL)* 1737

(S,L) 1739
(SP) 1740
(P2)a 1743
(P2)b 1743
(REP) 1743
(AI) 1751

(SLEP)a 1754
(SLEP-1)b 1755
(SLEP-2)b 1755

1. Existence theorem and preliminaries. In this section, we show the existence
theorem of SPS1 and prepare several lemmas which will be used in subsequent sections.

First, let us begin with the study of reduced solutions and their tr-dependency to
understand the form of SPS1. The reduced problem is given by putting e =0 in (SP),

(RP.1) f(u, v)=O,

1
(RP.2) --v,,,,+g(u, v)=O,

subject to zero flux boundary conditions and (u, v) L2(I)x {H2(I)fqH1N(I)}. The
amount of solutions expand to a great extent, when we switch the problem from (SP)
to (RP). However, we are interested in the solutions of (RP) which are the limits of
those of (SP) as e $0. One of the important such classes is the following. We take

h_(v) for v<-_ v*, v6 I_,
(1.1) u h*(v)=

h+(v) for v=>v*, v/+,

as a special solution of (RP.1). Substituting this into (RP.2), we have a scalar equation
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for v, i.e., the reduced equation,

1
(RSP) --v,,,+G*(v)=O, vH2(I)f-IH1N(I),

where G*(v)= g(h*(v), v). It follows from (0.2) that G*(v) is strictly decreasing in
each of the subintervals _v-< v =< v* and v*=< v =< 3 and that it has a discontinuity of
the first kind at v v* as in Fig. 5. We only consider monotone increasing C-matching
solutions of (RSP) at v v*. Let Num (v(x)) denotes the numerical range ofa monotone
increasing solution v(x) of (RSP), i.e.,

Num (v(x)) [min v(x), max v(x)].
xl xI

V

FIG. 5. Functional form of G*(v).

PROPOSITION 1.1. There exists a uniquely determined positive constant tr* such that
(a) Monotone increasing C-matching solutions V*’(x) of (RSP) existfor 0 <

(b) Num (V*’(x)) is a monotone increasing sequence of intervals oftr with respect
to inclusion relation and satisfies lim,o Num (V*’(x)) {v*}. Moreover,
lim,o V*’(x) v* in cl([)-sense;

(c) Num (V*";(x)) contains at least one of the end points v_ and , namely, the
reduced solution (see (1.2)) covers completely at least one ofthe curves R+ and R_ defined
in (A.3).

Proof. See Appendix and Proposition 3.2 in [6] (see also 3 in [15]).
Using (1.1), we obtain the it-family of reduced solutions (see Fig. 6),

(1.2) U*’(x), V*’(x)), O<-tr<-_ tr*,

where U*’(x) h*( V*’(x)).
Remark 1.1. The value o-= trl* is an interesting point from a global bifurcation

point of view. In fact, it is a taking off point of the D (i.e., one-mode solution)-sheet
from the singular wall. Namely, SPS1 constructed by our method ceases to exist for
tr > o*. See [6] and [7] for more detailed discussions.

PROPOSITION 1.2. The matching point x* (tr) is well defined by

(1.3) V*’(x* (tr)) v*
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0 Xl(O 1

FIG. 6. Reduced solution and SPS.

due to the monotonicity of V*’(x). Then, X*l(tr) is a continuous function of o" for
0 < tr <- tr* and uniquely extendable to r O. Here x*(0) limo Xl*(cr) is determined by

g(U*’(x), v*) dx O,

where

(1.4)
h_(v*) forxe[O,X*l(O)),U*’(x)
h/(v*) forx e (Xl*(0), 1].

Proof. See Appendix 1, [15] and 16].
THEOREM 1.1 (Existence Theorem of SPS1). For any tro with 0< tro< trl*, there is

an eo> 0 such that (SP) has an (e, tr)-family ofsolutions U’ (u(x; e, tr), v(x; e, tr))
C2e(i) xC2(i) for (e,o-)6Oo.o={(e, tr)10<e<eo, 0--<_tr<tro}. U’ are uniformly
bounded in C2( [) x Cz( [), and satisfy

(1.5)

and

(1.6)

lim u(x; e, tr) U*’(x) uniformly on I\IK for any K > 0

lim v(x; e, tr)= V*’(x) uniformly on I,
e+o

where I (Xl*(tr)-K, x*(tr)+ ), and tr*, U*’(x) and V*’(x) are defined in Proposi-
tion 1.2 and (1.2). See Fig. 6.

Moreover, when triO, U’ converges to the shadow SPS1 U’=(u(x; e, 0), (e))
of (SP)o satisfying

(1.7) lim (x; e, 0)= U*’(x),

(1.8) lim so(e) v*
e+o

where U*’(x) is defined in Proposition 1.2, and the convergent manner is the same as
in (1.5) and (1.6) replacing x*(tr) by x*(O).

Finally, U’ depends continuously on e, tr) fo.o in C2 x C2-topology, and con-
tinuously on (e, tr)efio. in L2xCl-topology, where
0<= r < ro}.

Proof. See Appendix 1. Also, see Mimura, Tabata and Hosono 15], Hosono and
Mimura 10] and Ito 11 ].
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In the following, we use the same notation eo for the bound of e, though we may
replace it by a smaller one at need.

The following lemmas concern the asymptotic form of the stretched solution and
the spectral behavior of the Sturm-Liouville operator. Here the stretching means the
change of variables from x to y--(X-Xl(e o-))/e, where Xl(e, gr) is the Cl-matching
point of SPS1 with limo xl(e, tr) x*(tr) and u(xl(e, tr); e, tr) ho(v*) (see (17) in
Appendix 1). For a given function w(x) on I, we denote the stretchedfunction by }(y),
i.e.,

(1.9) }(y) W(Xl(e, tr) / ey).

We also use the following notation for the stretched intervals:

(1.10) -(-l/e, r/e), I’_-(-I/e, O) and L-(0, r/e),

where l-Xl(e, or) and r- 1-Xl(e, tr).
The first lemma is on the convergence of the stretched SPS1 to the static front

solution as e $ 0.
LEMMA 1.1. Let U’- (t(y; e, tr), 5(y; e, tr)) be the stretched solution of SPS1

U’, and let * be a unique monotone increasing solution on R of the following problem

d
(1.11a) dy2U+f(u, v*) 0,

(1.11b) u(+)=h+/-(v*),

(1.11c) u(O)=ho(v*).

Then we have

(1 12) lim’ /)* in Cc.u.(R)-sense,
$0

where J* is defined by /]/*= (if*, v*).
Recall that 2Cc.u.() is the abbreviation of c.ompact uniform convergence in C2-sense

on . Here, we note that the limiting function U* is independent of tr. The convergence
(1.12) is uniform with resp.ect to o" for 0 -< tr <tro.

Remark 1.2. Though U’ is not defined for all x , (1.12) makes sense, because
for any fixed compact interval K, there exists an eK such that U’ is defined on K
for 0 < e < e:.

Proof of Lemma 1.1. We can assume without loss of generality that u(x; e,
takes the value ho(v*) at the matching point x xl(e, tr). We prove this lemma according
to the construction of SPS1 in Appendix 1.

We divide the solution U’ into two parts at x x(e, tr), i.e.,

U,=
U- forxeI_=[O,x(e,o’)],_
U forxeI+=[x(e,r),l].

We shall show that /_2(2) converges to the right(left)-half of * in C.u.-sense
on N+(R-) as e 0, where N+= [0, +oe) (N-= (-oo, 0]). First, note the following two
remarks: For any interval I#

___
I; (i) Let w(x; e)be uniformly bounded in C(I#)-sense

for small e(I# c__ I), then after stretching, (y; e) is uniformly bounded in C(#); (ii)
Let w(x; e) be uniformly bounded in C(I#)-sense for small e, and w(x(e, o’); e)
converges to w* as e $ 0, then (y; e) converges to w* in C.u.(#)-sense as e , 0.
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In view of(8) and (10) in Appendix 1, U:’=(u(x; e, r), v+(x; e, o’)) has the form

U+/-(X; e, o’)= h+/-(V+/-(x; 6, to, o’)) + z+/-(x; 6, to, e, )+ r+/-(e,
(1.13)

d
h+( l’+(x; 6, to, o’))" s+(e, r),+r d---

(1.14) v+(x; e,o’)=v*+to+o’{W+(x; 6, to, o’)+eZY++s+/-(e, cr)}.
Since v+(x; e, o’) remains uniformly bounded in C2(I+) for small e, it follows from
the above remark, Lemma A.2, Remark A.2, Theorem A.1, and (16) in Appendix 1 that

(1 15) lim+(y, e,r) v* in 2 +)Cc.u.(R -sense.
e$0

c.u.(For the u-component, first note that limo V+/-- v* in C +)-sense (see (7) in
Appendix 1). Therefore, we have

(1.16) lim h+/-(l’+/-)= h+/-(v*) in C2.u.(R+/-)-sense.
e$0

On the other hand, it follows from the definition of z+ (see A.2 in Appendix 1) and
the continuous dependence of solutions on initial data and parameters on any fixed
compact interval that

(1.17) lim + *. in Cc2.u. (R+)-sense,
e+0

where .* is the unique solution of

d

dy
*, +f(h+/-(v*) + Y, v*) O,

(1.18) *(0) ho(v*)- h+/-(v*),

3+*(+c) 0 or 3*(-o) 0.

Using the above results and Theorem A.1 in Appendix 1 and recalling that 7_(y; e,
and +(y; e, r) are matched in C2-sense at y 0, we can see that

Cc.u.(R)-sense.(1.19) lim (y, e, or) *(y) in

Since all the above convergence results have a uniformity with respect to r, the
convergence (1.12) is uniform for 0 <= o- < O’o, which completes the proof of Lemma 1.1.

Remark 1.3. Differentiating (1.11a) with respect to y, we see that (d/dy)*(y) is
a constant multiple of the positive normalized principal eigenfunction o* of the
Sturm-Liouville operator (d/dy2)+fu(*(y), v*) on . Therefore, it follows from
Lemma 1.1 that

(1.20) --dy if(y; e, tr)o o* =yff*(Y)

compact uniformly in C2-sense, where *-’= II(d/dy)a*(y)ll,(.
COROLLARY 1.1. Let F(u, v) be a smooth function ofu and v. en, the composite

function F(ff(y; e, g), (y; e, g)) converges to F(*, v*) compact uniformly in C2-sense.
In view of the construction of U’ and the propeies of z, we have the following.
COROLLARY 1.2. For any > O, there exists M > 0 such that

O’(y; e, )- *’1 < y for lyl > M and all small e,

where *’ is the stretched function of the reduced solution, i.e., *’=
U$’(XI(E, )+ ey).
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Let us introduce the following Sturm-Liouville problem at U

(SL)

def ( dx

2

L, 2+ ....e j. j6=r6 in/,

=0 one/,

where f,’=fu(u(x; e, tr), v(x; e, or)) (see Fig. 7(a)). Let {"}n_->o be the complete
orthonormal set (CONS), and {’,"]n_>o the associated eigenvalues of (SL), which are
all real and simple. It is convenient to define the stretched Sturm-Liouville problem
for (SL):

L, +jT:, sr in

(SL)
Cy 0 on 0

where f,’ is the stretched potential of f,’ (see Fig. 7(b)). Similarly as above, let
{, },o be the CONS and {, },o the associated real simple eigenvalues of (SL).
Note that the set of eigenvalues {’},o remain the same after stretching. On the
other hand, we need -factor for the eigenfunctions

(1.21) ’ 0,’
where ", is the stretched function of ’, i.e.,

’(y) ’(XI(E )+ ey).

The relation (1.21) comes from the normalization

(6’)2 dx= 1 (V-’)2 dy.

u

FIG. 7(a). Functionalform of the potentialf".

u

FIG. 7(b). The stretched potentialf
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Motivated by
f,’ f* in C2u-sense,

,1,0

which follows from Corollary 1.1, where f,*=fu(t*, v*), we introduce a Sturm-
Liouville problem on R:

(SL)* /_7,* +f* $ ’b in R,

which is a natural limiting problem of (’) as e 0. In view of (A.3) and Lemma A.3
in Appendix 1, we see that the potential fu* approaches to negative constants
fu(h+/-(v*), v*) as y--> +/-oo in the following way (see Fig. 7(c));
(1.22) If(a*(y), v*)-f(h+/-(v*), v*)l -< C exp (-ylyl), y--> +oo,
where C and y are positive constants.

(h (v*),v*)
LI +

FIG. 7(c). Limiting form f*u of the stretched potential.

The following observation for (SL)* is useful.
LEMMA 1.2. The value 0 is the principal eigenvalue of (SL)*, which is simple in

L2(), and the associated normalized positive eigenfunction o* is given by

^. d .
with

K* /*
L2(R)

Proof. Noting that the potential* of (SL)* is of well-type, which satisfies (1.22),
this lemma is a direct consequence of Remark 1.3 and the fact that (SL)* is of limit
point type (see Coddington and Levinson [2, Chap. 9]).

The principal eigenfunction’ of (’L) converges to that of (SL)* in the following
sense.

LEMMA 1.3. It follows that

qb’( v/-d$") qbo in C2u ()-sense,
eO

ch’(Cho is the normalized positive principal eigenfunction of (ff’) ((SL)*), respectively.
This convergence is uniform for 0 <-_ tr <tro.

Proof. First, since if* approaches to h+(v*) (or, h_(v*)) with an exponential order
as y+ (or, -) (Lemma A.3 in Appendix 1), f’ converges to f,* =fu(t*, v*)
in C2.u.-sense from Corollary 1.1. Second, from Corollary 1.2 and (A.3),
(1.23) f,’ < -/x < 0
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holds uniformly for (e, r) flo., outside of an appropriate fixed finite interval I,,,/x
being independent of e and r. Therefore, it is easy to verify that
{o’}o<<o(l14;U 11L2() 1) is uniformly bounded, with the decaying estimate

(1.24) ’(y)_<- exp (-lyl) for y \I,,
where and 4/are positive constants which do not depend on (e, r). Let K be an
arbitrary compact interval. Then, using the above fact, and that " is a solution of
(-L), we can see that {bo }o<<o forms an Ascoli-Arzela set on K in C2-sense (i.e.,

^ ’ whichprecompact set in C2-topology on K). Let us choose a subsequence {4o" },_->1
constitutes a Cauchy sequence on K in C--sense. Using a diagonal argument on an
expanding sequence of compact intervals which eventually covers the whole line R,
we can select a subsequence {b-’},_>l (we use the same symbol as before) which
converges uniformly on any compact interval. Namely, it forms a convergent sequence
on R in C.u.-topology. Let us denote this limit by *. Let {sr-’} be the set of
corresponding eigenvalues. We can then assume without loss ofgenerality that ’-’ ’*as n +, since it must be in the bounded interval

min f, max f,’
y ,(e,o-)flo,,o the region

Consequently, * satisfies

(1.25)

d 2

dy*+.** *>*,

The strict positivity comes from ’> 0 and that @* satisfies the above equation. On
the other hand, 0 is. the principal eigenvalue of (SL)* from Lemma 1.2, and the

* *( 7"associated normalized positive eigenfunction is given by bo K d/dy) ). By virtue
ofthe uniqueness ofthe normalized positive principal eigenfunction and the orthogonal
property of eigenfunctions, we can conclude that *= bo and 0. Thus, the limit

* does not depend on the choice of subsequences. Hence, ’ itself converges to

o* in C2.u.-sense. The uniformity with respect to r is easily shown by contradiction
with the aid of the uniqueness of o*.

COROLLARY 1.3.

" dx L( e, tr)v/--,
where L( e, tr) is a positive continuous function of e, r) 2oo. Moreover,

def

(1.26) L* L(O, tr)=K*(h+(v*)-h_(v*))>O.

Note that the limit L* is independent of r.

Proof Using a stretched variable y=(x-xl(e, r))/e, the integral is rewritten as

f,
Define L(e, r) by

(1.27) L( e, or)= f 4-"’ dy.
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It is clear from the smooth parametric dependency of SPS1 U’ in l)o, that L(e,
is a continuous function in l-lo,o. It follows from Lemmas 1.2 and 1.3 and (1.24) that

L(e, or) 1- o* dylim

da.

=*(h+(v*)-h_(v*)) uniformly for 0 N < o.
Note that the right-hand side does not depend on . Consequently, we see that L(e,
is uniquely extended to be a continuous function on .,. with the limit condition

Remark 1.4. Let ;[ be the normalized positive principal eigenfunction of

L’= e+f’ 4= inI,
dx

(s
Ou

On+(1-)u=O atx=i(i=O, 1),

where 0 ai 1 (i =0, 1) and O/On denotes the outer normal derivative at the boundary
point. Then, Lemma 1.3 and Corollary 1.3 also hold for ’o, without any change. In
paicular, one can take Dirichlet boundary conditions at both ends or Dirichlet
boundary condition at one end and Neumann boundary condition on the other end.

LEPTA 1.4. Let {,’},o be the complete set of real simple eigenvalues of (SL).
en, it holds that for (e, ) o,o (see Fig. 8),

’>0> >...> >...,

(1.8) ’ Co(, )e+ Exp (e, ),

FIG. 8. Asymptotic behaviors of the eigenvalues of (SL).
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and

(1.29) ’, < -A* < 0,

where o(e, or) is a positive continuous function in 1)o,,o uniquely extendable to e 0 as
def dJ((1.30) sro*’ lim ’o(e, tr)=(K*)2 *)
o

v g( U*’, V*’) dx,

and Exp is a continuous function of (e, tr) 1)o. satisfying

(1.31) IExp (e, or)l<_-- C exp (-y/e).

Here, A*, C, and 7 are positive constants independent of (e, tr) f,o.o.
’ t....’ instead of u(x; e,Proof. For simplicity, we use the symbols u and Uy

if(y; e, tr), and (d/dy)(y; e, tr) in the following proof.
First we show the asymptotic formula (1.28). The principal eigenfunction ’ of

(’) satisfies

d2

(1.32) dyE’+Ju wo =’o bo

The stretched equations for (SP) becomes

d2

(ff.) 1 d 2

U 0, + e2g( U 0.
dy2 a’ +f( "’ ’ tr dy2’ ’)

Differentiating the first equation of () with respect to y, we obtain

d2

L......(1.33) dy2Uy Uy vr

Multiplying Uy to (1.32), we have

Cho,Uy" + (f,’4.......0 Uy )= ’’’(0 Uy ).

Applying the integration by parts twice, and using (SP) and (1.33), we have

(1.34) @o:......JU
e,tr, e,o" r// -’( )0^e,tr, __,trVy~e’tr ),o’(()0^e......,Uy

Owing to Remark 1.3, Lemma 1.3, and (1.24), we see that

(1.35) (bo ~’
e$0

holds uniformly for 0 < o, < tro This implies Uy is positive and uniformly
bounded away from zero for (e, tr) fo,o" Integrating the second equation of (SP),
we have

(1.36) .... o’) err.Vy (y) -e g( ....u dy so" O(y; e,
l/e

Substituting (1.36) into (1.34), we obtain the following

sr’’ ro(e, tr) eo" + Exp (e,

where

(1.37) ’o(e, tr) ^’ -f’ t;’)b0 e g( ~" o-),u dy P(e,
-l/e

(1.38)
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and

(1.39) P(e, o’)=( ......uy ).

It is easily seen from Theorem 1.1, (A.0) and the continuous dependence of solutions
on coefficients that ’o(e, tr) and Exp (e, or) are continuous functions of (e, tr) IIo,o.
In view of the definition (1.38), the estimate (1.31) easily follows from (1.24) and
(1.35). In order to study the behavior of (o(e, tr), we first consider the term (y; e, o’).
It is apparent from the definition (1.36) that (y; e, tr) is the stretched function of

def if0O(x; e, tr) g(u ,o-, v’) dx

by using y=(x-xl(e,o’))/e. O(x; e, tr) is uniformly bounded in cl(I)-sense for
(e, r) l-lo,o, and converges to the following value as e0 at x= x(e, tr),

x’(,)
O(x,(e, o’)" e, o’) g( U*’, V*’) dx.

e$O d 0

Consequently, we can see that the stretched function O(y; e, or) satisfies

(1.40) O(y; e, tr) g( U*’’, V*’) dx,
e$0 0

compact uniformly in C-sense. On the other hand, it follows from Corollary 1.1,
Lemma 1.3 and (1.24) that

^, I ",-,lim,o (4’ ,-f,’) -K J_o f, Uy dy

h+(v*)
1.41 K * jTo* dff*

d h_( v*)

dJ
(v.-,,* )>0 (see (A.2)).

Thus, combining the above results (1.35), (1.40), (1.41), and recalling (1.24) again, we
can see that

(1.30) o’" def j f x’(o-)
lim o(e, tr) (r,)2 (v*) g( U*’, V*’) dx.
e$0 d 0

Since x*(tr) is a continuous function of tr (see Proposition 1.2), so is ’’. Here, it
holds from (A.2) and (A.3) that

(1.42) sr’>0 for 0_-< tr < tro

Since the convergence (1.30) is uniform for 0_-< tr <tro, we can conclude from (1.42)
that ’o(e, tr) is uniquely extendable to be a strictly positive continuous function onfo.=o-

’ is bounded away from zero and strictlyFinally, we shall show (1.29), namely, ’1
negative for small e. As we have seen in (1.23),

(1.43) jT, <-/z < 0,

holds outside of a fixed finite interval I,, where/z and I, do not depend on (e, tr)
1)o,o. Therefore, we can assume without loss of generality that

(1.44) f’- sr’ < -/2 < 0

holds outside of a fixed finite interval I, where /2 and Ia do not depend on
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FIG. 9. Functional form of ".

(e, tr)ef.o,o; otherwise (’ already satisfies (1.29). From the nodal property, the
associated eigenfunction 4’ has only one zero. This zero, denoted by 1, is located
inside of I, since ’and its y-derivative behave, without changing signs, monotoni-
cally in the region where f’- <- < 0. See Fig. 9.

Then, we may assume that in (a, r/e] ’>0. ’ satisfies the equation

d2

(1.45) dy5 +f’61 C7’6’

By using (1.44) and (1.45), we see that ’ satisfies the same type of estimate as (1.24).
Making (1.32) x ’- (1.46) x’ and integrating over (al, r/e), we have

Noting that 4[’(a,) 0 and the exponentially decaying property of eigenfunction in
the outer region, (1.46) becomes

(1.47) yy’ (al)" g;"(a,)+Olexp(-//e)}=(;"’ ’")

where is a positive constant which does not depend on (e, o’). Since both o and
4’ are L-normalized eigenfunctions on and decay monotonically with exponential
order outside of I, it is easy to verify by contradiction that

(1.48)
d
.tr (ffl)" ’tr(al) and /o V-’l dy

are positive and uniformly bounded away from zero for (e, o’)e 12o,o. Consequently,
using (1.47) and (1.28), we can conclude (1.29).

Remark 1.5. Lemma 1.4 also holds for (SL) without an essential change, since
the asymptotic limit lim+o 4’,( o*) does not depend on a (see Remark 1.4), and

L -normalized eigenfunc-the exponentially decaying estimate (1.24) also holds for the 2

tions of the stretched problem S). Especially, using the similar identify as (1.46),
we can show that the difference of principal eigenvalues I’i sro, (0 _-< a, a < 1) is
at most of exponentially decaying order. Therefore, the asymptotic limit of the
coefficient ’o,(e, or) of co" (see (1.28)) does not depend on a, namely,

(1.49) lim ’o,. (e, o’)= o*(O’).
e$0
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2. Singular limit eigenvalue problem and the behavior of critical eigenvalues. In
order to obtain the stability of SPS1, we have to show the following"

(P2)a All noncritical eigenvalue of (LP) have strictly negative real parts.

(P2)b If there is a critical eigenvalues of (LP), it has to approach to zero from the
left-half plane (Re < 0) as e0.

Note that when e$0, (LP) becomes singular in two ways, namely, the degeneracy of
the second-order term due to e, and the discontinuity of coefficients f, f and
g’ at the layer position.

A natural and standard approach to deal with the above problems may be to look
for an appropriate limit problem of (LP) as e $ 0, and then extract from it information
on the spectral behavior for e > 0. In fact, the most optimistic way may be to put e 0
in (LP) to have

1
(REP) f*’w *’+f z Aw, z + g*"w+ g*’z= Az,

subject to zero flux boundary conditions for z, where all the partial derivatives are
evaluated at the reduced solution (1.2), i.e., f*,’=f,(U*’(x), V*’(x)) and so on.
This is called the reduced eigenvalueproblem (REP) of (LP), since it is formally obtained
by linearizing (RP) in 1. Since f,*’ <0 (see (A.3)), we can solve the first equation
of (REP) as w= -f" z/ (f*, "- A ), assuming that ReA >-/x (see (1.23)). Substituting
this into the second equation of (REP), we obtain after some computation

(2.1)
1 det*’ ( go*’ )--z,,+z=h 1+ z,
o" f*"- a f*"- a

where det*’ *’ *’ *’=f, g -f*’g, Recalling (A.4) and (A.5), we can show as in
Proposition 2.1 that there are no spectra of (2.1) in the region Re a >-b* for an
appropriate positive number *. Thus, one may think that the stability ofSPS1 is
obtained in a straightforward way from (REP). However, if we look at (REP) carefully,
we realize that it includes no terms which come from the interior transition layer. The
reason for this is clear. (REP) is the formal L2-1imit of (LP). Therefore, the contribution
from the layer part, the width of which is of O(e), becomes negligible as e $ 0. Recalling
that not all solutions of (RP) are extended to be solutions of (SP) for e > 0, (REP)
may be inadequate for our purpose in the sense that it is too rough to solve our whole
problem. In fact, it loses information on the behavior of critical eigenvalues. Neverthe-
less, (REP) is useful to solve the first problem (P2) (see Proposition 2.1), and Lemma
2.2 plays an important role to justify this step.

Now the problem is that "What is the exact limit of (LP) of e 0?", which inherits
necessary information from the layer part, governing the asymptotic behavior of critical
eigenvalues. Lemma 2.3 becomes a keystone to answer this question. It shows that
when e $0, the information on layer is condensed into the Dirac’s a-function at
x Xl*(Cr), and its magnitude determines the asymptotic behavior of the critical eigen-
value. Using Lemma 2.3 as well as Lemma 2.2, we obtain a new limiting problem of
(LP) in H-l-sense as e $0 called the singular limit eigenvalue problem (SLEP), which
essentially enables us to solve both problems (PS), and (P2)b.SLEP is simple and
much more tractable than the original linearized problem (LP). The justification of
SLEP as well as the uniqueness and simplicity of the critical eigenvalue will be given
in the next section.

First we note the following lemma.
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LEMMA 2.1. It holds that ’: o’(LP) for small e > O, i.e., the principal eigenvalue
of L’ in Lemma 1.4 never becomes an eigenvalue of (LP) for small positive e, where
tr(LP) denotes the set of spectra of (LP).

Proof See Appendix 2.
Remark 2.1. Though sr’ tr(LP) for small e > 0, lim,o ’(=0) is contained in

the limit set of (LP) as e $0 (see Lemma 1.4 and Main Theorem).
Now we sta to solve (LP). Hereafter, we only consider the spectra of (LP) which

lie in the region A defined by

(2.2) A {A IRe A >-> max {-A*, -}} for some fixed > 0,

where-A* and- are the constants which appeared in (1.29) and (1.23), respectively.
Apparently, this restriction does not lose any generality. Noting Lemmas 2.1, 1.4 and
(2.2), the first equation of (LP) can be solved with respect to w as

(2.3) w=(L’-A)-I(-f;’z).

Applying the eigenfunction expansion to (2.3), we have

(-f’z, ’) (-f’z,
(2.4) w= $’+ E $’.

Substituting (2.4) into the second equation of (LP), we obtain the scalar eigenvalue
problem for z:

(2.5)
1 (-f:’z, ’) ....... A z) + z Az,-z + g. o +gT(L’- *(-fT

where (L’- h)* is defined by

z H2(I) H(I),

It follows from (1.29) and (2.2) that r,’ h (n >_- 1) is uniformly bounded away from
zero. Therefore, in view of the definition (2.6), (L’-A)* is a uniformly L2-bounded
operator for (e, tr) fo.o and h A1. More precisely, we have the estimate,

1
(2.7) II( L’=

Remark 2.2. It follows from the definition (2.6) that the generalized inverse (L’
A)* depends analytically on A for A1 as an L2-bounded operator-valued function,
and satisfies the resolvent formula

L’ A,)t L’ A2)t= (/1- A2)(L’ A1)t(L’ A2) t.
In order to study the asymptotic behavior of the spectra of (LP), we need explicit

characterizations of the asymptotic form of the second and the third terms of (2.5) as
e$0.

The first key lemma is about the behavior of the operator (L’- h)* as e $ 0.
LEMMA 2.2. Thefirst key lemma.) Let F(u, v) be a smoothfunction ofu and v. Then,

(2.8) L’’ A F"h strongly in L2-sense,

(2.6) (L’-A)*(’) E b’’ L2(I) -> L2(I) c{b’}+/-

n-1 ,,o’__A
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for any function h L2(I) c L(I) and A A1, where F’ F(u(x; e, tr), v(x; e, r))
and F*’=F(U*’(x), V*’(x)) (see (1.2)). The convergence (2.8) is uniform for
0 < tr <tro and A A1. Furthermore, ifh belongs to Hi(I), the above convergence is also
uniform on a bounded set in Hi(I).

Proof. Let S*k(X) be a smooth cut-off function at x x*(tr) satisfying

if Ix- xl*(r)l >- k/2,
if lx- x* (r)l <-_ k/4

with

d d2

(2.9) 0 <- s’(x) =< 1, supx, xx S*k(X) <= Mk, supxI dx2 S*k(X) < Mk.

Here, the positive constant Mk tends to + as k0. Define F’ by F’= S*kF’.
Then, it holds that

(2.10) lim IIf,- f’ll,= 0 uniformly for (e, tr) fo.okl0

because of the uniform boundedness of F’ with respect to e and tr. Let H’ and
H’ be defined by

H’=(L’-A)*F’h and Hk’=(L’-A)*Fk’h,
respectively.

It suffices to prove Lemma 2.2 where F’ and F*’ are replaced by Fk and
Fk respectively, for any k > 0. In fact, for an arbitrary p > 0, there exists a ko> 0
such that

, A) F IIllh I1 3’
H, H I1= II(L, F...... <--P

and

<3’f*’-a f*’-a t

hold for 0 < k < ko uniformly with respect to e and r. On the other hand, if this lemma
is true for the cut-oR case, then, for any fixed kl with 0 < kl < ko, we can find an el
such that

<0/3 for0< e < el

holds. Combining these three inequalities, we have

H’
F*’h

H......... F h
< -H, II&+ H,f’"-, a f’-,

(.)
+ F, h F*’h

for 0 < e < e. Since O is arbitrary, (2.11) implies (2.8). The uniformity of convergence
for I e A follows from that of the above three inequalities.

Now, let us prove Lemma 2.2 for the cut-off case,

(2.12) (L’-I)*(F’h) F’h
in L-strongsense.
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Here, we can assume without loss of generality that h is smooth and hx 0 on OI, since
any bounded L2-function can be approximated arbitrarily close by such a function in
L2-sense. We divide Hk into two parts,

(2.13) H,’’= HI,k nt H2,k, where H1,k F*k"h/(f*"-A).

We have to show that H goes to zero in LE-sense uniformly for A A1, when e 0.
First note that H1,k becomes a smooth function due to Fk’, though f*’ has a
discontinuity at x=x(). The equation H’=(L’-A)*(F’h) is equivalent to

(2.14) (L’-A)H’=F’h-P(F’h),H’ 6 {’},

where P is an ohogonal projection onto ’, i.e., P(.)= (., ’)’. Substituting

H of (2.13) into (2.14), we have the following equation for H,

...... d( F"h )f;’- A F,h e(2.15) (L’-A)H,k =F’h-P(Fk h)
f’-A dx f’-A

We denote the right-hand side of (2 15) by R"’g Since both F’/(f’-A) and h are
smooth and satisfy Neumann boundary conditions, we have the following by using
integration by pas;

(Rk ,;’}=-xF’h, e

F, h, , (- +C;,)6’
Xf.’ -a if.’ -a’

Thus, we have

(2.16) P(R,")=(a-U)\f,,,_a,
In view of (2.15) and (2.16), we can see that H is given by

(2.17) H:; (L"’- a)*(Rk
Xf,_,

,6o _6
It is apparent from (2.13) and (2.17) that

P(H") P(H:+ H:) O.

Using the expression (2.17) for H, we shall show that H 0 in L-sense as e 0.
Since F’h/(f"- A) is uniformly bounded for A A, we can see from Corollary
1.3 that when e 0, the second term of (2.17) converges to zero with O() in L-sense
uniformly for A A. For the first term of (2.17), it sumces to prove IIRZ’II&0 as

e0, because of the uniform L2-boundedness of (L’-A) for A A (see (2.7)).
Recalling that the C:-norm of the outer pa of the reduced solution is uniformly
bounded for (e, )o,o, and that (2.9), we can see that

(2.18) lim e2 0 uniformly for a e A1.
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It is easily seen that

(2.19) limllF’h
(2.20)

=0 uniformly for h c A1,

lim P(F,’h)ll 0.

Using (2.18)-(2.20), we obtain

lim R =- 0 uniformly for h c A1,

which leads to the conclusion

(2.21) H; 0 in L2-sense uniformly for a c A1.

In view of (2.13), we can see that (2.12) and therefore (2.8) are proved. It also follows
from the above arguments that the convergence (2.8) is uniform for 0 =< tr < Oo.

Finally, we show, by contradiction, the last part of Lemma 2.2. Suppose that the
convergence (2.8) is not uniform on H4 de {h Hi(I)[ Ilhll.,-< M}, then we can find
a positive constant 6 and a sequence {h.}(e, $0, as n’ oo) in H such that

->_6>0 for n >= 1,(2.22) (L-’-a)*(F-’’h.) f,,,_ a L

where 6 does not depend on n. Since H4 is compact in L2(I), we can choose a
subsequence {he,} (we use the same notation as before), which converges to h strongly
in L2-sense. Then, we have the inequality,

F*’h"(L"’-A)*(F"’h" f*’ h

(2.23) +

II(L-,- a )*{F."(h..
L

The right-hand side of (2.23) converges to zero as n’oo, which contradicts (2.22).
Thus, we have finished the proof of Lemma 2.2.

Remark 2.3. Lemma 2.2 also holds for the general boundary conditions (SL), in
Remark 1.4.

Making use of Lemma 2.2, the next proposition shows that noncritical eigenvalues
are not dangerous to the stability of SPS1.

PROPOSITION 2.1 (a priori bound for noncritical eigenvalues). Let B be a closed
ball with center at the origin and radius 6 in the complex plane C. Suppose that h is an
arbitrary noncritical eigenvalue of (LP) which stays outside ofB for small e.

Then, there exist positive constants x* and e such that

(2.24) Reh<-/x*<0 for O < e < ea,

where tx* does not depend on 6 and (e, tr) c f,o"
Proof Let Al,(c A1) be defined by

(2.25) Al,a {a C C[A C A1 and A c C\B}.
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We can assume without loss of generality that h AI, in the following. Let us start
from the eigenvalue problem (2.5) for r > 0.

1 (-f,"z, $") ,,
--Zxx 4 g,’dpo +g,’(L’-h)*(-fo’z)+g"z=hz,

(.5)
zH:()H(Z.

We introduce the following bilinear form on H(I) associated with (2.5)"

n,.(zl,:) 1( z) 1 1 ,., z)-so’ z,6U)(g. o

(.6) -((;’ x )*(-f’z 1), g;’z) (g’z, z:)

+ X(z 1, z) for z z H(I).
We shall show the boundedness and positivity of (2.26). Since A AI,, limo 0
(Lemma 1.4) and ’ dx= O() (Corollary 1.3), we can see that there exists a

e > 0 such that the estimate

(2.27) 1
Z
2[the second term of (2.26)1-<_- [[z

holds for (e, r),o and A AI,, where Cl(>0 does not depend on , (e, r), and
A. Therefore, using (2.27) and (2.7), we obtain the following:

< 2 Cl Z2iB,,X(zl z2)l
1
IIzIIL=IIzI[= + IIz IIH’II IIH’

(2.28)
+ c=llzl[[LZll Z211+ [AIIIzl[[L211Z211,

holds for (e, ) 6 ,o and A AI,, where c2(>0) is independent of (e, ) Oo,o and
A Aa. Here denotes the interior of the set. The inequality (2.28) shows the bounded-
ness of B’’a.

We first consider real noncritical eigenvalues. We shall show that there exists a
positive constant * such that B....x satisfies the positivity propey

(2.29) IB ....(z, z)lcllzll,
for (e, ),,o and h >-* with h A,, where the positive constants c3 and *do not depend on (e, ) and h. The inequality (2.29) implies from the Lax-Milgram
theorem that the set {h [h AI, and h >-*} belongs to the resolvent of (LP) for
(e, g),o" By viaue of Lemma 2.2, we see that

(2.30) ((L.-x)*(-f;,z), g,z)
+o f,-x’

g,z

uniformly for [[z[[n M, O g < go, and h a. Similarly, we have

(2.3) (go’ z, z) (go’ z, z),

uniformly for z , M and 0 -< tr <tro. Therefore, using the uniformity of the conver-
gence of (2.30) and (2.31), and the estimate (2.27), we can see that if the limiting
bilinear form B*’’ defined by

(2.32) BZ,tr,1(z1 z_)=l(zl, Z2x)_.-f’__ z2 _(g,tr21 Z2).._/(Z1, 2)\f*.,-x’g*"’
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satisfies the positivity property (2.29), then B’’x also satisfy the same inequality with
the appropriate change of constants c3 and e.

After a simple computation, we obtain

(2.33) B*"’X(z, z)=%llzxl12=+ 12_ (f.. + g*’)A +det*’}lzl2, 1

Note that this corresponds to the reduced scalar eigenvalue problem (2.1). Recalling
the assumptions (A.3)-(A.5), and A Al,, we can see that there exist positive constants
/x* and Ca such that

(2.34) Ithe second term of (2.33)1 _-> callzll 2
holds for A >-/x*, where C4 is independent of A (>-/z*) and o- with 0=<r<ro.
Combining the estimate (2.34) with (2.33), we easily see that B*’’ satisfies the positivity
property (2.29).

Next we consider the case where is a complex noncritical eigenvalue. Our goal
is to show that there is a priori bound -/x* such that Re <-z* for small e. First we
note the following boundedness of complex noncritical eigenvalues.

SUBLEMMA 2.1. IfA AI, is a complex eigenvalue of (LP) (or (2.5)), then, we have

IA -<_- Mc for(s, o) fio,o,
where the positive constant Mc does not depend on e, tr).

Proof Let z be the eigenfunction associated with A. Then, the pair (A, z) satisfies
B’’x (z, z) 0. Taking the Re- and Im- parts ofthis bilinear form, we have the following.

Re part: l<zx, zx>-Re { 1

cr ’’-, <-f;’z, 4;’><g’b’o z>}
(2.35) -Re ((L’ A )*(-f’z), g,’z)

-(g;’z, z) + Re h (z, z) O,

(2.36)

Im part" -Im
.._h

<-fUz, ;’><g;,’,U, z)

+ ((L’ A )*(-f;’z), g,"z)} + Im h (z, z) O.

Let us normalize z as Ilzll 2--a. By virtue of (2.7), we can see from (2.36) that Im
must be uniformly bounded for (e, or)e o,o" If not, the first term would remain
bounded, while the second term is equal to Im A, which is a contradiction. As for Re A,
it suffices to show that there exists a positive constant M1 such that Re
since A e Al.a (see (2.2) and (2.25)). We can prove this by applying a contradiction
method to (2.35) again. In fact, suppose that there is a sequence of complex eigenvalues
and their eigenfunctions (h, z.) with (e, or)= (e, r.)e fi0,o and [Iz. 1 such that
Re h.]’+oe as n]’+ee as hi’Co. Then, in view of (2.35), we can see that 1/r((z),
(Z.)x) + Re h.(z., z) diverges to +oe as n ]’ oe, while all the other terms remain bounded
for (e, r)e fi.o,o, which violates (2.35). Thus, we obtain the conclusion of Sublemma
2.1.

COROLLARY 2.1. Let A AI, be a complex eigenvalue of (2.5), and z be the associated
eigenfunction with z -- 1. Then, the following inequality holds

(2.37) 1 =< Ilzll.,-<_,/l+o-M for (e, o’)fio,o,
where M(>0) is independent of e and
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Proof. We know the uniform boundedness of[a[, [[(L’- A)*[], and partial deriva-
tives ..... r) f o,o.j fv etc., for (e, Therefore, we easily obtain the following estimate
from (2.35),

for(e, o’) eo,o,
where M(>0) is independent of e and o’, which leads to the conclusion.

Now, we shall show that there is a negative upper bound for the Re-parts of
complex eigenvalues by using (2.35) and (2.36). Since z is normalized as Ilzl[L2 1,
IIZ[[HI<--M*, where M* is independent of (e, r) 1o, from Corollary 2.1.

First, we consider the limiting behavior of each term of (2.35). It follows from
A AI,, (1.28) and Corollary 1.3 that there exists a positive constant c5 such that the
inequality

(2.38) C5E C5E )2[the second term of (2.35)] _-< --][z]l ql _-<--(M*
holds for (e, tr) ,,o and A AI,, where c.s does not depend on 6, (e, tr) and h. For
the third term of (2.35), we can see from Lemma 2.2 that

(2.39)
_f,,o+ Re h )-f., z), g*{the third term of (2.35)} +o" (f,*,-Reh)2+(Imh)2( * ’z

uniformly for A e A,, 0_-< tr < O’o and IIz[[/,-< M*. Therefore, for small e, we can
rewrite (2.35) in the following form:

l(zx, Zx)+< -f"(" >ff (f*’ Re h )2 + (Im h )2 (-f*"z), g*"z

+ Re h
(f,,o-_ Re h)2 + (Im A)2 [z[ 2, 1 -(g*’lzl2, 1)

+Re a +o(1) =0,

where o(1) denotes an infinitesimal term which goes to zero uniformly for h A1,6,
0=<or< cro and [Iz[I.-<-M*. In the following, we use the same notation o(1) for this
type of infinitesimal term. Combining the second and the fourth terms of (2.40), we have

(2.41) 2 Re A ((f,,o-_
After some computation, we obtain the following expression for Re, from (2.40)
together with (2.41),

l. f*’ -det*’ + g*’lh \1
ilZxll22/ )2 )21zl:, 1 / + o(1)

cr \(f,*’-Re h + (lm h
(2.4e) Re

14(f,_ReA):+(imA) Iz,l +o(1)

Recalling (A.3)-(A.5), h AI,(A) and Sublemma 2.1, we can see that

(2.43) 0 < C6 <
f.*’ det*’’ + g*’lh 12 ((f,*’-ReA)2+(ImA)’ 1+

det*, +f,*,’g*’ )(f*’-Re h)z+(Imh):/ <c7
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holds, where the positive constants c6 and c are independent of 6, A A1 and tr. Since

IIzll == 1, it follows from (2.42) and (2.43) that there exist positive constants/_t* and
e such that

ReA<-/z* for0<e<e,

where -/x* does not depend on 6 and (e, or) .o" Thus, we have obtained a negative
upper bound for complex noncritical eigenvalues.

So far, we only consider the case where r > 0. For the limiting case r 0, we
have to study the following eigenvalue problem instead of (2.5),

f { (-f’r/, the’) ,,oth,o ,,O(L,O _f,o g,O }(2.44) r.o_h g +g -h)( r/)+ r/ dx=hrl,

where r/ is a constant function. Note that Lemma 2.1 holds also for tr=0. If we
compare (2.44) with (2.26), we can see that (2.44) is a special form of (2.26) when we
set zi= constant function (i= 1, 2). Therefore, the above proof for cr > 0 is essentially
valid to the case tr =0 (even simpler than before), and the conclusion of Proposition
2.1 holds for o-=0 without any change. In fact, if we remove (1/)llzll)-from (2.33)
(or (2.42)) and put z r/, we obtain the key expressions to show Proposition 2.1 for
cr =0. We leave the details to the reader (see also [19]).

Thus, we have finished the proof of Proposition 2.1.
Remark 2.4. Reconsidering the above proof, we find that in the framework of

nonlinearities where

(AI) f.,,g.,o- < 0 on the reduced set R+ w R_

as well as (A.0)-(A.4) are satisfied, Proposition 2.1 can be proved under a weaker
assumption than (A.5). In fact, for real noncritical eigenvalues, we can see from (2.33)
that

(2.45) sup {f,*’ + g*’} < 0 for 0 < r < cro(<tr*)

is enough even without (AI) to guarantee (2.34). For complex eigenvalues, using (2.36),
we obtain from (2.40) that

1{ l llz/[l+((supf,,,+supg,,,)lzl2 1/}/o(1)Re h <_-- o- xI xI

Consequently, if we assume that

(2.46) supf*’+sup g*’<0 for0<cr<cro(<trl*).
xl xEl

Re A has a negative upper bound for small e and 0< tr < tro. Since (2.46) implies
(2.45), under (AI), we can replace (A.5) by the weaker condition (2.46). However, the
condition (2.46) depends on tr, in fact, when tro’ Crl*, we can see from Remark 0.2 that
supxx f*’ ’0. Therefore, if sUp(u,v)R+wR_ gv( hi, l)) is strictly positive, the valid region
of (2.46) is restricted to the subinterval of [0, o-*).

As far as noncritical eigenvalues are concerned, the effect of the second term

(2.47)
(-f"z, ")g,,,,

of (2.5) can be neglected, and therefore, we find that they are not dangerous to the
stability of SPS1 as in Proposition 2.1. However, if A A (e, o) is a critical eigenvalue
(i.e., lim+o A (e, o’) 0), then, the behavior of (2.47) becomes delicate in the sense that
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(i) the denominator of (2.47) approaches to zero as e $0, and the infinitesimal
order of sr’’- )t is not a priori known;

(ii) b’ does not have a limit function in L2-sense as e $0.
A nice characterization of (2.47) as e $ 0 is certainly necessary to overcome these

difficulties. We give first a heuristic argument how to know the asymptotic order of
A (e, or) as e + 0. We remind that bg)’ decays with an exponential order as e $ 0 outside
of any fixed neighborhood of the layer position x*(tr). Therefore, if the decaying
order of r’- A is milder than it, we can see from (2.5) that the outer part of the limit
eigenfunction is governed by (2.1). Namely, letting z(e, or) be the corresponding
eigenfunction to A(e, or), then the limit function z*= lim+o z(e, tr) belongs to H(.I)
and satisfies (2.1) with A =0 in each of the subintervals [0, x*(cr)) and (Xl*(tr), 1] in
classical sense. (Note that all coefficients of (LP) have a jump discontinuity at only
one point x x*(r) as e $ 0.) Then, z* must be strictly convex in each subinterval due
to the negativity of det*’/f*’’. Therefore, taking account of z*--0 on 0I, z* cannot
be continuous at x x*(cr), and has a finite jump discontinuity. On the other hand,
if we integrate (2.5) over a small neighbourhood IK =(x*(o-)-, x*(o’)+) of the
layer position x*(r), we obtain

-{z(x*()+ )-z(xl*()-)}+

Consequently, we have

(2.48) l[z*] lim lim- {integral of (2.47) over
O" $0 e$0

where [. denotes the jump at x x*(cr). Recalling Corollary 1.3 and (1.28), we can
see that A(e, tr)- r;’ must be O(e) as e$0, since the left-hand side of (2.48) is finite.
Thus, we may take the asymptotic form of (e, tr) as

(2.49) A (e, or) e’(e, or) with r*’ O’o*’’,
where r(e, tr) is a continuous function of e and or, ’*’ r(0, or), and sr’ is defined
by (1.30). Using (1.28), we can rewrite (2.47) in the following form

(2.50) o-’(e, or)+ Ep (e, o) "r(e, r)
g’d;’/x/-’

where Ep (e, r)= Exp (e, cr)/e which still goes to zero with exponential order like
(1.31). The following lemma gives a complete characterization of (2.50).

LEMMA 2.3 (the second key lemma).

-f;’ ’ C*l 8" in H-1 (i)_sense,(a) 4’0

g,,r ,, c’28" in H-l(I)-sense,(b) --e6
uniformly for 0<-o < o, where *= (x-x()), a Dirac’s &function at x(), and

c=-*J(v)]=.>O (see (A.2)),

c *{g(h+(v*), v*)-g(h_(v*), v*)} > 0 (see (A.4a)),
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with

L2(R)

Remark 2.5. Note that each coefficient c* (i 1, 2) of 3" does not depend on o-.

Proof. In order to show that {-fo $o /x/-}>o is a Dirac-sequence to c*(* it
suffices to prove the following. For an arbitrary interval (a, b)c I, it holds that

f {O f x tr) C: a, b ),
(2.51) li -f’’/ dx= c ifx() (a, b).

First, we consider the case where x()(a, b). Using the stretched variable y=
(X-Xl(e, ))/e, we have

(2.52) -f’’/dx (-f’) dy.
d(a--x(e,))/e

We can assume without loss of generality that x*() < a < b 1. The right-hand side
is majorized as

(b-x(e, ))/e
(2.53) Ithe right-hand side of (2.52)

Since IXl(e, )-x()l o(1) as e 0 (see (16) and (17) in Appendix 1), we see that

(a-xl(e, ))/e/e forsmall e,

where is a positive constant independent of e. Consequently, the right-hand side of
(2.53) goes to zero by viue of the exponentially decaying propey of;’(=o’,
see (1.24)), which completes the proof of the first pa of (2.51).

Next, we consider the case where x() e (a, b). In view of Corollary 1.1, Lemma
1.1 and Lemma 1.3, we have

-];’ -]’ in C..-sense and

(.54
.d;’ ,o’ a* in C..-sense.

o’ again, we can see that for any > 0, there existUsing the decaying propey of "
positive constants M and e such that

(-f
ylM, 3’

r*(-]’) fi *dy <--
ylM 3’

and from (2.54),

for 0 < e < ev. Thus, we obtain

-S,> )o ay- -]*o -y ay < y forO<e <e.
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Since y is arbitrary, we have

lim x/(-f:’)’ dy *(-?*’)-;- dy
e$O

h+(v*)

=-* L(s, v*) ds
d h_( v*)

-K*J(v)
Here we use the fact that * is a strictly monotone increasing function. Consequently,
we have proved (a) of Lemma 2.3. As for (b), the same argument works without any
change except the constant c. The constant c is computed as follows:

c= , wo dy

g(s, v*) s

*{g(h+(v*), v*)-g(h_(v*), v*)}.
Finally, noting that all the above estimates do not depend on for 0N < o, the
convergence results (a) and (b) are also uniform for 0N < o, which completes the
proof of Lemma 2.3.

Remark 2.6. Lemma 2.3 also holds for (SL) in Remark 1.4.
Using Lemma 2.3, we have

cc{z*, *}. in H-(I)-sense.

This characterization is a key to solve the problem (P2)u at the beginning of this
section. Our task is to determine the sign of *’. In the following, using (2.55), we
shall derive a limiting eigenvalue problem of (2.5) as e 0, which we call the singular
limit eigenvalue problem (SLEP), and show that *’ is uniquely determined to be a
negative constant. The assumption (2.49) and SLEP will be justified in the next section
as well as the uniquenesss and the simplicity of the critical eigenvalue. Since the
convergence in (2.55) has a meaning in H-l-sense, we rewrite (2.5) in a weak form:

---<Zx, @x> + <g’’o ,>

(2.56)
+(g,"(L"-A)*(-f"z), /)+(g"z, )= A(z, ),

z6 H(I), V Hi(I).
Using (2.55), Lemma 2.2 and lim,o A (e, w)= 0, we see that z*= lim,o z(e, ) satisfy
the following limit equation as e $ 0.

cc(z*, 6") /det*’ ,(SLEP) -(z, )+ (*,,__,, f,
z . =0, z* H(I),

for any $ Hi(I). Roughly speaking, the second term comes from the transition layer
pa, and the remaining ones represent the outer pa of (2.5) as e $0, namely (2.1)
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with A =0. We call the above limit equation the singular limit eigenvalue problem
(SLEP). Hereafter, we normalize the limit eigenfunction z* as

(2.57) (z*, 6*)= 1.

This normalization is always possible, since there are no nontrivial solutions of SLEP
which satisfy (z*, 6*)= 0. We denote the solution of SLEP under (2.57) by the pair
(z*, z*’) Hv(I)xR. It is easily seen that (SLEP)a is equivalent to the following
equations.

(SLEP-1)b

1 det*’
-z*+ z* =0 in [0, X*l(tr))w (X*l(tr), 1],

on 0/, and z* is continuous at x x*(tr),

1 * *C1 C2(SLEP-2)b --[z*]

where [z*] denotes the jump of z* at x x*(cr), namely,

[z*] lim {Zx*(xl*(tr)+ 6)- z*(X*l(tr)- 6)}.
650

Since det*"/f*’’ is strictly negative from (A.3) and (A.4) and smooth in each subinter-
val, there exists a unique solution of (SLEP-1)b under (2.57), which is strictly convex
and smooth in each subinterval (see Fig. 10). We denote this solution by *’ZN Using
the relation (SLEP-2)b, z*’ is also uniquely determined from z which we denote
by z Thus, we obtain a unique solution *’ *zN z of (SLEP)b under (2.57).

*,0

FIG. 10. Solutions of SLEP and a comparison ofjumps of (zi)x and (z*o")x at x x*t (r).

In order to judge the sign of r the following observation is useful. Let (SLEP)D
denote the problem (SLEP)b with replacing the boundary conditions z* =0 on 0I by
Dirichlet conditions z*= 0 on OL Then, we have the following.

LEMMA 2.4. (SLEP)r) has a unique solution zo with z*’=0 under (2.57) (see
Fig. 10).

Proof By differentiating the SPS1 of the stationary problem (SP) with respect to
x, we can see that h =0 is always an eigenvalue of (LP) under Dirichlet boundary
conditions. In view of Remarks 1.5, 2.3 and 2.6, we see that all the above procedures
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to SLEP can be similarly done for Dirichlet boundary conditions, so that we obtain
(SLEP)D. Therefore, V*’= limso v(x, e, tr) (see Theorem 1.1) becomes a solution of

*’ is given by(SLEP)D with ’*’ 0, and from a normalization (2.57), zo

(2.58) z*o"= V,.,(X,l (tr)

Now, a comparison oftwo solutions *’ *’zv r) and (zo 0) leads to the following
(see Fig. 10).

LEMMA 2.5.

(2.59) [(z*o’)x] < [(z*,u )x] <0.

Proof By virtue of the negative definiteness of det*’/f*’ and the positivity of
z; and zo a simple comparison argument implies that

n+xz >,-.xo and D-z< D-z*o" at x Xl*(r),

where D+(D-) denotes the right(left) x-derivative, which concludes (2.59).
In view of (SLEP-2)b, we can see from Lemma 2.5 that

’/’N <0 forO<tr<ro,

which shows the stability of SPS1. It is easy to see that rN is a continuous function
of tr for 0 < o" <tro, since det*’/f*’ depends smoothly on tr in each subinterval and
from (1.30).

Let us consider the limiting behavior of zN as tr$0. It is convenient to write
(SLEP)b in the following form.

det*,
(2.60) z* + r z* 0 in each subinterval and (z*, 6*)= 1,

(2.61) Zx* (or z*) 0 on OI and z* is continuous at x x*(r),

,c c
(2.62) [z*] tr,,_ .,,.
We can see from the negativity of det*’/f*’ and the boundary conditions that zs
and z*o" satisfy 0 <= z*, Z*’D < 1. Therefore, noting that [det*’/f*’[ < M for 0 < tr <tro,
where M is independent of tr, we easily see from (2.60) that

zu ), and (z*o’)x, 0 uniformly in each subinterval,
r$0

(*z)x 0 uniformly in each subinterval.
r$0

Using the boundary conditions, we can derive the following convergence:

(2.63)N Z 1 uniformly in C2-sense in each subinterval,
r$0

(2.63)D z*o’ z*d uniformly in C2-sense in each subinterval,
r0

where z*d is a piecewise linear function as is shown in Fig. 10. Now, if we put ff 1
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in (SLEP)a, we obtain

c* c2" det.*’’ )(2.64) o’’’^ ’v*’
+
\ f.,,

zv*’, 1 =0.

Therefore, using (2.63)N, we can see that ’ converges to r; as r0, which is
determined by the relation

/det*, )Cl C2(2.65) zq0 + \ f.,o 1 0.

On the other hand, starting from (2.44), we can derive the SLEP for the limiting case
tr 0. It turns out after some computation that the SLEP for tr 0 is exactly the same
as (2.65) (see also Nishiura and Fujii [19]). Thus, r is a continuous function of tr

up to cr 0, and r is explicitly given by

(2.66) z;o c*c*
((det*’/f*’), 1)"

We summarize the above results in the following theorem.
THEOREM 2.1. The singular limit eigenvalue problem (SLEP) has a unique solution

:,r
Zlv zd)H(I)xR under a normalization (2.57) such that

(i) zN is smooth, strictly positive and convex in each of the subintervals [0, Xl*(tr)]
and [x,*(r), 1] (see Fig. 10),

(ii) *’’v is a continuousfunction oftr, and strictly negativefor 0 < tr <tro. Moreover,
r=lim,o r is given by (2.66).

3. Justification of SLEP and the uniqueness of critical eigenvalue. In this section,
we give a justification of SLEP and show the uniqueness and simplicity of the critical
eigenvalue.

THEOREM 3.1. There exists a positive constant such that (2.5) has a unique critical
eigenvalue A Ac(e, tr) in B for small e. At(e, or) is real, simple and takes the form
Ac(e, tr)= er(e, tr), where z(e, tr) is a strictly negative continuous function for (e, tr)
flo,o. Moreover, (0, or) is just equal to ’ determined by SLEP in Theorem 2.1.

This result combined with Proposition 2.1 guarantees that the negativity of z
in Theorem 2.1 implies the stability of SPS1 for small e > 0.

The strategy to show Theorem 3.1 is to reduce the problem of finding critical
eigenvalues of (2.5) to solve the algebra-like equation for A by applying the inverse
operator K’’a (see Lemma 3.1) to (2.5).

Recalling Lemma 2.3, it is convenient to consider (2.5) in a weak form (2.56).
First, we will define the operator K’’, which is, roughly speaking, equal to

d2

g,.,(L,_A),(_f;,.)_go." +A.
O" dx2

Let us introduce the bilinear form/....a by

(3.1) /....a(zl, z2)=l(zx, Z2x)-({g’(L"-A)*(-f’.)+g"-A}zl, z2)

for any z H(I) (i 1, 2), which is equal to B’’ (see (2.26)) after removing the
second term of B....x. For a given h H-I(I), we consider the equation for z H(I)"

(3.2) /’’a(z, @) (h, ) for any H(I).
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If z is uniquely determined, we can define the mapping K’’ as

(3.3) K’’Xh- z; H-I(I) H(I).

We have the following result for K .....
LEMMA 3.1. For any tro(<tr*), there exist positive constants eo and to such that

K .... is a well-defined uniformly bounded mappingfrom H-i(I) to H(I) for 0<= e < eo,
0 <- tr <tro, and A o, and depends continuously on (e, tr) and analytically on A
in operator norm sense, respectively. Moreover, K’’x is the operator which maps h

H-l(I)) to the constant function Cz defined by

(3.4) Cz=-(h, 1)/({g,’(L’-A)t(-f". )+g’-A}l, 1).

Proof. First we consider the case where tr is positive. Using the similar arguments
to obtain (2.28) and (2.29) in 2, we can see that, for a given tro (<trl*), there exist
positive constants eo and go such that

(3.5)

and

(3.6) .... z)l-> c llzll ,’
hold for 0 =< e < eo, 0 < o" <tro and A e/o, where c2 and 3 are positive constants which
are independent of e, tr and A. Note that eo can be taken uniformly for A e/o, since
/....x lacks the second term of (2.26). Therefore, it follows from the Lax-Milgram
theorem that, for a given h e H-l(/), there exists a unique z e H(I) such that

(3.7) /....(z, ) (h, ) for any e HI(I).

Thus, the generalized inverse operator K ....x
z= K’’Xh; H-’(I)+ H(I)

is well defined, and it holds from (3.6) and (3.7) that

(3.8) IlK .... -<- 1 for 0-< e < eo, 0 < r <tro and A /o,
where IlK ....Xll denotes the operator norm of K...., i.e., K ....x is uniformly bounded
in this parameter region.

Next, we consider the parametric dependence of K’’x on e, tr and A. From the
definition of K ’’’x we have

/....X(K ....Xh, )=(h, )= "’"’X’(K""’’h,
for any h H-l(/) and 0 H1N(I) Using this, we have the following equality

/J"’X(K ....’X h, 0 ’"’ K’’’’’’h, O)
(3.9)

"’"’’(K""’’h, d/)-....’(K"’"’’h, d/).

The left-hand side of (3.9) is equal to

/....X({K’’x K"’"’’}h, d/).

Let (K ....’-K""X’)h, then, using the inequality (3.6), we obtain

(3.10) I’"’({K"" -K"""’)h, {K""X-K"’"’’}h)I>-_311(K ....’-K""’’)h[[
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On the other hand, the right-hand side of (3.9) is estimated from above for @=
(K’’a K""a’) h as follows"

]the right-hand side of (3.9)]
1 1

K ,,,,,,
O" 0

"v

(3.11) + {(g,"’’(L’’’’ A ’)*(-f"’’. )+ g"’- A’)- (without ’)}K""’h t:]
Combining (3.10) with (3.11), we obtain the following inequality:

(3.12)
+ I[{(g"’(L"’-A’)*(-f’’’. )+ g"’- A’)- (without ’)}K""’h[L

Note that when [[hl[n-,l we have I]K""’h[[H,f from (3.8). Recalling that
(L’-A)*(-f". converges to (-f’.)/(f’-A) as e0 uniformly on a bounded
set in Hi(I) (see Lemma 2.2), L2-continuity of the coecients with respect to para-
meters up to e =0, and the resolvent formula in Remark 2.2, we can see from (3.12)
that K’’* depends continuously on (e, ), and analytically on A in operator norm
sense for 0 e < eo, 0 < < o and A Bo, respectively.

Finally, we consider the limiting behavior of K’’ as 0. Although the bounded-
ness of .... breaks down in this limit (see (3.5)), we can recover it by dividing the
solution space into the average flee space and the constant function space as follows,

(3.13) Z=Cz+ and h=ch+h
where c (z, 1), Ch (h, 1) and 3 and are average free pas of z and h, respectively.
Let (I) denote the average free space, namely,

(I) { H(I)I( 1) 0).

Substituting (3.13) into (3.2), and multiplying on both sides, we obtain for =HN(I),
L -fU"(x x) ({g, A)*( )+g +A}z,)

=({g;’(L’-A)*(-f’.)+g;’+A}c+h, ).
Noting that (x, ,)is equivalent to H-norm in -space, we see that there exist a
&(>0) such that the left side of (3.14) is a positive bounded bilinear form for0 < &
Thus, we can solve (3.14) with respect to as a function of c and as = (c,)
(I) with the aid of the Lax-Milgram theorem. Fuhermore, satisfies

+
where C is a positive constant independent of e and . On the other hand, if we set

@ 1 in (3.2), we have

(3.16) -({g;’(L’-A)*(-f’.)+g;’-Z}(Cz+), 1)= (c, 1).

Substituting (c, ) into (3.16), we have an equation for c. Note that the coefficient
of c in the left-hand side of (3.16) is strictly negative by viue of Lemma 2.2, (A.3)
and (A.4b) for 0 e < Co, 0 < o, and A Bo. Here, we take eo and 6o smaller, if
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necessary. In view of (3.15), we can see that (3.16) is uniquely solvable with respect
to Cz for small as

(3.17) c =c (h).

Thus, z K ....X h takes the following form

(3.18) z= Cz"’X(h)+ 3(Cz (h),

for 0 e < eo, 0 < and A Bo.
Integrating the results from (3.15) to (3.18), we can see that

K ....x K’’ in operator norm
$0

uniformly for0 e < eo and A Bao, where K’’x is the operator which maps h H-(I)
to the constant function Cz defined by

(3.19) Cz -(h, 1)/({g’(L’- A)*(-fS’. )+ g.O_ A }. 1, 1),

which completes the proof of Lemma 3.1.
Remark 3.1. When h L(I), K ....X h belongs to H2(I) H(I). Moreover, for

positive e, when h is smooth, so is K’’ h.
Now, we will derive a scalar equation for A, which is equivalent to (2.56). Applying

the operator K’’a in Lemma 3.1 to (2.56), and dividing both denominator and
numerator by e, we have

(3.20) z=
(z’-f$’’/)

K....(g2’/),
which implies that z is a scalar multiple of K’’a(gu o /), namely, z=
aK’’a(g’’/) with a being a scalar constant. Substituting this into (3.20), we
can see that (3.20) has a nontrivial solution z if and only if A satisfies the following
equation,

]’ /

It follows from Lemma 2.3 and Lemma 3.1 that the left-hand side of (3.21) is continuous
with respect to (e, ), and analytic with respect to A for 0 e < eo, 0 <o and
A Bo. Therefore, recalling the asymptotic form of ff’ (see (1.28) in Lemma 1.4),
must be O(e) in order that (3.21)has a solution A A(e, ) with A(0, )=0. Hence,
without loss of generality, we can set

(3.22) X er(e, ),

where z is a bounded continuous function for (e, )o.o- Substituting (3.22) into
(3.21), it is easily seen that (3.21) is equivalent to the following scalar equation for

(3.23)

When e =0, there exists a unique solution of (0, , )=0 for any with
0 N < o, namely

(3.24) ., *,
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Moreover, in view of (3.23), we can see from the uniform continuity with respect to
tr that, for any Ko>0, there exists an eKo>0 such that, if (e, tr, r) is a solution of (3.23)
with 0 < e < eK and 0 < tr < tro then z must belong to the Ko-neighbourhood of zsw in
the complex plane. Recalling (SLEP)a in 2, (2.57) and the definition of K’<’x, z4
defined by (3.24) is just equal to ’v given in Theorem 2.1. On the other hand, since
(0, tr, z4) 0 and (0/0z)(0, tr, r4) 1, we can apply the implicit function theorem
to (3.23) and obtain a unique solution r re(e, tr) with zc(0, tr) *’’N in the appropriate
region0<e<e*,0<tr<troand I’-z I<r where and r do not depend on
tr. If we take ro to be smaller than r* and eo to be min {eo, e*}, we can see from the
above arguments that -= ’(e, tr) is a unique solution of (3.23) for 0_-<e <Co and
0_-< tr < tro, which implies that

def

(3.25)
is a unique solution of (3.21) for 0_-< e < Co, 0-< tr <tro and A B, where 0 < i _-< eoKo.
Noting that is a real operator, it is clear from the uniqueness that ’(e, tr) is real.

Finally, we show the simplicity of the critical eigenvalue (3.25). Apparently, the
geometric multiplicity of At(e, tr) is equal to one, since the z-component of the
eigenvector t(w, z) is uniquely determined by Zc K’<’’<’)(g,’<’4J’ up to a con-
stant multiple, and so is the w-component through w (L’-A(e, ))-l(-f’z).

In order to show that the algebraic multiplicity is also equal to one, we introduce
the adjoint operator of’ (see (LP)) defined by

22 d2

(3.26) (’)* =A*
z*

f.
1 dz

g, z* z*
S

with ((’)*)=(H(I)H(I))2(c (L2(I))2) into (L(I)). It is not dimcult to
verify that (’)* has the same isolated eigenvalue A*=A(e, ) with geometric
multiplicity being equal to one. The associated eigenfunction is given by ’(w, z)=
’((L’-A(e, ))-l{-g’(K’’ac)* (f’’)}, (K’’a)*(f’’)), where (K’=’Xc)*
is the generalized inverse from H-I(I) to H(I) analogously defined as K’’x. From
the closed range theorem, we have ((’-A)*)=(’-A), where and
denotes the nullspace and range, respectively. Therefore, in order to show the simplicity
of A(e, ), it suffices to prove

(3.27) z*)ll o,
where <<., >> denotes the inner product in (L2(I))2-space. Let us compute the
left-hand side of (3.27). Using the eigenfunction expansion of L’, we rewrite w as

w (,-x)-{-fU/,,(g,6U))

(3.28) b.+ (L,’- A)*{. }

K.<,c g,,< diJ,<lvr f,<" , _){.).o +(’
Co(, )

Since ]]g’b’l]u-, O(x/-) from Corollary 1.3, it follows from Lemma 3.1 that
]]K’’Xc(g,’4,’)11, O(47), which shows that the second term of (3.28) is of O()
due to the L-uniform boundedness of (L’’- Ac)* (see (2.7)). On the other hand, the
first term of (3.28) is just equal to b’, since A e’ is a solution of (3.21). Therefore,
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the principal part of wc for small e is given by 4o namely,

(3.29) wc b’+ O(v/7) as e 0 in L2-sense.
Note that the above computation also shows that

(3.30) z O(vCT) as e 0 in LE-sense.
Similarly, we have the analogous result for the adjoint eigenfunction;

w* ;,+ 0(47)
L-(3.31 as e $ 0 in sense.

z* 0(47)
Thus, using (3.29)-(3.31), we can see that the inner product (3.27) becomes

z/’ z*]
=l+O(e) for smalle,

which concludes the simplicity of h(e, or) for small e and finishes the proof of
Theorem 3.1.

4. Concluding remarks-instability theorems. As mentioned in the Introduction,
concerning the stability of SPS, and in particular that of mode 1 patterns, it has been
widely believed that they are stable so long as they can be constructed. Also, "numerical
evidences leave little doubt that the pattern is quite robust" (according to Conway [3]).

So far, our study has been concentrated on the stability of SPS of mode 1, from
the viewpoint that "under what conditions SPS1 are stable solutions?" Our Main
Theorem says that the above belief is partially correct, that we needed (A.5) as the
stability condition of SPS1, together with the existence conditions (A.1)-(A.4).

We have an important remark here. If the direction of the inequality in (A.5) is
reversed, then an instability theorem follows for SPS of mode 1.

Another possibility of instability is that the sign of dJ/dv at v* is reversed in
(A.2). Of course, this means a violation of our (Existence Conditions). However, it is
not difficult to see that (i) SPS can still be constructed under such a reversed condition
on dJ/dv at least for small or, and that (ii) there can exist a nonlinearity satisfying the
reversed condition on dJ/dv, without destroying the other existence conditions. In
fact, we can construct a function f(u, v) by an appropriate deformation around the
central branch ho(v) so that J(v) has three zeros at v =_v*, v*, and * as in Fig. 11,
and dJ/dv > < )0 at v v* (_v* and *), respectively. We remark that the mathematical
structures of these two instabilities are not the same, namely, the noncritical instability
for the first case and the critical case for the second case. More precisely, the instability
occurs in two different ways as follows. Hereafter, let us fix tr to be an appropriate
positive constant.

(1) Instability of noncritical type. We shall show that there exists a real positive
eigenvalue of (LP) for small e, if go satisfies the following:

min {f,, + go} > O,

(4.1) min { (f + g,,)2-4(f,,go -fog,,)} > O,
(u,o).R+wR_

min i(x) > max _a (x),
xeI xI

where X(x) and _a(x) (_a(x)< X(x)) are two real positive solutions of

a2-{f*,’(x)+g*,’(x)}a +det*’ (x) O.

U*Recall that f’ (x) f ’(x), V*’(x)) and so on.
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v

g(u,v) 0

.

/

0

FIG. 11. An example of the nonlinearity satisfying (dJ/dv)>O at v-v*.

First, let us consider the following minimization problem for real A associated
with (2.33 )"

def

(4.2) m tr, A min B*’’
zH2( )Hl( ),llZllL

Suppose m(cr, A) is equal to zero and attained by (z, A)= (z*, h*), then (z*, h*) is a
solution of the eigenvalue problem

1 det*" go
(4.3) Zxx z hz.

o" a -f*’
Under the conditions (4.1), we can find a hi> 0 such that

A 2 (f.*. + go*’)h + det*,

while, for large A2 > 0, we have

a :- (f*’ + g*")a2+ det*

Xg--fu*’

<0 for anyxe/,

>0 for anyxL

Let z 1 in (4.2), we see that m(tr, hi) < 0. On the other hand, it is clear that m(tr, h2) > 0.
Therefore, by using a continuity argument, it is easily seen that there exists a A o* such
that m (tr, h o*) 0 with 0 < h < h o* < h2. This implies the existence of the real positive
eigenvalue of (4.3). Applying a regular perturbation technique to (2.5) with the aid of
K .... in Lemma 3.1, it is not difficult to obtain a real positive eigenvalue h h*(e, tr)
with h*(0, or)= ho* of (LP) for e > 0. We leave the details to the reader.

(2) Instability of critical type. If dJ/dv(v*) changes its sign from negative to
positive, two important quantities also change signs. The first One is o*’ (see (1.30)),
which changes sign from positive to negative. The second one is the coefficient Cl* of
8" in Lemma 2.3, which becomes positive when dJ/dv(v*)> 0. In view of SLEP in
2, we see that SLEP is invariant under the transformation from (c*, so’*", r*’) to
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(-Cl*, -’o ’, -r*’). Therefore, r*’ takes a positive value when dJ/dr(v*)> 0, which
implies the existence of the unstable real critical eigenvalue which tends to zero from
the positive side with O(e).

Thus, we have shown the following proposition.
PROPOSITION 4.1. Ifthe sign ofgol+_ (Stability Assumption (A.5)) or dJ/ dv( v*)

((A.2)) is reversed, SPS1 U’ becomes unstable in the following sense.
(i) If gv > 0 on R+ w R_ and satisfies (4.1), then there exists a real eigenvalue

A *(e, tr), which is strictly positive for small e.

(ii) IfdJ/ dv( v*) > O, the unique critical eigenvalue At(e, tr), which is real and simple,
approaches to zero from the positive side with O(e) as eO, namely, Ac(e,
*,e(*, > 0).

Remark 4.1. For the limiting case o-= 0, the proof for the instability of critical
type is also valid. While, for noncritical type, the same instability as in Proposition
4.1 occurs under weaker conditions than (4.1), namely,

(f. .o + g,.o) dx > O,

{f (f*’+ g*’) dx}2-4 f det*’ dx>O.

This can be proved by making use of (2.44) in an analogous way.

Appendix 1. We show the outline of the construction of SPS1 and its parametric
dependency in Theorem 1.1. The method here is essentially a modified version of
Mimura, Tabata and Hosono 15]. However, this improves the original version at the
three points:

(i) The it-family of SPS1 is uniformly constructed with respect to tr up to tr 0.
(Note that the method in [15] breaks down as tr tends to 0.)

(ii) Although the smallness of o- is assumed in [15], our method enables us to
construct SPS1 for any tr [0, try*), thanks to the device by Ito [11].

(iii) Construction of SPS1 solutions proceeds in the function space X := C2 x C2,
as compared with X := C2 x H2 in [15]. This is due to Hosono and Mimura [10].

A.I. Reduced lrolflem. We begin with the Cl-matching solution of (RSP). For a
given xl (0, 1), we consider the following problem in each of the subintervals I_,,
(0, x) and/+x, (x, 1)"

-(V)xx+G(V)=O,
(1) (V_),(0) 0 (V+),,(1),

V_(x,) v*= V/(x,),

where G(v) g(h(v), v) for v I+/-. It is a useful trick for the uniform construction
up to o" 0 to put

(2) V+/- v* + trW+.

Substituting (2) into (1), we have

W+/-)xx + G(v* + crW+/-) O, x e

(3) (W_)x(0) 0 (W+),,(1),

W_(x,) o W+(x,).
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The problem is to find an xl so that W+ and W_ are matched in Cl-sense at x xlo
Here we only consider the monotone increasing solution of (3). Using similar arguments
as in [15] and [6], we can prove the following two lemmas.

LEMMA A.1. Under (A.0), (A.1) and (A.4), there exists a uniquely determined
positive constant tr* and a unique C-function x* (tr) oftr e [0, try*] such that thefunction
W*(x; tr) defined by

W*(x; ), x f*, [o, x*()],
W*(x; tr)

W*+(x; tr), x e Y*+’ [x*(tr), 1],

belongs to C( _) and depends continuously on tr in C(f)-topology for tre [0, o’1"] (see
Fig. A.1), where W(x; tr) is the solution of (3) for x I+/- respectively. Moreover, as
o-$0, x*(0)= limoX*(tr) is given by

G+(v*)
(4) x*(0)

G/(v*)-G_(v*)"

The constant tr* and the function x*(r) are the same as appeared in Propositions 1.1
and 1.2.

Remark A.1. When tr 0, W**:(x; 0) are quadratic functions of x in I.*’.
For later use, we also construct reduced solutions which have perturbed matching

points and values in C-sense.
LEMMAA.2. For any tro[0, trl*), and small positive constants to and tOo, let

W_= W_(x; x, o, tr)= W_(x; 8, tO, tr) be the solution of

W_)xx + G_(o + trW_) O, 0<x<x,

(w_)(o) o,

W_(x*()+ ) o,

for (8, tO, tr) Fo, where xl X*l (tr) + and o v* + tO, and Fo= ((8, ,o, r) 31 I1 < o,
I1 < o, [o, o)}. Similarly, we can define W+(x; 8, tO, tr). See Fig. A.1. Then, we have

(i) W+/-(x; 8, tr) depends continuously on (8, tO, tr) in ck-topology (k->2).
(ii) W_(x; 8, tO, tr) W*(x; )11 ’(to,x(>/]-, o

as 8, tO -> 0,w/(x; , ,o, ,)- W*(x; ,)11 Cl([x’l’(tr)+,l]) -’)’ 0

uniformly for tre [0, tro).

V*

u+oW_(x" 6,0,)
0

u+oW+(x; 6,m,o)

FIG. A. 1. Reduced solution which depends on parameters and
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(iii) +/-__d ( 0

d$ xx W+/-(’; 6,o,o’) x=x1’(,)+*) < 0 for (8, w, or) e Fo.

A.2. Approximate solutions in subintervals. We shall construct the solutions
(u., v+/-) of the following two problems:

(5a)
e2(u_)o, +f(u_, v_) 0,

1
(v_),x + g(u v_) 0,

X t (0, X1) X Xl(O") -- ,
with the boundary conditions

(u_)(0) 0, u_(x) ho(v*),
(Sb)

(v_)(0) =0, v_(x,) v* +

and

(6a)
e2(U+)xx+f(u+, /)+) 0,

Xe(Xl, 1),
1
-(V+)x+g(u+,v+)=o,

with the boundary conditions

(u+),(1) =0, u+(x,) ho(v*),
(6b)

(v+),(1) O, /)+(Xl)

Using the solution W+/- in Lemma A.2, we define V+ by

(7) 9(x; , o), r) v* + o) + rW+/-(x; ,, oo, r).

The 0th approximate solution (U/, V/) for (6) is defined as follows (( U_, V_) is
analogously defined)"

(8a)

(8b)

U+(x; , o, , ) h+( f’+(x; , ,o, )) + z+(x; , ,o, , ),
V+(x; 6, w, e, o’)= Q+(x; 6, oo, o’)+ e2trY+(y),

where y is a stretched variable, namely y (x-Xl)/e. Here, Y+ is defined by

Y+(y) IT"(y) IT"(0)’(x),

IT-(y) {g(h+(fz+(n’, ,, oo, r))+ L(n’, 8, o, e), o)

-g(h+( V+(r/’, 8, w, or)), o)} dr/’ dr/,

where st(x) is a C-cutott function defined by

for x e [0, I],
for x e [1/2, 1].
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Remark A.2. Y/(y) is uniformly bounded in C2-sense for (e, tr) fo,o, and z+
is defined by

o -h+(o .
where ff(y; o) is the layer correction term defined by the solution of

da

(9) dyZY+f(Y, o)=0, (0)= ho(v*), (+)= h+(o).

The layer correction term satisfies the following.
LEMMA A.3 (Fife [4]). e solution Y= (y; o) of (9) exists uniquely and satisfies

the following properties:
(i) (y; o) is monotone increasing and

(ff(y; v)-h+(u)) N C exp (-y) (j=0, 1,2),

where the positive consmncs C and are independent of for < o (recall that
o=v*+).

e*(0; f(, e.

We seek the desired solution of (6) in the following form:

d

(10b) v+ + + s+ v +( W+ + e Y+ + s+),

where U+, V+) is defined by (8), and (r+, s+) is the unknown vector to be determined
so that (u+, v+) becomes a true solution of (SP) in (x, 1). Let us introduce several
notations; t= (r+ s+), = (, , ), X Cox C, and Y Cx C. We define the
operator T from X to Y by

eu++f(u+,
( r(, e; =/

T is a continuously differentiable mapping of for (e, )E (0, eo)x Fo. AnalogOusly
as in Lemma 4.3 of [15], we can obtain the following lemma.

LZMMA A.4. ere exist positive COSltS eo, o d o sch thl the following
estimates hold for (e, &) (0, eo)x Fo;

(i) T(0, e; a)[I = Koe,

(ii) r;l(0, ; a)ll,,, <+,

where K (i= 1, 2) are positive constants independent of e, ).
Applying the generalized implicit function arguments (see [15] and [4]), we can

find solutions of T 0, namely, true solutions of (6) in the right-half inteal (Xl, 1).
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THEOREM A.1. There exist solutions t(e; A)= (r+(e; A), s+(e; A)) of T=0 for
(e; A) (0, eo)XFo such that t(e; A) depends continuously on (e; A) in X-topology, and
when e O, it goes to zero with the asymptotic order as

r/ co+ s/ -<- c,
where C > 0 is independent of (e, A) (0, eo)x Fo. Moreover, if we denote the solution

of (6) by (u+(x; , w, e, ), v+(x; , , e, )), then it satisfies

u+(x; , , e, )lx=xt+a f(s, v) ds (v v* + ),
ho(v*)

In a similar fashion, we can construct the solution (u_(x;,,e,),
v_(x; , , , of (5.

order to obtain a solution of (SP) on the whole inteal, we have to solve the
C-matching problem at x x() + & Let us introduce the matching functions (, )"

(13a) (,,e,)=(ed ) (de, u_u+(x()+ , , , e, ) (the same value)

(13b) *(, , e, )= v+(x()+ , , , e, )-v_ (the same value)

Note that the factor 1 / is impoant to construct the solution up to 0. Analogously
as in [15], and can be extended to be a uniform continuous function for
(e, ) e [0, eo) x r0, and satisfy

lim (0, 0, e, tr)= 0
(14) uniformly with respect to o-.

limW(0, 0, e, tr) 0

Moreover, it follows from assumptions (A.2) and (A.4) that

becomes an invertible matrix as in [15]. Therefore, applying again the generalized
implicit function theorem of [4], we obtain a solution 8(e, tr) and to to(e, tr) of

0 such that they are continuous functions with respect to (e, tr) up to e 0, and

a a(e, o-) 0

(16) uniformly with respect to

to to(e, r) 0
eo

Substituting this solution (6(e, tr), to(e, r)) into (u+/-, v+/-), we obtain the SPS1 U’
in Theorem 1.1 which satisfies (1.5)-(1.8).

Note that the matching point x xl(e, tr) is defined by

(17) x,(e, tr)= x* (tr)+ a(e, or).
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U the only problem is the continuity atAs for the parametric dependency of ’
e =0. However, in view ofTheorem A.1, (16) and the continuity of the reduced solution
U*’, V*’) with respect to tr in L2x Cl-topology, we can see that U’’ is a continuous

function of (e, r) up to e 0.

Allendix 2. We prove Lemma 2.1 by contradiction. Suppose that this lemma does
not hold, we can choose a sequence {e,}, with lim, e, =0 such that ff.’ is the
eigenvalue of (LP) for n 1. Let (w., z.) be an associated eigenfunction with -’.
Then, from the solvability condition of the first equation of (LP), we have

(18) (fo" z,,-’)=0 forn>l

When (18) is satisfied, the general form of w, is given by

(19) w. k.O.,+(L., .,)t( ,-fo" z,), k; real constant.

Substituting (19) into the second equation of (LP), we obtain

(20) --l(z,)xx+g"’k,-’+g.’(L-’-....)*(-fo."z,)+g.’z, o"’z,.

Recalling K -’’c;"’ exists and uniformly bounded for all n 1 (see Lemma 3.1), we
can see that k, 0, otherwise (w,, z,) (0, 0), which is a contradiction. Dividing (w,, z,)
by k,,, we have a new eigenvector (,, ,);. w./k.. 6o"’ /. + ("’ C;"’)*( .....

-o" .) . ./k...
Then, z satisfies (20) with replacing k,-’ by .’/, in the second term. Therefore,
recalling that -’/ converges to the constant multiple of the Dirac-function 6"
(see Lemma 2.3), we can see that *=lim, , exists in H(1), and (*, 8") 0. On
the other hand, it holds from the (18) and Lemma 2.3 that (*, 6")=0, which is a
contradiction, and completes the proof.

REFERENCES

1] D. G. ARONSON, A. TESEI AND H. WEINBERGER, On a simple density-dependent diffusion system,
preprint.

[2] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955.

[3] E. O. CONWAY, Diffusion and predator-prey interaction: pattern in closed systems, Res. Notes in Math.,
101 (1984), pp. 85-133.

[4] P. C. FIFE, Boundary and interior transition layer phenomena for pairs of second-order differential
equations, J. Math. Anal. Appl., 54 (1976), pp. 497-521.

[5] H. Fuji! AND Y. HOSONO, Neumann layer phenomena in nonlinear diffusion-systems, in Recent Topics
in Nonlinear PDE, M. Mimura and T. Nishida, eds., Math. Studies 98, North-Holland, Amsterdam,
1983, 21-38.

[6] H. FuJII, M. MIMURA AND Y. NISHIURA, A picture of the global bifurcation diagram in ecological
interacting and diffusing systems, Physics 5D, (1982), pp. 1-42.

[7] H. FUJI! AND Y. NISHIURA, Global bifurcation diagram in nonlinear diffusion systems, in Nonlinear
PDE in Applied Sciences, U.S.-Japan Seminar, Tokyo, Math. Studies, 81, North-Holland, Amster-
dam, 1982, pp. 17-35.

[8] H. FuJII, Y. NISHIURA AND Y. HOSONO, On the structure of multiple existence of stable stationary
solutions in systems of reaction-diffusion equations, in Patterns and Waves--Qualitative Analysis of
Nonlinear Differential Equations, T. Nishida, M. Mimura and H. Fujii, eds., Stud. Math. Appl.,
18, North-Holland, 1986, pp. 157-219.

[9] A. GIERER AND n. MEINHARDT: A theory of biological pattern formation, Kybernetik, 12 (1972), pp.
30-39.



1770 Y. NISHIURA AND H. FUJII

[10] Y. HOSONO AND M. MIMURA, Singular perturbation approach to traveling waves in competing and
diffusing species models, J. Math. Kyoto Univ., 22 (1982), pp. 435-461.

[11] M. ITO, A remark on singular perturbation methods, Hiroshima Math. J., 14 (1985), pp. 619-629.
[12] M. MIMURA AND J. D. MURRAY, Spatial structures in a model substrate-inhibition reaction-diffusion

system, Z. Naturforsch, 33C (1978), pp. 580-586.
[13] M. MIMURA, Y. NISHIURA, A. TESEI AND T. TSUJIKAWA, Coexistence problem for two competing

species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), pp. 425-449.
[14] M. MIMURA, Y. NISHIURA AND M. YAMAGUTI, Some diffusive prey and predator systems and their

bifurcation problems, Ann. New York Acad. Sci., 316 (1979), pp. 490-521.
[15] M. MIMURA, M. TABATA AND Y. HOSONO, .Multiple solutions of two-point boundary value problems

of Neumann type with a small parameter, this Journal, 11 (1980), pp. 613-631.
16] Y. NISHIURA, Global structure of bifurcating solutions of some reaction-diffusion systems, this Journal,

13 (1982), pp. 555-593.
17] , Every multi-mode singularly perturbed solution recovers its stabilitymfrom a global bifurcation view

point, Lecture Notes in Biomath. 55, Springer, Berlin-New York, 1984, pp. 292-301.
[18] Y. NISHIURA AND H. FuJII, Stability theorem for singularly perturbed solutions to systems of reaction-

diffusion equations, Proc. Japan Acad. Set. A Math. Sci., 61 (1985), pp. 329-332.
19] Y. NISHIURA AND H. FUJII, An approach to the stability of singularly perturbed solutions in reaction-

diffusion systems, preprint.



SIAM J. MATH. ANAL.
Vol. 18, No. 6, November 1987

1987 Society for Industrial and Applied Mathematics
018

MULTIPLE STEADY STATES IN A BIOCHEMICAL SYSTEM*

CHUNQING LUg-

Abstract. The differential equation

-s"+o’s/(l+s+ksX)=O, 0<x<l,

s(0) s(1) s

for k > 0 and for tr > 0 governs the steady state in a reaction-diffusion equation which describes a substrate
in a mono-enzymatic artificial membrane. We present a proof that for given k > 0 there exists an s*> 0

(depending on k only) such that for So > s* and for any cr > 0 there exist at most three positive solutions
for this steady state problem.

Key words, enzyme, steady state, response function

AMS (MOS) subject classification. 92

1. Introduction. M. C. Duban [3] and J. P. Kernevez and D. Thomas [5], [8]
introduced a nonlinear evolution equation in 1974 and 1975 which describes the
diffusion and reaction of a substrate in a mono-enzymatic artificial membrane, when
the enzyme is inhibited by an excess of substrate:

(1.0) S, Ds&x + R S) O,

together with boundary conditions

S=So atx=0 and x=L (L membrane thickness),

and the given condition, where S S(x, t) represents the concentration of the substrate
of the membrane, Ds is a constant, the coefficient of diffusion, and

R(S) VS/[ks + S( + S/k)]
is the velocity due to the reaction where ks is the Michaelis constant, kss the inhibition
constant of S for the enzyme and VM the maximal value of the reaction rate. Non-
dimensionalizing the quantities, one obtains the following equation:

s,-sxx+crF(s)=O, 0<x<l, t>0,

(1.1) s(O,t)=s(1, t)=So,

s(x, 0) given

where s= S/ks, F(s)= s/(l +s+ ks2) and cr=(VM/ks)L2, k= ks/kss and So=So
are positive constants. Then the steady state equation associated with (1.1) is the
two-point boundary value problem

(1.2) -s"+rF(s)=O, s(O)= s(1): So.

J. P. Kernevez proved that for o- large enough and So conveniently chosen, (1.2) admits
at least three solutions, and presented numerical evidence that there are at most three
solutions for any positive So, k and r [6, pp. 64-73]. In 1976, C. M. Brauner and B.
Nicolaenko [2] rewrote (1.2) in the following form:

-U"+U/(Ot2-l-olll+k2u2)-’O, 0<x<l,
(1.3)

u(O) u(1) 1

* Received by the editors June 3, 1985; accepted for publication (in revised form) October 22, 1986.

" Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
This author is on leave from Computing Center, Academia Sinica, Beijing, P. R. China.
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by defining u S/So, a2= 1/tr, fl SoU. They studied the stability of multiple solutions
of (1.3) for sufficiently small a > 0, i.e., for tr large enough and So conveniently chosen
in problem (1.2) ([1], [2]). Their discussion is based on their claim that there exist at
most three solutions for problem (1.3). However, they did not provide a proof for this.

In this paper we employ another change of variable and parameters from 1] in
order to present a rigorous proof that for given k> 0 there exists an s*= s*(k) such
that for So> s* and for any positive tr the steady state problem (1.2) admits no more
than three solutions. The result we obtain here agrees with that of experiment and
numerical analysis because it is known that in order to get multiple steady states we
must have tr and So sufficiently large [6, p. 97]. The change of parameters we introduce
in (2.2) will let us study sufficiently small e, which is related to l/so. The latter is
proportional to the concentration on the edge of the membrane. Problems of a similar
kind are treated in [4] and [9]. However, the nonlinearities are completely different
and very little of the analysis is relevant here.

2. Formulation of the perturbation problem and the response function. We first
make a change of variable u(x)= s(x)/so where s s(x), So satisfy (1.2). Then (1.2)
becomes

(2.1)
u"+ tru/ 1 + SoU + ks)u2) O,

u(O) u(1) 1.

0<x<l,

Next we introduce some new parameters/3 and e by defining

(2.2) fl So/V/-, e 1/2kso,

where e will be the perturbation parameter. Thus (2.1) becomes the following equation"

(2.3) -u"+u/[k2(u2+2eu+4ke2)]=O, 0<x<l

with u(0) u(1) 1.
Our purpose is to prove that for given k > 0 there exists an Co> 0 such that 0 (2.3)

has no more than three solutions for 0 < e < eo and for any/3 > 0, where eo co(k)
depends on k only. Obviously, this means that for given k > 0 there exists a value
s*= s*(k) such that (1.2) admits at most three solutions for all So> s* and any o-> 0.

Multiplying (2.3) by u’, we see that

(2.4) [U’2/2]’= uu’/[kfl2(u2 + 2eu + 4ke2)].
If we integrate both sides of (2.4) with respect to x, it follows that

(2.5) [u’(x)]2/2= (+)fux){u/(u2+2eu+4ke2)} du+u’2(1/2)/2.
au(/2)

We claim that u’(1/2) 0. Assume that u u(x) is any solution of(2.3) with u(0) u(1) 1
(for the proof of the existence of such a solution for (2.3) see [7]).-From (2.5),
u’(0)2 u’(1)2. Since u"(x) > O, u is a convex function of x on [0, 1 ], so it-must be that
u’(1) =-u’(0). Suppose u’(1)= m. Now we see that (2.3) with boundary conditions is
equivalent to the same equation with initial conditions either u(1)= 1, u’(1)= rn or
u(0)= 1, u’(0)=-m. Let x=1/2+z and v(z)=u(1/2+z), where x is in [0, 1] and z in
[-1/2, 1/2]. Then v(z) satisfies

(2.6) -v"+ v/[kB2( v + 2ev + 4ke2) O, -1/2 < z < 1/2
with v(-1/2)= v(1/2)= 1; moreover, v’(1/2)= -v’(-1/2)= m. It is easy to check that v(-z)=
w(z) is also a solution for (2.6) with the initial conditions. By the uniqueness of v(z),
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one obtains v(z) v(-z), which implies that the u(x) profile is symmetric with respect
to x 1/2, and hence u’(1/2) 0. It also follows that u’(x) > 0 for x > 1/2, u’(x) < 0 for x <
by the convexity of u(x). One can see that the number of solutions of (2.3) will be
determined by the number of values of u(1/2).

To determine which condition u(1/2) has to satisfy we begin with (2.5). Let y 1/u(1/2).
Then for x in (1/2, 1], 1/y < u(x) and

(2.7) [s/(s2+2es+4ke2)] ds

Computing the integral in (2.7), we obtain

u(x)

2}1/2[s/(s2+2es+4ke2)] ds In {[e + u(x)]2+(4k 1)e
y

In [(e + y-l)2 + (4k 1)e2] ’/2 + eho(u(x), y)

where
u(x)

(2.9) ho(u(x), y)= {1/[(s + e)2+ (4k 1)e]} ds.
dy-

Denote the right side of (2.8) by K(e, y, u(x))/2. From (2.7) we have

u’l/K(e, y, u)= ll(flx/k).(2.10)

Moreover,

(2.11) K-1/2(e, y, u) du=.
(,/> (2/3x/)

For convenience, we make a change of variable as follows:

e+u=(e+ 1/y) e du=2(e+ y-1)te dt.

Then (2.11) becomes

2(e + y-’) f v(e,y)

dO

(2.12)

1

{In [(1 + ey)2 e2’2 + (4k 1)(ey)2]

-In [(1 + ey)2 + (4k -1)(ey)2] + 2h e, y, t)I-/2 e

where

(2fl/)

3. Notation and conventions. Since we only deal with nonnegative solutions of
(2.3), we shall always assume that u(x)>0. From. 2, y=> 1. If we set e =0 in (2.3),

(l+ey) et2--ey
(2.13) h(e, y, t)- -ey {1/[(s + ey)E+(4k 1)eEy2]} ds,

y_-> 1, and v(e, y) =x/{ln (e+ 1)-ln (e +y-l)}. Evidently, it is necessary to prove that,
for given k > 0, if e is small enough, then for any/3 > 0 there are no more than three
y’s satisfying (2.12). We denote the function on the left in (2.12) by f(y), which is
called the response function, and then (2.12) becomes

(2.14) f(y) 1/(2flx/).
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then we obtain the so-called reduced problem, and the corresponding response function
will be denoted by fo(Y). In the reduced problem, of course, we have

(3.1) fo(y) (2flx/-) -1.
Since we always fix k > 0, we shall omit the words "for given k > 0" in all our statements.
Let G denote

G(e, y, t)= In [(1 + ey)2 e2t2+(4k- 1)(ey)2]
(3.2)

-In [(1 + ey)2 + (4k-1)( ey)2] + 2h( e, y, t)

where h (e, y, t) is given in (2.13).
We shall always denote the derivative of any function with respect to y by "prime,"

and with respect to by "dot."
We now list some functions which are repeatedly used in the following sections:

v v(e, y)= x/{ln (1 + e)-ln (y-l+

f(y):2(e+y-’) te

OG
G=Ga(e,y,t)-

Oy

OG
G’=G’(e,y,t)-

Ot

02G
G’ G’(e, y, t)- OtOy’

02G
G2-- G2(e, y, t)- Oy2,

G"=G"(e,y, t)-
Ot2

t2G-1/2 dt,

F (y) f’’(y) + {2 [ey( 1 + 8key + 4k( ey)2][2( 1 + ey)( 1 + 2ey + 4ke2y2) ]--l}yft (y),

T1 T(e, y, t)= (1 + ey)2 e2t+(gk- 1)(ey)2,

T2 T2(e, y, t)= (1 + ey)2 e2t+ 2(4k- 1)ey(1 + ey) et-(4k 1)(ey)2.

Elementary calculations show that

G=2e[(1 +ey) e2?+e +(4k-1)ey]/T-4e(1 +2key)/Tl(e, y, 0),

G’ -4et e t" T2/ T2,

G’-4te"(1 + ey)[(1 +ey) e?-ey]T-,
G2= 2e2T-2[-(1 + ey)2 e47-2(1 + ey) e3t‘

2](4k- 1)(2ey+ 2eEy2-1) e2t2-2(4k 1)ey e -(4k- 1)(ey)

-Se2T-2(e, y, O)(k- 1-4key-4kEeEy2),

G"=4(1 + ey) et2[4t2 et2(1 +ey)+(1 + ey) e 2tEey ey] T-
16(1 + ey)at2 eat2[(1 + ey) e -ey]T-f.
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For simplicity, we shall only give the details in the case k =-14 in this paper. We
do indicate those quantities introduced below which depend on k in the general case.
For k- the interested reader can refer to [7]. We see that if k 1/4, then

(3.3) G=2t2+2ey(e -1)/(l+ey),

(3.4) T1 T2 (1 + ey)2 e2’2,

(3.5) G1 -2e( 1 e-’2)/( 1 + ey)2,

(3.6) G’= 4t(1 + ey- ey e-t)/(1 + ey),

(3.7) G] -4et/{(1 + ey)2 e’},

(3.8) G_=4e2(1-e-’)/(l+ey)3,

(3.9) G"=4{(l+ey) e +2eyt2 ey}/{(l+ey) etZ},

--1/2(3.10) f(y) Z(e + y-) e G dr,

(3.11) f’(y)=(l+e)/[(l+ey)G1/Z(e,y, v)]

(  )iotetG dt- e+ te

F(y) yf’’(y)+ {2- ey/[2(1 + ey)]}yf’(y).

tzG1G-3/2 dt,

4. The reduced problem. At e 0, G G(0, y, t) 2 2 and

(4.1) fo(Y) (/-/Y) e dt,
,dO

(4.2)
l,eq-n

f[(y) 1/[y6/x/(2 In y)]_(/-/y2) e at,
.to

(4.3) f[’(y) -2/[y2x/(2 In y)]- 1/[yZ{x/(2 In y)}3]+
\ y3 ] oo

e dt,

(4.4) Fo(y) -1/[4(2 In y)]3 < 0

for y > 1. It follows that fo(Y) has at most one critical point, the maximum. Thus the
reduced problem admits at most two solutions for any/3 > 0.

5. Outline of the argument. For our purpose it suffices to prove that there exists
an eo eo(k) such that for e in (0, eo) and for y> 1, f(y) has only two critical points;
one is a local maximum and the other is a local minimum. In order to do this we shall
prove the following.

THEOREM 1. There exists an el el(k such that for e in (0, el) and y> lie,
f’(y) > O.
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THEOREM 2. There exist constants d- d(k), Yo Yo(k) and e2 e_(k) such that
for y in Yo, d/ e] and e in (0, e:), f’ (y) < O.

THEOREM 3. There exists an e3 ea(k) such thatfor 0 e e3 and y in [d/ e, 1/e:],
F (y) > O, where d is given in Theorem 2 and F is listed in 2.

It is then clear thatf (y) has only one critical point, the local minimum, for y > Yo
if e is small enough, because if f’--0, then by Theorem 3 and the expression of
F’,f’’O.

THEOREM 4. There exists an e4-e4(k) such that for O< e e4, f(y) has exactly
one critical point, the local maximum, on [1, Yo], where Yo is given in Theorem 2.

The technique used in proving Theorems 1-3 is to estimate the integrals which
appear in the expressions off’(y) and F(y) carefully. For Theorem 4, however, we
shall compare f(y) with fo(Y) for small e.

Now if we set eo= min {el, e:, e3, e4} then all the conclusions of Theorems 1-4
hold, as desired.

6. The proofs of Theorems 1 and 2. Let be any constant such that 0 < < v
v(e, y). Then

(6.1) et2G-1/2 dt + et2G-3/2G1 dt +

By integration by parts,

(6.2)

’2G-1/2 dt (1 + e)y/[2(1 + ey)x/-(e, y, 3)]

--e2/[2/-(e, y, t)]+ et2G-3/2G" dt.

Substituting (6.1) and (6.2) into (3.11), we obtain

(6.3)

f’(y) e2/[y2/--(e, y, )]-() Io etG-3/2[2G+(1 + ey)yG] dt

e G-3/2[ G’/2 + (1 + ey)ytG1] dt.

From (3.5) and (3.6),

(6.4)
G"
2
+(1 + ey)ytG1 2t/ (1 + ey),

and then (6.3) becomes

(6.5)
f’ (y) e2/[y:x/(e, y, i)]

1
e G-3/212G+(1 + ey)yG1] dt

2 2G_3/
y(1 + ey)

e dt.

LEMMA 6.1. For given ey > O, tG-a/( e, y, t) is a decreasingfunction oft, where > O.
Proof. G" > 0 for > 0 and for given ey > 0; hence from G > 0

(6.6) (I/G)’<0.
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All we need is to have (tG-1/2)’< 0, which is equivalent to

(6.7) (t2/G-1)"<0 for t>0.

Notice that (t2/G-l)"= t(2G- tG’)/G2 and G G’= 0 at 0. Since

(2G- tG’)’= G’- tG"= -8eyt3/(1 + ey) <0

for > 0, (6.7) holds. This proves the lemma.
LEMMA 6.2. For each c > 0 there is a Y(c) such that for 0 < a < 1 and Y> Y(c),

l/-nY
t2(6.8) Y/[2/i-] < e dt < (1/2 + c) Y//ln Y.

Also for each b > 0 there is a W(b such that for W> W(b

4-i-dw
t2(6.9) w/[2/ln w] < e dt.

Proof By integration by parts,

e/t dr,
.1

e dt y/[2/1-y]- e/2+ .,1

(.0
y/[2 y]- e/2+ e dt y/[2yl

for Y e4, since e’/t e for t 1. We then see that (6.10) implies the first inequality
in (6.8) for Y> e4. In the same way one can prove (6.9). The right half of the inequality
(6.8) follows from

tdt/[y/4] =.(6.11) lim e Q.E.D.
Y 0

LEMMA 6.3. There exist an e,1 e,l(k) and a 61 61(k) such that for in (0,
where 0<6<61, and for y> 1/e2, where e is in (0,

2G+(1 + ey)yG <0.

Proof Let g=g(e,y, t)=2G+(l+ey)yG1. Then g(e,y,O)=O for any y>0 and
g =4t(2+2ey-3ey/e’)/(l+ey). Let gl(e,y,t)=2+2ey-3eye-. Then for given
ey>O,_gl(e,y,t)=2-ey+g’l(e,y,)t for some =(e,y,t), with 0<a<t. Take
61 /2/2 if k 1/4; then g (e, y, c) < 6eyt e for 0 < < < 6 < 61. Thus

gl(e, y, t)<2-2ey(1-3t2 e-t)<2-2ey(1-362 e-)
< 2 2(I 3a,2 e-l)/e

for y > 1/e2. Fix 61 and let e tend to 0 to complete the proof. Q.E.D.
LEMMA 6.4. For any 6 > 0 there is a r r( k, 6) such that G(e, y, 6) > r > 0 for all

ey>O.
Proof OG(e, y, t)/O(ey)=G1/e<O and limy_ G(e, y, 6)=2(62-1+e-)>0.

Q.E.D.
We now proceed with the proof of Theorem 1. First of all we set 6 < min {61,1}

and e < e,1 in (6.5), where 61 and e,1 are given in Lemma 6.3. Then by Lemmas 6.1
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and 6.3 it follows that

(6.12) f’(y) > e/[y/(e, y, )]-2/[y(1 + ey)] [max (tG-3/)] e’ dr.

Notice that max tO-3/ a-3/(e, y, ) for in [, v] and v < /[ln (1 + e) In e for
y> 1. We then use 1/(l+ey)<3/(2ey) in (6.12) and obtain that, for e<e. and
y> 1/e2

ro(e)
t2(6.13) y:G3/:(e, y, 6)f’(y) > eG(e, y, 6)-(36/ey) e dt

dO

where Vo(e)=x/{ln(l+e)-lne}. Let e.: be a number such that Vo(e)> Y(1/2) for
e < e.:, where Y(1/2) is the value of Y(c) at c =1/2 in Lemma 6.2. Denote the function
on the left in (6.13) by n(e, y, 5) and apply Lemmas 6.2 and 6.4 to show that

(6.14) n(e,y, )> r(k, 6)-36(l +e)/Vo(e).

Since the choice for 6 does not depend upon .e and (1 + e)/Vo(e) tends to 0 as e 0,
there exists e.3 e.3(k) such that

(l + e)/Vo(e) < r(k, 6)/66.

Thus, setting el =min {e,, e.2, e,3}, we obtain Theorem 1.
To prove Theorem 2 we require the following lemma which will prove that the

second term in the expression for f’(y) is negative.
LV.MMh 6.5. There exists a number d d(k) such that for ey in (0, d] and > O,

2G+(1 + ey)yG > O.
Proof We shall use the same notation as in the proof of Lemma 6.3. Since

g(0, 0, 0) 2, there is a number d =d(k) such that g(e,y,O)>-O for ey in [0, d] and
gl(e, y, 0)=0 at ey= d. Also g](e, y, t)>0 for t>0 and ey>O. This implies the lemma.

Remark. In the case of k , d 2.

Proof of Theorem 2. We first take d as in Lemma 6.5, and then set 8 1 in (6.5).
Using Lemmas 6.1 and 6.6, we see that for 1 < y <= d/e,

(6.15) f’(y) < e/[y:x/--(e, y, 1)]-{2v/[y2(1 + ey)G3/2(e, y, v)]} e t: dt.

Further, assume that e < 1/(2e4). Then v > 2 for y> 2e4 and hence from (6.10)

(6.16) e ’ at > (1 + e)y/[2v(1 + ey)].

This shows that for e < 1/(2e4) and for 2e4 <- y <= d! e

(6.17) f’(y) < e/[yx/-(e, y, 1)]- (1 + e)/[y(1 + ey)G3/2(e, y, v)].

Since G(e,y, 1)=2+2ey(1/e-1)/(l+ey)>-m(d), where re(d)=
2+2d(1/e-1)/(l+d), for y<d/e, and G(e,y, v)<2vZ<21ny for y> 1, it follows
that for y in [2e4, d/e],

(6.18) yf’(y)< e/.,/-(d)-y/[(l + d)Z(21n y)3/:].

Thus there exists an e2 ez(k) and Yo Yo(k) such that f’(y) <0 for 0<e <e and y
in Yo, d e], which is desired.
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7. The proof of Theorem 3. To begin with, let 6 be chosen as in the beginning of
6. We start at (6.5). Then

[y2f, (y) ], 2yf’ (y) + y2f,,(y)
-e2Gl(e, y, 6)/[2G3/2(e, y, 6)]

te’2{G-3/2[(3+2ey)Gl+(l+ey)ya]

(7.1) -(-)G1G-S/212G+(1 + ey)yG1]} at

-(1 + e)/[(1 + ey)3G3/2(e, y, v)]

+[1/(l+ey)] ceG-3/[2e+3(l+ey)GG-]dt,

F(y) [y2f,(y)],_ eyf,(y)/[2(1 + ey)]

=-eGl(e, y, 6)/[2G3/Z(e, y, 6)]

e e/[2(1 + ey),/G(e, y, )-(1 + e)/[(1 + ey)3G3/2(e, y, v)]
(7.2) r

Jo e’{G-3/[(3 + 2ey)G + (1 + ey)yG2- e[2G +yG(1 + ey)]

(1 + ey)-/Z]-()GG-5/Z[zG+(1 + ey)yG]} dt

+[3/(l+ey)] teG-3/[e+(l+ey)GiG-1]dt.

We now define several functions which will be used in this section as follows:

= (, y, (3 +/G+y( + yla/

[+ ( + yy6/]/( + ey/

3G[2+ (1 + ey)a,/G]/(2a),

(7.3) M M(e, y, 6)= -e G(e, y, 6)/[2G/2(e, y, 6)]

-e e2/[2(1 + ey)/G(e, y, 6)],

Q= Q(e, y, t)= e+(1-ey)G1/G.

Then rewrite (7.2) as

F(y) M-(1 + e)/[(1 + ey)x/G(e, y, v)]
(7.4)

e’2N//G dt+ [3/(1 + ey)] e O/ dr.

LEMMA 7.1. G/G is an increasing funcion of > 0 for any given ey > 0.

Proof. (G/G)’=(GG’-G1G’)/G=G](G-GG’/GI)/G. Since G<0 and
G > 0 for ey > 0 and > 0, it suces to show that G- GIG’/G < 0. It is clear that if
__1k , then G GG’/G 2(1 + e’) < 0 for > 0. The proof of Lemma 7.1 for k 1/4

is complete.
Considering that O(e, y, 0)=0 and 0"_->0, from Lemma 7.1 we have the following

corollary.
COROLLARY 7.1. Q(e, y, t) > 0 for > 0 and for any ey > O.
Remark. Lemma 7.1 is the hardest lemma to prove if k # 1/4, but it is true for any

k>O.
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LEMMA 7.2. There exists a number b b(k) > 0 such that for ey >-d, where d is

chosen as in Theorem 2, and for t> b, Q(e,y, t)> 2/3y.
Proof. From the remark after the proof of Lemma 6.5, d 2 for k =1/4; hence

3 ey 2 > 0 for ey >-_ d. Define

p(ey, t)= 3yQ(e, y, t)/[2(1 + ey)].

We see that limy_p(ey, t)=3/2 for fixed t>0. From Lemma 7.1, the function
{p(ey, t)-l/(l+ey)} has at most a single zero if y is given. Notice that p(ey, 1)=
3ey/[2e(l+ey/e)]>3/(e/2)>l/(l+ey) for ey>-d and p(ey, O)=O, and that
p(ey, t)>O. Then there is a b=b(k) such that 0<b<l and p(ey, t)> 1/(l+ey) for
> b and ey >-d, which implies Lemma 7.2.

COROLLARY 7.2. There is an e e (k) such that for ey > d, where e is in (0, e

and d is chosen as in Theorem 2,

(7.5) -[(l+e)/(l+ey)]G-3/(e,y, v)+3 te QG-3/2 dt>O,

where b is given as in Lemma 7.2.
Proof Let W=(e+ 1)/(e + l/y) in Lemma 6.2. Since W(b) depends on b b(k),

and W>(l+e)/[e(1/d+l)] for ey>=d, there is an e =e (k) such that W>
(1 + e)/[e(1/d + 1)]> W(b) for all ey>-d, where e is in (0, e ). Hence by Lemma 6.2,

(7.6) e dt > (1 + e)/[2v(1 + ey)].

Using Lemmas 7.2 and 6.1, we obtain

t2(7.7) 3 tG-3/2Q e dt> 2v/[yG3/:(e, y, v)] e dt.

From (7.6), the corollary is proved.
LEMMA 7.3. For given ey>O, there exists a 61 6(e, y, k) such thatfor 0< < 61,

where 6 is in (0, 6), N(e, y, t)< O.
Proof Let C1(8 y)=limt_o G/G and c:(e, y)=limt_.o G2/G. From (7.3),

N(e, y, 0)= (1 + 2ey)cl(e, y)+ y(1 + ey)[c:(e, y)-Cl(e, y)] < 0.

In fact Cl(e, y) -e/(1 + ey), c:(e, y) 2e:/(1 + ey)- and hence N(e, y, 0) -e for
k . For k a tedious calculation shows that the lemma also holds.

LEMMA 7.4. For given ey > O, there exists a 62 6:(e, y, k) such thatfor 6 in (0, 6)

t2G-3/2Q(7.8) M(e,y, 6)+[3/(l+ey)2] te dt>O,

where b > 0 is any constant.

Proof. Let q(e, y, k) be the second term on the left side of (7.8). By Corollary 7.1,
q(e, y, k) > 0. From (7.3),

_2(7.9) 2M(e,y, 6) e =[-Gl(e,y, 6)/G(e,y, 6)+cl(e,y)]/x/-(e,y, 6)

where cl(e, y) is in the proof of Lemma 7.3. By L’Hpital’s rule, lim_o M(e, y, 6) =0.
This completes the proof of Lemma 7.4.

We can now proceed to prove Theorem 3. First fix an e in (0, e ), where e is
chosen in Corollary 7.2. Second, for any given y > d e, where d is in Theorem 2, take
b as in Lemma 7.2 (note that b is independent of e). Then let 6 min {61,62}/2, where
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and 2 are given in Lemmas 7.3 and 7.4 respectively. By Corollaries 7.1 and 7.2 and
Lemmas 7.3 and 7.4, we prove the theorem immediately, if we rewrite (7.4) as follows:

(y M(e, y, + [3/( + y] e’a-/ Q

(7.10) -(1 + e)/[(1 + ey)aGa/2(e, y, v)]

t2G-3/2+[3/(l+ey)2] te Qdt

G-3/2+ e( N)/ dt + [3/(1 + ey)2] e Q dr.
o

8. The proof of Theorem 4. From (3.11) and v’= 1/[2vy(1+ ey)],

(8.1)

(8.2)

(8.3)

(8.4)

f’’(y) -2(1 + e)/[y2(1 + ey)/-(e, y, v)]

-(1 + e)Gl(e, y, v)/[y(1 + ey)G3/2(e, y, v)]

1/[y2(1 + ey)2G3/2(e, y, v)]

( )Io+ e’2/x/ at + e G, dt

( )Io 2G5/)e+ [3/( -GUa/]te

uniformly on [1, E], where E > 1 is any constant.

Proof From (3.1) or (3.3), we see that

OG (O_) Gly(8.5)
Oe

y/e=
e
<0

for t, e, y > 0. Thus e’2/x/- monotonely increases as e decreases for given > 0 and
for given t-> 1. By Dini’s theorem,

(8.6)

uniformly on any compact set of (y, t) in R-. In addition, v In y uniformly on 1, E],
so that (8.2) holds. From (3.5) and (3.8), both G/t2 and G2/t2 converge to 0 as e

tends to 0 uniformly on any compact set of (y, t) in R2. Then considering that
te G1/G3/2=(te’2/x/--)(G1/t2)(t2/G), we get (8.3). Similarly, one can prove
(8.4). Q.E.D.

We then see that in order to determine the sign of f’(y) when y is near to y- 1
the integral terms in (3.11) are not important for small e. For the first term in (3.11)
we need the following lemma.

LEMMA 8.1. As e tends to 0,

Io’ e’2/x/- at - e t2 dt,
dO

fO’ t2 G-31:ze G1 dt O,

fo’ GIG-5/2 0et2( G2G-3/) dt
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LEMMA 8.2. 1/G(e, y, v) decreases as e decreases, and hence for e > O,

(8.7) 1/x/(e, y, v) > l/x/(2 In y).

Proofi We see that

OG(e, y, v(e)) OG(e, y, v) Ov
=Gl(e,y,v)y/e+

Oe Ov Oe

(8.8) G(e, y, v)y/e+ G’(e, y, v)/(2v)[1/(l + e)- y/(l + ey)]

2(1 -y)(2 + e + ey)/[(1 + ey)2(1 + e)2] < 0.

At e 0, G(e, y, v) 2 In y, which implies the lemma.
LEMMA 8.3. There exist two numbers E1 and al such that for y in (1, El] and for

a in (0, all

(8.9) 1/[y(l+a),/(21n y)]-(2/y) e’dt-2a>O.
.to

Proof Denote the left side of (8.9) by j(y, a). Obviously, j(y, a) is continuous in
(1, E)x (0, D) where E> 1 and D>0 are constants. Because limy_lj(y, 0) +o as y
approaches 0, such an a and E1 exist. The lemma is proved.

LEMMA 8.4. There exists an e-a e_l(k) such thatfor e in (0, e_l) and y in (1, Eli,
where E1 is chosen as in Lemma 8.3, f’(y) > O.

Proof By Lemma 8.1, there exists an e-a e_a(E, k) such that

(8.10) (22) f0 (n/) [ "/I--y
t2et2//- dt < aa + e dt,

dO

((8.11) e + etal dt < a

and (1 +e)/[y(1 +ey)]> 1/[y(1--ffl)] for e in (0, e-l) and y in (1, El], where al is
chosen as in Lemma 8.3. Then from (3.11), (8.10) and (8.9), we obtainthe lemma.

LEMMA 8.5. fe (Y) and f’’ (y) converge to f(y) andf’(y) respectively as e tends to
0 uniformly on [El, Yo], where E1 is given as in Lemma 8.4 and Yo in Theorem 2.

Proof We see that (1 + e)/[y(1 + ey)x/-(e, y, v)] converges to y/x/(2 In y) uni-
formly on [El, Yo] as e tends to 0; the rest follows by Lemma 8.1. Q.E.D.

COROLLARY 8.1. As F_. approaches O, F(y) converges to Fo(y) uniformly on [El, Yo].
From Corollary 8.1, there is an e_2= e_:(k) such that for (e, y) in (0, e_)x

[El, Yo], F(y) > 0. To see this we take 6 (2 In Yo)-3//2 in the definition of uniform
convergence. Then such an e_z exists and for (e, y) in (0, e-2)x[E, Yo],

F(y) < Fo(y)+ 6=-(2 In y)-3/2+ (2 In Yo)-3/2/2
<-(2 In Yo)-3//2.

Now, combining this fact and Lemma 8.4 and taking e4=min {e-l, e-2}, we have
proved Theorem 4.

9. Comments. (i) If k is not equal to -, most calculations are very tedious. For
example, the proof of Lemma 7.1 takes about 15 pages of computation! Nevertheless,
the functions which appear in the above proofs for general k > 0 still have all the same
properties as for k 1/4. Much of this has been checked using the symbolic manipulator
Macsyma [7].

(ii) If we make a change of parameters as in [1], i.e., define fl So/x/, e 1/x/-,
then the corresponding problem becomes (1.3) with u(0)=u(1)= 1. The response
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function f(y, fl) is a function of both y and/3. In this case we need to determine the
number of solutions of the equation

(9.1) f (Y’ fl (4flx/-)
We may apply the same ideas to prove that, for given k > 0 and for given/3 > 0, there
is an eo eo(k, fl) such that f(y, fl) has exactly two critical points for e in (0, eo).
Hence (1.3) admits no more than three solutions. This is to say that for tr large enough
and so conveniently chosen, problem (1.2) admits at most three solutions.

(iii) We can also study the stability of the steady states associated with problem
(1.1) in the case where So is large by using the Conley Index Theory or Morse Index
Theorem. The conclusion is that if there exist three steady state solutions, then two of
them are stable and the other is unstable (cf. [7]).

Acknowledgment. I wish to thank my advisor, Professor Stuart P. Hastings, for
the suggestions he contributed to the thesis upon which this paper is based.
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WEAK SOLUTIONS TO STEFAN PROBLEMS
WITH PRESCRIBED CONVECTION*

JIM RULLA

Abstract. This paper deals with the equation

w, + div (vw Vct (w) g,

which is to hold in a smooth, bounded domain G c R". The function a’R is uniformly Lipschitz and
nondecreasing, but may be identically zero. For certain smooth functions v: G n satisfying div (v)_-> 0,
there are integral solutions to the Cauchy problem associated with this equation, provided the boundary
conditions on w are chosen appropriately. We prove that these integral solutions are weak solutions in the
usual sense. Moreover, these weak solutions are unique; hence the notion of a weak solution is adequate
for problems of this type.

Key words. Stefan problem, free boundary, convection, uniqueness

AMS(MOS) subject classifications. 35D05, 35K65, 35R35

1. Introduction and notation. Consider a mixture of crude oil and melted paraffin
flowing through a pipe. As the temperature of the mixture falls, the paraffin solidifies,
thus changing the thermal properties of the mixture. We shall develop a heat equation
modeling this problem, and we shall prove existence and uniqueness of solutions (in
an appropriate sense) to the evolution equation. In [5], Fasano, Primicerio and
Rubenstein address this problem classically and obtain solutions if the free boundary
is assumed to satisfy a simplifying assumption. Visintin, in [12], considers a similar
class of equations and obtains existence results for weak solutions. His solutions are
weaker than ours, however. In particular, we prove that solutions are bounded and
Lipschitz continuous: [0, T]- LI(G) (so the notion of an initial value makes sense in
LI(G)) while the similar class of problems yields solutions which are only measurable
into L (hence the notion of initial value must be weakened). By interpolation, we
prove that solutions are weak solutions in an L2 sense. Moreover, these weak solutions
are unique provided the data in the problem are appropriately regular; consequently,
the notion of a weak solution is appropriate for this problem.

In 2 of this paper, we present a brief derivation of the Stefan problem. In 3,
we find solutions to an appropriate stationary problem. The operator involved is a
degenerate elliptic operator, and existence of solutions depends strongly on our making
a suitable choice of boundary conditions. The properties of the solutions which we
shall need follow from the uniqueness of solutions, which must be proven independently
from the existence argument. In 4, we prove the existence of integral solutions to
the evolution equation and we show that these integral solutions are actually weak
solutions. Finally, we prove in 5 the uniqueness of these weak solutions. This proof
mimics the uniqueness proof from 3.

Let G_ R" be a bounded domain with smooth (C2) boundary, OG, which we
denote by S. We let LP(G) and Hm(G) denote the usual Lebesgue and Hilbert spaces
of measurable functions on (3, and we omit the reference to the set G when such
reference is unnecessary. We use the notation C([0, T]; Lp) to denote the space of
continuous functions from [0, T] into Lp.

* Received bythe editors February 3, 1986; accepted for publication (in revised form) December 15, 1986.
t Department of Mathematics, University of Texas, Austin, Texas 78712. Present address, Department

of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-8205.

1784



STEFAN PROBLEMS WITH PRESCRIBED CONVECTION 1785

We denote the spatial divergence and gradient operators, respectively, by div (.)
and V. The spatial Laplace operator is denoted by A. A natural domain for the
divergence operator is the space ’ defined by

’ {v (L2)"ldiv (v) L2}.

The space (L2)" here is the n-fold product of L2(G). The trace operators Yo and
which represent restricting scalar and normal components of vector valued functions,
on G to S, respectively, are then related by

[div(v)u+v-Vu]=(y(v), To(U))

for all v and u H. The duality on the right takes place between H/(S) and its
dual (cf. [11]). If v" S-R" is the unit outward normal on S, then

((v), o(U)) f 0’" v)u

provided v and u are smooth enough. In addition, C(G) is dense in (when is
supplied with its natural topology).

We shall split $ into disjoint measurable subsets $1 and Sz. If S1 has positive
(surface) measure, then the space

V={vH’(G)lYo(v)=O a.e. (w.r.t. surface measure) on S}

is a Hilbert space with inner product

(u, v)v=- f Vu.Vv.

We shall make use of the notation

(u,v)=- I uv

whenever the product uv L. We use the same notation if u. v L, i.e.,

(u, v) f u v.

We conclude this section by recalling that a subset M of L L is accretive provided

IlXl- x,_ll , -< II(Xl / Ayl) -(x2+ AY=)II ,
for all pairs [x, y] e M (i 1, 2) and all (sufficiently small) A > 0. This is equivalent
to having

(Yl--Y2) cr :> 0,

where y is some measurable function on G chosen so that

cr sgn (xl- x2) a.e. in G.

The signum relation is given by

s>0,
sgn (s)= [-1, 1], s =0,

{-1}, s<0.
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We view the set s as the graph of an operator, which we denote by s. The operator
s is m-accretive if, for every A > 0 and every f L1, there is a solution u to

u + ;se(u) f.
For a thorough treatment of m-accretive operators and the semigroups they generate,
see [1, Chaps. 2 and 3]. We denote the zero section of a graph by a subscripted zero.
If 13 is a graph, then/3o(S) is the element of the set fl (s) which is closest to zero. For
example,

1, s>0,
sgno (s)= 0, s =0,

-1, s<0.

2. The formulation of the Stefan problem. We consider a fluid flowing through a
bounded domain, G___R n, with a prescribed velocity v C1((; Rn). We shall make
further restrictions on the velocity in 3. Let u(x) denote the temperature and w(x)
the enthalpy or heat energy of the fluid at the point x G. When the fluid changes
phase, the enthalpy increases by an amount L per unit mass, while the temperature
remains constant. The quantity L is the latent heat of the material. This fact suggests
that the enthalpy, not the temperature, is the natural function to consider in problems
of heat transfer (cf. 10]). If c c(u) is the heat capacity ofthe material (which depends
on the phase and may be discontinuous) and : [0, 1] is the fraction of the material
in the more energetic phase, then a unit mass of the material has enthalpy

w=c(u)u+L.

If the phase change occurs when U=Uo, then sc H(u-uo), where H(x) sgn/ (x) is
the Heaviside graph. We may then write

w c(u)u + LH(u Uo),

so w is given as a nondecreasing relation of u. In fact, we may invert this relation to
obtain the temperature as a nondecreasing function of the enthalpy"

u=O(w).

If k k(u) denotes the conductivity of the material (which again depends on the phase
and may be discontinuous), then the flux or flow of energy at any point in G is given
by

flux vw k( u )V u

=vw-Va(w),

where a:EE is the antiderivative of ko 0 with a(O)=O. We remark that a is
nondecreasing and satisfies a’(s)=0 for s [0-l(uo), 0ffl(uo)+ L]. The temperature u
and c(w) are related by a one-to-one correspondence and we abuse the distinction
by referring to a(w) as the temperature. We shall, naturally, require that c(w) HI.
Notice that this requirement may force a(w) H2 and w HI. In fact, since energy is
conserved, the free boundary (where the two phases of material meet) advances at a
speed proportional to thejump in the normal component ofthe flux across the boundary.
In [8], Rubenstein comments on the adequacy of this model.

Let fl G x (0, T) and divide 12 into three regions:

o {a(w(x, t))= Uo},

fa {c(w(x, t)) < Uo},

a {a(W(X, t)) > Uo}.
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In each of these regions, energy is conserved, so

OW
+div(vw-Va(w))=g infj, j=0,1,2,
Ot

where g represents any external heat sources or sinks. If we multiply by a smooth
function o C(l)) and formally integrate by parts over each of the three regions, we
get

k-- div (vw-Va(w))] q

w+vw.Vq -Va(w) .Vc
ot

+ + + N. (vw-Va(w), w)q.

The vector N is the unit normal out of each of the regions fl,j 0, 1, 2, and (.,.)
denotes vectors in R" x R. The jump condition on the flux is equivalent to having the
boundary integrals make a nonzero contribution only on 011, not on any of the interior
interfaces. We conclude that

(2.1)
gq + w+vw.V Va(w)

Ot

(vw-Va(w)).vq+ [q(., T)w(., T)-cp(., 0)w(., 0)].
G G

If q C(fl), then we are led to the differential equation

OW
(2.2a) +div (vw-Va(w))= g.

Ot

It is important to choose the boundary conditions on w carefully in order to be
able to solve this problem. We let S $1 (-J $2, where $1 and $2 are disjoint, measurable
subsets of S OG. We require that

S,
___

{s Sly(s) v(s) _-> 0}

and

S
_

{s sly(s), v(s)-<0}

and that the measure of $1 be nonzero. For a specified gl H and g2 G c, we shall
require that

(2.2b)
yo(a(w))= yo(gl) a.e. on S,

(y(gz-(VW-VC(w))), yo(V)) 0 for all v V.

(Recall that V {v H]yo(V)=0 a.e. on S}.) Notice that we specify the temperature
on S and the normal component of the flux on

The last piece of data which we need to make the Cauchy problem well posed is
the initial enthalpy

(2.2c) w(x,O)=wo(x).
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3. The stationary problem. A standard approach to solving the Cauchy problem
(2.2) is to define an operator M corresponding to the spatial derivatives div (v(.)-
Va (.)) on an appropriate domain D(M) of functions in some Banach space X which
satisfy the boundary conditions (2.2b). One then proves that M is m-accretive on X
and then applies the generation theorems of Crandall and Liggett [4] or Benilan [2],
1 to obtain "solutions" w: [0, T] -> X to

(3.1)
dw(t)+(w(t)) g(t),
dt

w(O) Wo.

IfX is reflexive and the data g(t) and Wo are sufficiently well behaved, then w(t) D()
a.e. on [0, T] and w satisfies (3.1) a.e. in [0, T] (cf. [1]). It is easy to see by a formal
computation, however, that ’ cannot be accretive on Lp for p > 1. Since L is not
reflexive, the above regularity result fails, and "solutions" to (3.1) may satisfy w(t)
D() for all [0, T]. In addition, it is difficult to identify D(’) if G

_
R" with n > 1.

These obseations motivate our search for weak solutions to (2.1), i.e., functions
w C([0, T]; L2) satisfying a(w)-gL([O, T]; V) and

(g, )+ w,+v.V -(Va(w),V dt

(3.2)
(w(r), ( r))- (w(0), (0)) + (Y(g), Yo()) dt

for all appropriately smooth testing functions o: [0, T]--> V.
In order to prove the existence of solutions to (3.2) we employ the following plan:
(1) Define an operator in L2 L2 and prove that this operator is accretive when

considered as a subset of Llx L1.
(2) Prove that the closure of the operator in (1) is m-accretive in L1 x L1.
(3) Prove that the integral solutions generated by the operator in (2) are weak

solutions (solutions to (3.2)).
Step (1) is similar in nature to the technique used in [3]. The uniqueness proof

used in Step (1) contains the idea of the proof of uniqueness of weak solutions. Steps
(2) and (3) consist primarily of applying the estimates found in Theorem 1 in an
obvious way to obtain the necessary estimates.

Throughout the remainder of this discussion, we shall assume that the following
"regularity" conditions are met:

The function a: R-> is uniformly Lipschitz continuous with a derivative at all
but finitely many points.

The functions gl,g2 and g satisfy glHI(G), g2 and g LI([0, T]; L(G)).
We shall assume that yo(gl) L(S), that Yo(g) Range of (a) a.e. on S1 and that
/o(gl) satisfies Ilal(yo(gl))l[L=<s,)<, where a is the zero section of the graph of
a -1. We also suppose that there is a constant M chosen so that

(3.3) (’(g2), ’o(V))Ml(,(v), ’o(V))l Vvm V.

In particular, if g2 is smooth, this means that

Iv. g:[-<_ M[v. v[ a.e. on $2.

The function v C1(; n) satisfies div (v) _-> 0 in G. This means that the fluid may
be incompressible (div (v) 0) or that there may be sources of flow (div (v) ->_ 0). Since
the fluid will adhere to the sides of the pipe, we expect that v 0 on that portion of
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S corresponding to the pipe. In fact, we shall only require that v 0 on the set tgS t9S2
We define the operator

on the set

2(w) =div (vw- Va(w))

D(2)={wL2la(w)-gl V, 2(w) L2, and

(v(vw-V(w)-g.), Vo(V))=0 vvz v}.

THEOREM 1. There is a constant t(v) so that if A <--_ t andf L, then there is
a unique w D(2) satisfying

(3.4) w+h2(w)=f

(notice that is single valued; hence equality holds rather than containment). If Wl
and w2 satisfy (3.4) with f replaced byf and f2, respectively, then

(3.5) II(w- w)+l c II(f -A)+ll ,.
In particular, 2 is accretive in L x L and the resolvent (I +A)- is order preserving.
Finally, if fl a -,

Kmin{flo(esnf(yo(g))),-M}NO
and

then

a.e. in G.
Proof. We prove uniqueness of solutions first. Uniqueness of solutions to (3.4)

follows from (3.5), but estimate (3.5) is established assuming that solutions to (3.4)
are unique; therefore, we require an independent uniqueness proof.

Let Wl and w D(.) satisfy (3.4). Then

(Wl- WE)+ A div (V(Wl- w)-V(a(wl)-a(w)))=O

and a(Wl)--ce(W2) V. For any testing function q V we have

(3.7) 0=
G

since the boundary term in the integration by parts formula is zero. The proof of
uniqueness follows by choosing an appropriate testing function q. Readers familiar
with the duality between H and H-1 will recognize the similarity between the
techniques used there and here.

Let q V be the solution to the mixed boundary value problem

-Aq wl WE L, 0 a.e. on $2.
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Then V and for all v V,

I,V’Vv= f (wl-w2)v"

This problem is well posed (cf. [9]) and so wl w2 if and only if 0.
With this choice of , (3.7) becomes

(3.8) 0=

since a(w)-(w)e E The last term is nonnegative a.e. because a is nondecreasing.
By the regularity theory for elliptic operators (cf. [9]), e H(G’) for any G’c G
whose intersection with a neighborhood of OS is void. If is a smooth function in
G with suppo c ’, then v .V e H(G) and

G

The boundary term is

(.). (.).
S

because 0 on S G’. Suppose for the moment that is smooth in a neighbor-
hood of S ’. Then lies in the direction of on {s e Sll(s)} because

0 on S. In this case,

S

This equality remains valid for e VH(G’) with 0/0=0 on S by a simple
approximation argument.

From the above computation, we have

G G

where v (vl, ., v), j =O/Oxj, and the summation over 1 i,j n is implicit. The
last integrand is

%0v’ %%,v’ v’ 0,%)=&v .vlvl=.
we integrate by pas to get

provided 0, since . N 0 on S. With this estimate, we have

G G

> 1
12

provided O, because v 0 on S.
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Let e > 0 and define

s> e,
+(s)= s/e, o<-s<- e,

O, s<O.

If we let tr+([v[2- e), then the above calculations are valid, and ffv v boundedly
in G as e 0. We calculate

0(,v’)
:Zv- vv’

X{o__<lvl2___<) 4- qvj.

Both terms remain bounded and the sum tends to vj a.e. as e 0. We apply the
dominated convergence theorem to verify

f Aqg(v Vq)> I div(v)lVq,2
-vj

(3.9)

=>-/ J Ivl"
We return now to estimate (3.8). Using (3.9), we have

0_-> f Ivl=- g()lvl=>1

provided AK (v)_<-1/2. We conclude that 0; hence Wl w2.
Proof of existence. It is convenient to work with temperature rather than with

enthalpy when proving existence of solutions. Let fl a -1 and assume for the moment
that fl is Lipschitz with Lipschitz constant . We begin by establishing estimates which
are independent of/..

Let u c(w), so w fl(u). Then w D(M2) is a solution to (3.4) if and only if

(3.10a) u gl V,

(3.10b) vfl(u)-Vu ,
and

(3.10c) b(u, v)= (f v) for all v V,

where b(u, v)=- [fl(u)(v-Av .Vv)+ AVu. Vv]+)t(y(g2), yo(V)).
LEMMA. Iff L and u satisfies (3.10), then

a.e. in G.

Proof. We shall establish the right inequality; the left inequality is proved in a
similar manner.

Let K be chosen so that fl(K)>= K, and set v=tr+(u-K). Then v V (cf. [6,
p. 54]) and

-A f [vfl(K)"Vv]+A(y(g2), To(V)).
G
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We calculate
Vv=(V(u-K)/e)XE a.e. in G,

where XE is the characteristic function of the set E {x G[0< u(x)-K < e}. If we
integrate the term in the second integral on the right by parts, we get

II(f-/3(K))+ll ’--> f (f-(K))cr+(u-K)

>=f [(fl(u)-fl(K))v-Av[fl(u)-fl(K)]v(u-K)xts,
+

+ A(y(g2-vfl(K)), yo(V)).

The boundary term is nonnegative since v V, v => 0,/3 (K) => M, v- v/3 (K) -<_ 0 on $2,
and condition (3.3) holds. We let e 0. Since/3 is Lipschitz, the second term on the
right is dominated by a constant times a function which goes to zero boundedly on
G. Hence this term tends to zero. The third term on the right is nonnegative since
v _-> 0,/3 (K) => 0 and div (v) _-> 0 a.e. in G. Finally, as e $ 0, v tends to sgn (u K)
sgn (/3 (u) -/3 (K)) boundedly a.e. in G, so

II(f-t(K))/ll,_-> II((u)-(K))/ll,.
The lemma now follows by choosing/3(K) max {ess supo (f), K2}.

Let : V V*, the dual of V, be the operator defined by

(y, v) v.,v b(y+ g,, v).

If we prove that is bounded, coercive, and Type-M, then there is a solution y V to

(y, v)v.,v=(f, v) for all v V

(cf. [7]). The function y+g u is then the solution to (3.10).
We begin by estimating

I(y, V)v.,vl-lb(y+ g,, v)l<= 11/3(y/g,)ll, gllvllv

/Ally/g, ll" Ilollv/AIIg=ll" Ilvllv,
where 1 + A Ilvll= g. Since/3 is Lipschitz and/3(0) 0,

II/s (y / g)ll ,--< Ily / gll --< Clly / gll v,

where C depends only on G (by Poincar6’s lemma). We conclude that is bounded.
Next, we observe that if y,,--’y (converges weakly) in V, then y, y in L2 and

/3(y, + g)/3(y+ g) in L2 since/3 is Lipschitz. We conclude from the definition of
that is weakly continuous, hence Type-M.
Finally, we want to prove that is coercive. For v V, we have

((v), V)v..v f [fl(v+g)(v+g-Av. V(v+gl))+AV(v+gl).Vv]

f [fl(v+gl)(gl-Xv’Vgl)]+X(%,(g2), yo(V)).
G

Let B:R- be the antiderivative of fl with B(0) =0. Then B(s)>-O for all s since
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is nondecreasing and/3(0) =0. Also,

-A fvVfl(v+gl)’V(v+gl)=-A fv’VB(V+gl)
-A(Tv(V), yo(B(t+ gl)))+ A f div (v)B(v+ gl)

G

provided fl(v+ gl)E L(G) (so that B(V+gl)E H1). In this case, the rightmost side is
given by

-A IsV" VB(v+g,)+A Idiv(v)B(v+g)>--A fs V" VB(g)

since v-v_-< 0 on $2 and div (v), B(v+ gl)=> 0. This estimate now follows for all v V
by approximation.

With this estimate we have

(3.11)
A

where fl(s)s >-cs2 (since a =/3 -1 is Lipschitz) andK is independent of/x. From this
estimate, it is easy to see that (3 (v), v) v*. v/II v v -> oo as v v --> c; hence is coercive.

We require one further estimate before we consider the case of non-Lipschitz/3.
Suppose Ul and u2 satisfy (3.10) with f replaced, respectively, with fl and f2. Then

G G

+for all v V. We take v r (ul- u2), let e 0 and argue as in the previous lemma to
get

(3.12)

since [fl(u,)- fl(u2)] sgn3 (ul- u2)= (/3(u,)-/3(u2))+.
Theorem 1 is now proved in the case of Lipschitz fl a -. Notice that we have

not made use of the uniqueness of solutions to (3.4) yet; uniqueness in this case follows
from (3.5), which we have obtained independently from the uniqueness proof. Our
development in 2, however, indicates that/3 a- is not a function, since a’(s)=0
for s belonging to the interval corresponding to the energy during a phase change. We
suppose now, therefore, that/3 is not Lipschitz and set

(s) =,(s)+-,

and

Then/3,, is Lipschitz with Lipschitz constant -</x and IB,,(s)l<-IBo(S)l for all s. Let
denote the solution to (3.10) with/3 replaced by/3,,. Then

11/3,,(u,)ll co_-< max {-K1, K2, ]]fll co}

uniformly in/x by our lemma, and from our calculation (3.11) we see that ]lu, v must
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also be uniformly bounded. Choose a sequence {/-/’k} tending to +o so that

uk--- u in V,

u,k u in L2,
and

fl. (u.)--- w in L2.

To prove that a(w)= u, let Wk flu,, (U,,,)" Then

which tends to u as k since w ll is bounded. We have

II (w)-  (w )ll 1/  llw ll  +llu  -ull  .
The last two terms tend to zero as k-. Since a is nondecreasing and Lipschitz, there
is a constant c > 0 so that

Since Wk W and Oi(Wk)-"> l,l in L2, this term tends to zero as well. The function w is
the solution to (3.4) since u is the solution to (3.10). We know that the solution w is
unique (!); hence every subsequence {u,k} converges to u weakly in V and every
subsequence {fl,(u,)} converges to w weakly in L2. This convergence is enough to
guarantee that estimate (3.12) and the result of the lemma remain valid upon passage
to the limit; hence (3.5) and (3.6) follow, and the theorem is proved.

LL (the closure in Llx L of the.graph of2)COROLLARY. The operator 1 =- 2

is m-accretive.

Proof The closure of an accretive operator is accretive, so we need only prove
the existence of solutions w D() to

w+ hs4(w) f
for any choice off L and A > 0. Define

f(x) > n,
f(x) f(x), -n <=f(x) <= n,

[-n, f(x)<-n.

Then f, 6 L, f,f in L and there is a solution w, D(2) to (3.4) with f replaced
by f,. Since

w. IlL c,

the sequence {w,} is Cauchy in L1. If w, w, then the pairs [Wn,(fn--Wn)/,],52

converge in Lx L to [w, (f-w)/h] , and we have our solution.

4. Weak solutions. There is a unique integral solution w C([0, T]; L1) to the
Cauchy problem (3.1) by Benilan’s theorem. We shall now prove that w satisfies (3.2)
for all appropriate testing functions 0.
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THEOREM 2. Let w(t) C([0, T]; L1) be the solution to (3.1) and assume Woe
L 0 D(M). Then w(t) satisfies

min esnf(wo), K1 + essinf(g-(s))ds<-w(t)

(4.1) -< max {esssup (Wo), K2}
+ esssup (g/(s)) ds a.e. in G.

By interpolation, w(t) is continuous into LP for 1 <__p<oo. Ifg(t)=- g L, then ce(w)-
gl L(O, T; V), and w( t) satisfies (3.2) for all q CI([0, T]; L2) (q L2((0, T); V). If
g(t) LI((0, T); L), then a(w) may fail to belong to L2(O, T; HI), but w(t) satisfies

(4.2)
((g, q)+ w,---f+v. Vq +(a(w), Ap) dt

(w(T), o( T))- (w(O), (0))+ (%(g), Vo(O)) + (%,(V), Yo(gl))

for all q C’([0, T]; L) f) L2((0, T); V 1") H2) with Op(t)/Ov 0 on S.
Proof. We consider first the case g(t)= g L. The operator Mg defined on D(M)

by
Mg(w)=M(w)-g

is m-accretive in Lx L. The integral solution to (3.1) in this case is obtained using
the Crandall-Liggett generation theorem for the operator Mg (cf. [1, Chap. 3]). Let
I:L--> L be the identity and for A >0 let Jx (I+AMg)-1 be the resolvent of Mg.
Since Mg is m-accretive, J is a contraction on L1. If [t] denotes the greatest integer
less than or equal to t,

w(t)= lim J,(Wo),

where convergence is uniform in L for 0 <_-t _-< T. We calculate

f= J(w)C:f+ AM(f)- Ag w:>f+ AM(f) w + Ag.

By (3.6),

min {essnf (wo+Ag), K1} <=Jx(wo)<=

a.e. in G. We iterate this estimate and use

to get

max(esssup(wo+Ag),K2}

max(esssup(wo+Ag),K2}<--max{esssup(wo), K2}+Aesssup(g+)

min {essnf (Wo), K1}+A[tn] essinf (g-)

<= Jttnl(Wo)<= max {esssup (Wo), K2} + A[ tn] esssup (g+).

Let h 1/n and let n - oo to obtain (4.1).
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Since Wo L, Ja (Wo) D(2), the domain of our original operator in L2. Let us
define

Wn(t) /. (Wo) o().

Then w.(t) converges uniformly in L (and in L by interpolation) to the solution
w(t). Notice that since a is Lipschitz, a(w.(t)) converges uniformly in L2 tO a(w(t)).
Moreover,

w. t+ =-/. (Wo) J/.l/.(Wo)= J1/.(w.(t)),

and consequently,

The function (w(+ 1/n))-ge so

(2(W.(t+)), a(W(t+))

=--(n(w.(,+)--w.(t))--g, a(w.(,+)) --gl).
It is a consequence of the Crandall-Liggett generation theorem that

(4.4) n w. t+ -w.(t)
L

Since g LH1, it follows from the uniform boundedness of a(w.) that

w t+ --gl g(gWoll+ 1)
v

by an application of H61der’s inequality. The constant K is independent of n. We let
n. Then some (indeed, every) subsequence of a(w,(t + l/n)) converges weakly in
H to a(w(t)), so a(w)L([0, T];H) and a(w(t))-g V for almost every t
[0, T]. We conclude that a(w.(t+l/n))-g converges weakly to a(w(t))-g in
([0, r]; v).

From (4.3) and the definition of 2, we have

n w. t+ -w.(t),(t) dt
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We perform the standard change ofvariables on the right so that the difference quotients
are on q rather than w,, take the limit as n--> and use the convergence properties
of w,, a(w,) and the smoothness of q to obtain (3.2).

If g(t) is a step function, then we obtain the integral solution w(t) to (3.1) by
successively solving

dw(t)
+(w(t))g(t), Tj<t<- Tj+I,

dt

where g is constant on the interval (T, T/I) and w(0)= Wo. It is obvious that equation
(4.1) continues to hold in this case. If the test function p(t) satisfies 0q(t)/0v =0 on
$2 for all [0, T], then (4.5) is equivalent to

n w, t+ -w,(t),(t) dt

T-1/n [(’v(g2), 3/o(q(t)))+(’(Vqg(t)), 2’o(gl))

-(vw,,(t +--ln), Vqg(t)l-(t(wn(t+)), Atp(t))-(g, p(t))] dt.

Letting n--> o and arguing as in the previous case, we obtain (4.2).
Finally, if g L([0, T]; L) is arbitrary, then we obtain our results by approximat-

ing g by step functions and noting that the approximating solutions satisfy (4.1) and
(4.2). These solutions converge uniformly in LI([0, T]; L) and are uniformly bounded
in L; hence they converge weakly in L2([0, T]; L2) by the dominated convergence
theorem. Under these conditions, (4.1) and (4.2) continue to hold for the solution
to (3.1) [-!

5. Uniqueness of weak solutions. If the solution w(t) to (3.2) is Lipschitz into L
and bounded into L, then by interpolation it is H61der continuous into Lp, 1 =< p <,
with H6lder exponent 1/p. A sufficient condition for w(t) to be Lipschitz is to have
g(t) W’([0, T]; L1) and Woe D() (cf. [1, p. 131]; the relevant part of the theorem
is true in any Banach space). We now prove the uniqueness of H61der continuous
solutions to (3.2).

THEOREM 3. Let To R be any pointfor which both wl and WE are H61der continuous

from [0, To] into LE and assume that w(0)= wE(0) a.e. in G and both wl and wE satisfy
(3.2) for all q9 C([0, To]; LE) CI L2([0, To]; V). Then

Wl(To) w2(To) a.e. in G.

Proof. For all T <_- To and q C([0, T]; L2) LE([0, T]; V),

(w,( T)- w2(T), o(T))

Wl- w, +v-Ve -(v((w)- (w)), ve>
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where K-> K (v), the constant defined in (3.9). This equation is equivalent to

(w( T)- w(T), q(T))

e2K(T-t) Wl(t)-- w2(t),
dp(t)

+v .Vp(t)-2Kqg(t)
o dt

-(r(a(wl)( t) a(w2)( t)),

In fact, this second equation follows from the first by the usual variation of parameters
formula for solutions of nonhomogeneous, first order ordinary differential equations.
Theorem 3 follows by choosing an appropriate testing function

Let c I111 - and define the linear operator byLip

D()={vVIAvL),(3,(Vv),),o())=O for all OV}

and

&(v) -2Kv +v -Vv + Av/ c.

Then - is elliptic, and for all v D() and q, V,

(-v, ,)= f Vv.Vtp/c-v .VvO+2KvO.

Notice that - is V-coercive since

v>= Ilvll / 2K(v)2_v .V(v2)
G

-+ 2K(v):’+ div (v)(v:) - v" ,(v2)

by the choice of boundary conditions on v.
Since wl, w2, a(wl) and a(w2) are H61der continuous into L2, the backward heat

equation

d(t)
+tp(t)=(W(t)--W2(t))--C(Ce(wl(t))--a(w2(t))), O<--t<--_ T,

dt

q(T) 0T,

with 0T D(), is well posed. In fact, the theory of analytic semigroups provides a
strong solution p(t) e C([0, T]; L2) CI D(cP) for all [0, T] (f. [9]). We observe that

r(Ilm(t)ll$:CLk dr +v’V(t)+c((w(t))-(w(t)))-(w,(t)-w(t)), (t)

Since C([0, T]; L2) and w, w2, a(w) and a(w2) are continuous into L2, we
conclude, using H61der’s inequality, that II(’)llv is uniformly bounded on [0, T];
hence L2([0, T]; V).
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With this testing function, we have

e2K(T-t) W1 t)- w.( t) c(a(wl( t)) a(w2(t))),
dqg( t)
dt

+v .V(t)-2Kq(t)l
+ C(a(Wl( t))- ce (W2(t)), dqg(t)+(q(t))l]dt

e2K(T_t) t) + +v .Vq(t)-2Kq(t)
\ dt c dq(t)dt +v "Vq(t)-2Kq(t))
+ C(O(Wl(t))--o(w2(t)), Wl(t)--W2(t)--C(OZ(W(t))--a(w2(t))))1 dt.

The last term on the right is nonnegative since c I1 ?. We conclude that

c(w(T)-w(T) (T))>- e-’ a(t), d(t)+v.v(t)-eK(t) dt
dt

> e2g<r-t> A(t)
d(t) + KIl(t)ll dt
dt

by (3.9) and the identity (A,-)= I111. If we formally integrate the first term by
pas, we obtain the identity

T d(t)
dt=- e2T_t) d

o dt /
--IIII,dt,,(t),,_/2 dt

2K(T)e

+ er-’(-g[[(t)ll) dt.

In fact, this formal calculation yields a valid identity as may be verified by considering
Riemann sums of the (continuous) integrand. Hence, we may estimate

2C(Wl( T)- w2(T), or) => -II TII
or

<WI( T)- w2(T), (-2c) pT) ----< 11
for any choice of T e D(). But D() is a subspace of L2(G), so if we take eT in
place of PT, divide by e and let e 0, we get

<Wl( T)- w_(T), r) 0

for all r D(). Finally, D() is dense in L, and we conclude that

w(T) w2(T) a.e. in G.
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NONLINEAR ELLIPTIC DIFFERENTIAL EQUATION *

MICHAEL PILANTt AND WILLIAM RUNDELLt

Abstract. In this paper we determine the form of an unknown forcing term f in the equation
Au "7(z, y, u) + f(u) from overprescribed boundary data on a domain in R2 by reformulating the
problem as a fixed point problem in an appropriate function space. Given suitable restrictions on the
growth of f and the boundary data we recover a unique f.

Key words, undetermined coefficient, overposed boundary data, convergent iteration scheme
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1. Introduction. This paper considers the elliptic differential equation

-Au /(x, y) + f(u) (1.1)

defined on bounded open domain fl of R2 with smooth boundary 0. The function
7(x, y) is known, but f(u) as well as u(x, y) has to be determined. We shall assume
that 0fl can be decomposed into two connected components, 0fl 0ill U 022, and
on 0ill we impose the boundary condition

O -" fl gl, (X, y) 0"] (1.2)

while on 0fl we give both Dirichlet and Neumann boundary data

U
0-- g2,

(x, y) E 02. (1.3)

Here u is the inner normal to the curve 0ft.
By this overposing of the data on part of the boundary we hope to recover the

pair of functions (u(x, y), f(u)). Our result is to show that conditions can be given
on the boundary data and the known forcing function "7(x,y) in order to obtain a
unique function f(u), provided f(u) is, in a sense to be defined, "sufficiently small."

We are thus able to obtain the exact nature of a nonlinear forcing function in
Poisson’s equation that is subject to a small but unknown perturbation depending
only on the function u(x, y). The maximum allowable size of the perturbation will
depend on the data and the region f. Our method will lead to a construction of the
function f(u).

Problems such as the above have received recent attention, and we mention some
related work. First however we note that there is an inherent limitation on the form
of any right-hand side of (1.1) that can be recovered by measurements made only on
the boundary. If -Au f(x, y), where f depends on x and y, then even in this case
of a linear equation the function f cannot be determined uniquely no matter what
the imposed boundary data. To see this, suppose (Ul, fl) is a solution of -Aul fl
where both u and C9Ul/0/ are prescribed on the boundary 0. Then if is any

* Received by the editors July 14, 1986; accepted for publication October 22, 1986.
Department of Mathematics, Texas A& M University, College Station, Texas 77843.
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smooth function of compact support in 12, set u2 ul + and f2 fl + A, so
that ul and u agree with all their derivatives on 012. If the pair (ul,f) is a
solution, so also is (u, f). Thus one cannot expect uniqueness regardless of how
many derivatives of the function u are imposed on the boundary. If, however, one
restricts the allowed dependence of the forcing function f in advance then uniqueness
results are possible. For example if is a square and f f(x) only, then f can be
recovered by overposing both Dirichlet and Neumann data on one side. If the function

f has a linear dependence on u with proportionality coefficient depending only on
one of the space variables, f a(x)u say, then again f or in this case a(x) can be
recovered by conditions of the form (1.2), (1.3) (see [4]). The authors in [7] considered
the parabolic equation ut- Au f(u), and conditions were given on the initial-
boundary data to guarantee the existence of a unique function f, locally in time, but
with no restrictions on size. In fact f(u) was restricted only by the requirements of
uniqueness for the forwards or direct problem, that is the problem of finding u if the
operator and the forcing function were known. The techniques of the present paper
will have considerable overlap with those of [7], in that we shall set up a mapping from
the space of admissible functions f(u) to the overposed data using an evaluation of
(1.1) on the arc 0. We shall show that a solution of our problem is equivalent to
this map having a fixed point, and accomplish this by showing it to be a contraction
on a suitable function space.

We remark that the related inverse problem of finding the unknown function f(u)
in ut- Au f(u), or of finding the conductivity a(u) in ut- V.a(u)Vu f(u) has
an extensive literature but the techniques of these papers are different from the ones
proposed here; cf. [1], [2], [3], [5], [9].

The plan of this paper is as follows. The next section describes our notation and
gives the assumptions on the data. The third section constitutes the main body of
the paper and contains the existence and uniqueness result.

2. Notation and assumptions. Denote by Ck,a (D) the usual Schauder space
of functions whose k th order partial derivatives are Hhlder continuous of order c,
0 < c <_ 1 on the set D. The usual norm on this space we shall denote by I1"" k,a,
the set D being usually understood by the context.

We shall assume that the boundary 09t of C R2 is the union of two simply
connected arcs 0121 and 012, each of which lie in C2, It will be convenient to
paramerize the segment 02 on which both Dirichlet and Neumann data is prescribed,
by the variable t, 0 _< _< 1. We denote by (Xo, Yo) and (x, y) the corresponding
endpoints of the arc 0.

Our assumptions on the data shall be for two purposes. First, to guarantee the
existence of a sufficiently smooth solution u to the direct problem, that is a function
u(x, y; f) satisfying

-Au ’7(x, y)+ f(u) (2.1)

for a given f(u) and subject to the primary boundary conditions

+ u) u), u) (z.z)
Ou
b--; u), u)
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Second, to ensure that our mapping from f to the overposed data

e (2.4)

is well defined we need to guarantee that u(x,y; f) attains both its minimum and
maximum on 0f12, and is a monotone function of the parameter t on 0f12.

We shall denote by ho the smallest eigenvalue for the problem -A A on fl,
where is subject to the homogeneous primary boundary conditions (2.2) and (2.3).
Since fl is bounded it follows that Ao > 0 provided that /3 not identically zero on

01.
We shall assume that the boundary data satisfies:

A1. a(x,y) and (x,y) lie in C’l(0fll). In addition, c > 0, > 0 on 01,
and a 0 in a neighborhood of (xo, Yo) and (xl,yl). (That is, we have
Dirichlet boundary conditions in a neighborhood of the endpoints of 0ill .)

A2. gl G 62’1 (0"1)
g e C2’1 (0f),
0 E C3’1 (02)

A3. For (x, y) e 9t the function q(x, y) e C1’1 (’])
For a given E > 0 denote by SE the ball in C(1’1) centered at the origin, that is

SE :-- ( f f(0) 0, Ilfll 1,1 E }. (z.5)

With some restrictions on the value of E this set will form the admissible class of
functions f. By a solution pair (u, f) to (2.1) (2.4) we shall mean that,

(a) f e SE.
(b) u e C2’1 ().
(c) (2.1)- (2.4) hold.

We note that conditions A1 A3 are sufficient to guarantee the existence of a unique
solution to the direct problem (2.1) (2.3) for any f SE, provided E <-Ao. This
ensures that we avoid any eigenvalues of the linearized problem.

If a and u denote unit vectors in the tangential and normal directions on the
boundary 0f then for some functions a(s) and b(s) of the arc length s, and with
a2+b2 =1,

0 0 0 0
=b

0 0
0-- a + b Ou---:, 0--- -a a 0---"

0 0Thus in this coordinate system the Laplacian has principal part / --b-
Let Du and D denote the normal and tangential components of the Laplacian

on the boundary Off, that is

0 0
D, + c(s)

and
02 0

Da + d(s)

where c(s) and d(s) are coefficients that depend only on the boundary 0fl For
0 0example if fl is the unit circle then Du 7 + 7o and Da -0- For f E SE,
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and u(x,y; f) the corresponding solution of the direct problem, (2.1) (2.3), define
the mapping T0[f] by

T0[f] f(O) -l(t) + DaO + Dv{u(x, y; f)} (2.6)

where denotes the restriction of a function v to the boundary 022. Equation (2.6)
is precisely the projection of (1.1) onto the boundary 0f2.

We shall say that the mapping T0[f] has a theta fixed point f in SB if for some
f in this space

To[f] f (0).

Let the functions (x, y), + (x, y) and

_
(x, y) satisfy

-A (, V),
-A+ 7(x, Y) + E+,
-A_ "(x, y) E_,

(x, y) e f
(2.7)
(2.8)
(2.o)

and be subject to the primary boundary conditions (2.2), (2.3).
In order to develop the properties we need of the mapping To[ ], we will require

that,
A4. The functions +(x, y) satisfy,

gl(0)/(0) +(+o, Yo)_< +(x,y) _< +(xl,yl)= gl(1)/(1) for all

(z, v) e n.
The overposed boundary data e(t) u Iot2 will be assumed to satisfy,

AS. lID.{0 )11 , < C2, for some constant C2 to be defined later.

In addition, 0(0) gl (0)/Z(0), 0(1) gl(1)/Z(1), and O(t) is an increasing
function of the parameter t on 02. Furthermore, 0(0)< O(t) < 0(1).

The monotonicity assumption on O(t) is necessary to recover ] from ](O(t)) in T0[f].
By G G(x, y, , ) we denote the Green’s function for the Laplacian on f subject
to the primary boundary conditions (2.2) and (2.3).

We define the following quantitities, for f SE and Ilull x,x <

c(,) .= sup
II ff DvGf(u)II, (2.10)

and

C4 (fl) := sup
II ff. DvCh(, rl)IIl,x (2.11)

he0 I[h[[ 1,1

We can make the following observations:
First, let K be defined by

K[h] ffn D,Gh(, rl)ddo. (2.12)

By standard elliptic estimates [6], we have

II K[hl Ilx, < Cllhll x,x (2.13)
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where C is a constant depending only on the domain 12. Ca is therefore the smallest
such constant.

Secondly, from inequality (2.13) we have

which implies that
c(a, ) _< c (a)I111,, (2.14)

and that (2.10) is therefore well defined.
Thirdly, K[h] ff DuGh may have a nontrivial kernel. To see this, consider the

following example.
Let fl be the unit square, and let u(x,y) satisfy (2.1) with - -(y) together

with the primary boundary conditions

Ou(1, y) Ou(O,y)
O, O,

Ox Ox

=(, 0) =0,

along with the overposed condition

u(x, 1)-- 1,

(o,) =o().

For this case note that

uxx(O, y) --// DuGh(?)d(d 0 (2.15)

for any h E Lip1. This leads to the following inequality (where uo uo(y) ):

IIKf(u)lll,1c(a, ) up
fo I[f[[1,

II K:(u> K:(o) I11,,
sup
:o I) :()- :(o)111,1

< Ca (12)sup
IIf(u)- f(uo)llx,

:o I1:11"’",,
(2.16)

We have, in this case, C(fl, uo) 0.
We shall require that the constant C(fl, u) satisfy

A6. C(f, u) defined in (2.10), is a continuous function of u, for Ilull 2,1 < oc.

Note that from the above, there exists domains and primary boundary conditions on
this domain for which To[] reduces to the trivial mapping

To[f] -(t) -I- On(t) f(O(t))

from (2.6) and (2.15), and thus gives a direct determination of the function f without
any iteration. The above conditions essentially restrict the allowable class of unknown
functions f(u) and the primary boundary data to be sufficiently small perturbations
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of such problems. Here sufficiently small means that the operator defined by (2.13)
have norm less than one in a suitable space.

3. Existence and uniqueness. We shall prove the following result:
THEOREM. If assumptions A1 A6 hold, then for E sufficiently small, there

exists a unique solution pair <u, f> of (2.1)- (2.4).
We shall need some laminas, the first shows that the mapping To[] is well defined,

while the second shows the inverse problem of finding the function f(u) is equivalent
to finding a theta fixed point of T0[f].

LEMMA 1. If u(x, y; f) denotes the solution of the direct problem then it takes its
minimum and maximum at the points (xo, yo) and (x,y) on the boundary 012.

Proof. From A4, A5 and the maximum principle, [6, Chap. 9] applied to the
functions u, + and

_
we have that

0(0) <_ _(x,y) g u(x,y) < +(x,y) < 0(1) for (x, y) 6 [2.

LEMMA 2. Given f 6 S then (u(x,y), f) is a solution of (2.1)- (2.4) if and
only if f is a theta fixed point of T0[f].

Proof. Let fi(t; f) and (t) denote the restrictions of these functions to 0fl. If
(f, u) is a solution to (2.1) (2.4), then for t 6 0f

f(8) f(2(t; f))
D{u} + D{2} (t)
D{u} + D,; {8} "(t)
T0[f]

so that f is a theta fixed point of
Since

To[]’] -,(t)+ Da{O} + D.{u}
where u is a solution of the direct problem, by evaluating (2.1) on 0f2 we obtain
D{u} + Da{fi} -/+ f() and hence D{u} (t) + f() Da{fi}. Combining
this with the above equation in the case that f is a theta fixed point of T0[f],

To[f] f(O) Da{O} D,,{} + f(&)

for t 6 0[22.
Setting a(t) (t; f) O(t) for t 6 0122, we have

Da(a(t)} Da((t; f) O(t)}
:)) :(o(t)).

From A3, since f 6 SE, it follows that Da{a} y(t)a for some Lip1 function :(t)
satisfying I:1 < E. From assumption A5 it follows that a(0) a(1) 0. If we let
h be the lowest eigenvalue for the operator Da on Ofl2 acting on functions that
vanish at the endpoints (xo, yo) and (xl, yl), then if E is restricted to be less than
A1 it follows by comparison arguments from Sturm-Liouville theory that a(t) O.
Hence u satisfies (2.4).
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LEMMA 3. To[] maps a ball into itself in C1’1

Proof. By definition

f(O(t)) To[f](t) -’1 + D[O] + Dvu(x, y; f)

Da[O 1 + Dv// Gf(u)

D,,[O 1 + ffo Kf(u).

Assume that f(0) 0 and Ilfll 1,1 -( E. With respect to the II ]l 1,1 norm, on

[0, T], we have

II]] Kf(zt)ll i,i - C(-, u)llf[l i,i

The domain of ] is not [0, T], but [0(0), 0(T)]- [0, 0(T)]. We have the bound,
which results from a transformation of variables:

Ilfll 1,1, t0(0),0(1)] - C(T; O)Ilfll 1,1, [o,1]

where we have indicated the intervals over which the norms are taken. This immedi-
ately implies

IIf[ll,1 - C(T; O)IlT0[f]lll,1
< C(T; O)[lIDs(0 )11,1 + C(, u)llflll,l].

If C(fl, uo) 0 then if Ilu uoll 1,1 is sufficiently small, we can satisfy

C(T, O).C(gt, u) < 1/2.

If IID(0 )11 x, is sufficiently small then

C(T, O)IID(O )111,1 < El2
and consequently

II]ll 1,1 < E

and the Lemma is proved.
LEMMA 4. If [IDa(0 )111,1

Lipx
Proof. Under the hypotheses, To[] maps a ball into itself in C1,1 Consequently,

IIf’llo, is uniformly bounded. We therefore have the following:

is sufficiently small, then To[] is a contraction on
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The inequality
]]Ul u21[ 1,1 - C()]lfl f2ll 1,1 (3.1)

with C(f) --* 0 as Vol(f) 0 follows easily from estimates on lower norms of u.
Consequently, if [[u2-uo[[ 1,1 is sufficiently small, and if the region is sufficiently small
we conclude that

II]1 ]21] 1,1 l]fl f21] 1,1 (3.2)
and the lemma is proved.

The crucial estimate is that

C(T, 0).C(12, u2)< 1. (3.3)

This is essentially the requirement that C(f, u) << 1 for some ball about uo. This
is guaranteed by the presence of a nontrivial kernel for the mapping K D,.,G and
continuity.

We now compute an a priori bound on the iterates of T0[f] by the following
argument. With fo 0, and using (2.7)

II a/(t) + D(O) + Du{)[11,1

Define the sequence {fn} for n _> 1 by

T0[f.], fo 0, (3.4)

From (3.2) we have since 6 < 1, and fo 0

IIf/lll,x --IIf/l foil1,1 IIf,/l fnlll,1 + Ill. fn-llll, +-.. + Ill1 foil1,1
(n + n-x +... + $ + 1)11 Totfo] fo

< 1 II T0[0] II

C

We require that the constant C (appearing in A5), satisfy C < E(1 -6) where 6
is defined in equation (3.2). Therefore all the iterates lie in a ball of radius R < E in
Lip1.

Since To[] is a contraction on SE, the sequence {f,, }o=1 converges to a unique
theta fixed point in C1’1 with IIf[I 1,1 <- R. This completes the proof of the theorem.

Some remarks on the assumptions should be made.
First on the specification of boundary conditions and the assumption A4. In order

for the functions + to achieve their maximum on the boundary 0f at the ends of
the arc 0f, for a given forcing function -(x, y) and error bound E, we require that
the contribution from the boundary conditions (2.2) (2.3) overcome the tendency
for the forcing functions to create internal maxima or minima.
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Second, other than for clarity of exposition, there is no reason to restrict ourselves
to the Laplacian in equation (2.1). We could replace this equation by L u /(x, y)4-
f(u) where L is any uniformly elliptic operator with smooth coefficients on f. It is
probable that extension could be made to the case where the unperturbed problem is
quasilinear, by for example taking -/- "(x, y, u, Vu). We have performed a numerical
simulation of the algorithm defined by (3.3) including the case of - depending on u
and Vu, and found it to be quite robust and rapidly convergent. Some of the numerical
implementations for this fixed point method may be found in [8].

Finally the extension to Rn can easily be made. The section of the boundary
where the overposed data is specified would still have to be a one dimensional arc on
the surface 0f and contain the entire range of values of u(; f).
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